N

HAL

open science

Energy cascades for NLS on d

Rémi Carles, Erwan Faou

» To cite this version:

‘ Rémi Carles, Erwan Faou. Energy cascades for NLS on d. 2010. hal-00528792v1

HAL Id: hal-00528792
https://hal.science/hal-00528792v1

Preprint submitted on 22 Oct 2010 (v1), last revised 23 Oct 2010 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00528792v1
https://hal.archives-ouvertes.fr

ENERGY CASCADES FOR NLS ON T¢

REMI CARLES AND ERWAN FAOQU

ABSTRACT. We consider the nonlinear Schrodinger equation witha(foicus-
ing or defocusing) nonlinearity on the multidimensionalt For special small
initial data containing only five modes, we exhibit a coulgedet of time layers
in which arbitrarily large modes are created. The proofsetin a reduction to
multiphase weakly nonlinear geometric optics, and on thdysbf a particular
two-dimensional discrete dynamical system.

1. INTRODUCTION AND MAIN RESULT

We consider the nonlinear Schrodinger equation
(1.1) i+ Au = Nul?u, e T,

with d > 2, where the sign oA € {—1,+1} turns out to be irrelevant in the
analysis below. In the present analysis, we are interestdgbidescription of some
energy exchanges between low and high frequencies focpkatisolutions of this
equation. We will consider solutions with small initial uak:

(1.2) u(0, ) = dug(x),

whereuy € H'(T%) and0 < § < 1. Replacingu with §~'u, (LI){L2) is
equivalent to

(1.3) i+ Au = Aelul®u 5 u(0,z) = up(x),

wheree = §2. This equation is one of the popular models to descwieak tur-
bulence(see e.g.[[21, 22]). Viewed as an infinite dimensional dycahsystem
in terms of the Fourier variables of the solution, such anaéqo isresonantin
the sense that all the eigenvalues of the Laplace operaantagers only, making
possible nontrivial vanishing linear combinations betw#ige frequencies of the
linear unperturbed equation & 0). In such a situation, the perturbation theory
cannot be directly applied as in [1,2/3/9] 10,13, 16]. Latasll that in all these
works, the Laplace operator is perturbed by a typical p@kntaking resonances
genericallydisappear. In such situations and wheyiz) is smooth enough, it is
possible to prove the quasi preservation of the Sobolev si@fithe solution over
very long time: polynomial (of order—" for all r) as in [2], exponentially large as
in [13], or arbitrary large for a set of specific solutions a§li0].
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2 R. CARLES AND E. FAOU

In the resonant case considered in this paper, theagiri no reason to ob-
serve long times bounds for the Sobolev norms of the solutidespite this fact,
Eqgn. [1.1) possesses many quasi-periodic solutions[(52d]¢#

On the other hand, it has been recently shownlin [8] that ird#fecusing case
(Egn. [1.2) withA = 1), solutions exist exhibiting energy transfers between low
and high modes which in turn induce a growth in the Sobolewn&?r with s > 1.
Strikingly, such phenomenon arises despite the factifand H' norms of the
solution are bounded for all time.

The goal of the present work is to descripgantitativelysuch energy exchanges
in the case of a particular explicit initial valug () made of five low modes. Since
we work onT?, the solutionu takes the form

ult,z) =Y uy(t)e,
jEZ

wherew;(t) € C are the Fourier coefficients of the solution, and as long as
does not exceed the lifespan of Here, forj = (ji,...,j4) € Z% andz =
(z1,...,24), Wwehavej-x = jiz1+ - +jszq. We also selj|? = j2+---+j2 € N.
Let us introduce the Wiener algebiid made of functionsf on T¢ of the form

flo)y="> bje*
jezd

such that(b;) ;cza € ! (Z%). With this space is associated the norm

1£llw =D [bjl.

jezd
Our main result is the following:
Theorem 1.1. Letd > 2, andug € C*°(T¢) given by
up(x) =1+ 2coszy + 2 cos xa.

For A € {+£1}, the following holds. There exis§, 7" > 0 such that fol0 < ¢ < &,
(L.3)has a unique solution € C([0,7'/¢]; W), and there exis€y > 0 andC > 0
such that:

Vi €N, 3e; 0,5t € [0,T/e], |u;(t) — ¢;(et)’ 1| < (Coet)F + Ce,
where the sel. is given by
(1.4) N ={(0,£27),(£2F,0), (£2P, £2P), (F2P, £2P), p € N} x {0za-2}.

Arbitrarily high modes appear with equal intensity alongascade of time layers:

1
Vo €]0,1], VO < T Va >0, 3dey €]0,g0], Ve €]0,e1],

Vi e N, il < lle (2 )2
JeN il <aflog ) ui |\ =7 )| 2 T
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This result expresses the possibility of nonlinear exckarig [1.8): while the
high modes in the seV, are equal to zero at time = 0, they are significantly
large in a time that depends on the mode. As this time incseasth the size
of the mode, this is apnergy cascada the sense of]7]. To our knowledge, this
result is the first one where such a dynamics is describedesisply as to quantify
the time of ignition of different modes.

The progressive growth of the spectrum is a common featutie turbulent
regimes (see e.d.|[[7, 14,117 18] and references thereinghdlenot claim that the
present result is related to turbulence however, sincaaeatures of turbulence
(such as chaos, dissipation) are absent of our study.

The proof of this theorem relies on the following ingredgnt

e An approximation result showing that the analysis of theasigits of [1.1)
over a time of ordelO(1/¢) can be reduced to the study of an infinite
dimensional system for the amplitudes of the Fourier cdefts u; (in
a geometric optics framework). Let us mention that this cedusystem
exactly corresponds to ttresonant normal fornsystem obtained after a
first order Birkhoff reduction (seé [19] for the one dimemsibcase). We
detail this connection between geometric optics and noforats in the
second section.

e A careful study of the dynamics of the reduced system. Hereiseethe
particular structure of the initial value which consistdieé modes gener-
ating infinitely many new frequencies through the resonsuiteractions
in the reduced system. A Taylor expansion (in the spirit §f fsen shows
how all the frequencies should lgepriori turned on in finite time. The
particular geometry of the energy repartition between tegufencies then
makes possible to estimate precisely the evolution of thecpéar points
of the setV, in (I.4) and to quantify the energy exchanges between them.

The construction above is very different from the oné in [8t us mention that
it is also valid only up to a time of ordeP(1/<) (which explains the absence of
difference between the focusing and defocusing casesgr Hiis time, the nature
of the dynamics should change completely as all the freqesraf the solution
would be significantly present in the system, and the nat@itheo nonlinearity
should become relevant.

2. AN APPROXIMATION RESULT IN GEOMETRIC OPTICS

For a given elemerfly; ) ;cza € ¢1(Z4), we define the following infinite dimen-
sionalresonant system

(2.1) ia; = A Z agbeam 5 aj(0) = aj.
(k’,Z,m)EIJ

where]; is the set ofesonantindices (see [19]) associated wittdefined by:
(22) 1; = {(k,t;m) € Z% | j =k — €+ m, and|j = [k? — |0 + m]? }.

With these notations, we have the following result:
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Proposition 2.1. Letug(z) € W and (a;) ez € (*(Z?) its Fourier coefficients.
There existd” > 0 and a unique analytic solutiofu;),cza : [0,T] — ¢*(Z%) to

the systenf2.1). Moreover, there exists)(7") > 0 such thatfol) < e < ¢y(T), the

exact solution tq1.3) satisfiesu € C(|0, %]; W) and there exist&’ independent
of e €]0,e9(7T)] such that

sup |lu —v°(t)|lw < Ce.
o<t<T

where
(2.3) v (t,x) = Z aj(st)eij'm_itMQ.
jeZd

Remark2.2 Even though it is not emphasized in the notation, the functi@b-
viously depends on, which is present ir (113).

We give below a (complete but short) proof of this result ggjipometric optics.
Let us mention however that we can also prove this propaosiiging a Birkhoff
transformation of[(1]3) imesonant normal fornas in [19]. We give some details
below. There is also an obvious connection with tin@dulated Fourier expansion
framework developed in [15] in the non-resonant case (see[2B]).

2.1. Solution of the resonant system. The first part of Proposition 2.1 is a con-
sequence of the following result:

Lemma 23. Leta = (a;)jeze € (*(Z%). There existsd' > 0 and a unique
analytic solution(a;) ;cza : [0,7] — ¢*(Z%) to the systen@Z.1). Moreover, there
exists constantsd/ and R such that for alln €e Nand all s < T,

d”aj

3 )

(2.4) Vjezd, ‘ < MR"™n!

Proof. In [6], the existence of a tim&); and continuity in time of the solution
a(t) = (a;(t))jeza in ¢* is proved. As/! is an algebra, a bootstrap argument
shows thata(t) € C> ([0,73];¢'(Z%)). From [21) we immediately obtain for
S € [O,Tl],

la(s)ller < 3lals)llzn,
and by induction

e

S350 @ntDla)lFE

wherea(™)(t) denote ther-th derivative ofa(t) with respect to time. This implies
[e™©]| , <35 @n+ Vel < llallan! (Blal})"

which shows the analyticity of for t < Tn = %HOZHEQ- The estimate (214) is then
a standard consequence of Cauchy estimates applied tortidecopower series

S hen 21al™(0)z" defined in the balB(0, 27") where2T' = min(Ty, Tb). O
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2.2. Geometric optics. Let us introduce the scaling
(2.5) t=¢et, x=cx, u(t,z)=nu"(et,ex).
Then [1.3) issquivalentto:

(2.6) icdpu® + 2Au® = Aejut|Pu® 5 ut(0,x) = ug (E) = Z ozjeij'x/e.
c JjEZ?

In the limite — 0, multiphase geometric optics provides an approximatetisolu
for (2.8). The presence of the factein front of the nonlinearity has two conse-
guences: in the asymptotic regime— 0, the eikonal equation is the same as in
the linear case\ = 0, but the transport equation describing the evolution of the
amplitude is nonlinear. This explains why this frameworkeferred to asveakly
nonlinear geometric opticdNote that simplifying by in the Schrodinger equation
(2.6), we can view the limit — 0 as a small dispersion limit, as in e.g. [18].

We sketch the approach described more precisely in [6]. Pheoaimate solu-
tion provided by geometric optics has the form

(27) Va(t,X) = Z aj(t)e¢j(tvx)/57
JEZA
where we demand® = v© at timet = 0, that is
aj(0) =a; ; ¢;(0,x) =7 x

Plugging this ansatz int6 (2.6) and ordering the powets wfe find, for theO ()
term:

Oej +IVO;P =0 : ¢;(0,x)=j-x.
The solution is given explicitly by

(2.8) ¢;(t,x) =7 x —t|j*.

The amplitude; is given by theD(c!) and is given by equatiof (2.1) after project-
ing the wave along the oscillatiari?;/ according to the the set eésonantphases
given byI; (Eqn. [2.2)). By doing so, we have dropped the oscillatidriieform
ellkx=wt)/e with w # |k|?, generated by nonlinear interaction: the phase— wt
does not solve the eikonal equation, and the corresponéingis negligible in the
limit e — 0 thanks to a non-stationary phase argument.

Propositiol 211 is a simple corollary of the following retshiat is established in
[6]. We sketch the proof in AppendixIA.

Proposition 2.4. Let (a;) € ¢}(Z%), andv® be defined by27) and 28). Then
there existso(7") > 0 such that for0 < ¢ < ¢¢(7T), the exact solution t@.6)
satisfiesu® € C([0,7]; W), whereT is given by Lemm&=2.3. In additior?
approximates:® up toO(e): there existy” independent of €0, ¢ (7")] such that

sup |lu®(t) — v (t)|lw < Ce.

bx
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2.3. Link with normal forms. Viewed as an infinite dimensional Hamiltonian
system,[(1.18) can also be interpreted as the equation agswbevith the Hamilton-
ian

Hf(u,u) = Hy+¢eP := Z 1912 ui 2+ E% Z WU T ;.
Jjezd k+m=j+¢
that isiu; = 0y, H (u,u), see for instance the presentations i [1, 16] [13].

In this setting, the Birkhoff normal form approach consistsearching a trans-
formationT(u) = u + O(eu?) close to the identity over bounded set in the Wiener
algebral¥/, and such that in the new variahle= 7(u), the Hamiltoniank © (v, v) =
H? (u, ) takes the formi® = Hy+<Z +<%R whereZ is expected to be as simple
as possible andk = O(u®). Searchingr as the timet = ¢ flow of an unknown
Hamiltoniany, we are led to solving theomologicalequation

{HO7X}+Z:Pa

where { -, -} is the Poisson bracket of the underlying (complex) Hami#ton
structure. Now with unknown Hamiltoniang(u, @) = 3., ¢ XkmejUkUm et
andZ(u,w) = > ., i ¢ Zrmej Uk Umlieti;, the previous relation can be written

(&2 + |m)* = |51% = [0 Xkmej + Zimej = Premess

1 if kdtm—j—C=0,
Pynej =

0 otherwise.

The solvability of this equation relies precisely on theorent relation|k|? +
Im|?> = |j|* + |¢|*>: For non resonant indices, we can solve fas,,; and set
Zrmej = 0, while for resonant indices, we must take,,,;; = Pyn¢;. Note that
here there is no small divisors issues, as the denominaabwig/s an integer(or
greater thari).

Hence we see that up @(e?) terms as long as the solution remains bounded in
W, the dynamics in the new variable will be close to the dynaragsociated with
the Hamiltonian

K{(u,u) = Hy+¢eZ := Z 1912 ui | + E% Z U Uy Ug .
jezd k+m=j+¢
|k[?+|m|?=]j>+[€f?

At this point, let us observe thdf, and Z commute: {Hy, Z} = 0, and hence
the dynamics of<{ is the simple superposition of the dynamicstf (the phase
oscillation [2.8)) to the dynamics afZ (the resonant systerh (2.1)). Hence we
easily calculate that® (¢, =) defined in[(2.B) is the exact solution of the Hamiltonian
Kj{. In other words, it is the solution of ttigst resonant normal forrof the system
@3).

The approximation result can then easily be proved usirighatds on the re-
mainder terms (that can be controlled in the Wiener algebea,[13]), in com-
bination with Lemmad_2I3 which ensures the stability of thiuson of K¢ and a
uniform bound in the Wiener algebra over a time of ortér.

where
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3. AN ITERATIVE APPROACH

We now turn to the analysis of the resonant sysi{eni (2.1). Tdie nemark for
the forthcoming analysis is that new modes can be genergtadriinear interac-
tion: we may haver; # 0 even thoughy; = 0. We shall view this phenomenon
from a dynamical point of view. As a first step, we recall theatgtion of the sets
of resonant phases, established_in [8] in the case2 (the argument remains the
same ford > 2, seel[6]):

Lemma3.1. Letj € Z% Then,(k,¢,m) € I; precisely when the endpoints of
the vectorsk, £, m, j form four corners of a non-degenerate rectangle witiind

j opposing each other, or when this quadruplet correspondsri® of the two
following degenerate casesk = j,m = ¢), or (k = ¢, m = j).

As a matter of fact, (the second part of) this lemma remains in the one-
dimensional casd = 1. A specifity of that case, though, is that the associated
transport equations show that no mode can actually be dr§@lte The reason is
that Lemmd 31 implies that wheh= 1, (2.1) takes the forma; = M;a; for
some (smooth and real-valued) functidfy; whose exact value is unimportant: if
a;(0) = 0, thena;(t) = 0 for all t. In the present paper, on the contrary, we
examine precisely the appearance of new modes.

Introduce the set of initial modes:
Jo={j ez a; #0}.
In view of (2.1), modes which appear after one iteration abea[3.1 are given
by:
J1={j €2\ Jo| a;(0) # 0}.

One may also think off; in terms of Picard iteration. Plugging the initial modes
(from Jp) into the nonlinear Duhamel’s term and passing to the limit- 0, J;
corresponds to the new modes resulting from this maniuatMore generally,
modes appearing aftériterations exactly are characterized by:

Jj—1 dk
Iy = {jGZd\ U 7| @aj(O);éo}.
=0

4. A PARTICULAR DYNAMICAL SYSTEM

We consider the initial datum
(4.1)  wug(z) =14 2cosxy +2coszy = 1 + €1 4 71 4 %2 4 7002,
The corresponding set of initial modes is given by
Jo ={(0,0),(1,0),(=1,0),(0,1), (0, =1)} x {Oza-2}.

It is represented on the following figure:
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e

In view of Lemmd_3.1L, the generation of modes affects onlyfitts¢ two coordi-
nates: the dynamical system that we study is two-dimenkiana we choose to
drop out the last/ — 2 coordinates in the sequel, implicitly equalg.—-. After
one iteration of Lemmia_3].1, four points appear:

J1 = {(17 1)7 (17 _1)7 (_17 _1)7 (_17 1)}7

as plotted below.

2s:

The next two steps are described geometrically:

I \\I\\

| . | .
As suggested by these illustrations, we can prove by inolocti

Lemma4.l. Letp € N.

e The set of relevant modes aftgp iterations is the square of lengtkf
whose diagonals are parallel to the axes:

2p
N = | ) T = {1, d2) | 1] + 72| < 2°}.
=0
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e The set of relevant modes aftgy + 1 iterations is the square of length
2r+1 whose sides are parallel to the axes:
2p+1
NCPAD = ] o = {(j1, 42) | max(|u], |j2]) < 27} .
=0

After an infinite number of iterations, the whole lattiéé is generated:
JN® =22 x {0ga2}.

k>0
Among these sets, our interest will focus extremal modedor p € N,

N = {(j1, 52) € {(0,£27), (£2°,0)}},

NEPD = {(ju, o) € (29, £27), (27, £29)}} .

These sets correspond to the edges of the squares obtacuedsiuely by iteration
of Lemmd 3.1 onJy. The setV, defined in Theorer 1.1 corresponds to

k=0
The important property associated to these extremal p@riteat they are gener-
ated in a unique fashion:

Lemma 4.2. Letn > 1, andj € N, There exists a unique paitk, m) €
N =1 A(n=1) sych thatj is generated by the interaction of the mode% and
m, up to the permutation df andm. More preciselyk andm are extremal points
generated at the previous stefp;m € N*("_l).

Note however that points 'LM(") are generated in a non-unigue fashion by the
interaction of modes iZ.?. For instance(1,1) € .J; is generated after one step
only by the interaction of0,0), (1,0) and (0, 1). On the other hand, we see that
after two iterations(1, 1) is fed also by the interaction of the other three points in

N, (—1,1), (=1,—1) and (1, —1). After three iterations, there are even more
three waves interactions affectifg, 1).

Remark4.3. According to the numerical experiment performed in the sastion,

it seems thatll modes — and not only the extremal ones — receive some energy
in the time intervall0, 7'/¢]. However the dynamics for the other modes is much
more complicated to understand, as non extremal pointg6f1) are in general
generated by several triplets of pointshfi™.

5. PROOF OFTHEOREM[L]

Since the first part of Theorem 1.1 has been established anthef{2, we now
focus our attention on the estimates announced in ThelorBm 1.

In view of the geometric analysis of the previous sectionywileshow that can
compute the first non-zero term in the Taylor expansion aft&m a,,, (¢) of (2.7) at

t=0,form e N,. Letn > 1andj € J\/*("). Note that since we have considered
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initial coefficients which are all equal to one — sée{4.1) —d &ecause of the
symmetry in[(2.11), the coefficients;(¢) do not depend ofi € N put only onn.
Hence we have

a(n) qo(n), . a(n)+1 a(n)+1 .
t d*"™a; t d ?(t%)d@,

1
) _ 1-0) n)
4 = S o Ot o /0 =0 et
for somea(n) € N still to be determined.

First, Eqn. [[2.4) in Lemm& 2.3 ensures that there exigts- 0 independent of
j andn such that

ta(n)+1 1 da(n)-‘,—la .
() — _ p)on) J
o) = o /0 (1 - 0y S 0r)ao
satisfies
(5.1) ()] < (Cot)* M.

Next, we write
(5.2) aj(t) = c(n)t*™ 4 r;(t),

and we determine(n) anda(n) thanks to the iterative approach analyzed in the
previous paragraph. In view of Lemmal4.2, we have

ia; = 2Xc(n — 1)’ + O (t2°‘(”—1)+1) 7

where the facto2 accounts for the fact that the vectdrandm can be exchanged
in Lemmd4.2. We infer the relations:

an)=2an—-1)+1 ; «a0)=0.

o cn—1)?
= -2 A—F =1
e(n) ! 2a(n —1)+1 ~’ «(0)
We first derive
a(n) =2"—1.
We can then compute(1) = —2i\, and forn > 1:
(20 Zk=? e
cn+1)=i i =

1 1 27L+17k °
oy (28— 1) oy (28— 1)

We can then infer the first estimate of Theofen 1.1: by Proijpo$Z.4, there exists
C independent of ande such that fol) < ¢ < go(7),

T
lu;j(t) —a;(et)] < Ce, 0<t< -
We notice that since foj ¢ N, lj| = 2"/2, regardless of the parity of, we
havea(n) = |j|?> — 1. Forj € N, we then use (512) anA (5.1), and the estimate
follows, with ¢; = ¢(n).
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To prove the last estimate of Theoréml1.1, we must examine iglosely the

behavior ofc(n). Since2® — 1 < 2F for k > 1, we have the estimate
227L+1_1

>

le(n+1)] > SSRCIaR

Introducing the function

n+1
1 — gntl
frt1(z) = Zﬂfk =0 v 7 # 1,
k=1

we have
n+1 .
Z k2R =20 f <§> =22 -3,
and the (rough) ]::)Blund
le(n + 1) = 2271 172" Hnas _ g-2thangz o o2t
We can now gather all the estimates together:

[y (B)] > [e(n) (26)°| = (Coet)* " - Ce

2" -1
> l (E_t> — (C()Et)zn —Ce

“2\2
To conclude, we simply considesuch that
ot 2" —1
- — = i — _
(5.4) < 5 > =¢7, thatist = T/t

Hence for the time given in [5.3), sincex(n) = |j|*> — 1, we have

(200)2" et = (20)HI” &7/ =1)

. 1
= exp <|]|210g(200) — r;_ 1 log <g>> .

Assuming the spectral localization

0
) 1
‘]’ < (0% <10g_> )
3
we get fore small enough,
1\ 2 ~ 1\ 120
(2C0)?" et < exp <a2 <log —) log(2Cy) — — <log —> ) :
3 « 3
The argument of the exponential goes-too ase — 0 provided that

1
v>0 and 0<Z’
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in which case we have — (2Cy)*"st > 3/4 for ¢ sufficiently small. Inequal-
ity (5.3) then yields the result, owing to the fact tiiat is negligible compared to
¥ when0 < v < 1.

6. NUMERICAL ILLUSTRATION

We consider the equatiofi (1.1) in the defocusing case=(1) on the two-
dimensional torusd = 2. We takeu(0,z) = 6(1 + 2cos(x1) + 2 cos(z2)) with
§ = 0.0158. With the previous notations, this corresponds fo = 62 ~ 4.103.
In Figure[d, we plot the evolution of the logarithms of the Reumodedog |u; ()|
for j = (0,n), withn = 0,...,15. We observe the energy exchanges between the
modes. Note that all the modes (and not only the extremal sdthe setV,)
gain some energy, but that after some time there is a staililiz effect (all the
modes are turned on) and the energy exchanges are lesscsignifi

0 o 00
mﬂmMMWWWMW
meww\‘ uy

umwww i
M
i WWWW Ww

0 o000 2000 © 3000 4000

log10 of the modes

FIGURE 1. Evolution of the Fourier modes of the resonant solu-
tion in logarithmic scaleuy(x) = 1 + 2 cos(z1) + 2 cos(z2)

In contrast, we plot in Figurgl 2 the solution correspondinghte initial value
u(0,z) = §(2cos(x1) + 2cos(z2)) with the same. In this situation, no energy
exchanges are observed after a relatively long time. Natdritihis case, the initial
data is made of theé modes{j € Z?||j| = 1} forming a square ifZ?. This set
is closed for the resonance relation, so no energy exchargeected in the time
scaleO(1/¢). We notice that the solution df (2.1) is given explicitly by(t) = 0
for [j| # 1, anda;(t) = exp(9it) for |j| = 1.

The numerical scheme is a splitting time integrator basetherndecomposi-
tion between the Laplace operator and the nonlinearity imkipation with a
Fourier pseudo-spectral collocation method (see for mstd20] and([[11, Chap
IV] for convergence results in the case lof {1.1)). While tlaplace operator part
i0,u = —Awu can be integrated exactly in Fourier, the solution of thelinear
partidyu = |u|?u starting inv(x) is given explicitly by the formulau(t, z) =
exp(—it|v(x)|?)v(z). The fast Fourier transform algorithm allows an easy imple-
mentation of the algorithm. The stepsize used is 0.001 and al128 x 128 grid
is used.
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-2
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FIGURE 2. Evolution of the Fourier modes of the nonresonant
solution in logarithmic scalez(z) = 2 cos(x1) + 2 cos(z2)

Note that using the framework of [12,111], we can prove that lamerical
solution can be interpreted as the exact solution of a madii@miltonian of the
form

. A ITWEme; _
Z 312 i + 5 Z —— upum gty + O(7),
. 2 : exp(iTWime;) — 1
JEBK (kvmh]vé)EBK
k+m—j—bcK7?

wherewg,,e; = |k|?+|m|?—|¢|?—|m|? and Bk the grid of frequencies = (ji, j2)
such thatj; andj, are less thaik /2 = 64. Note that this energy is well defined as
Twrme; 1S Never a multiple o7, and that the frequencies of the linear operator of
this modified energy carry on the same resonance relatiosast for relatively
low modes). This partly explains why the cascade effect dulee resonant system
should be correctly reproduced by the numerical simulation

APPENDIXA. SKETCH OF THE PROOF OFPROPOSITIONZ.4
By construction, the approximate solutiof solves
ie0v® 4 e2AvE = e|[v|2vE + Aer®,

where the source ternt correspond to non-resonant interaction terms which have
been discarded:

re(t, @) = Z Z ak(t)ﬁg(t)am(t)ei(¢k(t’w)_¢l(t’m)+¢m(t’x))/€.
jEZd (k!vm)glj

We write
O (t, ) — de(t, ) + O (t, ) = K om - T — Wheml,
With kg ¢ € Z%, wi g € Z and |k om|* # Wi.o.m, hENce

(A1) ||k, em|* — Wrem| = 1.
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The error termw® = u® — v° solves
0w + e Aw = Ae ([w° +v°2 (w° + v°) — [v°|*vF) — Aer® W = 0.

By Duhamel’s principle, this can be recasted as

WE( ) _ —ZA/ ie(t—s) (|W —|—V€|2 (W —I—V) |v€|2 5)( )dS

—l—Z)\/ ie(t— sAs )d
Denote .
R () :/ =8R8 (5)ds.
0

SinceW is an algebra, and the norm I controls theL°°-norm, it suffices to
prove

”RauL"O([O,T};W) = O(e).

We compute
= Z Z bk,&m(t>m)7
jezd (k.t;m)él;
where
t 2
bnlts) = [ (s (o) exp (i1 2 st L2 2 ntnt ) g
0

Propositior 2.4 then follows from one integration by pamsegrate the exponen-
tial), along with [A.1) and Lemmia 2.3.

AcknowledgementsThe authors wish to thank Benoit Grébert for stimulatirgg d
cussions on this work.
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