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Abstract. Inconsistency and incoherency are two sorts of erroneous informa-

tion in a DL ontology which have been widely discussed in ontology-based ap-

plications. For example, they have been used to detect modeling errors during

ontology construction. To provide more informative metrics which can tell the

differences between inconsistent ontologies and between incoherent terminolo-

gies, there has been some work on measuring inconsistency of an ontology and

on measuring incoherency of a terminology. However, most of them merely fo-

cus either on measuring inconsistency or on measuring incoherency and no clear

ideas of how to extend them to allow for the other. In this paper, we propose a

novel approach to measure DL ontologies, named distance-based measures. It has

the merits that both inconsistency and incoherency can be measured in a unified

framework. Moreover, only classical DL interpretations are used such that there

is no restriction on the DL languages used.

1 Introduction

Real ontology applications on the Semantic Web will often involve imperfect ontologi-

cal information [1]. This is reflected as inconsistency or incoherency in the underlying

description logic knowledge bases [2, 3]. Inconsistency indicates that there are some

logical contradictions such that the ontology becomes trivial because any conclusion

follows from it. Incoherency suggests ontology engineering mistakes because some

concepts are named but never can be instantiated. Detecting inconsistency and inco-

herency have been shown important for ontology-based applications [4].

Inconsistency and incoherency are two kinds of relevant but different information

about an ontology. Different approaches have been proposed in the literature to deal

with them. For conquering the triviality of inconsistent ontologies, there are approaches

that circumvent the inconsistency problem by applying non-standard reasoning meth-

ods to obtain meaningful answers, such as by paraconsistent semantics or by selecting

consistent sub-ontologies [5, 6]. For incoherent ontologies, ontology debugging tools

[7–9] and revision operators are studied to resolve modeling errors which lead to inco-

herencies [10, 11].

Besides directly handling inconsistencies or incoherencies, the measuring of incon-

sistency and incoherency has been proposed as a promising service to provide some

context information which can be used for ontology applications [12–14]. The existing

methods around this issue fall into one of the following categories: One is syntax-based



measurement [13] which calculates the percentage of axioms involved in inconsisten-

cies; The other is the semantics-based method [12, 14] which computes the percent-

age of assertion atoms involved in inconsistencies under some paraconsistent models.

Unlike the existing work, in this paper, we propose a new approach, named distance-

based measures. It is based on classical DL interpretations with no need to refer to

any paraconsistent semantics such that it can be used with any DL language. Note that,

distance measures have been widely studied in the field of belief revision and belief

merging, and also for reasoning under inconsistencies. Inspired by, but different from

those works, this paper proposes a way to define inconsistency and incoherency degrees

by employing distance measures.

The idea of our approach is to consider the distance between a DL ontology and its

preferred interpretations, the most relevant classical interpretations, which shows how

far it is away from being consistent/coherent. Based on such a distance, we propose

the inconsistency (resp. incoherency) deviation degree of a DL theory. For example, the

inconsistency (resp. incoherency) deviation degree of a consistent ontology (terminol-

ogy) is 0, which intuitively means that it has no deviation from being consistent (resp.

coherent). On the contrary, a DL ontology has 1 as its inconsistency (resp. incoherent)

deviation degree if and only if all of its axioms are unsatisfiable (resp. all atomic classes

are incoherent), which intuitively indicates that it is fully inconsistent (resp. incoherent).

The definition of distance is based on the extension of distance-based semantics for

propositional logic [15, 16]. Our work essentially differers from [11] in that [11] stud-

ies a model-based revision for terminologies but not for measuring incoherency which

is our goal in this paper.

This paper is organized as follows. We first provide some basic notions of descrip-

tion logics and distance and aggregation functions in Section 2. Our measures of incon-

sistency and incoherency are then discussed in detail in Section 3, in which distance-

based inconsistency/incoherency deviation degrees are defined first; And then the appli-

cation of such measures for ordering inconsistent ontologies and terminologies is given;

Finally the comparison of aggregation functions for better measures is discussed. We

wrap up the work in Section 4 with some further perspectives.

2 Preliminaries

We assume that the reader is familiar with basic syntax and semantics of description

logics, as introduced, e.g., in [2, 3]. For notation, CN is the set of atomic concepts

(concept names), RN is the set of roles (role names), and IN is the set of individuals.

It is safe to read this paper under the assumption that we’re working with ALC, but the

approach will work for any description logic. We will refer to interpretations under the

standard semantics as classical or DL interpretations. An ontology is called satisfiable

(unsatisfiable) iff there exists (does not exist) such a model. We denote with CM(O)
the set of classical models of O.

We say that a DL ontology (resp. a TBox or ABox axiom α) is inconsistent iff

CM(O) = ∅ (resp. CM(α) = ∅). A named concept C in a TBox T is unsatisfiable iff

CI = ∅ for each model I of T . A TBox is incoherent iff there exists an unsatisfiable

named concept in T .



We now review basic definitions about distance which will be used in our work to

define distance-based inconsistency and incoherency measures.

Definition 1 A total function d : U × U 7→ R+ ∪ {0} is called a distance (or metric

[17]) on U if it satisfies: (1) ∀u, v ∈ U, d(u, v) = d(v, u); (2) ∀u, v ∈ U, d(u, v) = 0
iff u = v; (3) ∀u, v, w ∈ U, d(u, v) + d(v, w) ≥ d(u, w).

Definition 2 A numeric aggregation function f is a total function that accepts a mul-

tiset of real numbers and returns a real number satisfying: (a) f is non-decreasing in

the values of its argument, that is, f({x1, ...xi, ..., xn}) ≤ f({x1, ..., x
′
i, ..., xn}) iff

xi ≤ x′
i where i ∈ [1, n]. (b) f({x1, ..., xn}) = 0 if and only if x1 = ... = xn = 0, and

(c) ∀x ∈ R, f({x}) = x.

We will consider the following aggregation functions in this paper:

– The maximum aggregation function f : f({x1, ..., xn}) = maxi xi;

– The summation aggregation function f : f({x1, ..., xn}) =
∑

i xi;

– The k
m

-voting aggregation function f :

f({x1, ..., xn}) =





0 if Zero({x1, ..., xn}) = n;
1
2 if

⌈
k
m

n
⌉
≤ Zero({x1, ..., xn}) < n;

1, otherwise,

where Zero({x1, ..., xn}) is the number of zeros in {x1, ..., xn}. Additionally, we

use |S| to stand for the cardinality of any set S.

3 Distance-based Measures

During our work on measuring DL ontologies or TBoxes, we obey the following prin-

ciples:

– Normalization Principle: The measure should be a value in [0, 1], where 0 repre-

sents a consistent ontology and 1 means a totally inconsistent ontology.

– Variation Principle: The possible values under the measurement should be as var-

ious as possible such that it can better distinguish between different ontologies

according to their degree under this measure.

– Applicability Principle: This measure should be useable for measuring both the

inconsistency of DL ontology and the incoherency of a DL TBox.

The normalization principle is defined for comparing different ontologies/TBoxes with-

out having to worry about differences in their sizes, in the number of ontological entries,

etc. The second principle says that finer granularity is better, since a binary measure is

of limited usefulness. By the applicability principle, we enable our method to estimate

both inconsistency and incoherency degrees. In fact, this is not a trivial requirement.

For example, it seems there is no clear idea how to extend the existing paraconsistent

semantics based inconsistency measurements [12, 14] to measure incoherency because

incoherent TBoxes do not suffer from the lack of classical models which is just what



paraconsistent semantics is made for. Similarly, the incoherency measure [13] is diffi-

cult to be extended to measure inconsistency. The reason is that, unlike the available

number of unsatisfiable concepts in an incoherent TBox, the lack of classical models

leads to no obvious way to count the number of “inconsistencies” in an inconsistent

ontologies.

To achieve such a measure, in this section, we propose a distance-based measuring

framework. Before any technical details, we first summarize the underlying ideas.

Let O be a set of ontologies. A distance function λ : S × O 7→ R+ ∪ {0} is de-

fined as a map from a classical interpretation I ∈ S and an ontology O ∈ O to a

nonnegative real value, where S is the interpretation space which varies under different

measuring tasks. In the following, we will see that the choice of interpretation space S
is different for measuring inconsistency and measuring incoherency. Simply speaking,

for measuring inconsistency, we consider the interpretation space S containing all DL

interpretations; But for measuring incoherency, S should merely contain DL interpre-

tations which do not interpret any atomic concept or role as an empty set. Then λ(·, ·)
will be used to select the most relevant DL interpretations to measure inconsistency or

incoherency.

3.1 Measuring Inconsistency

In a logical system, interpretations or models are used to represent the semantics. The

underlying idea of our measures is that calculating the distance between interpretations

is a way to estimate the deviation between two meanings. To this end, next we pro-

pose some ways to define the distance between two DL interpretations. The first is the

simplest way called drastic distance:

Definition 3 (Drastic Distance) Let I1 = (∆, ·I1) and I2 = (∆, ·I2) be two DL inter-

pretations. The drastic distance1 between I1 and I2, denoted dD(I1, I2), is defined as

follows:

dD(I1, I2) =

{
0 if I1 = I2;
1 otherwise .

That is, the drastic distance of two interpretations is 0 if they are the same, and 1 oth-

erwise. Different from the Hamming distance given below, for a given ontology with

finite numbers of concept and role names, an advantage of the drastic distance dD(·, ·)
is in that it always yields a finite value even for infinite domains.

However, the drastic distance is very coarse. A more finer-grained distance is the

Hamming Distance, as follows.

Definition 4 (Hamming Distance) Let I1 = (∆, ·I1) and I2 = (∆∪∆′, ·I2) be two DL

interpretations. The Hamming distance between I1 and I2 for inconsistency, denoted

dH(I1, I2), is defined as follows:

dH(I1, I2) = |{A(a) : A(a)I1 6= A(a)I2 , A ∈ CN, aI2 ∈ ∆}| +

|{R(a, b) : R(a, b)I1 6= R(a, b)I2 , R ∈ RN, aI2 , bI2 ∈ ∆}|

+|CN ||∆′| + |RN ||∆′|2.

1 more commonly known as the discrete metric



That is, the Hamming distance of two interpretations for inconsistency is the cardinal-

ity of the set of concept and role assertions which are interpreted differently on their

common domain ∆ plus the number of atomic grounded concept and role assertions. In

this way, two interpretations of different sizes of domains are comparable.

Note that dH(I1, I2) can be +∞ if ∆ is infinite even if |CN | and |RN | are finite. To

avoid this, we only consider finite interpretations whenever talking about the Hamming

distance. This is reasonable in practical cases because only finite numbers of individuals

can be represented or would be used. It is reasonable also in that if an ontology is

inconsistent (resp. a TBox is incoherent), then it is inconsistent (resp. incoherent) w.r.t.

finite domains.

In the rest of this paper, when the study is independent on the concrete form of

distance functions between two interpretations I1 and I2, d(I1, I2) is used to refer to

either sort of distances, Hamming distance or drastic distance.

Based on distance defined between two classical interpretations, we can define the

distance between an interpretation and a TBox or ABox axiom. We will see later that

this step is necessary because the set of classical models is empty for an inconsistent

ontology.

Definition 5 Let I = (∆, ·I) be a DL interpretation and α be a TBox or ABox axiom.

The distance between I and α, denoted d(I, α), is defined as follows:2

d(I, α) =

{
minJ∈CM(α) d(I, J), if CM(α) 6= ∅

τ, otherwise

where τ is a given as follows:

τ =

{
|CN ||∆| + |RN ||∆|2 + 1, if d(I, J) is the Hamming distance,

2, if d(I, J) is the drastic distance.

That is, if α is consistent, then d(I, α) equals the minimal distance between I and the

models of α; Otherwise, it equals the given value τ which is strictly larger than any

distance between two interpretations. This means that an interpretation is further away

from an unsatisfiable axiom than from any satisfiable one. In this way, we will see that

compared to satisfiable axioms, an unsatisfiable axiom deviates from being consistent

to a larger degree, which is intuitively plausible. The next example further illustrates

this intuition.

Example 1 Let α = A ⊑ B ⊓ ¬B, α′ = A ⊔ ¬A ⊑ B ⊓ ¬B, and I = ({a}, ·I)
with AI = {a}, BI = {a}. We have d(I, α) = 1 because I 6∈ CM(α) and there is

I ′ ∈ CM(α) with AI = ∅, BI = {a} and dH(I, I ′) = 1. Moreover, dH(I, α′) =
2 × 1 + 1 = 3 since α′ is unsatisfiable and τ = 3 with CN = {A, B} and RN = ∅.

That is, the unsatisfiable ontology α′ deviates from consistency further than α does.

Given a numeric aggregation function, we can define a distance between an ontology

and a classical interpretation as follows:

2 The overloaded notation should not cause any difficulties.



Definition 6 Given a distance function d and a numeric aggregation function f , let I

be a DL interpretation and O = {α1, ..., αn} be an ontology, where αi is a TBox or

ABox axiom. The distance between I and O, written λd,f (I, O), is defined as follows:

λd,f (I, O) = f({d(I, α1), ..., d(I, αn)}).

The distance defined above is syntax sensitive which falls into a category of inconsis-

tency measuring approaches that can be useful in some applications as argued in [18].

Definition 7 (Interpretation ordering w.r.t. distance) Let I1 and I2 be two DL inter-

pretations. We say that I1 is closer to a DL ontology O than I2 (w.r.t a distance func-

tion d and an aggregation function f ), written I ≤O
d,f J , if and only if λd,f (I, O) ≤

λd,f (J, O).

As usual, I1 <O
d,f I2 denotes I1 ≤O

d,f I2 and I2 6≤O
d,f I1, and I1 ≡O

d,f I2 denotes

I1 ≤O
d,f I2 and I2 ≤O

d,f I1.

The next definition captures the intuition of our distance-based inconsistency mea-

surement such that the most relevant interpretations of an ontology are those λd,f -

closest to the ontology.

Definition 8 (Preferred Consistent Interpretation) The set of preferred interpreta-

tions of a DL ontology O with respect to a distance function d and an aggregation

function f , written PId,f (O), is defined as follows:

PId,f (O) = {I : for any classical interpretation J, I ≤O
d,f J}.

That is, a preferred interpretation has minimal distance to O. When O is consistent, the

following proposition holds by noting that d(I, O) = 0 iff I ∈ CM(O).

Proposition 1 For any consistent ontology O, PId,f (O) = CM(O).

The distance between an ontology and its preferred interpretations reflects the dis-

tance of the ontology from being consistent. In other words, it represents to what extent

it deviates from being consistent. Intuitively, the larger the distance is, the more in-

consistent the ontology is. For consistent ontologies, the distance is 0 which says that

there is no deviation from being consistent. We normalize this distance in the following

definition.

Definition 9 (Inconsistency Deviation Degree) Given a distance function d and a nu-

meric aggregation function f , the Inconsistency Deviation Degree of a DL ontology O,

written IDDd,f (O), is defined by:

IDDd,f (O) =
λd,f (I, O)

max f({x1, · · · , xn})
,

where I ∈ PId,f (O) and max f({x1, · · · , xn}) is given below:

max f({x1, · · · , xn}) =





nτ, if f is the summation aggregation function,

1, if f is the voting aggregation function,

τ, if f is the maximum aggregation function,

where τ = 2 for the drastic distance, and τ = |CN ||∆0| + |RN ||∆0|
2 + 1 with

|∆0| = minI∈PId,f (O) |∆
I | for the Hamming distance.



Note that the minimal domain size of preferred models is used as the denominator

for normalization in Definition 9. This suffices to make sure that IDDd,f (O) ∈ [0, 1]
because all the preferred models have the same distance from O.

Example 2 (Example 1 contd.) Let O = {A ⊑ B⊓¬B, A⊔¬A ⊑ B⊓¬B, A(a)}. We

have IDDd,f (O) = f(0,3,1)
maxxi∈[0,τ] f(x1,x2,x3)

= 4
9 if d is the Hamming distance and f is

the summation function by noting that a preferred interpretation of O with the minimal

domain size is I = ({a}, ·I) with AI = ∅, BI = {a}.

By Proposition 1, the following corollary holds obviously.

Corollary 2 For an ontology O, we have IDDd,f (O) ∈ [0, 1]. Moreover, O is consistent

if and only if IDDd,f (O) = 0 for any distance function d and aggregation function f .

3.2 Incoherency Deviation Degree

For description logics, incoherency reveals the occurrence of unsatisfiable concepts w.r.t

a TBox, that is, it is TBox-relevant but ABox-independent. In this section, we study the

distance-based metric for measuring incoherency of a TBox.

Different from the case of measuring inconsistency, to measure incoherency, we put

the atomic differences between two interpretations on concept and role names and ig-

nore individual assertions because only a TBox is considered, which leads to a different

Hamming Distance given below.

Definition 10 (Hamming Distance) Let I1 = (∆, ·I1) and I2 = (∆ ∪ ∆′, ·I2) be two

DL interpretations. The Hamming distance between I1 and I2 for incoherency, denoted

d̃H(I1, I2), is defined as follows:

d̃H(I1, I2) = |{A ∈ CN : AI1 6= AI2 ∩ ∆}| + |{R ∈ RN : RI1 6= RI2 ∩ ∆2}|.

That is, the Hamming distance of two interpretations for incoherency is the cardinal-

ity of the set of concept and role names which are interpreted differently. Unlike the

Hamming distance in the case of inconsistency, d̃H(I1, I2) is always finite even if ∆ is

infinite. So when measuring incoherency, we have no need to restrict to finite domains.

The following example shows that the Hamming distances defined for inconsistency

dH(·, ·) and for incoherency d̃H(·, ·) can have distinct values.

Example 3 Consider two DL interpretations I = (∆I , ·I) and I ′ = (∆I′

, ·I
′

) defined

as follows: ∆I = {a, b, c}, AI = {a}, BI = {b, c}, CI = {c}; ∆I′

= {a, b, c}, AI′

=

{a}, BI′

= {b}, CI′

= {a, b, c}. We have dH(I, I ′) = |{BI(c), CI(a), CI(b)}| = 3,

whilst d̃H(I, I ′) = |{B, C}| = 2.

For the drastic distance, it remains the same for inconsistency and incoherence. In the

rest of this paper, we use d̃(I1, I2) to refer to either sort of distances whenever there is

no necessity to make a distinction. Similarly to the case of measuring inconsistency, we

can define the distance between an interpretation I and a TBox axiom.



Definition 11 Let I = (∆, ·I) be a DL interpretation and tt be a TBox axiom. Denote

by CM(tt) the set of classical models of tt, that is, CM(tt) = {I : I |=2 tt}. The

distance between I and tt, denoted d(I, tt), is defined as follows:

d̃(I, tt) =

{
minJ∈CM(tt) d̃(I, J), if CM(tt) 6= ∅
τ̃ , otherwise

where τ̃ is a given real value which depends on the value range of d̃(I, J):

τ̃ =

{
|CN | + |RN | + 1, if d̃(I, J) is the Hamming distance;

2, if d̃(I, J) is the drastic distance.

Definition 12 Given a distance function d and a numeric aggregation function f , let I

be a DL interpretation and T = {t1, ..., tn} be a TBox. The distance between I and T ,

written λd,f (I, T ), is defined as follows:

λ̃ed,f
(I, O) = f({d̃(I, t1), ..., d̃(I, tn)}).

For any two DL interpretations I1 and I2, we say that I1 is closer to a TBox T than

I2 (w.r.t. a distance function d̃ and an aggregation function f ), written I ≤T
ed,f

J , if and

only if λ̃ed,f
(I, T ) ≤ λ̃ed,f

(J, T ).
Next we turn to define preferred interpretations which capture the intuition of our

distance-based incoherency measurement that the most relevant interpretations of a

TBox are those λ̃ed,f
-closest to the TBox. Note that one of the essential differences to

measuring inconsistency is in that the interpretation space, the set of candidate preferred

interpretations, consists of interpretations which interpret no concept to the empty set.

For ease of notation, denote such an interpretation space by S = {I : ∀A ∈ CN, AI 6=
∅}.

Definition 13 (Preferred Coherent Interpretation) The set of preferred interpretations

of a TBox T w.r.t. a distance function d̃ and an aggregation function f , written P̃I ed,f
(T ),

is defined as P̃I ed,f
(T ) = {I ∈ S : ∀J ∈ S, I ≤T

ed,f
J}.

Example 4 Let T = {A ⊑ B ⊓ D,D ⊑ C, A ⊑ ¬B, D ⊑ ¬C}. We know that

A, D are two unsatisfiable concepts with respect to T . Consider two interpretations

I = (∆I , ·I) and I ′ = (∆I′

, ·I
′

) with ∆I = ∆I′

= {a, b, c}, AI = {a}, BI =

{a}, CI = {a, b, c}, DI = {a, c}, and AI′

= ∅, BI′

= {a}, CI′

= {a, b, c}, DI′

=

{c}. We have λ̃d,f (I ′, T ) ≤ λ̃d,f (I, T ). However, we have I ∈ P̃I ed,f
(T ), but I ′ 6∈

P̃I ed,f
(T ) because it assigns A to the empty set. Another preferred model of T can be

J = ({a}, ·I) with AI = BI = CI = DI = {a}. By a careful computation, we obtain

λ̃ed,f
(I, T ) = λ̃ed,f

(J, T ) = f(0, 0, 1, 1).

Proposition 3 For any coherent TBox T , we have P̃I(T ) = CM(T ), where CM(T )

is the set of classical models of T . For an incoherent TBox T , P̃I(T ) ∩ CM(T ) = ∅.



Similarly to the definition of inconsistency deviation degree, we can define the in-

coherency deviation degree of a TBox which measures to what extent it deviates from

being coherent.

Definition 14 (Incoherency Deviation Degree) Given a distance function d̃ and a nu-

meric aggregation function f , the Inconsistency Deviation Degree of a TBox T , written

ĨDD ed,f
(T ), is defined as follows:

ĨDD ed,f
(T ) =

λ̃(I, T )

max f({x1, · · · , xn})
, (1)

where I ∈ P̃I ed,f
(T ) and max f({x1, · · · , xn}) is given in Definition 9 by replacing τ

by τ̃ .

Example 5 (Example 4 contd.) For T , we have known that I ∈ P̃I ed,f
(T ), by which we

have ĨDD ed,f
(T ) =

λ ed,f
(I,T )

max f({x1,··· ,xn}) = f(0,0,1,1)
5×4 = 1

10 when d̃ is the drastic distance

and f is the summation function, where |CN | = {A, B,C, D} = 4, τ̃ = 5.

Example 6 Let T1 = {Ci ⊑ ⊥ : i ∈ [1, n]} and T2 = {Ci ⊑ Ci+1} ∩ {Cn ⊑ ⊥}.

Suppose I = (∆I , ·I) with ∆I = {a} and CI
i = {a}; We have I ∈ P̃I ed,f

(T1) and

I ∈ P̃I ed,f
(T2). We have λ̃(I, T1) = f(τ̃ , ..., τ̃) and λ̃(I, T2) = f(0, ..., 0︸ ︷︷ ︸

n−1

, τ̃) such

that λ̃(I, T1) > λ̃(I, T2). This meets the intuition that T1 contains more incoherence

“resources” (unsatisfiable concepts) than T2 does.

Corollary 4 For any TBox T , ĨDD ed,f
(T ) ∈ [0, 1]. Moreover, T is coherent if and only

if ĨDD ed,f
(T ) = 0 for any distance function d̃ and aggregation function f .

3.3 Inconsistency and Incoherency Ordering

An application of measuring inconsistency or incoherency is to order inconsistent on-

tologies and incoherent terminologies to assist ontology engineering. In this section, we

provide a distance-based inconsistency and incoherency ordering.

Definition 15 (Distance-based Inconsistency/Incoherence Ordering) Given two on-

tologies O = {α1, ..., αn} and O′ = {α′
1, ..., α

′
m} (resp. TBoxes T = {t1, ..., tn} and

T ′ = {t′1, ..., t
′
m}), w.l.o.g, assume m ≤ n. We saz that O is less inconsistent than O′

(resp. T is less incoherent than T ′) w.r.t. ς , written O ≤Inconsist O′ (resp. T1 ≤Inconher

T ′), iff there exist preferred consistent interpretations I of O (resp. T ) and I ′ of O′

(resp. T ′) such that IDDd,f (O) ≤ IDDd,f (O′) (resp. ĨDD ed,f
(T ) ≤ ĨDD ed,f

(T ′)).

Example 7 (Example 2 contd.) Let O′ = {A ⊑ B⊓¬B, A(a)}. We have IDDd,f (O′) =
f(0,1,0)

maxxi∈[0,τ] f(x1,x2,x3)
= 1

9 if d is the Hamming distance and f is the summation function

by noting that a preferred interpretation of O is I ′ = ({a}, ·I
′

) with AI′

= ∅, BI′

=
{a}. So IDDd,f (O′) <Inconsist IDDd,f (O).



Example 8 (Example 4 contd.) Let T ′ = {A ⊑ B ⊓ C, B ⊑ ¬C, A ⊑ D}. We know

that A, B are unsatisfiable concepts with respect to T . Consider J = (∆J , ·J) with

∆J = {a, b, c} and AJ = {a}, BJ = {a, b}, AJ = {a, b, c}, DJ = {c}. We have

λH,f (J, T ′) = f(0, 0, 1, 0) = 1 for drastic distance function and summation aggre-

gation function. Since T ′ is incoherent, there is no J ′ ∈ S such that λH,f (J ′, T ′) <

λH,f (J, T ′). Therefore, J ∈ PI(T ′). By noting that λH,f (J, T ′) < λH,f (I, T ) =
f(0, 0, 1, 1), we have that T ′ is less incoherent than T .

3.4 Comparison of Aggregation Functions

Above, we have given a framework for defining the inconsistency deviation degree and

the incoherency deviation degree based on some given distance function and aggre-

gation function. In this section, by the following example, we make a comparison of

aggregation functions discussed in this paper. The conclusion is that the summation ag-

gregation function is better for distinguishing ontologies (resp. terminologies) in terms

of their different inconsistency (resp. incoherency) degrees.

Example 9 Let O = {A ⊑ B ⊓ ¬B, A(a)} and O′ = {A(a),¬A(a), B(a), ¬B(a),
C(a), ¬C(a)}. Consider ∆ = {a} and two interpretations I with AI = ∅, BI =

{a}, CI = ∅ and I ′ with AI′

= ∅, BI′

= {a}, CI′

= {a}. We have I ∈ PI(O) and

I ′ ∈ PI(O′). Moreover, λ{H,D},f (I, O) = f({0, 1, 0, 0, 0, 0}), d{H,D},f (I ′, O′) =
f({0, 1, 1, 0, 1, 0}). Then the following hold.

– If f is the maximum function, then λ{H,D},f (I, O) = λ{H,D},f (I ′, O′) = 1;

– If f is the voting function, then λ{H,D},f (I,O) = 0, λ{H,D},f (I ′, O′) = 1
2 if

k
m

≥ 0.5, otherwise, λ{H,D},f (I ′, O′) = 0;

– If f is the summation function, then λ{H,D},f (I, O) = 1, λ{H,D},f (I ′, O′) = 3.

That is, O has the same inconsistency as O′ under the maximum function and the voting

function (with k
m

≥ 0.5 in this example). But with the summation function, we obtain

that O is less inconsistent than O′ which coincides with the intuition.

From this example, we can see that, compared to the maximum function and the voting

function, the summation function allows for a larger range of distinctive values of the

distance between an ontology and its preferred interpretations such that it better satisfies

the variation principle than the other two aggregation functions.

4 Conclusion and Future Work

We studied a distance-based framework to define inconsistency measures and inco-

herency measures which can be used for ranking inconsistent ontologies and incoherent

terminologies. We showed that such measures met the normalization, variation, appli-

cability principles. In the future, we intend to study other distance functions like Haus-

dorff distance and other aggregation functions such as the averaging function. More

importantly, we intend to develop algorithms for computing our distance-based mea-

sures and investigate them in practice.
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