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ENERGY CASCADES FOR NLS ON T
d

RÉMI CARLES AND ERWAN FAOU

ABSTRACT. We consider the nonlinear Schrödinger equation with cubic (focus-
ing or defocusing) nonlinearity on the multidimensional torus. For special small
initial data containing only five modes, we exhibit a countable set of time layers
in which arbitrarily large modes are created. The proof relies on a reduction to
multiphase weakly nonlinear geometric optics, and on the study of a particular
two-dimensional discrete dynamical system.

1. INTRODUCTION AND MAIN RESULT

We consider the nonlinear Schrödinger equation

(1.1) i∂tu+∆u = λ|u|2u, x ∈ T
d,

with d > 2, where the sign ofλ ∈ {−1,+1} turns out to be irrelevant in the
analysis below. In the present analysis, we are interested in the description of some
energy exchanges between low and high frequencies for particular solutions of this
equation. We will consider solutions with small initial values:

(1.2) u(0, x) = δu0(x),

whereu0 ∈ H1(Td) and 0 < δ ≪ 1. Replacingu with δ−1u, (1.1)–(1.2) is
equivalent to

(1.3) i∂tu+∆u = λε|u|2u ; u(0, x) = u0(x),

whereε = δ2. This equation is one of the popular models to describeweak tur-
bulence(see e.g. [21, 22]). Viewed as an infinite dimensional dynamical system
in terms of the Fourier variables of the solution, such an equation is resonantin
the sense that all the eigenvalues of the Laplace operator are integers only, making
possible nontrivial vanishing linear combinations between the frequencies of the
linear unperturbed equation (ε = 0). In such a situation, the perturbation theory
cannot be directly applied as in [1, 2, 3, 9, 10, 13, 16]. Let usrecall that in all these
works, the Laplace operator is perturbed by a typical potential making resonances
genericallydisappear. In such situations and whenu0(x) is smooth enough, it is
possible to prove the quasi preservation of the Sobolev norms of the solution over
very long time: polynomial (of orderε−r for all r) as in [2], exponentially large as
in [13], or arbitrary large for a set of specific solutions as in [10].

2000Mathematics Subject Classification.Primary 35Q55; Secondary 35C20, 37K55.
This work was supported by the French ANR project R.A.S. (ANR-08-JCJC-0124-01).

1



2 R. CARLES AND E. FAOU

In the resonant case considered in this paper, there isa priori no reason to ob-
serve long times bounds for the Sobolev norms of the solution. Despite this fact,
Eqn. (1.1) possesses many quasi-periodic solutions (see [4, 24]).

On the other hand, it has been recently shown in [8] that in thedefocusing case
(Eqn. (1.1) withλ = 1), solutions exist exhibiting energy transfers between low
and high modes which in turn induce a growth in the Sobolev normHs with s > 1.
Strikingly, such phenomenon arises despite the fact thatL2 andH1 norms of the
solution are bounded for all time.

The goal of the present work is to describequantitativelysuch energy exchanges
in the case of a particular explicit initial valueu0(x) made of five low modes. Since
we work onTd, the solutionu takes the form

u(t, x) =
∑

j∈Zd

uj(t)e
ij·x,

whereuj(t) ∈ C are the Fourier coefficients of the solution, and as long ast

does not exceed the lifespan ofu. Here, forj = (j1, . . . , jd) ∈ Z
d andx =

(x1, . . . , xd), we havej·x = j1x1+· · ·+jdxd. We also set|j|2 = j21+· · ·+j2d ∈ N.
Let us introduce the Wiener algebraW made of functionsf onT

d of the form

f(x) =
∑

j∈Zd

bje
ij·x

such that(bj)j∈Zd ∈ ℓ1(Zd). With this space is associated the norm

‖f‖W =
∑

j∈Zd

|bj |.

Our main result is the following:

Theorem 1.1. Letd > 2, andu0 ∈ C∞(Td) given by

u0(x) = 1 + 2 cos x1 + 2cos x2.

For λ ∈ {±1}, the following holds. There existε0, T > 0 such that for0 < ε 6 ε0,
(1.3)has a unique solutionu ∈ C([0, T/ε];W ), and there existC0 > 0 andC > 0
such that:

∀j ∈ N∗, ∃cj 6= 0, ∀t ∈ [0, T/ε],
∣

∣

∣
uj (t)− cj(εt)

|j|2−1
∣

∣

∣
6 (C0εt)

|j|2 + Cε,

where the setN∗ is given by

(1.4) N∗ = {(0,±2p), (±2p, 0), (±2p,±2p), (∓2p,±2p), p ∈ N} × {0Zd−2}.

Arbitrarily high modes appear with equal intensity along a cascade of time layers:

∀γ ∈]0, 1[, ∀θ <
1

4
, ∀α > 0, ∃ε1 ∈]0, ε0], ∀ε ∈]0, ε1],

∀j ∈ N∗, |j| < α

(

log
1

ε

)θ

,

∣

∣

∣

∣

uj

(

2

ε1−γ/(|j|2−1)

)
∣

∣

∣

∣

>
εγ

4
.
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This result expresses the possibility of nonlinear exchanges in (1.3): while the
high modes in the setN∗ are equal to zero at timet = 0, they are significantly
large in a time that depends on the mode. As this time increases with the size
of the mode, this is anenergy cascadein the sense of [7]. To our knowledge, this
result is the first one where such a dynamics is described so precisely as to quantify
the time of ignition of different modes.

The progressive growth of the spectrum is a common feature with turbulent
regimes (see e.g. [7, 14, 17, 18] and references therein). Weshall not claim that the
present result is related to turbulence however, since several features of turbulence
(such as chaos, dissipation) are absent of our study.

The proof of this theorem relies on the following ingredients:

• An approximation result showing that the analysis of the dynamics of (1.1)
over a time of orderO(1/ε) can be reduced to the study of an infinite
dimensional system for the amplitudes of the Fourier coefficientsuj (in
a geometric optics framework). Let us mention that this reduced system
exactly corresponds to theresonant normal formsystem obtained after a
first order Birkhoff reduction (see [19] for the one dimensional case). We
detail this connection between geometric optics and normalforms in the
second section.

• A careful study of the dynamics of the reduced system. Here weuse the
particular structure of the initial value which consists offive modes gener-
ating infinitely many new frequencies through the resonances interactions
in the reduced system. A Taylor expansion (in the spirit of [5]) then shows
how all the frequencies should bea priori turned on in finite time. The
particular geometry of the energy repartition between the frequencies then
makes possible to estimate precisely the evolution of the particular points
of the setN∗ in (1.4) and to quantify the energy exchanges between them.

The construction above is very different from the one in [8].Let us mention that
it is also valid only up to a time of orderO(1/ε) (which explains the absence of
difference between the focusing and defocusing cases). After this time, the nature
of the dynamics should change completely as all the frequencies of the solution
would be significantly present in the system, and the nature of the nonlinearity
should become relevant.

2. AN APPROXIMATION RESULT IN GEOMETRIC OPTICS

For a given element(αj)j∈Zd ∈ ℓ1(Zd), we define the following infinite dimen-
sionalresonant system

(2.1) iȧj = λ
∑

(k,ℓ,m)∈Ij

akaℓam ; aj(0) = αj.

whereIj is the set ofresonantindices (see [19]) associated withj defined by:

(2.2) Ij =
{

(k, ℓ,m) ∈ Z
3d | j = k − ℓ+m, and|j|2 = |k|2 − |ℓ|2 + |m|2

}

.

With these notations, we have the following result:
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Proposition 2.1. Letu0(x) ∈ W and (αj)j∈Zd ∈ ℓ1(Zd) its Fourier coefficients.
There existsT > 0 and a unique analytic solution(aj)j∈Zd : [0, T ] → ℓ1(Zd) to
the system(2.1). Moreover, there existsε0(T ) > 0 such that for0 < ε 6 ε0(T ), the
exact solution to(1.3) satisfiesu ∈ C([0, Tε ];W ) and there existsC independent
of ε ∈]0, ε0(T )] such that

sup
06t6T

ε

‖u− vε(t)‖W 6 Cε.

where

(2.3) vε(t, x) =
∑

j∈Zd

aj(εt)e
ij·x−it|j|2 .

Remark2.2. Even though it is not emphasized in the notation, the function u ob-
viously depends onε, which is present in (1.3).

We give below a (complete but short) proof of this result using geometric optics.
Let us mention however that we can also prove this proposition using a Birkhoff
transformation of (1.3) inresonant normal formas in [19]. We give some details
below. There is also an obvious connection with themodulated Fourier expansion
framework developed in [15] in the non-resonant case (see also [23]).

2.1. Solution of the resonant system. The first part of Proposition 2.1 is a con-
sequence of the following result:

Lemma 2.3. Let α = (αj)j∈Zd ∈ ℓ1(Zd). There existsT > 0 and a unique
analytic solution(aj)j∈Zd : [0, T ] → ℓ1(Zd) to the system(2.1). Moreover, there
exists constantsM andR such that for alln ∈ N and all s 6 T ,

(2.4) ∀ j ∈ Z
d,

∣

∣

∣

∣

dnaj
dtn

(s)

∣

∣

∣

∣

6 MRnn!

Proof. In [6], the existence of a timeT1 and continuity in time of the solution
a(t) = (aj(t))j∈Zd in ℓ1 is proved. Asℓ1 is an algebra, a bootstrap argument
shows thata(t) ∈ C∞

(

[0, T1]; ℓ
1(Zd)

)

. From (2.1) we immediately obtain for
s ∈ [0, T1],

‖ȧ(s)‖ℓ1 6 3‖a(s)‖3ℓ1 ,

and by induction
∥

∥

∥
a(n)(s)

∥

∥

∥

ℓ1
6 3 · 5 · · · · (2n+ 1)‖a(s)‖2n+1

ℓ1
,

wherea(n)(t) denote then-th derivative ofa(t) with respect to time. This implies
∥

∥

∥
a(n)(0)

∥

∥

∥

ℓ1
6 3 · 5 · · · · (2n + 1)‖α‖2n+1

ℓ1
6 ‖α‖ℓ1n!

(

3‖α‖2ℓ1
)n

,

which shows the analyticity ofa for t 6 T2 = 1
6‖α‖

−2
ℓ1

. The estimate (2.4) is then
a standard consequence of Cauchy estimates applied to the complex power series
∑

n∈N
1
n!a

(n)(0)zn defined in the ballB(0, 2T ) where2T = min(T1, T2). �
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2.2. Geometric optics. Let us introduce the scaling

(2.5) t = εt, x = εx, u(t, x) = u
ε (εt, εx) .

Then (1.3) isequivalentto:

(2.6) iε∂tu
ε + ε2∆u

ε = λε|uε|2uε ; u
ε(0, x) = u0

(

x

ε

)

=
∑

j∈Zd

αje
ij·x/ε.

In the limit ε → 0, multiphase geometric optics provides an approximate solution
for (2.6). The presence of the factorε in front of the nonlinearity has two conse-
quences: in the asymptotic regimeε → 0, the eikonal equation is the same as in
the linear caseλ = 0, but the transport equation describing the evolution of the
amplitude is nonlinear. This explains why this framework isreferred to asweakly
nonlinear geometric optics. Note that simplifying byε in the Schrödinger equation
(2.6), we can view the limitε → 0 as a small dispersion limit, as in e.g. [18].

We sketch the approach described more precisely in [6]. The approximate solu-
tion provided by geometric optics has the form

(2.7) v
ε(t, x) =

∑

j∈Zd

aj(t)e
φj(t,x)/ε,

where we demanduε = v
ε at timet = 0, that is

aj(0) = αj ; φj(0, x) = j · x.

Plugging this ansatz into (2.6) and ordering the powers ofε, we find, for theO(ε0)
term:

∂tφj + |∇φj |
2 = 0 ; φj(0, x) = j · x.

The solution is given explicitly by

(2.8) φj(t, x) = j · x− t|j|2.

The amplitudeaj is given by theO(ε1) and is given by equation (2.1) after project-
ing the wave along the oscillationeiφj/ε according to the the set ofresonantphases
given byIj (Eqn. (2.2)). By doing so, we have dropped the oscillations of the form
ei(k·x−ωt)/ε with ω 6= |k|2, generated by nonlinear interaction: the phasek ·x−ωt
does not solve the eikonal equation, and the corresponding term is negligible in the
limit ε → 0 thanks to a non-stationary phase argument.

Proposition 2.1 is a simple corollary of the following result that is established in
[6]. We sketch the proof in Appendix A.

Proposition 2.4. Let (αj) ∈ ℓ1(Zd), andvε be defined by(2.7) and (2.8). Then
there existsε0(T ) > 0 such that for0 < ε 6 ε0(T ), the exact solution to(2.6)
satisfiesuε ∈ C([0, T ];W ), whereT is given by Lemma 2.3. In addition,vε

approximatesuε up toO(ε): there existsC independent ofε ∈]0, ε0(T )] such that

sup
06t6T

‖uε(t)− v
ε(t)‖W 6 Cε.
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2.3. Link with normal forms. Viewed as an infinite dimensional Hamiltonian
system, (1.3) can also be interpreted as the equation associated with the Hamilton-
ian

Hε(u, ū) = H0 + εP :=
∑

j∈Zd

|j|2|uj |
2 + ε

λ

2

∑

k+m=j+ℓ

ukumūℓūj .

that isiuj = ∂ūj
H(u, ū), see for instance the presentations in [1, 16] and [13].

In this setting, the Birkhoff normal form approach consistsin searching a trans-
formationτ(u) = u+O(εu3) close to the identity over bounded set in the Wiener
algebraW , and such that in the new variablev = τ(u), the HamiltonianKε(v, v̄) =
Hε(u, ū) takes the formKε = H0+εZ+ε2R whereZ is expected to be as simple
as possible andR = O(u6). Searchingτ as the timet = ε flow of an unknown
Hamiltonianχ, we are led to solving thehomologicalequation

{H0, χ}+ Z = P,

where { · , · } is the Poisson bracket of the underlying (complex) Hamiltonian
structure. Now with unknown Hamiltoniansχ(u, ū) =

∑

k,m,j,ℓ χkmℓjukumūℓūj
andZ(u, ū) =

∑

k,m,j,ℓZkmℓjukumūℓūj, the previous relation can be written

(|k|2 + |m|2 − |j|2 − |ℓ|2)χkmℓj + Zkmℓj = Pkmℓj ,

where

Pkmℓj =

{

1 if k +m− j − ℓ = 0,

0 otherwise.

The solvability of this equation relies precisely on the resonant relation|k|2 +
|m|2 = |j|2 + |ℓ|2: For non resonant indices, we can solve forχkmℓj and set
Zkmℓj = 0, while for resonant indices, we must takeZkmℓj = Pkmℓj . Note that
here there is no small divisors issues, as the denominator isalways an integer (0 or
greater than1).

Hence we see that up toO(ǫ2) terms as long as the solution remains bounded in
W , the dynamics in the new variable will be close to the dynamics associated with
the Hamiltonian

Kε
1(u, ū) = H0 + εZ :=

∑

j∈Zd

|j|2|uj |
2 + ε

λ

2

∑

k+m=j+ℓ
|k|2+|m|2=|j|2+|ℓ|2

ukumūℓūj.

At this point, let us observe thatH0 andZ commute:{H0, Z} = 0, and hence
the dynamics ofKε

1 is the simple superposition of the dynamics ofH0 (the phase
oscillation (2.8)) to the dynamics ofεZ (the resonant system (2.1)). Hence we
easily calculate thatvε(t, x) defined in (2.3) is the exact solution of the Hamiltonian
Kε

1 . In other words, it is the solution of thefirst resonant normal formof the system
(1.3).

The approximation result can then easily be proved using estimates on the re-
mainder terms (that can be controlled in the Wiener algebra,see [13]), in com-
bination with Lemma 2.3 which ensures the stability of the solution of Kε

1 and a
uniform bound in the Wiener algebra over a time of order1/ε.



ENERGY CASCADES FOR NLS 7

3. AN ITERATIVE APPROACH

We now turn to the analysis of the resonant system (2.1). The main remark for
the forthcoming analysis is that new modes can be generated by nonlinear interac-
tion: we may haveaj 6= 0 even thoughαj = 0. We shall view this phenomenon
from a dynamical point of view. As a first step, we recall the description of the sets
of resonant phases, established in [8] in the cased = 2 (the argument remains the
same ford > 2, see [6]):

Lemma 3.1. Let j ∈ Z
d. Then,(k, ℓ,m) ∈ Ij precisely when the endpoints of

the vectorsk, ℓ,m, j form four corners of a non-degenerate rectangle withℓ and
j opposing each other, or when this quadruplet corresponds toone of the two
following degenerate cases:(k = j,m = ℓ), or (k = ℓ,m = j).

As a matter of fact, (the second part of) this lemma remains true in the one-
dimensional cased = 1. A specifity of that case, though, is that the associated
transport equations show that no mode can actually be created [6]. The reason is
that Lemma 3.1 implies that whend = 1, (2.1) takes the formiȧj = Mjaj for
some (smooth and real-valued) functionMj whose exact value is unimportant: if
aj(0) = 0, thenaj(t) = 0 for all t. In the present paper, on the contrary, we
examine precisely the appearance of new modes.

Introduce the set of initial modes:

J0 = {j ∈ Z
d | αj 6= 0}.

In view of (2.1), modes which appear after one iteration of Lemma 3.1 are given
by:

J1 = {j ∈ Z
d \ J0 | ȧj(0) 6= 0}.

One may also think ofJ1 in terms of Picard iteration. Plugging the initial modes
(from J0) into the nonlinear Duhamel’s term and passing to the limitε → 0, J1
corresponds to the new modes resulting from this manipulation. More generally,
modes appearing afterk iterations exactly are characterized by:

Jk =

{

j ∈ Z
d \

j−1
⋃

ℓ=0

Jℓ |
dk

dtk
aj(0) 6= 0

}

.

4. A PARTICULAR DYNAMICAL SYSTEM

We consider the initial datum

(4.1) u0(x) = 1 + 2 cos x1 + 2cos x2 = 1 + eix1 + e−ix1 + eix2 + e−ix2 .

The corresponding set of initial modes is given by

J0 = {(0, 0), (1, 0), (−1, 0), (0, 1), (0,−1)} × {0Zd−2}.

It is represented on the following figure:
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In view of Lemma 3.1, the generation of modes affects only thefirst two coordi-
nates: the dynamical system that we study is two-dimensional, and we choose to
drop out the lastd − 2 coordinates in the sequel, implicitly equal to0Zd−2 . After
one iteration of Lemma 3.1, four points appear:

J1 = {(1, 1), (1,−1), (−1,−1), (−1, 1)},

as plotted below.
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The next two steps are described geometrically:
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As suggested by these illustrations, we can prove by induction:

Lemma 4.1. Letp ∈ N.

• The set of relevant modes after2p iterations is the square of length2p

whose diagonals are parallel to the axes:

N (2p) :=

2p
⋃

ℓ=0

Jℓ = {(j1, j2) | |j1|+ |j2| 6 2p} .
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• The set of relevant modes after2p + 1 iterations is the square of length
2p+1 whose sides are parallel to the axes:

N (2p+1) :=

2p+1
⋃

ℓ=0

Jℓ = {(j1, j2) | max(|j1|, |j2|) 6 2p} .

After an infinite number of iterations, the whole latticeZ2 is generated:
⋃

k>0

N (k) = Z
2 × {0Zd−2}.

Among these sets, our interest will focus onextremal modes: for p ∈ N,

N
(2p)
∗ := {(j1, j2) ∈ {(0,±2p), (±2p, 0)}} ,

N
(2p+1)
∗ := {(j1, j2) ∈ {(±2p,±2p), (∓2p,±2p)}} .

These sets correspond to the edges of the squares obtained successively by iteration
of Lemma 3.1 onJ0. The setN∗ defined in Theorem 1.1 corresponds to

N∗ =
⋃

k>0

N
(k)
∗ .

The important property associated to these extremal pointsis that they are gener-
ated in a unique fashion:

Lemma 4.2. Let n > 1, and j ∈ N
(n)
∗ . There exists a unique pair(k,m) ∈

N (n−1)×N (n−1) such thatj is generated by the interaction of the modes0, k and
m, up to the permutation ofk andm. More precisely,k andm are extremal points
generated at the previous step:k,m ∈ N

(n−1)
∗ .

Note however that points inN (n)
∗ are generated in a non-unique fashion by the

interaction of modes inZd. For instance,(1, 1) ∈ J1 is generated after one step
only by the interaction of(0, 0), (1, 0) and(0, 1). On the other hand, we see that
after two iterations,(1, 1) is fed also by the interaction of the other three points in

N
(1)
∗ , (−1, 1), (−1,−1) and(1,−1). After three iterations, there are even more

three waves interactions affecting(1, 1).

Remark4.3. According to the numerical experiment performed in the lastsection,
it seems thatall modes — and not only the extremal ones — receive some energy
in the time interval[0, T/ε]. However the dynamics for the other modes is much
more complicated to understand, as non extremal points ofN (n+1) are in general
generated by several triplets of points inN (n).

5. PROOF OFTHEOREM 1.1

Since the first part of Theorem 1.1 has been established at theend of§2, we now
focus our attention on the estimates announced in Theorem 1.1.

In view of the geometric analysis of the previous section, wewill show that can
compute the first non-zero term in the Taylor expansion of solutionam(t) of (2.1) at

t = 0, for m ∈ N∗. Letn > 1 andj ∈ N
(n)
∗ . Note that since we have considered



10 R. CARLES AND E. FAOU

initial coefficients which are all equal to one — see (4.1) — and because of the
symmetry in (2.1), the coefficientsaj(t) do not depend onj ∈ N

(n)
∗ but only onn.

Hence we have

aj(t) =
tα(n)

α(n)!

dα(n)aj

dtα(n)
(0) +

tα(n)+1

α(n)!

∫ 1

0
(1− θ)α(n)

dα(n)+1aj

dtα(n)+1
(θt)dθ,

for someα(n) ∈ N still to be determined.
First, Eqn. (2.4) in Lemma 2.3 ensures that there existsC0 > 0 independent of

j andn such that

rj(t) =
tα(n)+1

α(n)!

∫ 1

0
(1− θ)α(n)

dα(n)+1aj

dtα(n)+1
(θt)dθ

satisfies

(5.1) |rj(t)| 6 (C0t)
α(n)+1.

Next, we write

(5.2) aj(t) = c(n)tα(n) + rj(t),

and we determinec(n) andα(n) thanks to the iterative approach analyzed in the
previous paragraph. In view of Lemma 4.2, we have

iȧj = 2λc(n − 1)2t2α(n−1) +O
(

t2α(n−1)+1
)

,

where the factor2 accounts for the fact that the vectorsk andm can be exchanged
in Lemma 4.2. We infer the relations:

α(n) = 2α(n − 1) + 1 ; α(0) = 0.

c(n) = −2iλ
c(n− 1)2

2α(n − 1) + 1
; c(0) = 1.

We first derive

α(n) = 2n − 1.

We can then compute,c(1) = −2iλ, and forn > 1:

c(n+ 1) = i
(2λ)

∑n
k=0

2k

∏n+1
k=1 (2

k − 1)
2n+1−k

= i
(2λ)2

n+1−1

∏n+1
k=1 (2

k − 1)
2n+1−k

.

We can then infer the first estimate of Theorem 1.1: by Proposition 2.4, there exists
C independent ofj andε such that for0 < ε 6 ε0(T ),

|uj(t)− aj(εt)| 6 Cε, 0 6 t 6
T

ε
.

We notice that since forj ∈ N
(n)
∗ , |j| = 2n/2, regardless of the parity ofn, we

haveα(n) = |j|2 − 1. For j ∈ N∗, we then use (5.2) and (5.1), and the estimate
follows, with cj = c(n).
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To prove the last estimate of Theorem 1.1, we must examine more closely the
behavior ofc(n). Since2k − 1 6 2k for k > 1, we have the estimate

|c(n+ 1)| >
22

n+1−1

2
∑n+1

k=1
k2n+1−k

.

Introducing the function

fn+1(x) =

n+1
∑

k=1

xk =
1− xn+1

1− x
x, x 6= 1,

we have
n+1
∑

k=1

k2n+1−k = 2nf ′
n+1

(

1

2

)

= 2n+2 − n− 3,

and the (rough) bound

|c(n + 1)| > 22
n+1−1−2n+2+n+3 = 2−2n+1+n+2

> 2−2n+1

.

We can now gather all the estimates together:

|uj(t)| >
∣

∣

∣
c(n) (εt)α(n)

∣

∣

∣
− (C0εt)

α(n)+1 − Cε

>
1

2

(

εt

2

)2n−1

− (C0εt)
2n − Cε

>
1

2

(

εt

2

)2n−1
(

1− (2C0)
2nεt

)

− Cε.(5.3)

To conclude, we simply considert such that

(5.4)

(

εt

2

)2n−1

= εγ , that ist =
2

ε1−γ/α(n)
.

Hence for the timet given in (5.4), sinceα(n) = |j|2 − 1, we have

(2C0)
2nεt = (2C0)

|j|2 εγ/(|j|
2−1)

= exp

(

|j|2 log(2C0)−
γ

|j|2 − 1
log

(

1

ε

))

.

Assuming the spectral localization

|j| 6 α

(

log
1

ε

)θ

,

we get forε small enough,

(2C0)
2nεt 6 exp

(

α2

(

log
1

ε

)2θ

log(2C0)−
γ

α2

(

log
1

ε

)1−2θ
)

.

The argument of the exponential goes to−∞ asε → 0 provided that

γ > 0 and θ <
1

4
,
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in which case we have1 − (2C0)
2nεt > 3/4 for ε sufficiently small. Inequal-

ity (5.3) then yields the result, owing to the fact thatCε is negligible compared to
εγ when0 6 γ < 1.

6. NUMERICAL ILLUSTRATION

We consider the equation (1.1) in the defocusing case (λ = 1) on the two-
dimensional torus,d = 2. We takeu(0, x) = δ(1 + 2 cos(x1) + 2 cos(x2)) with
δ = 0.0158. With the previous notations, this corresponds to1/ε = δ−2 ≃ 4.103.
In Figure 1, we plot the evolution of the logarithms of the Fourier modeslog |uj(t)|
for j = (0, n), with n = 0, . . . , 15. We observe the energy exchanges between the
modes. Note that all the modes (and not only the extremal modes in the setN∗)
gain some energy, but that after some time there is a stabilization effect (all the
modes are turned on) and the energy exchanges are less significant.

FIGURE 1. Evolution of the Fourier modes of the resonant solu-
tion in logarithmic scale:u0(x) = 1 + 2 cos(x1) + 2 cos(x2)

In contrast, we plot in Figure 2 the solution corresponding to the initial value
u(0, x) = δ(2 cos(x1) + 2 cos(x2)) with the sameδ. In this situation, no energy
exchanges are observed after a relatively long time. Note that in this case, the initial
data is made of the4 modes{j ∈ Z

2 ||j| = 1 } forming a square inZ2. This set
is closed for the resonance relation, so no energy exchange is expected in the time
scaleO(1/ε). We notice that the solution of (2.1) is given explicitly byaj(t) = 0
for |j| 6= 1, andaj(t) = exp(9it) for |j| = 1.

The numerical scheme is a splitting time integrator based onthe decomposi-
tion between the Laplace operator and the nonlinearity in combination with a
Fourier pseudo-spectral collocation method (see for instance [20] and [11, Chap
IV] for convergence results in the case of (1.1)). While the Laplace operator part
i∂tu = −∆u can be integrated exactly in Fourier, the solution of the nonlinear
part i∂tu = |u|2u starting inv(x) is given explicitly by the formulau(t, x) =
exp(−it|v(x)|2)v(x). The fast Fourier transform algorithm allows an easy imple-
mentation of the algorithm. The stepsize used isτ = 0.001 and a128 × 128 grid
is used.
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FIGURE 2. Evolution of the Fourier modes of the nonresonant
solution in logarithmic scale:u0(x) = 2 cos(x1) + 2 cos(x2)

Note that using the framework of [12, 11], we can prove that the numerical
solution can be interpreted as the exact solution of a modified Hamiltonian of the
form

∑

j∈BK

|j|2|uj|
2 +

λ

2

∑

(k,m,j,ℓ)∈BK

k+m−j−ℓ∈KZ2

iτωkmℓj

exp(iτωkmℓj)− 1
ukumūℓūj +O(τ),

whereωkmℓj = |k|2+|m|2−|ℓ|2−|m|2 andBK the grid of frequenciesj = (j1, j2)
such thatj1 andj2 are less thanK/2 = 64. Note that this energy is well defined as
τωkmℓj is never a multiple of2π, and that the frequencies of the linear operator of
this modified energy carry on the same resonance relations (at least for relatively
low modes). This partly explains why the cascade effect due to the resonant system
should be correctly reproduced by the numerical simulations.

APPENDIX A. SKETCH OF THE PROOF OFPROPOSITION2.4

By construction, the approximate solutionvε solves

iε∂tv
ε + ε2∆v

ε = λε|vε|2vε + λεrε,

where the source termrε correspond to non-resonant interaction terms which have
been discarded:

rε(t, x) =
∑

j∈Zd

∑

(k,ℓ,m)6∈Ij

ak(t)aℓ(t)am(t)ei(φk(t,x)−φℓ(t,x)+φm(t,x))/ε.

We write

φk(t, x)− φℓ(t, x) + φm(t, x) = κk,ℓ,m · x− ωk,ℓ,mt,

with κk,ℓ,m ∈ Z
d, ωk,ℓ,m ∈ Z and|κk,ℓ,m|2 6= ωk,ℓ,m, hence

(A.1)
∣

∣|κk,ℓ,m|2 − ωk,ℓ,m

∣

∣ > 1.
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The error termwε = u
ε − v

ε solves

iε∂tw
ε + ε2∆w

ε = λε
(

|wε + v
ε|2 (wε + v

ε)− |vε|2vε
)

− λεrε ; w
ε
|t=0 = 0.

By Duhamel’s principle, this can be recasted as

w
ε(t) = −iλ

∫ t

0
eiε(t−s)∆

(

|wε + v
ε|2 (wε + v

ε)− |vε|2vε
)

(s)ds

+ iλ

∫ t

0
eiε(t−s)∆rε(s)ds.

Denote

Rε(t) =

∫ t

0
eiε(t−s)∆rε(s)ds.

SinceW is an algebra, and the norm inW controls theL∞-norm, it suffices to
prove

‖Rε‖L∞([0,T ];W ) = O(ε).

We compute

Rε(t, x) =
∑

j∈Zd

∑

(k,ℓ,m)6∈Ij

bk,ℓ,m(t, x),

where

bk,ℓ,m(t, x) =

∫ t

0
ak(s)aℓ(s)am(s) exp

(

i
κk,ℓ,m · x+ |κk,ℓ,m|2s− ωk,ℓ,ms

ε

)

ds.

Proposition 2.4 then follows from one integration by parts (integrate the exponen-
tial), along with (A.1) and Lemma 2.3.
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