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Introduction

When considering a combinatorial formula that can be interpreted as equating the outcomes of two (families of) enumeration problems, a proof in the form of a bijection (or family thereof) between the sets in question is often considered to be of more value than one based on other methods, such as manipulations of formal power series. Whether this is really the case depends to a large extent on the nature of the bijection. The best situation is one where the bijection can be interpreted as simply relating two ways describing the same underlying combinatorial object; for instance the bijection between Dyck paths and balanced sequences of parentheses, which simply interprets up-steps as '(' and down-steps as ')', is of this nature. A bijection that consists of transforming an object of the first kind into an object of the second kind by a single traversal performing some kind of substitution, and in such a way that the relation between input and final output can be easily perceived, will do almost just as well. In both cases it is often possible to relate one or more additional statistics on the input with an statistics on the output, and thus refine a simple identity of natural numbers into an one of polynomials with non-negative coefficients (the idea of q-analogues is largely based on this principle). However when the bijection is based on a more complicated algorithm, or is obtained by a composition of several bijections, then the situation may become much less transparent, to the point of providing no more insight (possibly even less) than a proof by formal algebraic manipulations.

The dividing line between simple and complicated bijections is not always clear, and a bijection may be rendered more transparent by a particular point of view. For instance, one can map binary plane trees with n internal nodes (and n + 1 leaves) to Dyck paths of length 2n by traversing the tree in preorder, recording an up-step for each internal node encountered and a down-step for every leaf except the final one (cf. [START_REF] Stanley | Enumerative combinatorics[END_REF], proposition 6.2.1(i),(ii)), and such a path P can be further transformed into a plane tree with n + 1 vertices, namely one whose root node has descendents that correspond (in order) to the minimal Dyck-path factors of P , and are obtained by recursively transforming those factors after removing their two extremal steps. The resulting bijection from binary plane trees to plane trees appears to be rather opaque, and not provide much more insight than the observation that the generating series for both enumeration problems satisfy (for simple reasons) the quadratic relation C = 1 + XC 2 that characterises the series C = n C n X n of the Catalan numbers, which numbers therefore solve both problems. However, from the point of view of a programming language like LISP (in which non-empty lists are represented by a binary node with links pointing to the first element and to the remainder of the list), one can interpret the binary tree as the internal representation of the recursively nested list of lists corresponding to the planar tree (of which each node is interpreted as the list of its descendents). This point of view makes the correspondence, at least to us, much more transparent.

On the other hand, when a bijection is defined by an algorithm that involves the repetition of some operation a (finite but) variable number of times, until reaching some desired condition, then this bijection is likely to be quite opaque. This is for instance probably the reason that use of the "involution principle" (due to Garsia and Milne) is generally considered to be less desirable in bijective proofs. An example where such iteration can arise, is when one is given a bijection f : A → B where A, B are finite subsets of some set X, and one deduces from it a bijection g : X \ B → X \ A between their complements, by iterating f as often as possible; in other words g(x) = f n (x) for the smallest n ∈ N for which f n (x) / ∈ A (which must exist because all other f i (x) are distinct elements of A). Whether the bijection g obtained by this "complementation principle" is transparent at all, depends on whether the effect of iterating f can be easily understood, and notably on whether it is easy to predict the number n of iterations that can be applied to a given element x. 1 In this note we will consider the particular case of some well known enumerative results involving lattice paths, or equivalently walks on the one-dimensional lattice Z. Our walks will always start at 0, and we first consider the "binary" 1 In fact the involution principle can be seen as an application of the complementation principle to the situation of a "signed set" Y consisting of disjoint union of a set X of "positive" elements and a finite set N of "negative" elements, equipped with injections

f 1 , f 2 : N → X; one can obtain a bijection X \ f 1 (N ) → X \ f 2 (N ) by taking A = f 2 (N ), B = f 1 (N ), and f = f 1 • f -1 2 .
The injections can be extended to fixed-point free involutions of the union of N and its image, and then to involutions of Y by fixing the remaining points of X; this explains the name of the principle. In practice the fixed-point free involutions in this description are usually directly obtained as sign-reversing partial involutions of Y that are always defined at negative elements, and which are then artificially extended as we did to involutions of Y .

case where each step changes the position either by +1 or by -1. Each walk can be transformed into a lattice path in (the "diagonal" index 2 sub-lattice of) Z 2 starting at the origin, in which steps advancing by ε become path segments advancing by (1, ε) (which we draw with the first "time" coordinate increasing downwards). We shall switch between these points of view whenever convenient.

We call a finite walk "recurrent" if it ends at 0, and "positive" if it is a walk on N ("non-negative" would be more precise, but tiresome). Viewed as lattice paths, (binary) recurrent positive walks correspond precisely to Dyck paths.

The most basic case of the enumerative coincidences that we shall study is the fact that there are 2n n positive walks of length 2n, a number that also (and more obviously) counts the recurrent walks of that length. This result appears to be well known, at least in the lattice path community, but in view of its simplicity it is somewhat surprising that it does not receive prominent mention in the enumerative combinatorics literature. We do not know whether any nice bijective proofs for this result are known, but it would at least seem that none are "well known". This note proposes a simple bijective proof that, although it involves the iteration of an operation a varying number of times to transform recurrent walks into positive ones or vice versa, is about as transparent as one could wish for; notably the number of iterations required can be immediately read off from the initial walk, and it is possible to transform the initial to the final path in a single "pass" along the path. This bijection also allows giving a bijective proof of the generating series identity ( n∈N

2n n X n ) 2 = 1 1-4X
, for which there does not appear to be an equally transparent proof using either of the above interpretations of the number 2n n individually. The result can be slightly generalised, while essentially keeping the same proof, in a few ways. One can drop the restriction to walks of even length provided the "recurrent" requirement is relaxed to ending either at 0 or at 1 (since clearly being recurrent is a tall order for odd-length walks). One can also consider "ternary" walks by allowing steps that stay in place (so that the paths corresponding to recurrent positive walks are Motzkin paths), in which case the positive walks are still in bijection with the "almost recurrent" walks, those that end either at 0 or at 1 (the nature of our proof will make clear why one must leave a unit of freedom for the ending point of the walk). Finally one can formulate a corresponding result for n-dimensional walks with a fairly large choice for the set of basic steps allowed: no coordinate should be allowed to change by more than a unit at a time, and the set should be symmetric with respect to negation of each of the coordinates individually.

The bijection we propose is defined by iterating a basic "raising" operation as often as possible. We do not consider it as obtained from the complementation principle mentioned above (although it can be), but rather from a telescoping sum of identities, each of which is closely related to the famous "ballot problem" of J. Bertrand, [START_REF] Bertrand | Solution d'un probléme[END_REF]. Our bijective proof gives rise to a bijective solution of that problem, which appears to be new; at least it is different both from the original proof of D. André [START_REF] André | Solution directe d'un probléme résolu par M. Bertrand[END_REF] (which performs a cyclic rearrangement of votes), and from proofs based on diagonal reflection of part of a lattice path (the "reflection method"). However we shall see that conversely any bijective proof of the ballot problem can be iterated so as to obtain a proof of the identities relating positive and recurrent walks, of which we therefore obtain several different ones. Comparing these, we find that some proof methods that transparently solve the ballot problem lead to rather opaque bijective proofs after iteration.

Positive and (almost) recurrent walks

A very basic kind of lattice walks is that of walks on the one dimensional lattice Z, starting at 0 and moving a unit in either direction at each step. The parity of the point reached after n steps is necessarily that of n, and the statistic of the end point on the set of the 2 n such walks gives a binomial distribution on the points of the required parity. Another, more restricted, class of walks that we shall consider is that of walks on the subset N of the one dimensional lattice, still starting at 0 and moving a unit in either direction at each step; these form the subset of the walks on Z that never visit the value -1. For comparison, here is an initial portion of Pascal's triangle, displayed in the usual fashion with rows symmetrically growing as one moves downwards,2 and a corresponding array of numbers counting walks on N. Note that the second array obeys the same recurrence relation that the first one does (every "internal" entry is the sum of those directly above it), only the boundary condition is changed, namely by requiring the entries in the column of -1 (the leftmost ones displayed) to be 0, reflecting the fact that walks that would visit negative numbers are excluded. In fact the second array can be obtained from the first by subtracting from it a copy of itself that is shifted two units (the distance between adjacent entries) to the left, which produces values 0 in the column -1 for symmetry reasons; one retains the part to the right of that column. It follows that the sum of the entries in any row of the second array is equal to the (most) central entry in the corresponding row of the first array; in the terminology of the introduction, there are as many walks of a given length that are recurrent or (in the case of odd length) almost recurrent (ending at 1) as there are positive walks. It is this "coincidence" that we wish to bijectively explain in this note. We can illustrate the classes of paths between which we seek a bijection graphically as follows (the drawn paths are just examples):

The way in which we obtained the equality of the number of paths of these two types is rather simple, and one may seek to obtain a bijection from it by applying general principles; this will be discussed in the next section. Here however we shall directly consider a correspondence between all positive walks and recurrent walks, without first constructing one corresponding to the fact, implicitly mentioned in the reasoning above, that for any n 2 ≤ k ≤ n there are n k -n k+1 positive walks that end at the value 2kn. If a recurrent walk w happens to be positive as well (it corresponds to a Dyck path), then it can be made to correspond to itself, without applying any operations. In the contrary case there will certainly be a first down-step in w that reaches -1, and then later on possibly a first down-step that reaches -2, and so forth. All these down-steps that for the first time reach a given negative number are changed into up-steps to form the positive walk w ′ corresponding to w; if there were d such steps (so that -d is the most negative number that w visits), then w ′ will end at the number 2d. Any positive walk of even length ends in an even non-negative number; the unique recurrent walk w corresponding to it can be found by setting d to half that final number, and changing the d up-steps that immediately follow the last visit to respectively the numbers 0, 1, . . . , d -1 into down-steps. This correspondence can be extended straightforwardly to include odd-length walks, making those that end at 1 and reach -d as most negative number correspond to positive walks ending at 2d + 1.

Note that the bijection establishes a fact that was not evident in our original argument, namely that n k -n k+1 not only counts the positive walks that end at 2kn, but also the walks of "depth" k -⌈ n 2 ⌉ ending at 0 or 1. Before we state more formally the result thus obtained, we shall generalise it slightly by allowing in addition to up-steps and down-steps also neutral steps, which stay at the same point. Both our initial reasoning and the construction of a correspondence remain valid without much modification for these more general walks, although of course the numbers of walks increase, and there is no longer a parity condition for the end point of the walks. Instead of Pascal's triangle and it anti-symmetrised counterpart we obtain as arrays of numbers the coefficients of (X -1 + 1 + X) n , somewhat ambiguously called trinomial coefficients: 1 1 1 1 1 2 3 2 1 1 3 6 7 6 3 1 1 4 10 16 19 16 10 4 The entries of the second array are differences of trinomial coefficient two places apart, so each of its row sums is given by the corresponding middle trinomial coefficient plus one its neighbours. Like for the first correspondence, we illustrate graphically the types of paths matched by the bijection, and as in the first case the paths depicted actually match under our correspondence.

We can now formulate our main result.

Theorem 1. Within the class of walks on Z starting at 0 and with steps advancing by +1, 0 or -1, there is a bijection, conserving both the length of the walk and the number of steps 0, between on one hand the walks that end either at 0 or at 1, and on the other hand the walks that do not visit negative numbers. The bijection maps walks ending at e ∈ {0, 1} and whose minimal number visited is -d, to walks ending at 2d + e, and is realised by reversing the direction of the d down-steps that first reach respectively the numbers -1, -2, . . . , -d.

Proof. Calling "Motzkin walk" any sub-walk starting and ending at a same number m while not visiting any number less than m (these correspond to Motzkin sub-paths in the lattice path point of view), any walk in the class considered ending at e ∈ Z and whose minimal number visited is -d can be uniquely written as a composition of 2(2d+e)+1 sub-walks that are alternatingly a (possibly empty) Motzkin walk and a single non-stationary step, those 2d + e single steps being (in order) d down-steps and d + e up-steps; they are precisely the steps not contained in any Motzkin walk. The domain and codomain of the bijection are characterised by e ∈ {0, 1} respectively by d = 0, and the bijection, which reverses the d down-steps in this decomposition, produces the same Motzkin walk factors, changing the parameters from (d, e) to (0, 2d + e).

Although we have described the bijection as a single transformation, it can be obtained by repeating a same operation, which reverses only the direction of a single step, d times in succession. Doing so, there is no choice but to start reversing the last one of those d steps, the one that first attains the global minimum -d of the walk: reversing any of the other ones would result in a step that becomes part of a Motzkin walk without in general any means to tell from that walk alone which step it was. The final step however remains outside any Motzkin walks after reversal, and in fact becomes the last up-step that starts at the global minimum of the modified walk, which has become -d + 1; this description shows that the original walk can be reconstructed given only the modified walk. Now repeating the operation of reversing the down-step that first attains the global minimum of the walk will successively reverse the d steps indicated in our bijection, in reverse order of appearance in the walk; after this the operation cannot be further repeated because the global minimum has become 0, and no down-step is needed to first attain it. The successive steps of the transformation are illustrated in figure 1, in a case with d = 3.
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Figure 1: From a recurrent walk to a positive walk by pushing minimum upwards

The reverse procedure then consists of repeating the following operation, which decreases the end point of the walk by 2, until that end point is 0 or 1: reverse the first up-step that starts at the global minimum of the walk. Unlike the forward operation, this backward operation could in general be repeated in a reasonable way even after the terminating condition is reached. Doing so until no up-step of the given type can be found would result in a bijection from the set of all positive walks to those ending at their global minimum, and mapping those of the former kind ending at k to those of the latter kind ending at -k. There is more obvious bijection with the same property, namely the one consisting of taking the steps of the walk in reverse order and in the opposite direction (in terms of the corresponding lattice paths, this corresponds to reflection in a horizontal line, and then shifting horizontally to match the starting point).

The operation described on walks or paths is certainly not new. It appears that its most prominent occurrence is in the representation theory of Lie groups: it is an instance of Littelmann's root operator e α on paths of [START_REF] Littelmann | Paths and root operators in representation theory[END_REF], for the most basic case of type A 1 . However, in diverse settings and under various equivalent descriptions, this operation had been known long before; notably it occurs in [START_REF] Littlewood | Group characters and algebra[END_REF] where it is used to prove the simplest case of the Littlewood-Richardson rule.

In those applications there can in fact be more than one such operation, acting on paths in a space of higher dimension, and involving reflections (applied to path segments) in different directions, namely the simple reflections for a root system. It would be interesting to find enumerative consequences of the operations in those settings, but it appears that there are none that are easy to state if the simple reflections, and therefore the associated root operators, do not commute. In fact, although iterating the "raising operators" does give, in spite of their non-commutation, a well defined map from arbitrary paths to dominant ones (those that remain on the positive side of each reflection hyperplanes considered), this map restricted to for instance the recurrent paths is not injective (the size of the fibre above a given dominant path ending at λ is the dimension of the zero-weight space of a representation associated to λ).

For this reason we shall state only a generalisation corresponding to the type A n 1 , where the reflections commute. In this case we can in fact ignore the Lie theoretic point of view, which adds nothing that is not obvious combinatorially. We can treat each of the n coordinate directions separately, repeatedly applying reflections in that direction to certain segments of a path until that coordinate is non-negative throughout the path. These operations for different coordinates commute and can therefore be applied independently. The set of basic steps from which the paths may be constructed may however involve some dependence between the coordinate directions (it could for instance insist that exactly two coordinates change at each step), as long as it is symmetric with respect to each of the n coordinate reflections, and no step involves a change outside the set {-1, 0, 1} to any one coordinate. Therefore we state the result as follows.

Theorem 2. Let any subset S of {-1, 0, 1} n be fixed that is stable under each reflection that negates a single coordinate. Then within the set of walks on Z n starting at the origin and with steps in S, there is a length preserving bijection from those walks that end in a point of {0, 1} n (a vertex of the unit hypercube) to those walks that remain at all times inside the (weakly) positive orthant. It is defined by applying the bijection of theorem 1 to each coordinate separately.

Convolution of central binomial coefficients

There is another enumerative identity for which the bijection we studied provides insight. It is well known that the generating series S = n∈N 2n n X n of central binomial coefficients is given by S = 1 √ 1-4X ; this can for instance be established by developing (1 -4X) -1 2 using the power series binomial formula with arbitrary exponent (cf. [START_REF] Stanley | Enumerative combinatorics[END_REF], Chapter 1, exercise 4). However, the formula means that S 2 is a geometric series with ratio 4X and constant term 1, so that one has

i+j=n 2i i 2j j = 2 2n for all n ∈ N. (1) 
The question of explaining this identity combinatorially is an old one; according to [START_REF] Stanley | Enumerative combinatorics[END_REF] p. 52 and [START_REF] Sved | Counting and Recounting, The Aftermath[END_REF] it was raised by P. Veress and solved by G. Hajos in the 1930s. In spite of the simple form of (1), it is remarkably difficult to do this if one interprets the summand in the most obvious way as counting pairs of recurrent walks of lengths 2i and 2j respectively. Although many answers have been proposed, often involving operations closely related to those we have been discussing (see [START_REF] Sved | Counting and Recounting, The Aftermath[END_REF]), none appear so transparent as to really explain the simplicity of the identity. With what we have seen above, we may however also interpret the central binomial coefficients as counting the positive walks of the indicated lengths. Doing so for both coefficients does not make the problem much easier, but if one interprets the first one as counting recurrent walks and the second on as counting positive walks, then a solution presents itself naturally.

From the concatenation of a recurrent walk and a positive walk, the factors cannot in general be uniquely reconstructed, but this decomposition becomes unique if one inserts a single up-step between the two factors, as this will be the last step to start at 0. The result is a walk of odd length 2n + 1 ending at a number > 0, and conversely any such walk has a well defined last up-step starting at 0, allowing a decomposition of the indicated kind. Thus we are led to interpret the second member 2 2n not as counting the set of all walks of length 2n, but as counting the set of walks of length 2n + 1 ending at a positive number. This is the most subtle twist: the latter set clearly has 2 2n+1 /2 = 2 2n elements as well, but is not in obvious bijection with the former set. 3 Thus in our opinion the key to understanding (1) does not lie in finding a clever bijection, but in choosing the correct interpretation of its expressions; the bijection (concatenation with an up-step interposed) then becomes a triviality.

Since the correspondence between recurrent walks and positive ones continues to hold in the presence of neutral steps, we can generalise the identity (1) to this setting. We shall allow any fixed number t of distinguished kinds of neutral steps, so that we shall recover the previous binary case for t = 0, and the ternary case (Motzkin type walks) for t = 1 (or one may consider that we are doing just the latter case, but keeping track of the number of neutral steps in the exponent of t, viewed as an indeterminate). The number R t,l of all such walks that are recurrent and of length l is then equal, due to theorem 1, to the number of positive walks of the same length ending at an even number; the parity condition is due to the fact that the basic raising operation advances the end point by 2, and the positive walks ending at an odd number similarly correspond to the almost recurrent walks ending at 1.

Given a pair consisting of a recurrent walk of length i and a positive walk of length li ending at a positive number, one can concatenate them with a single up-step inserted between them, to obtain a walk of length l + 1 ending at a positive odd number. Again one obtains, by combining all cases 0 ≤ i ≤ l, a bijection to the set of all walks of the latter type, as these can be uniquely decomposed at their last (up-)step starting at 0. Counting all walks of length l + 1 ending at a positive odd number is only slightly more difficult than in the case t = 0. Their number is half that of all walks of that length ending at an odd number, while the number of all walks of that length, and the difference between the number of those ending at even and odd numbers, are respectively given by the evaluations at X = 1 and X = -1 of (X

-1 + t + X) l+1 . Combining this one gets i+j=l R t,i R t,j = (t + 2) l+1 -(t -2) l+1 4 ( 2 
)
where R t,i is the coefficient of X 0 in (X -1 + t + X) i . One has R 0,i = 0 whenever i is odd; this makes the equation trivial when t = 0 and l is odd, while for t = 0 and l = 2n one recovers equation [START_REF] André | Solution directe d'un probléme résolu par M. Bertrand[END_REF]. For arbitrary t one can convert this equation into one of generating series, summing the individual geometric series i (t ± 2) i+1 X i obtained from the right hand side to t±2-(t 2 -4)X 2 1-2tX+(t 2 -4)X 2 , and simplifying

to i∈N R t,i X i 2 = 1 1 -2tX + (t 2 -4)X 2 .
(

) 3 
This leads in particular to the expression i∈N R 1,i X i = 1/ √ 1 -2X -3X 2 for the generating series of the middle trinomial coefficients. This also explains why that "diagonal" series, and its relative S for the middle binomial coefficients, not only satisfy a quadratic relation over the rational functions in X (cf. [START_REF] Stanley | Enumerative combinatorics[END_REF], theorem 6.3.3), but are actually are square roots of a rational function (cf. [loc. cit.] exercise 6.42), unlike the series for Motzkin paths and Dyck paths, although the latter satisfy simpler recurrences.

The form of equation ( 3) begs consideration of the case t = 2 as well, for which we obtain i∈N R 2,i X i = 1/ √ 1 -4X, the same generating series as S above. This leads to the question: why is the number of recurrent walks of length n with steps advancing +1 or -1 and two distinguished kinds of neutral steps the same as the number of recurrent walks of length 2n with only steps advancing +1 or -1? We leave this as an (easy) exercise to the reader.

Relation with Bertrand's ballot problem

Finally we want to make explicit a relation of our basic bijections with the famous "ballot problem" of Joseph Bertrand [START_REF] Bertrand | Solution d'un probléme[END_REF]. The problem he presented, and immediately solved, is to compute the conditional probability, given that an election between persons A and B is won by A with m out of µ votes (so 2m > µ), that during the sequential counting of the votes A has had a strict lead over B, from the counting of the first vote onwards. The answer given, 2m-µ µ , is justified by an argument counting the number P m,µ of "favourable" ballot sequences as a function of µ and m > µ 2 , stating that it satisfies the same recurrence as the binomial coefficients µ m (but without mentioning them), from which recurrence (and the implicit condition P m,2m = 0) the general formula for P m,µ can be deduced. Ballot sequences correspond straightforwardly to walks on Z, and the favourable ones are those that start with an up-step (a vote for A), and then never return to 0. Their number equals that of the positive walks of length µ -1 with m -1 up-steps; as we have seen this gives P m,µ = µ-1 m-1 -µ-1 m , and one must assume this is the general formula Bertrand hinted at. Indeed after division by µ m one obtains m µ -µ-m µ = 2m-µ µ as claimed. Apparently Joseph's solution method differs little from the one by which we initially counted positive walks. Yet he remarks that "it seems probable that so simple a result could be proved by a more direct method". This challenge is taken up by Désiré André, who in the very same issue of the Comptes Rendues proposes a solution based on a combinatorial argument [START_REF] André | Solution directe d'un probléme résolu par M. Bertrand[END_REF]. He renames the parameters as α = m and β = µm (the respective numbers of votes for A and B), and bases his argument on the observation that the proposed probability α-β α+β means that the complementary probability 2β α+β (for the cases where A did not maintain a strict lead) is due for exactly half of it to the possibility that A already failed to win the very first vote, and for the other half to the possibility that A obtains an initial lead, but fails to maintain it. To simplify our discussion we shall call these parts of the unfavourable scenario respectively "bad" and "ugly", and the favourable scenario "good". The conditional probability of the bad case, where B wins the first vote, is clearly equal to the proportion β α+β of votes cast for B; in fact André just computes this probability as the quotient α+β-1 α / α+β α . The heart of his proof is a bijection establishing equality of the numbers of bad and ugly cases.

Representing ballot sequences, or walks on Z by lattice paths (drawn as before with path segments in downward diagonal directions), the three scenarios considered are illustrated in figure 2. The equality observed by André means the following: among the lattice paths across a given rectangle, there are as many that start with a step along the short side as there are that start with a step along the long side and then later return at least once to the line bisecting the angle of the rectangle at the starting point. The number of good cases, corresponding to lattice paths from (1, 1) (which we take to be on the long side) to (α + β, αβ) that avoid the indicated line, can therefore be computed as the total number of cases minus twice the number of bad cases, corresponding Figure 2: The good, the bad and the ugly cases to lattice paths from (1, -1) to (α + β, αβ); this gives

α + β α -2 α + β -1 α = α + β -1 α -1 - α + β -1 α . (4) 
This matches the formula n k -n k+1 we found for the number of positive walks of length n ending at 2kn ≥ 0, with n = α + β -1 and k = α -1.

Clearly that formula is directly related to the arguments of both Bertrand and André. Passing from it to the formula for all positive walks just requires summing over all k ≥ n 2 , which gives a telescoping sum adding up to n ⌈n/2⌉ . (The same argument shows that there are n k positive walks ending at a number that is at least 2k-n.) It may therefore be expected that there is a close relation between bijections proving respectively André's claim of parity between of bad and ugly cases, and the enumerative statement of our theorem 1.

Consider our basic raising operation, which as we recall reverses the first step of a walk that reaches the global minimum of that walk. Within the set of all walks ending at non-negative numbers, it is defined on the subset of walks that do descend at least once to a negative number, and its image is the set of walks that end at a value ≥ 2. Note that these sets are the complements of respectively the set of positive walks and the set of walks that end at 0 or 1, so that we can interpret the fact that iteration of this raising operation defines a bijection between those complements (in the opposite direction) as an instance of the "complementation principle" evoked in the introduction.

Upon restriction to the walks that end at a given value i ≥ 0, the domain of the raising operation is still limited by the requirement that the walk descend below 0, but the image is the full set of walks ending at i + 2. We can match these two sets with set of ballot sequences for the ugly and bad cases, provided we omit from those sequences the initial vote (whose outcome is fixed in either case). Thus we get walks starting at 1 respectively at -1, of length n = α+β-1, and the ending at α-β; this point is ahead of the starting point by the margin of A over B among the votes remaining after the first one, namely i = (α-1)-β in the ugly cases and α -(β -1) = i + 2 in the bad cases. Since the ugly cases now start with a one vote lead for A, the condition of subsequently losing this strict lead at least once matches the condition of descending below the starting point Figure 3: The raising operator as a starting-point shifting transformation that characterises the domain of the raising operation. Thus we now interpret the raising operation as one that fixes the end point, and shifts back the starting point by 2 units, as illustrated in figure 3. So the raising operation does indeed provide a bijection that proves the claim in André's argument.

This does not of course imply that the raising operation defines the same bijection that André did; it does not. We shall give the details of the latter bijection below, as well as the descriptions of other bijections that link the sets of bad and ugly ballot sequences, and therefore could be used instead to complete André's argument. But we first want to observe that any such bijection can be iterated to obtain a bijection between almost recurrent and positive paths: this is not a particularity of the raising operation. Proposition 3. Let a bijection f be given that maps ugly ballot sequences to bad ones, without changing the number of votes for either candidate. One can then bijectively map the set of non-bad ballot sequences in which A has a final margin of 1 or 2 votes over B to arbitrary good ballot sequences of the same length, by iterating the following step as long as the ballot sequence is ugly: apply f to change it into a bad sequence, then replace the initial vote for B by one for A.

Proof. Termination is ensured since A gains one vote at each iteration, and bijectivity of the resulting correspondence follows immediately from that of f . One may view the proposition as a mere instance of the complementation principle, within the set of all ballot sequences starting with a vote for A and resulting in a victory for A. In fact, this shows that the hypothesis of not changing the number of votes for either candidate is superfluous, as long as A still wins after applying f ; but without it one would not have such a good upper bound for the number of iterations required as one has with the hypothesis, namely the initial number of votes for B. From the bijection obtained by this iteration, an alternative proof for the enumerative statement of our theorem 1 can be deduced by removing the initial vote (for A) from each sequence. Bijections f as in the proposition are often naturally thought of as acting on lattice paths, going from the origin by downwards diagonal steps to a common end point (n, i), with i ≥ 0; in this point of view the change of the initial vote (back) into one for A done at the end of each iteration shifts the whole remaining path to the right. It might in some cases be more transparent to present the iteration instead as involving a move of the origin to the left at each step.

It is clear that like ugly ones, bad ballot sequences must reach a point where the votes for A and B are in balance. This circumstance provides an occasion, when seeking a bijection f as in the proposition, to focus on the sequences up to this point of equality, and leave their remainders unchanged. Moreover the most obvious way to see that there are as many sequences of a given length ending in equality, but with A ahead of B at all intermediate times, as there are with B similarly ahead of A, is to simply interchange the roles of A and B. In terms of lattice paths this amounts to reflecting their part up to the first encounter of the vertical line through the origin, which is the symmetry axis with respect to A and B, in that axis. Using the resulting bijection is known as the "reflection method" for solving the ballot problem. Surprisingly, and in spite of the fact that it is often attributed to him, the reflection method is not what André used to complete his proof either (see [START_REF] Renault | Lost (and Found) in Translation: Andrés Actual Method and Its Application to the Generalized Ballot Problem[END_REF] for details about the intriguing history of this problem). So let us finally describe the bijection he did define.

To transform an ugly sequence into a bad one, one may split the former sequence just before the vote where it turns ugly (the vote for B after which the initial lead of A is levelled); the two parts of the sequence are then concatenated in the opposite order. The result clearly has the same distribution of votes, and is bad since it starts with a vote for B. That the operation is bijective follows from the fact that the initial vote for A in the ugly sequence has become the last of the votes for A in the bad sequence to make the margin of A over B attain its ultimate value; it can therefore be located in the result, and the cyclic rearrangement of votes reversed. If one considers the sequences without their initial vote, as is more practical for the purpose of iteration, then the description changes slightly: one should remove the first vote that gives B a lead over A, and concatenate the remaining parts of the sequence in opposite order with a vote for A inserted in between. Curiously the description André originally gave includes the initial vote for A in the ugly sequence but maps to a bad sequence deprived of its initial vote for B, so his recipe is: remove the offending vote, and combine the remaining sequences in the opposite order.

It appears there is ample choice for a bijection proving André's claim. In fact, it is not hard to find more bijections, as variations of the reflection method. In the lattice path view, one is not obliged to take the first visit of the axis as the point up to which the reflection is applied (unless it is the unique visit): one could equally well choose say the second visit (if possible), or the last one; indeed one could fix any rule that depends only on properties of the path that are unchanged by the reflection. Alternatively, reflection in the axis is not the only way to map Dyck paths bijectively to those staying at the opposite side of the axis: central symmetry with respect to the midpoint on the axis works as well; this corresponds to reversing the order of counting votes rather than changing individual votes. In this case, unlike for the reflection method, one must insist on transforming only the part up to the first encounter of the axis, to ensure that then result corresponds to a sequence starting with a vote for B.

By our proposition, each of these bijections gives rise to a bijection between (almost) recurrent walks and positive walks of the same length. We conclude this note by comparing the various possibilities with respect to the transparency of the resulting bijection. As indicator we consider understanding the number of iterations required to turn a given walk into a positive walk. It is clear that this number will equal half the value of the ending point of that positive walk (rounded down in the odd-length case), and so it will in all cases define a statistic with values in {0, 1, . . . , ⌊ n 2 ⌋} on the set of (almost) recurrent paths of length n. Moreover this statistic will have the same distribution as the "half the ending value rounded down" statistic has on positive walks of length n, namely n k -n k-1 instances for the value k -⌈ n 2 ⌉ ≥ 0. For the bijection of theorem 1, iterating the raising operation, we have seen that this statistic is just the depth of the walk (minus the value of its global minimum), which is easily read off.

In contrast, finding the number of iterations required for a given walk when using the bijection given by the reflection method is not at all easy; as far as we can see it requires essentially simulating the entire iteration process. The reason for this difficulty is that the part of the walk affected by each successive reflection might be either smaller or larger than for the previous reflection, and as a result, computing where a given path segment will end up after a certain number of iterations becomes a somewhat messy affair.

This difficulty is present also for the variations of the reflection method we indicated, with one exception: if we systematically reflect the largest possible part of the path, namely up to the last encounter of the axis, then successive iterations are guaranteed to affect ever smaller parts of the path. We can then deduce the following computation of the number of iterations required for this case: trace the walk (as before taken to not include a step for the initial vote, and to start at 0) backwards in time, seeking first the last visit to -1 (if any), then the preceding visit to 1, then the preceding visit to -1, and so on alternatingly until no visit of the indicated kind remains; the requested number is the number of visits found. For what it's worth, we formulate the fact that this statistic has the mentioned distribution; this is actually not too hard to see directly. 2 ⌉+d walks on Z of length n starting at 0 and ending at n mod 2 ∈ {0, 1} that make at least d alternating visits to 1 and -1, the last of which is a visit to -1; the number of such walks for which d is the length of the longest such sequence of visits is

n ⌈ n 2 ⌉+d - n ⌈ n 2 ⌉+d+1
. For André's original method, we find that the number of iterations required is the same as when using the raising operation, namely the depth of the walk. Indeed each iteration decreases the depth by 1, since the part of the sequence moved to the end corresponds to a Dyck path, and the following down-step is removed; coming after the absolute minimum is reached, the additional up-step that is inserted does not affect the depth. In fact the downs-steps removed in successive iterations are the same ones as those that iteration of the raising operation would change into up-steps, although the latter would proceed in the opposite (rear to front) order. Indeed it is easy to describe the final walk obtained by iteration using André's bijection in terms of the one of theorem 1: from the latter walk remove the last of the (up-)steps that were obtained by reversing down-steps, and combine the remaining parts of the walk in the opposite order, separated by an up-step. This close relation is remarkable, as it seems unlikely that this kind of iteration was of any concern to André. In conclusion, although one can mechanically transform bijective solutions to the ballot theorem into alternative bijections for our theorem 1, this turns the more obvious solutions (notably the reflection method) into rather opaque bijections. In contrast, the raising operation as well as André's almost forgotten original method, although less obvious in relation to the ballot problem, lead to quite transparent bijections after iteration.

Corollary 4 .

 4 Given 0 ≤ d ≤ ⌊n/2⌋, there are n ⌈ n

This is not the way Pascal drew his "Triangle Arithmetique"; he used a horizontal grid of cells and the rule "Le nombre de chaque cellule est egal à celuy de la cellule qui la precede dans son rang perpendiculaire, plus à celuy de la cellule qui la precede dans son rang parallele."[START_REF] Pascal | Traité du triangle Arithmetique, avec quelques autres petits traitez sur la mesme matiere[END_REF] 

Bijections between these sets can be found, but do not add much understanding to the obvious fact that their numbers agree. One such bijection uses by cut-and-paste involving two unequal size parts: interpreting walks as ballot sequences as in the next section, one can map a sequence of length 2n + 1 in which A beats B to an arbitrary one of length 2n, by singling out and removing one particular vote (the first or the last one are obvious choices); if it is a vote for A then the remaining sequence (weakly favourable for A) is returned, and otherwise its complement (all votes inverted) is returned, which is strictly favourable for B.
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