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Introduction

Despite their derivation by Leonhard Euler as early as in 1757 [START_REF] Euler | Principes généraux du mouvement des fluides[END_REF], the eponymous equations governing inviscid fluid flow still pose highly challenging mathematical problems. For example, our knowledge about the propagation of regularity of solutions to the three-dimensional Euler equations remains fragmentary. One way of attacking this and related question is to resort to simpler, lower-dimensional, differential equations whose solutions share features with those observed for (ideal) fluids. This approach was chosen by Constantin, Lax, and Majda [START_REF] Constantin | A simple one-dimensional model for the three-dimensional vorticity equation[END_REF] in their derivation of a model equation for the three-dimensional vorticity equation (the Euler equation for the vorticity ω = curl u of the velocity vector u):

(1)

∂ t ω = Hω ω, t > 0, x ∈ R;

the original equation being

∂ t ω + (u • ∇) ω = D(ω) • ω, t > 0, x ∈ R 3 .
This reduction occurs if the convective derivative ∂ t +u•∇ is replaced by the temporal derivative, and it can be justified by the identical properties, in one or three space dimensions, respectively, of the singular integral operators D, given by the Biot-Savart law, and H, the Hilbert transform [START_REF] Pandey | The Hilbert transform of Schwartz distributions and applications[END_REF].

A tremendous drawback of the vorticity model [START_REF] Castro | Infinite energy solutions of the surface quasi-geostrophic equation[END_REF], however -despite its having solutions exhibiting finite-time blow-up -is the paradox that its viscous extension, first explored by Schochet [START_REF] Schochet | Explicit solutions of the viscous model vorticity equation[END_REF], has solutions which can break down earlier than in the inviscid regime. 1 In an attempt to circumvent this anomaly, De Gregorio [START_REF] Gregorio | On a one-dimensional model for the three-dimensional vorticity equation[END_REF] proposed another model for the vorticity equation:

(2)

∂ t ω + uω x = Hω ω, u x = Hω, t > 0, x ∈ R.

In this convective perturbation of the CLM equation, he chose the "velocity" u to be the antiderivative of the Hilbert transform of the "vorticity" ω. Numerical studies [START_REF] Okamoto | On a generalization of the Constantin-Lax-Majda equation[END_REF] lead to the conjecture that De Gregorio's model equation has global solutions -a fact that has yet to be verified mathematically. Also in [START_REF] Okamoto | On a generalization of the Constantin-Lax-Majda equation[END_REF], a more general model equation of hydrodynamic type was presented:

(3) ∂ t ω + α uω x = Hω ω, u x = Hω;

α being an arbitrary real parameter. Three cases of which have been studied before:

• α = -1 corresponds to the model for the quasi-geostrophic equations of [START_REF] Córdoba | Formation of singularities for a transport equation with nonlocal velocity[END_REF][START_REF] Córdoba | Integral inequalities for the Hilbert transform applied to a nonlocal transport equation[END_REF]; • α = 0 reduces the model equation to the CLM equation;

• α = 1 becomes the equation proposed by De Gregorio. Recently, it has been shown that for any α lying in the negative halfline, there are solutions which blow up in finite time [START_REF] Castro | Infinite energy solutions of the surface quasi-geostrophic equation[END_REF]. However, the description of the asymptotic behavior in the case α > 0 remains open to further scrutiny.

Note that the time scaling t → t/α transforms (3) into the following equation [START_REF] Constantin | A simple one-dimensional model for the three-dimensional vorticity equation[END_REF] ∂ t ω + uω x + a u x ω = 0, ω = Hu x , with a := -1/α. This equation is known as the modified CLM equation, cf. [START_REF] Okamoto | On a generalization of the Constantin-Lax-Majda equation[END_REF] for a recent study of (4). It was observed by Wunsch [30] that in the case a = 2 equation (4) admits a geometric interpretation as the description of the geodesic flow of the homogeneous Ḣ1/2 (S) right-invariant metric on the homogeneous space Diff ∞ (S)/Rot(S) of orientation-preserving diffeomorphisms of the circle modulo the subgroup of rotations Rot(S), putting it "midway" between the Burgers equation (giving the geodesic flow of the L 2 (S) metric) and the Hunter-Saxton equation (describing the geodesic flow of the homogeneous Ḣ1 metric).

In this work, we will show that the periodic modified CLM can be realized as the geodesic flow of a symmetric linear connection on the subgroup Diff ∞ 1 (S) of orientation-preserving diffeomorphisms ϕ ∈ Diff ∞ (S) such that ϕ(1) = 1, which is canonically diffeomorphic to the coset manifold Diff ∞ (S)/Rot(S). For the value a = 2 this connection is compatible with a Riemannian metric. In fact in this case, the metric is induced by the inertia operator Λ := HD (with respect to the L 2 inner product on the tangent bundle).

Moreover, we present a thorough study of the regularity properties of the geodesic flow on a suitable Banach approximation of the Fréchet manifold Diff ∞ 1 (S). Introducing furthermore Lagrangian coordinates, these regularity results allow us to prove the well-posedness of the modified CLM equation on large phase spaces. An immediate application of our main results Theorem 4.2 and Corollary 4.4, in combination with Lemma A.2 gives the following conclusion: Theorem 1.1. Let a ∈ R and k ≥ 2 be given. Then there exist δ k > 0 and T k > 0 such for each ω 0 ∈ H k-1 (S) with spatial mean zero and ω 0 H k-1 < δ k there exists a unique solution

ω ∈ C((-T k , T k ), H k-1 (S)) ∩ C 1 ((-T k , T k ), H k-2 (S))
to the modified CLM equation (4) with initial condition ω(0) = ω 0 .

Let us briefly outline the plan of our paper. In Section 2 we recall the construction of Euler-Poincaré equations on Lie groups and provide basic facts on Fourier multipliers on S, which is the class of inertia operators we are interested in. In Section 3 we realize the modified CLM equation as an Euler equation on the Fréchet Lie group Diff ∞ 1 (S). Introducing Lagrangian coordinates it is possible to re-formulate the geodesic flow on Diff ∞ 1 (S) as a system a first order ordinary differential equations on the tangent bundle of the Banach manifold D k 1 (S), consisting in all orientation-preserving diffeomorphisms ϕ of Sobolev class H k with k ≥ 2 such that ϕ(1) = 1. In Section 4 we study the regularity of the vector field induced by the above mentioned dynamical system. This section contains also our main results. The proof of several continuity properties of the composition mapping and some technical estimates for operators on Sobolev spaces are postponed to the Appendix.

Settings

A right-invariant Riemannian metric on a Lie group G is defined by its value at the unit element, that is by an inner product on the Lie algebra g of the group. If this inner product is represented by an invertible operator A : g → g * , for historical reasons, going back to the work of Euler on the motion of the rigid body, this inner product is called the inertia operator. The Levi-Civita connection of such a Riemannian metric is itself right-invariant and given by ( 5)

∇ ξu ξ v = 1 2 [ξ u , ξ v ] + B(ξ u , ξ v ),
where ξ u is the right-invariant vector field on G generated by u ∈ g and B is the right-invariant tensor field on G, generated by the bilinear operator

(6) B(u, v) = 1 2 (ad u ) * (v) + (ad v ) * (u)
where u, v ∈ g and (ad u ) * is the adjoint (relatively to the inertia operator A) of the natural action of the Lie algebra on itself given by

ad u : v → [u, v].
Given a smooth path g(t) in G, we define its Eulerian velocity, which lies in the Lie algebra g, by u(t) = R g -1 (t) ġ(t) where R g stands for the right translation in G. It can then be shown (see [START_REF] Escher | The Degasperis-Procesi equation as a non-metric Euler equation[END_REF] for instance) that g(t) is a geodesic if and only if its Eulerian velocity u satisfies the first order equation [START_REF] Gregorio | On a one-dimensional model for the three-dimensional vorticity equation[END_REF] u t = -B(u, u).

known as the Euler equation induced by A.

It was noticed in [START_REF] Escher | The Degasperis-Procesi equation as a non-metric Euler equation[END_REF] that the concept of Euler equation does not necessarily require the linear connection ∇ to be Riemannian -there may not exist a Riemannian metric which is preserved by this connection. We have therefore called such an equation a non-metric Euler equation. With this extended definition, every quadratic evolution equation on g

u t = Q(u),
corresponds to the reduced geodesic equation (Euler equation) of a rightinvariant symmetric linear connection on G.

The theory of Euler equations on a homogeneous space G/K has been developed in [START_REF] Khesin | Euler equations on homogeneous spaces and Virasoro orbits[END_REF] in the metric case and more generally for Hamiltonian systems. It corresponds to a special case of the Hamiltonian reduction with respect to the subgroup K action. Let A : g → g * , be the inertia operator of a degenerate symmetric bilinear form < •, • > on g, such that ker A = k, the Lie algebra of K. If moreover, the inner product < •, • > is Ad K -invariant, that is < Ad k u, Ad k v >=< u, v >, for all k ∈ K and all u, v ∈ g, then A induces a right G-invariant pseudo-Riemannian metric on the space G/K of right cosets (Kg, g ∈ G). In that case, the Euler equation, which corresponds to the inertia operator A and describes the geodesic flow on the homogeneous space G/K, has the following Hamiltonian form (see [START_REF] Khesin | Euler equations on homogeneous spaces and Virasoro orbits[END_REF]): it is the quotient with respect to the K-action of the restriction to L = Im A ⊂ g * of the following Hamiltonian equation on g * m t = -ad * A -1 m m for m ∈ L.

However, it appears difficult to work easily with a contravariant formulation of this equation similar to equation [START_REF] Gregorio | On a one-dimensional model for the three-dimensional vorticity equation[END_REF] in this more general situation. Indeed, in that case, the Eulerian velocity is only defined up to a path in K (see [START_REF] Tıglay | Generalized Euler-Poincaré equations on Lie groups and homogeneous spaces, orbit invariants and applications[END_REF] for a recent survey on the subject). Moreover, it is not clear how this formalism can be generalized to non-metric Euler equations.

Fortunately, in the case we consider in this paper, these difficulties can be avoided because of a prolific structure. More precisely, in the situation we consider, there exists a closed subgroup H of G, such that the restriction to H of the canonical right action of G on G/K is transitive and without fixed points. In that case, g = k ⊕ h, where k is the Lie algebra of K and h is the Lie algebra of H and the study of a degenerate, Ad K -invariant inner product on g with kernel k can be reduced to an Euler equation on the Lie group H, where h * has be identified with

k 0 = {m ∈ g * ; m(u) = 0, ∀u ∈ k} .
Example. Let E(3) be the Lie group of direct euclidean motions in 3-space. The homogeneous space E(3)/SO(3) ≃ R 3 satisfies the hypothesis of our framework: the subgroup of translations T (3) ≃ R 3 acts transitively and without fixed points on the quotient space. Notice however, that in this particular example, the subgroup T (3) is a normal subgroup of E(3), something we do not assume explicitly in our more general framework. Remark 2.1. We emphasize, that contrary to what one might expect at first glance, the system of free motions of a rod (degenerate rigid body) does not enter into this framework. Indeed, the configuration space of a rigid rod can be realized as the homogenous space SO(3)/SO(2) ≃ S 2 which is not diffeomorphic to any Lie group, otherwise, its tangent bundle would be trivial, which is not the case. Nevertheless, the geometric framework of Diff ∞ (S)/Rot(S) suits perfectly well for the study of the Hunter-Saxton equation (see [START_REF] Lenells | The Hunter-Saxton equation: a geometric approach[END_REF] for instance) and other hydrodynamical models we shall consider in this article.

Let Diff ∞ (S) be the Fréchet Lie group of smooth and orientation preserving diffeomorphisms of the unit circle S ≃ R/Z and Diff ∞ (S)/Rot(S) be the homogeneous space of right cosets

[ϕ] := Rot(S) ϕ,
where Rot(S) is the subgroup of Euclidean rotations x → x + s (mod Z), s ∈ R. The canonical right action of the group Diff ∞ (S) on itself commutes with the left action of Rot(S) on Diff ∞ (S) and induces a right action of Diff ∞ (S) on the quotient space Diff ∞ (S)/Rot(S).

The restriction of this action to the subgroup Diff ∞ 1 (S) of diffeomorphisms ϕ ∈ Diff ∞ (S) such that ϕ(1) = 1 is transitive and simple (without fixed point). Therefore, the restriction of the projection map ϕ → [ϕ] to Diff ∞ 1 (S) defines a bijection between Diff ∞ 1 (S) and Diff ∞ (S)/Rot(S). The inverse map is given by [ϕ] → ϕ • ϕ(1) -1 . Notice however that the restriction to Diff ∞ 1 (S) of the projection map is not a group morphism. Otherwise Rot(S) would be a normal subgroup of Diff ∞ (S), which is not the case: Diff ∞ (S) is simple, it has no (non trivial) normal subgroup [START_REF] Guieu | L'algèbre et le groupe de Virasoro[END_REF].

The Fréchet manifold structure on Diff ∞ 1 (S) is obtained by the existence of the global chart ( 8)

U := {id + u; u ∈ C ∞ (S); u x > -1, u(0) = 0} , which is an open set in the closed hyperplane id + C ∞ 0 (S), where C ∞ 0 (S) is the closed linear subspace C ∞ 0 (S) := {u ∈ C ∞ (S) u(0) = 0}.
The Lie bracket on the tangent space at the unit element, identified with

C ∞ 0 (S), is given by [u, v] = u x v -uv x and we have C ∞ (S) = C ∞ 0 (S) ⊕ R, where R is the Lie algebra of Rot(S).
Remark 2.2. To summarize, there is a prolific structure in the special framework we consider in this paper and which simplifies our work. This structure is essentially due to the fact that there exists a smooth section (not a group morphism however)

Diff ∞ (S)/Rot(S) → Diff ∞ 1 (S) of the canonical projection map Diff ∞ (S) → Diff ∞ (S)/Rot(S).
In particular the Fréchet Lie group Diff ∞ (S) is diffeomorphic to the product manifold Rot(S) × Diff ∞ 1 (S). Notice that the particular choice of the fixed point in the definition of Diff ∞ 1 (S) does not affect the general structure. Consider now a non-negative bilinear form on C ∞ (S) which can be written as

u, v = S Au • v dx, where A : C ∞ (S) → C ∞ (S) is a linear, continuous, L 2 -symmetric operator.
Proposition 2.3. Suppose that A satisfies the following three conditions

(1) ker A = R, ( 2 
) Im A = m ∈ C ∞ (S); S m(x) dx = 0 , ( 3 
) AR s = R s A, for all rotations R s .
Then, A induces a weak Riemannian metric on the homogeneous space Diff ∞ (S)/Rot(S), identified with Diff ∞ 1 (S). The operator

B(u, v) = 1 2 A -1 2A(v)u x + A(v) x u + 2A(u)v x + A(u) x v
is well-defined on C ∞ 0 (S) and the associated symmetric, right-invariant, linear connection on Diff ∞ 1 (S) is compatible with the metric. The corresponding Euler equation on C ∞ 0 (S) is given by

(9) u t = -B(u, u) = -A -1 2A(u)u x + A(u) x u .
Remark 2.4. Notice that condition (3) is equivalent to the property for the degenerate inner product on C ∞ (S) defined by A to be Ad Rot(S) -invariant.

Remark 2.5. Observe that the topology induced by the pre-Hilbertian structure on each tangent space of the Fréchet manifold Diff ∞ (S)/Rot(S) is weaker than the usual Fréchet topology. For this reason such a structure is called a weak Riemannian metric. On a Fréchet manifold, only covariant derivatives along curves are meaningful. As expounded in [START_REF] Escher | The Degasperis-Procesi equation as a non-metric Euler equation[END_REF], the general expression of a right-invariant, covariant derivative of a vector field

ξ(t) = (ϕ(t), w(t)) ∈ Diff ∞ 1 (S) × C ∞ 0 (S) along the curve ϕ(t) ∈ Diff ∞ 1 (S) is given by Dξ(t) Dt = ϕ, w t + 1 2 [u, w] + B(u, w) ,
where u = ϕ t • ϕ -1 and B is a symmetric bilinear operator on C ∞ 0 (S). However, and contrary to the finite dimensional case, the existence of a symmetric, linear connection on a Fréchet manifold, compatible with a weak Riemannian metric, that is

d dt ξ, η ϕ = Dξ Dt , η ϕ + ξ, Dη Dt ϕ ,
is far from being granted.

Proof of proposition 2.3. If conditions (1) and (3) of proposition 2.3 are fulfilled, A induces a pre-Hilbertian structure on each tangent space of the homogeneous space Diff ∞ (S)/Rot(S), identified with Diff ∞ 1 (S). This inner product is given by [START_REF] Ebin | Groups of diffeomorphisms and the notion of an incompressible fluid[END_REF] η,

ξ ϕ = η • ϕ -1 , ξ • ϕ -1 e = S η • A ϕ ξ • ϕ x dx, where η, ξ ∈ T ϕ Diff ∞ 1 (S) and A ϕ = R ϕ • A • R ϕ -1
. This family of pre-Hilbertian structures, indexed by ϕ ∈ Diff ∞ 1 (S), is smooth because composition and inversion are smooth on the Fréchet Lie group Diff ∞ 1 (S). This way we obtain a right-invariant, weak Riemannian metric on Diff ∞ 1 (S). Formula ( 6) cannot be used directly to define a connection compatible with the metric because the adjoint operators ad t u (relatively to the pre-Hilbertian structure) are not well-defined. Indeed, given u, v, w ∈ C ∞ 0 (S), we have

< v, ad u w >= S 2A(v)u x + A(v) x u w dx so that ad t u is well-defined if and only if 2A(v)u x + A(v)
x u belongs to Im A, the space of smooth functions of mean value zero. One can check that this not the case in general. However, the expression

2A(v)u x + A(v) x u + 2A(u)v x + A(u) x v
has mean value zero, and belongs to Im A (condition (2)), provided A commutes with D. This is true by virtue of lemma 2.6, if A commutes with all rotations (condition (3)). Therefore, one can define

B(u, v) = 1 2 A -1 2A(v)u x + A(v) x u + 2A(u)v x + A(u) x v
and check that the associated right-invariant, symmetric linear connection on Diff ∞ 1 (S) is compatible with the metric.

More generally, for each a ∈ R, the equation ( 11)

u t = -B(u, u) = -A -1 aA(u)u x + A(u) x u .
is the (non-metric) Euler equation of a well-defined symmetric, right-invariant, linear connection on Diff ∞ 1 (S). The special case where A is a differential operator with constant coefficients has been extensively studied (see, e.g., [START_REF] Constantin | On the geometric approach to the motion of inertial mechanical systems[END_REF][START_REF] Constantin | Geodesic flow on the diffeomorphism group of the circle[END_REF][START_REF] Escher | The Degasperis-Procesi equation as a non-metric Euler equation[END_REF]). In this paper, we will need to extend the theory when A is a Fourier multiplier. For later reference, let us first give a useful characterization of Fourier multipliers. Here and in the following we use the notation e n (x) = exp(2πinx), n ∈ Z, x ∈ S. Lemma 2.6. Let P a continuous linear operator on the Fréchet space C ∞ (S). Then the following three conditions are equivalent:

(1) P commutes with all rotations R s .

(2) [P, D] = 0, where D = d/dx.

(3) For each n ∈ N, there is a p(n) ∈ C such that P e n = p(n)e n . In that case, we say that P is a Fourier multiplier.

Since every smooth function on the unit circle S can be represented by its Fourier series, we get that [START_REF] Escher | The periodic b-equation and Euler equations on the circle[END_REF] (P u)(x) = 

(P u) s (x) = (P u s )(x).
Taking the derivative of both sides of this equation with respect to s at 0 and using the continuity of P , we get DP u = P Du which proves the implication (1) ⇒ (2). If [P, D] = 0, then both P e n and e n are solutions of the linear differential equation u ′ = (-2πin)u and are therefore equal up to a multiplicative constant p(n). This proves that (2) ⇒ (3).

If P e n = p(n)e n , for each n ∈ N and P is continuous, then we have representation [START_REF] Escher | The periodic b-equation and Euler equations on the circle[END_REF]. Therefore

(P u) s (x) = k∈Z p(k)û(k)e k (x + s) = k∈Z p(k) u s (k)e k (x) = (P u s )(x),
which proves that (3) ⇒ (1).

Remark 2.7. Notice that the space of Fourier multipliers is a commutative subalgebra of the algebra of linear operators on C ∞ (S) which contains all linear differential operators with constant coefficients.

A Fourier multiplier P with symbol p is said to be of order s ∈ N if there exists a constant C > 0 such that

|p(m)| ≤ C |m| s ,
for every m = 0. In that case, for each k ≥ s, the operator P extends to a bounded linear operator from H k (S) into H k-s (S). We express this fact by the notation P ∈ L(H k (S), H k-s (S)).

The modified CLM equation as an Euler equation

The homogeneous Ḣ1/2 norm defined on C ∞ 0 (S) is introduced by means of Fourier series. We let 

) (Hu)(x) := -i +∞ k=-∞ sgn(k)û(k)e k (x). 13 
The convention sgn(0) = 0 permits to extend H on C ∞ (S). Notice that

H 2 = -Id on C ∞ 0 (S)
* and that H defines a complex structure on this space. Moreover, H is an isometry for the L 2 inner product of function equivalence classes having zero mean value.

Since [Λ, D] = 0 and the inertia operator Λ is an isomorphism from C ∞ 0 (S) onto C ∞ 0 (S) * := {u ∈ C ∞ (S); û(0) = 0} , the space of smooth functions of mean value zero, the existence of a linear connection compatible with the metric is granted and the Euler equation is defined.

Theorem 3.1. Given a ∈ R, the modified CLM equation [START_REF] Euler | Principes généraux du mouvement des fluides[END_REF] ω t + u ω x + au x ω = 0, ω = Λu, describes the geodesic flow of a right-invariant symmetric linear connection on the Fréchet Lie group Diff ∞ 1 (S). If a = 2, the geodesic flow is metric and corresponds to the right-invariant homogeneous Ḣ1/2 (S 1 ) metric.

Proof. It suffices to replace A by the expression Λ = H • D in formula [START_REF] Escher | The Degasperis-Procesi equation as a non-metric Euler equation[END_REF] and to use the definition ω = Λu, to get the general assertion. Remark 3.2. (a) Note that ( 14) is equivalent to the Euler equation ( 15)

u t = -Λ -1 [u (Λu) x + aΛ(u) u x ] .
To the best of our knowledge, theorem 3.1 is the first time the model equation for the 2D quasi-geostrophic and the Birkhoff-Rott equations studied in [START_REF] Córdoba | Formation of singularities for a transport equation with nonlocal velocity[END_REF][START_REF] Córdoba | Integral inequalities for the Hilbert transform applied to a nonlocal transport equation[END_REF] has been identified as a non-metric Euler equation on Diff ∞ 1 (S). (b) We recall that the connection is Riemannian if a = 2. Moreover, it follows from [START_REF] Escher | Restrictions on the geometry of the periodic vorticity equation[END_REF] that for

a ∈ - 5 3 , - 5 4 , - 5 7 , 1 2 
there is no inertia operator of Fourier multiplier type such that ( 14) can be realized as the geodesic flow with respect to the corresponding metric. These results extend similar statements for the b-equation [START_REF] Kolev | Some geometric investigations on the Degasperis-Procesi shallow water equation[END_REF][START_REF] Escher | The periodic b-equation and Euler equations on the circle[END_REF]. (c) It is also possible to consider evolution equations on Diff ∞ 1 (S), related to the inertia operator Λ 2 = -D 2 . Given a ∈ R, one may study the family

m t + um -a u x m = 0.
The most prominent equations in this family are the Hunter-Saxton equation [START_REF] Guieu | L'algèbre et le groupe de Virasoro[END_REF] m t + um + 2u x m = 0, and the Proudman-Johnson equation ( 17)

m t + um -u x m = 0,
respectively. The Hunter-Saxton equation is closely related to the Camassa-Holm Equation and the geometric picture of ( 16) is in fact fairly good understood, cf. [START_REF] Lenells | The Hunter-Saxton equation describes the geodesic flow on a sphere[END_REF]. In particular, ( 16) is the geodesic flow on Diff ∞ 1 (S) with respect to the inertia operator -D 2 , i.e. with respect to the homogeneous Ḣ1 -metric on C ∞ 0 (S). In contrast, ( 17) is a non-metric Euler equation, cf. [START_REF] Escher | Restrictions on the geometry of the periodic vorticity equation[END_REF].

The geodesic flow on D k

1 (S) In this section, we will study the regularity of the geodesic flow on suitable Banach approximations of the Fréchet manifold Diff ∞ 1 (S). More precisely, let D k (S) be the Banach manifold of orientation-preserving diffeomorphisms ϕ of Sobolev class H k (defined for some integer k ≥ 2). This Banach manifold is a topological group with respect to composition of diffeomorphisms but it is not a Lie group. Indeed, on D k (S), right translation R ϕ : ψ → ψ • ϕ is linear, hence smooth; whereas left translation L ϕ : ψ → ϕ • ψ is only continuous but not differentiable (see [START_REF] Ebin | Groups of diffeomorphisms and the notion of an incompressible fluid[END_REF][START_REF] Hamilton | The inverse function theorem of Nash and Moser[END_REF]).

Remark 4.1. The space of homeomorphisms of the circle of Sobolev class H 1 (as well as their inverse) is not a group. Indeed, let 1/2 < α < 1/ √ 2. Then F : x → x α is an increasing homeomorphism of [0, 1] which induces an homeomorphism of the circle. One can check that F as well as

F -1 are of class H 1 but that F • F is not, since ∂(F • F ) ∈ L 2 . Analogous to Diff ∞ 1 (S), the codimension one Banach submanifold D k 1 (S) of diffeomorphisms ϕ ∈ D k (S) such that ϕ(1) = 1 is covered by the global chart (18) U k = id + u; u ∈ H k (S), u x > -1, u(0) = 0 ,
which is an open set in the closed hyperplane id + H k 0 (S), where H k 0 (S) is the closed linear subspace H k 0 (S) := {u ∈ H k (S); u(0) = 0}. Since the manifold D k 1 (S) is described by a global chart which is an open set of the vector space H k 0 (S), its fiber bundle is trivial and all tangent spaces T ϕ D k 1 (S) can be identified canonically with H k 0 (S), using this chart.

As a Fourier multiplier of order 1, the inertia operator Λ = H • D extends to a bounded linear isomorphism Its inverse is given by

Λ : H k (S) → H k-1 (S).
D -1 : m → u; u(x) = x 0 m(t) dt, x ∈ S.
Since the Hilbert transform H, which is an isometry for the L 2 product for zero-mean periodic functions, commutes with D, its restrictions to Ĥk 0 (S) is an isometry of Ĥk 0 (S) (for the H k inner product). The Euler equation ( 15) is not an ODE on H k 0 (S) because the secondorder term Λu x = Hu xx is not regularized by the inverse of the first order Fourier multiplier Λ. By introducing Lagrangian coordinates, however, one can get around this impediment and it is possible to re-formulate (15) as a well defined vector field on the Banach manifold D k 1 (S) × H k 0 (S). Theorem 4.2. Let a ∈ R and k ∈ N with k ≥ 2 be given. The timedependent vector field u ∈ H k 0 (S) is a solution to the modified CLM equation if and only if (ϕ, v) is a solution to

(19) ∂ t ϕ = v ∂ t v = S ϕ (v),
where

S ϕ (v) := (R ϕ • S • R ϕ -1 )(v), and 
S(u) = Λ -1 {[Λ, u]u x -a(Λu)u x } .
Moreover, the second order vector field

Φ : D k 1 (S) × H k 0 (S) → H k 0 (S) × H k 0 (S) given by Φ(ϕ, w) = (w, S ϕ (w)) is of class C ∞ .
Remark 4.3. The second order vector field Φ is called the spray (of the metric or the linear connection) in the literature.

The first part of the theorem results from the following observation. Let u be a time-dependent vector field on J × S, where J is an open interval in R, and let ϕ be its flow, i.e. ϕ t = u • ϕ. Setting v = u • ϕ, we get v t = (u t + uu x ) • ϕ by the chain rule. Hence u is a solution to [START_REF] Gay-Balmaz | Infinite dimensional geodesic flows and the universal Teichmüller space[END_REF] if and only if

u t + uu x = -Λ -1 [u(Λu) x -Λ(uu x ) + a(Λu)u x ] = Λ -1 {[Λ, u]u x -a(Λu)u x } .
The proof of the second part of the theorem, i.e. the smoothness of the spray Φ consists of several reductions, some of them being true for general Fourier multipliers. We outline these reductions in the remainder of this section. Some technicalities will be postponed to Appendix B.

Before entering into the details of the proof, let us state that the above result allows us to apply the Picard-Lindelöf theorem, which immediately yields:

Corollary 4.4. Let a ∈ R and k ≥ 2 be given. Then there exist δ k > 0 and

T k > 0 such for each u 0 ∈ H k 0 (S) with u 0 H k < δ k there exists a unique solution (ϕ, v) ∈ C ∞ ((-T k , T k ), D k 1 (S) × H k 0 (S)) to (19) such that ϕ(0) = id and v(0) = u 0 .
Let us start with the first reduction. If we assume that the conjugation

A ϕ of the inertia operator A is of class C m then the spray Φ is of class C m-1 . Proposition 4.5. Let m ≥ 1, a ∈ R, s ≥ 1 and k ≥ s + 1.
Let A be a Fourier multiplier of order s. Suppose that

(ϕ, v) → A ϕ (v) = R ϕ • A • R ϕ -1 (v). is of class C m from D k (S) × H k (S) to H k-s (S) and that A induces an iso- morphism from H k 0 (S) onto Ĥk-s 0 (S). Then (ϕ, v) → S ϕ (v) = R ϕ • S • R ϕ -1 (v)
where

S(u) = A -1 {[A, u]u x -a(Au)u x } , is of class C m-1 from D k 1 (S) × H k 0 (S) to H k 0 (S). Proof. Let P (u) := (Au)u x and Q(u) := [A, u]u x . We have S ϕ (v) = A -1 ϕ {Q ϕ (v) -aP ϕ (v)}
, where the subscript ϕ indicates the conjugacy by the right translation R ϕ in D k 1 (S). Although P and Q are smooth operators, these results do not carry over when conjugated with translation in D k 1 (S) since for k ≥ 2 these sets only form topological groups: neither composition nor inversion are differentiable.

Given an operator K, we introduce the following notation

K(ϕ, v) := (ϕ, K ϕ (v)),
where

K ϕ (v) = R ϕ • K • R ϕ -1 (v). 1) We have P ϕ (v) = A ϕ (v) D ϕ (v) . But (ϕ, v) → D ϕ (v) is smooth since D ϕ (v) = v x /ϕ x and H k (S) is a Banach algebra for k ≥ 1. Also H k-s (S) is a Banach algebra because k -s ≥ 1.
Hence the fact that P ϕ (v) ∈ H k-s (S) and our assumption ensure that

P : D k (S) × H k (S) → D k (S) × H k-s (S), is of class C m . 2) Since d (ϕ,v) Ã(δϕ, δv) = id 0 * A ϕ
is a bounded, linear, invertible operator from H k 0 (S) × H k 0 (S) to H k 0 (S) × Ĥk-s 0 (S), we conclude, using the inverse mapping theorem on Banach spaces, that Ã-1 :

D k 1 (S) × Ĥk-s 0 (S) → D k 1 (S) × H k 0 (S) is of class C m .
3) Taking P = A and δϕ 1 = v = u • ϕ in Proposition 4.6 when ϕ, v are smooth, we get

∂ ϕ A ϕ (ϕ, v, v) = {[u, A] • D} ϕ (u • ϕ) = -Q ϕ (v).
Now since smooth maps are dense in Sobolev spaces, this relation is still valid for ϕ ∈ D k 1 (S) and v ∈ H k 0 (S) and therefore Q :

D k 1 (S) × H k 0 (S) → D k 1 (S) × Ĥk-s 0 (S), is of class C m-1 .
The assertion now follows from the chain rule.

Next we show that the conjugation of an inertia operator of Fourier multiplier type is in fact smooth. In order to do so we first consider operators in the smooth category and extend them in s second step to Sobolev spaces.

Let (ϕ, v) → P ϕ (v) be a smooth map on the Fréchet manifold Diff ∞ (S) × C ∞ (S), where P is linear in v. The partial Gâteaux derivative of P in the first variable ϕ and in the direction δϕ 1 ∈ C ∞ (S) is a smooth map which is linear both in v and δϕ 1 and that we will denote by [START_REF] Lenells | The Hunter-Saxton equation describes the geodesic flow on a sphere[END_REF] ∂ ϕ P ϕ (v, δϕ 1 ).

Therefore, the partial Gâteaux derivative of P in the variable ϕ is a map of three independent variables : ϕ, v, δϕ 1 . The second partial derivative of P is directions δϕ 1 , δϕ 2 ∈ C ∞ (S) is the partial Gâteaux derivative of (20) in the variable ϕ and in the direction δϕ 2 . We will denoted it by

∂ 2 ϕ P ϕ (v, δϕ 1 , δϕ 2 ).
It can be checked that this expression is symmetric in δϕ 1 , δϕ 2 (see [START_REF] Hamilton | The inverse function theorem of Nash and Moser[END_REF]). Inductively, we define this way the n-th partial derivative of P in directions δϕ 1 , . . . , δϕ n and we write it as

∂ n ϕ P ϕ (v, δϕ 1 , . . . , δϕ n ).
The space of linear operators on a Fréchet space is a locally convex topological vector space, but in general is not a Fréchet space (see [START_REF] Hamilton | The inverse function theorem of Nash and Moser[END_REF]). For this reason, we will avoid taking limits and derivatives of linear operators. In the sequel, if such equalities appear for notational simplicity, it just means equality of operators. Proposition 4.6. Let P be a continuous, linear operator on C ∞ (S) and let

P ϕ = R ϕ P R -1 ϕ ,
where ϕ ∈ Diff ∞ (S). Then, given n ∈ N, we have

(21) ∂ n ϕ P ϕ (v, δϕ 1 , . . . , δϕ n ) = R ϕ P n (u 1 , . . . , u n )R -1 ϕ (v),
where u i = δϕ i • ϕ -1 and P n is the multilinear operator defined inductively by P 0 = P and

(22) P n+1 (u 1 , . . . , u n+1 ) = [u n+1 D, P n (u 1 , . . . , u n )] - n i=1 P n (u 1 , . . . , u i,x u n+1 , . . . , u n ).
Remark 4.7. For a Fourier multiplier, that is, if [P, D] = 0, we have

P 1 (u 1 ) = [u 1 , P ]D,
and

P 2 (u 1 , u 2 ) = [u 1 , [u 2 , P ]]D 2 + [u 1 , P ][u 2 , D]D + [u 2 , P ][u 1 , D]D.
Proof. Formula ( 21) is trivially true for n = 0. Now suppose it is true for some n ∈ N, that is

∂ n ϕ P ϕ (v, δϕ 1 , . . . , δϕ n ) = R ϕ P n (u 1 , . . . , u n )R -1 ϕ (v), where u i = δϕ i • ϕ -1 for 1 ≤ i ≤ n. Notice that, for fixed δϕ 1 , . . . , δϕ n P n (u 1 , . . . , u n ) = P n (δϕ 1 • ϕ -1 , . . . , δϕ n • ϕ -1 )
is a family of linear operator on C ∞ (S) indexed by ϕ and which depend on ϕ only through the u i . Let ϕ(s) be a smooth path in Diff ∞ (S) such that

ϕ(0) = ϕ, ∂ s ϕ(s) s=0 = δϕ n+1
and let u n+1 = δϕ n+1 • ϕ -1 . We compute first

Ṙϕ := ∂ s R ϕ(s) s=0 = R ϕ u n+1 D, so that R -1 ϕ Ṙϕ = u n+1 D, and ui := ∂ s δϕ i • ϕ(s) -1 s=0 = -u i,x u n+1 , for 1 ≤ i ≤ n. We have then Ṗn := ∂ s P n (u 1 , . . . , u n ) s=0 = - n i=1 P n (u 1 , . . . , u i,x u n+1 , . . . , u n ).
Finally, we have (simplifying the notation P n for P n (u 1 , . . . , u n ))

∂ s R ϕ P n R -1 ϕ s=0 = Ṙϕ P n R -1 ϕ + R ϕ Ṗn R -1 ϕ -R ϕ P n R -1 ϕ Ṙϕ R -1 ϕ = R ϕ R -1 ϕ Ṙϕ P n -P n R -1 ϕ Ṙϕ R -1 ϕ + R ϕ Ṗn R -1 ϕ = R ϕ [u n+1 D, P n ] + Ṗn R -1 ϕ ,
which gives the recurrence relation [START_REF] Okamoto | On a generalization of the Constantin-Lax-Majda equation[END_REF], since

∂ n+1 ϕ P ϕ (v, δϕ 1 , . . . , δϕ n+1 ) = ∂ s R ϕ P n (u 1 , . . . , u n )R -1 ϕ (v) s=0
, the proof, the proof is complete. Proposition 4.6 is the core of the following result, which ensures smoothness of the inertia operator Λ ϕ (v) in both variables with respect to suitable Sobolev norms. To avoid too much technicalities here, we postpone its proof to Appendix B. 

(ϕ, v) → Λ ϕ (v) = R ϕ • Λ • R ϕ -1 (v). is of class C ∞ from D k (S) × H k (S) to H k-1 (S).
In contrast to finite dimensional Riemannian geometry the topology of the fibre of the tangent bundle is fundamental importance in the infinite dimensional case. It is clear that in the smooth category the pre-Hilbertian structure defined by [START_REF] Ebin | Groups of diffeomorphisms and the notion of an incompressible fluid[END_REF] will not induce the Fréchet topology of the tangent space C ∞ 0 (S). The very same is true if we complete the tangent space with respect to a general Banach norm. Therefore we call the metric induced by [START_REF] Ebin | Groups of diffeomorphisms and the notion of an incompressible fluid[END_REF] a weak Riemannian metric. defined on the diffeomorphism group of the circle which fixes the three points -1, 0, 1. This metric has been related with the Weil-Petersson metric on the universal Teichmüller space T (1) in [START_REF] Takhtajan | Weil-Petersson metric on the universal Teichmüller space[END_REF]. The corresponding geodesic flow has been extensively studied in [START_REF] Gay-Balmaz | Infinite dimensional geodesic flows and the universal Teichmüller space[END_REF]. Recall first that D s (S), the space of homeomorphisms of class H s as well as their inverse is a topological group only for s > 3/2 and that 3/2 is therefore a critical exponent. One of the main results in [START_REF] Gay-Balmaz | Infinite dimensional geodesic flows and the universal Teichmüller space[END_REF] is that, the inertia operator A defines on a suitable replacement for the "H 3/2 diffeomorphism group", a right-invariant strong Riemannian structure which is moreover complete (geodesics are defined globally).

Our point of view in this paper is completely different in the sense that we work on a well defined topological group D s (S) for s > 3/2 equipped with a Banach manifold structure 2 . The price to pay for this nice structure is the fact that the metric only defines a weak Riemannian structure. Nevertheless, we have been able to show local existence of the geodesics, also in this context.

Thus we get [START_REF] Sakajo | On global solutions for the Constantin-Lax-Majda equation with a generalized viscosity term[END_REF] v

• ϕ 0 -v • ϕ 2 L 2 = S |v(ϕ 0 (x)) -v(ϕ(x))| 2 dx ≤ ε 2 .
To estimate

D(v •ϕ 0 -v •ϕ) in L 2
, we first remark that it is no restriction to assume that δ ∈ (0, 1]. Writing now K := j ϕ 0 H 2 + 1 and

B 2 (δ) := D 2 (S) ∩ B H 2 (ϕ 0 , δ), we have that (26) ϕ ′ L ∞ ≤ j ϕ H 2 ≤ j ϕ 0 H 2 + 1 = K for all ϕ ∈ B 2 (δ). Furthermore, letting m(ϕ) := 1/ϕ x L ∞ for ϕ ∈ D 2 (S), we have f • ϕ 2 L 2 ≤ m(ϕ) f 2 L 2
for all f ∈ L 2 (S).

Note also that by shrinking δ > 0, we may assume that ( 27) m(ϕ) ≤ 2m(ϕ 0 ) for all ϕ ∈ B 2 (δ).

We now proceed as follows. First we have ( 28)

∂(v • ϕ 0 -v • ϕ) 2 L 2 ≤ v ′ • ϕ 0 • ϕ ′ 0 -v ′ • ϕ 0 • ϕ ′ 2 L 2 + v ′ • ϕ 0 • ϕ ′ -v ′ • ϕ • ϕ ′ 2 L 2 .
For the first term of the right-hand side of (28), we find

v ′ • ϕ 0 • ϕ ′ 0 -v ′ • ϕ 0 • ϕ ′ 2 L 2 = S v ′ (ϕ 0 (x) 2 ϕ ′ 0 (x) -ϕ ′ (x) 2 dx ≤ ϕ ′ 0 -ϕ ′ 2 L ∞ S v ′ (ϕ 0 (x)) 2 dx ≤ j 2 ϕ 0 -ϕ 2 H 2 m(ϕ 0 ) v 2 H 1 = δ 2 m(ϕ 0 ) v 2 H 1 . (29) 
To estimate the second term in [START_REF] Tıglay | Generalized Euler-Poincaré equations on Lie groups and homogeneous spaces, orbit invariants and applications[END_REF], choose w ∈ C 2 (S) such that

(30) v -w H 1 ≤ 1 3 m(ϕ 0 ) ε K .
Then we have

v ′ • ϕ 0 -v ′ • ϕ 2 L 2 ≤ v ′ • ϕ 0 -w ′ • ϕ 0 2 L 2 + + w ′ • ϕ 0 -w ′ • ϕ 2 L 2 + w ′ • ϕ -v ′ • ϕ 2 L 2 ≤ (m(ϕ 0 ) + m(ϕ)) v ′ -w ′ 2 L 2 + S w ′ (ϕ 0 (x)) -w ′ (ϕ(x)) 2 dx ≤ 3m(ϕ 0 ) v ′ -w ′ 2 L 2 + w ′′ 2 L ∞ S |ϕ 0 (x) -ϕ(x)| 2 dx,
where we also employed the mean value theorem and ( 27) to derive the last estimate. Invoking ( 26) and (30), we get

(31) v ′ • ϕ 0 • ϕ ′ -v ′ • ϕ • ϕ ′ L 2 ≤ ε + δK w ′′ L ∞
for all ϕ ∈ B 2 (δ). Combining ( 25), ( 28), [START_REF] Wegert | Blow-up in a modified Constantin-Lax-Majda model for the vorticity equation[END_REF], and (31), we arrive at the following estimate

(32) v • ϕ 0 -v • ϕ H 1 ≤ 2 ε + δ m(ϕ 0 ) v H 1 + K w ′′ L ∞ and (37) p 2 (m 0 , m 1 , m 2 ) = (2πi) 2 m 0 (m 0 + m 1 + m 2 ) |m 0 + m 1 + m 2 | -(m 0 + m 1 ) |m 0 + m 1 | -(m 0 + m 2 ) |m 0 + m 2 | + m 0 |m 0 | .
Proof. Invoking Lemma 2.6, the case n = 0 is clear. Suppose that equation (33) is true for some n ≥ 0. Then, using recurrence relation [START_REF] Okamoto | On a generalization of the Constantin-Lax-Majda equation[END_REF] 

(2πi) (m 0 + • • • + m n )p n (m 0 , . . . , m n ) -m 0 p n (m 0 + m n+1 , . . . , m n ) - n j=1 m j p n (m 0 , . . . , m j + m n+1 , . . . , m n ) e m 0 +•••+m n+1 .
This shows that equation ( 33) is true for n + 1 with

p n+1 (m 0 , . . . , m n+1 ) = (2πi) (m 0 + • • • + m n )p n (m 0 , . . . , m n ) - n j=0
m j p n (m 0 , . . . , m j + m n+1 , . . . , m n ) and achieves the proof.

Lemma B.3. Let P be a Fourier multiplier of order s ∈ N and k ≥ s+1. Let P n be the (n + 1)-multilinear operator defined by the recurrence relation [START_REF] Okamoto | On a generalization of the Constantin-Lax-Majda equation[END_REF] with P 0 = P . Suppose that there exists a constant C n > 0, such that

(38) |p n (m 0 , . . . , m n )| ≤ C n |m 0 | s • • • |m n | s
for all m j ∈ Z \ {0}. Then P n extends to a bounded multilinear operator

P n : n+1 H k (S) × • • • × H k (S) → H k-s (S).
Proof. By virtue of Proposition B.1, we have

P n (u 1 , . . . , u n )u 0 2 H k-s = l∈Z m 0 +•••+mn=l û0 (m 0 ) • • • ûn (m n )p n (m 0 , . . . , m n ) 2 e l 2 H k-s ,
for any smooth functions u 0 , u 1 , . . . , u n , since (e l ) l∈Z is an orthogonal system for the H k-s inner product. Therefore, if relation ( 38) is satisfied, we get

P n (u 1 , . . . , u n )u 0 2 H k-s ≤ C n l∈Z   m 0 +•••+mn=l |m 0 | s |û 0 (m 0 )| • • • |m n | s |û n (m n )|   2 e l 2 H k-s .
Observe now that, given smooth functions v 0 , v 1 , . . . , v n , we have

v 0 • • • v n (l) = m 0 +•••+mn=l v0 (m 0 ) • • • vn (m n ).
In addition H k-s (S) is a Banach algebra, since k -s ≥ 1. Consequently there exists a constant C ′ n,k,s such that

l∈Z m 0 +•••+mn=l v0 (m 0 ) • • • vn (m n ) 2 e l 2 H k-s ≤ C ′ n,k,s v 0 2 H k-s • • • v n 2 H k-s
for every smooth functions v 0 , v 1 , . . . , v n . Putting now vp (m p ) = m s p ûp (m p ) in this last inequality and using the fact that the functions with Fourier coefficient û(m) and |û(m)| have the same H k-s norm, we obtain

P n (u 1 , . . . , u n )u 0 2 H k-s ≤ C n C ′ n,k,s u (s) 0 2 H k-s • • • u (s) n 2 H k-s ≤ C ′′ n,k,s u 0 2 H k • • • u n 2 
H k , which achieves the proof.

Corollary B.4. Let P be a Fourier multiplier of order s. Let r ∈ N and k ≥ s + 1. Suppose that the operators P n , defined in Proposition (4.6), extend to bounded multilinear operators

P n : n+1 H k (S) × • • • × H k (S) → H k-s (S). for 0 ≤ n ≤ r. Then (ϕ, v) → P ϕ (v) = R ϕ • P • R ϕ -1 (v). is of class C r from D k (S) × H k (S) to H k-s (S).
Proof. Notice first that if P 0 = P is bounded, then (ϕ, v) → P ϕ (v) is continuous from D k (S) × H k (S) into H k-s (S), by virtue of lemma A.2. Suppose now that the bilinear operator P 1 is bounded and let for smooth maps ϕ, u, v. But, since both sides of (39) are continuous in all the variables, we deduce, using a density argument, that this relation is still true for ϕ ∈ D k (S), u, v ∈ H k (S). We conclude therefore that (ϕ, v) → P ϕ (v) is a C 1 map from D k (S) × H k (S) into H k-s (S). An inductive argument using the same reasoning for P n shows that (ϕ, v) → P ϕ (v) is a C n map from D k (S) × H k (S) into H k-s (S), for each n ≤ r.

Finally, we need the following elementary lemma. Proof. Let g k be the sequence of functions defined inductively by

g 1 (t) = f (t + m 1 ) -f (t), g k+1 (t) = g k (t + m k ) -g k (t).
Then, we have On the other hand, the Lipschitz condition on the (n -1) derivative of f leads to g

(n-1) 1

(t) ≤ K |m 1 | , ∀t ∈ R.
Now, using inductively the mean value theorem, we get

g (n-k) k (t) ≤ K |m 1 | • • • |m k | , ∀t ∈ R.
In particular, for k = n, we have 

  k∈Z p(k)û(k)e k (x), for every Fourier multiplier P and every u ∈ C ∞ (S), where û(k) := S u(x)e -k (x) dx, stands for the k-th Fourier coefficients of u. The sequence p : Z → C is called the symbol of P . Proof. Given s ∈ R and u ∈ C ∞ (S), let u s (x) := u(x + s). If P commutes with translations we have

u 2 1 / 2

 12 := k∈Z |k| |û(k)| 2 , for u ∈ C ∞ (S). The corresponding inner product on C ∞ 0 (S) can be written as u, v e = S uΛv dx, where u, v ∈ C ∞ 0 (S) and Λ := H • D : C ∞ 0 (S) → C ∞ 0 (S) * is the inertia operator. In this formula, D = d/dx and H is the Hilbert transform, defined either as a Cauchy principal value, cf. [23] (Hu)(x) = (p.v.) S u(x -y) cot( y 2 ) dy, or, equivalently, as the Fourier multiplier with symbol h(k) = -i sgn(k), (

  Notice that the restriction of D to H k 0 (S) is a bounded isomorphism onto Ĥk 0 (S) := m ∈ H k (S); S m dx = 0 .

Proposition 4 . 8 .

 48 (Smoothness of the conjugate of the inertia operator) Let k ≥ 2 and Λ = H • D. Then

Corollary 4 . 9 .

 49 (Smoothness of the metric and the spray) For each k ≥ 2, the right-invariant, weak Riemannian metric defined by formula (10) on Diff ∞ 1 (S) with A = Λ extends to a smooth weak Riemannian metric on the Banach manifold D k 1 (S) with a smooth geodesic spray. Remark 4.10. To conclude this section, it could be worth to bring together the present work with the right-invariant metric defined by the inertia operator A := HD(D 2 -1)

P 1 ϕ

 1 (u, v) := R ϕ P 1 (u)R ϕ -1 (v).Applying Lemma A.2, we deduce that the mapD k (S) × H k (S) × H k (S) → H k-s (S), (ϕ, u, v) → P 1 ϕ (u, v)is continuous. Using Proposition 4.6 and the mean value theorem in the global chart U defined by (8), we get (39) P ϕ+u (v) -P ϕ (v) =

Lemma B. 5 .

 5 Let f : R → R be a function of class C n-1 and such that f (n-1) satisfies a Lipschitz condition with Lipschitz constant K. Then n p=0 (-1) p I⊂{1,...,n}, |I|=pf t + j∈I m j ≤ K n j=1 |m j | ,for all t ∈ R and all m j ∈ R.

8 .

 8 For each n ≥ 1, let f n (t) = t n-1 |t|. Then f n is of class C n-1 on R and f (n-1) n satisfies a global Lipschitz condition with Lipschitz constant (n -1)!. We are going to show that (40) p n (m 0 , m 1 , . . . , m n ) = (2πi) n m 0 n p=0 (-1) p I⊂{1,...,n}, |I|=p f n m 0 + j∈I m j , for each n ≥ 1. Then, by virtue of Corollary B.4 and Lemma B.5, this will demonstrate that(ϕ, v) → Λ ϕ (v) = R ϕ • Λ • R ϕ -1 (v) is smooth from D k (S) × H k (S) to H k-1 (S).For n = 1, we havep 1 (m 0 , m 1 ) = (2πi)m 0 |m 0 | -|m 0 + m 1 |so equation (40) is true for n = 1. Now, suppose inductively that this equation is valid for some n ≥ 1. Using the recurrence relation (34), we getp n+1 (m 0 , m 1 , . . . , m n+1 ) = (2πi) n+1 m 0 n p=0 (-1) p I⊂{1,...,n}, |I|=p (m 0 + • • • + m n )f n m 0 + j∈I m j -n k=1 m k f n m 0 + j∈I m j + δ I (k) m n+1 -(m 0 + m n+1 )f n m 0 + j∈I m j + m n+1 , m n+1 f n m 0 + j∈I m j + m n+1 .using the fact that f n+1 (t) = tf n (t), we have therefore p n+1 (m 0 , m 1 , . . . , m n+1 ) = (2πi) n+1 m 0 n p=0 (-1) p I⊂{1,...,n}, |I|=p f n+1 m 0 + j∈I m j -f n+1 m 0 + j∈I m j + m n+1 , But this last expression is exactly (2πi) n+1 m 0 n+1 p=0 (-1) p I⊂{1,...,n+1}, |I|=p f n+1 m 0 + j∈I m j , which achieves the proof.

  , we have P n+1 (e m 1 , . . . , e m n+1 )e m 0 = e m n+1 D P n (e m 1 , . . . , e mn )e m 0 -P n (e m 1 , . . . , e mn ) e m n+1 De m 0 -(e m 1 , . . . , De m j e m n+1 , . . . , e mn ),

	n
	j=1 P n which is equal to

We deliberately decided to restrict to s ∈ N for simplicity but choosing s ∈ R does not invalidate our results.

Acknowledgments

The authors wish to express their gratitude to the Erwin Schrödinger International Institute for Mathematical Physics for providing an excellent research environment during the program "Integrable systems of hydrodynamic type" (Oct. [12][13][14][15][16][17][18][19][20][21][22][23] 2009). M. W. acknowledges financial support by the JSPS Postdoctoral Fellowship P09024.

Finally it is a pleasure to thank Anders Melin and Elmar Schrohe for helpful discussions.

Appendix A. Continuity lemmas

In this section we provide some continuity properties of the composition mapping in Sobolev spaces. Given Fréchet spaces X and Y , let L(X, Y ) denote the space of all continuous linear operators from X into Y .

Lemma A.1. Let X, Y be Fréchet spaces and let G be a metric space. Given F : G × X → Y , assume that

Hence {B n (x) ; n ∈ N} is bounded in Y . Invoking the uniform boundedness principle in Fréchet spaces (see [START_REF] Dunford | Linear operators. Part I[END_REF]Theorem II.11]), we deduce that the family {B n ; n ∈ N} is equicontinuous. In particular there is a neighbourhood U of x 0 in X such that B n (U ) ⊂ V for all n ∈ N. But lim n x n = x 0 . Hence there is a n 0 ∈ N such that x n ∈ U for all n ≥ n 0 . This implies that

Thus F is continuous in (g 0 , x 0 ).

Lemma A.2. The mapping

Proof. (a) By Sobolev's embedding theorem we know that D 2 (S) ֒→ C 1 (S).

Hence the chain rule ensures that F is well-defined, i.e.

. Moreover, fixing ϕ ∈ D 2 (S), we have

(b) Let now v ∈ H 1 (S) be fixed. We are going to show that

For this pick ϕ 0 ∈ D 2 (S) and ε > 0. By Sobolev's embedding theorem, the function v is uniformly continuous. Thus there is a δ > 0 such that |v(x) -v(y)| < ε for all |x -y| < δ.

Next let j denote the embedding constant of H l (S) ֒→ C(S) for l = 1, 2 and choose ϕ ∈ D 2 (S) such that ϕ 0 -ϕ H 2 < δ/j. Then

for all ϕ ∈ B 2 (δ). Shrinking δ > 0, we get from (32) that

(c) Let k ≥ 2 be given. Then it follows from the considerations from [10, page 108] that F (ϕ, •) ∈ L(H k (S), H k (S)), for all ϕ ∈ D k (S) and that

for all v ∈ H k (S). Hence, again by lemma A.1, we conclude that

The last assertion is now obvious.

Remark A.3. (a) For simplicity we treated here the case s ∈ N. Using an intrinsic representation of the Sobolev norm for s ∈ R with s ≥ 1, it is possible to extend the results of Lemma A.2 to non-integer values of s ≥ 1.

(b) A similar result to (24) has recently been established in [START_REF] De Lellis | Low-regularity solutions of the periodic Camassa-Holm equation[END_REF]. However, on the one hand, Corollary 3 in [START_REF] De Lellis | Low-regularity solutions of the periodic Camassa-Holm equation[END_REF] fits not precisely into our setting, and on the other hand our scale of Sobolev spaces is simpler than the one in [START_REF] De Lellis | Low-regularity solutions of the periodic Camassa-Holm equation[END_REF]. Therefore we decided to present a self-contained proof of ( 24).

(c) The higher the spatial regularity in the group D k (S) and the Lie algebra H k (S), the better the regularity of the mapping F in lemma A.2, cf. [START_REF] Ebin | Groups of diffeomorphisms and the notion of an incompressible fluid[END_REF]. However, we are not aware of better regularity of F than [START_REF] Sakajo | Blow-up solutions of the Constantin-Lax-Majda equation with a generalized viscosity term[END_REF]. Finally, we remark that the continuity of F is sufficient for our purposes.

Appendix B. Proof of Proposition 4.8

In this section we provide the completion of the proof of the smoothness of the inertia operator Λ ϕ (v) with respect to suitable Sobolev norms. Lemma B.1. Let P be a Fourier multiplier on C ∞ (S), and let P n be the multilinear operator defined in Proposition (4.6) for some n ∈ N. Then we have