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Abstract-In this paper we present a CO-SImulation 
Trace Analysis (COSITA) tool in order to analyze 
functional/architectural properties, in the automotive 
field. These properties should enhance a specific design 
requirement that we call functional/architectural 
diagnosability. The validation process is applied on a real 
automotive experimental embedded platform called 
DIAFORE based on several Electronic Control Units. 
In the design phase of a System Development Life Cycle, 
we aim to analyze the functional/architectural 
diagnosability by analyzing its properties (observability, 
reachability, etc.), using a co-simulation-based approach. 
In this paper, our objective is to verify that the analysis 
made on the real platform is consistent with the 
theoretical analysis made on the co-simulation results. 
We believe that simulating a functional model is not 
sufficient to analyze system properties, because each 
hardware instantiation has its own properties constraints 
and limitations. Therefore, a hardware architecture 
characteristics modification may change the system 
requirements correctness. Hence, we co-simulate the 
Hardware (HW) and Software (SW) models, and then we 
analyze the interaction between them, by analyzing the 
co-simulation trace.  
For co-simulation, we use SystemC and Matlab/Simulink 
tool, with objectively selected simulation scenarios 
reflecting the system behavior.  
 

Keywords - Automotive electronic embedded systems, 
Hardware-Software co-modeling and co-simulation, 
Diagnosability analysis. 
 
 
 

I. INTRODUCTION 
 

OWADAYS, systems in the automotive 
industry are becoming more complex due to the 

growing demand on driving assistance functions. In 
order to improve the reliability of the design, we have 
to foresee the possibility of system failure. Assessing 
the diagnosability of a system regarding a defined set 
of faults ensures that any eventual occurrence of one of 
the faults will be correctly detected, identified and 
hence isolated.  
  

In [1], a new framework for design of automotive 
systems was defined as result of the IDD (Integrating 
Diagnosis in the Design of automotive systems) 
European projects, especially Model-Based Diagnosis 
which is suitable for integrating diagnosis in the design 
of electronic systems; both from the methodological 
and the practical point of view [2].   

In this work, we consider embedded on-line Model-
based Diagnosis [3] as a requirement at the design 
time. The model-based approaches for diagnosis and 
diagnosability analysis that were developed in the 
domains of automatic control and artificial intelligence 
can be classified into two categories:  

• state-based approaches, which are suitable for 
continuous systems as shown in [4], 
• and event-based approaches [5], which are 
suitable to use with discrete-events models to 
represent an electronic embedded system [6]. At 
the system modeling phase in event-based 

N



 
 

approaches, we should provide the maximum of 
faults models.  

There is also a recent approach that deals with hybrid 
systems where both continuous and discrete aspects 
coexist in modeling [7][8]. However, in all these 
categories, there is an absence of the architecture 
description. Hence, the limitations on the 
diagnosability imposed by the hardware architecture 
are not considered, therefore we present in this paper 
the first step that will lead us to analyze, the 
diagnosability requirement of an embedded hardware 
architecture, taking into account simultaneously 
functional (software) and architectural (hardware) 
aspects.   

 
To present our contributions, this paper is structured 

as follows: 
First, we present the functional/architectural 

diagnosability analysis. Then in section III, we present 
the co-design technique that we use for co-simulation. 
In section IV, we describe our tool COSITA (CO-
Simulation Traces Analysis) that we have developed to 
analyze several properties. In section V, we discuss the 
hardware architecture properties. 

Section VI shows some results. We validate the 
results via an automotive platform in section VII. 
Finally, we conclude this paper and present our future 
works in section VIII. 

 
II. FUNCTIONAL/ARCHITECTURAL 

DIAGNOSABILITY 
 

A. Diagnosability Definition 
Our tentative definition would describe 

Diagnosability as the property of a system allowing it 
to react face to a set of anticipated faults, in order to 
reduce the cases where no decision can be made after 
fault detection. 

 
B. Scope of the Functional/Architectural 

Diagnosability Metrics 
We have updated the definition of classic 

diagnosability metrics and define new ones to adapt 
them for functional/architectural analysis: Observability 
and reachability. The different diagnosability metrics 
that we defined are: 

• The observability is defined as a Boolean 
property, or a time schedule of available 
windows for observations in a sub-system 
(I/O, communication bus) or a degree for the 
whole system, 

• The reachability is a Boolean property,  
representing the possibility for a node to reach 
an I/O or a variable value; 

The diagnosability is often defined as a degree, i.e. a 
percentage combining the observable and reachable 
I/Os or variables over their total number. 

These metrics will be analyzed through Co-
modeling and Co-simulation techniques described in 
the following section. 

III.  HW/SW CO-MODELING AND CO-
SIMULATION 

The electronic HW/SW architecture that we co-
model is composed of ECUs (Electronic Control Units) 
interconnected by a communication bus [9]. Every 
ECU is composed of a processor, a memory, a CAN 
interface and I/O interfaces. 

A. SystemC/ Simulink Co-Modeling 
In the first place, we used SystemC as a HW/SW 

Co-Modeling language for the entire system [10]. 
Therefore, it is not possible to implement the 

software part of the model developed in SystemC on 
our platform (Fig. 7) since this latter supports only C 
code generated from Simulink Blocks. Furthermore, 
Simulink is well established in the automotive industry 
as a quick modeling tool, offering automatic code 
generation. 

Therefore, we use SystemC as modeling language 
for hardware architecture and Simulink as functional 
modeling language. So, we need to interface both 
SystemC and Simulink models as it is done in [11]. We 
used the «engine.h» C++ library (in the SystemC 
code), which allows commanding Matlab, stopping it 
and exchanging data with it from a program written in 
C, C++, Fortran, etc. Then, Matlab launches Simulink 
environment for simulation. 

 
B. ECUs and CAN Bus Modeling 

In this part of the work, we have modeled in 
SystemC the CAN protocol real-time behavior to 
realize communications between ECUs models (Fig. 
1). We have simplified the details to ease the modeling 
by implementing a virtual arbiter in the bus. With the 
Transaction Level Modeling (TLM), the 
communication between components is described as 
function calls. 

Each ECU that needs to send a message transmits a 
request to the bus. If at least 2 ECUs request a bus 
transmission at the same time (i.e. in a time shorter 
than a bus cycle), the bus arbiter selects the most 
important message by comparing arbitration fields in 
the two messages. The same clock is used for all 



 
 

processors as the level of modeling granularity is high. 
 It is important to note that full CAN protocol is used 

only in models with high level of granularity, 
expressing transactions between ECUs. 

 

 
Fig. 1.  CAN bus SystemC model 

 
C.  SystemC / Simulink Co-Simulation 

The co-simulation interface may be in one of two 
ways: Either SystemC is in charge of controlling the 
simulation (as SystemC environment includes also a 
simulator) by running the Simulink model through 
MATLAB, or Simulink is considered as the master of 
the simulation and controls SystemC models [12][13].  

For our system, we adopted the first approach 
simply because it is the architecture (ECUs and CAN 
bus) that includes the embedded function (Fig. 2). 
  

 
Fig. 2.  SystemC-Simulink interfacing 

SystemC enables us to properly model the ECUs, the 
CAN bus and the interconnections. The developed HW 
model in SystemC will be our virtual platform quite 
close to our real one.  
 
 

IV. COSITA Tool 
 

We have developed the COSITA tool in order to 
have an interface between co-simulation and properties 
analysis (Fig. 3). 

 

 
Fig. 3.  COSITA modules 

A. Simulation Inputs 
One of our objectives is to generate scenarios for 

the execution of the simulated and implemented 
application. Therefore the first idea is to generate 
random values for Inputs/Outputs. But we aim to have 
a more intelligent approach to generate these values. 
Therefore, we used the dichotomous approach to cover 
the I/O signal range. On the other hand, several other 
scenarios generation methods may be used based on 
condition and decision coverage techniques. 

Our tests will then be based on running N 
simulations, and in each run we apply new selected 
input values that may be considered as critical for the 
system. 

 
B. Trace Files Generation and Analysis 

The SystemC-Simulink co-simulation generates 
dated log files with all information about values 
changes of variables, ports…etc. While designing the 
SystemC model, we should indicate that we need to 
generate the simulation trace files, by adding the 
simple instruction “sc_create_vcd_trace_file()” to the 
program. 
Trace generation will be done by writing in a 
chronogram file; each signal can be logged 
simultaneously in several files.  
These files reflect the activity of the system. Trace files 
analysis can monitor the total behavior of a hardware 
architecture. For example, we can trace the internal and 
external activities of an ECU through its ports 
identifiers, variables identifiers, etc. 
 
These trace files are in Value Change Dump (VCD) 
format. This VCD format is specified in the standard 
IEEE 1364. The VCD file starts with header information 
giving the date, the simulator’s version number and the 
timescale used. Next, the file contains definitions of the 
scope and type of variables being dumped, followed by 
the actual value changes at each simulation time 
increment. Only the variables that change value during a 
time increment are listed. The simulation time recorded in 
VCD file is the absolute value of the simulation time for 
the changes in variable values (Fig. 4). 
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Fig. 4. VCD file format 

The tool suite COSITA launches SystemC-Simulink 
co-simulation by generating selected scenarios for co-
simulation. After that, COSITA collects co-simulation 
traces files, merges them and analyze 
functional/architectural diagnosability metrics 
(observability and reachability) by parsing these trace 
files.  

 In a similar way of formal methods property 
checking techniques, we use the analysis of simulation 
traces method to verify certain HW-SW properties of 
the system modeled in SystemC-Simulink. The 
analysis of simulation traces has been discussed and 
compared to the SystemC-Simulink code parsing 
possibility, before it is applied.  
 
  

V. FUNCTIONAL/ARCHITECTURAL 
DIAGNOSABILITY PROPERTIES 

ANALYSIS 
 

Setting HW-SW properties for analyzing electronic 
architecture is strongly linked to the definition of 
requirements at the beginning of the development 
cycle. Thus, to satisfy the requirement of 
diagnosability in automotive architecture, we defined, 
but not limited to, two properties to be analyzed; 
Observability and Reachability.  
 

A. Observability Checking 
By observability, we mean the possibility for 

different functions of a system (identified by their I/Os 
and memory variables) to be observed by an 
independent diagnosis process, without interfering with 
the nominal operation of the system. Therefore, we 

check the observability potential (property) for an 
electronic system to allow adding a process of real time 
observation of the system’s behavior. 

We consider the observability property as a Boolean 
indicator for the functional/architectural diagnosis 
ability. It is true when the time available is sufficient 
for on observing process to carry out the periodic 
surveillance process. Hence, to determine the available 
time intervals for the observation process, we seek the 
free cycles not exploited by the nominal operation of 
the system.  

 
After that, we compare the duration of the available 

cycles with the time necessary to execute the 
observation process using the same hardware 
resources. Keeping the same principle of analysis, this 
property could be also represented as an observation 
schedule. However, if the architecture becomes 
complicated, observability is represented as a degree or 
a Boolean as we cannot combine different observation 
schedules. This subject has been discussed in an earlier 
paper [14]. 

 
B. Reachability Checking 

We define reachability property as a Boolean 
indicator for the diagnosability of the hardware 
architecture. It is true when an ECUi can get access to 
Inputs/Outputs values of an ECUj, when both ECUi 
and ECUj are connected through the communication 
bus.  

To determine the reachability of an ECUi to an 
Input/Output proper to ECUj, we seek messages sent 
from ECUi, having as a target the Input/Output in 
ECUj, by analyzing communication traces.  
For example in the (Fig. 5), we have S3=f(E1).To get 
the E1 value to compute f(E1), E1 of ECUj should be 
reachable from ECUi. 
  

 
Fig. 5.  ECU Input/Output reachability 

 
VI. PROPERTIES ANALYSIS RESULTS 

 
We have tested our approach on the Smart Distance 

Keeping (SDK) function, given by a truck 
manufacturer. “SDK” is equivalent to the Adaptive 
Cruise Control (ACC) function, except that the 
distance/speed regulation is based only on a fixed 
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distance of 50 m (compliant to European regulations 
for heavy trucks) [15]. Thus, using embedded radar, 
the SDK sub-system maintains a safe headway time, 
i.e. the inter-vehicle distance is varying as a function of 
the velocity and is maintained at a minimum legal 
distance of 50 m (Fig. 6).  

 

Fig. 6.  SDK (Smart Distance Keeping) function

TABLE 1 shows that 40% of the free cycles can 
execute observation process on the 
on the global system (ECUs and CAN bus). 

The Boolean value “1” for the reachability of 
“Relative distance” (Input) and Vehicle speed (Output) 
confirm the observability of the event.

 
TABLE 1 

 Example of Functional/Architectural Properties 
Property Global 

system 
New 

distance 
Relative 
distance

 
Observability 

 
30% 

 
0 

 
Reachability 

  
 

 
 

VII.  ANALYSIS VALIDATION
 

A. DIAFORE: The emulation Platform
Simulation helps engineers validate and to have a 

viewpoint of hardware architecture
we are not able to test the physical real world 
of embedded functions through simulation
the simulation, emulation allows the validation team to 
make tests very close to the final operation on the final 
electronic system, but on a unique configuration preset 
by the manufacturer of the testing platform.

DIAFORE is an automotive embedded platform 
composed of several Electronic Control Units
Continental Corporation and based on
microcontrollers. These units can communicate with 
each other, with a development PC and with other 
devices through the CAN bus (Fig. 7

To implement an application on the platform, the first 
step is to create a Simulink model of the application 
using blocks with a given sample time
application is validated during the simulation phase

m (compliant to European regulations 
Thus, using embedded radar, 

system maintains a safe headway time, 
vehicle distance is varying as a function of 

the velocity and is maintained at a minimum legal 

 

Distance Keeping) function 

shows that 40% of the free cycles can 
 CAN bus and 30% 

on the global system (ECUs and CAN bus).  
The Boolean value “1” for the reachability of 

“Relative distance” (Input) and Vehicle speed (Output) 
confirm the observability of the event. 

roperties Analysis Values 
Relative 
distance 

Vehicle 
speed 

CAN 
bus 

  
 

 
40% 

 
1 

 
1 

 

NALYSIS VALIDATION  

latform 
validate and to have a 

architecture design. However, 
physical real world behavior 

through simulation. Alongside 
the validation team to 

very close to the final operation on the final 
electronic system, but on a unique configuration preset 
by the manufacturer of the testing platform. 

embedded platform 
composed of several Electronic Control Units from 

Corporation and based on Motorola 
. These units can communicate with 

each other, with a development PC and with other 
7). 

To implement an application on the platform, the first 
step is to create a Simulink model of the application 

given sample time. When the 
during the simulation phase, 

we add Motohawk Simulink
physical parameters of the ECUs (Inputs/Outputs, 
CAN configuration, Triggers period etc.) 
Once the system and the application are ready, we 
generate the corresponding C code
(Real Time Workshop) of Simulink
software [19]. 

Fig. 7.  DIAFORE platform interconnected components

 
B. Comparing Simulation-Emulation 

In order to validate the results of 
properties analysis, we check
simulated models but also for developed 
running on a real automotiv
Then we compare both simulation and emulation 
results.  

All simulated models are not 100% accurate 
compared to real devices due to 
sampling rates or to other physical constraints. 

 In order to compute and compare the different 
results, we generate trace files
and emulation. Traces are obtained under two different 
formats depending of the source. 
trace is obtained directly under a 
while emulation results trace is obtained under log files 
format. 

• Trace file generation from emulation
The generation of these files is done by using 
CANalyzer tool from VECTOR. CANalyzer is a 
software tool that allows users to 
networks and distributed embedded systems
[19]. We used it to communicate with the ECUs 
through the CAN interface. At each Input/Output 
access, and each read or write of the variables in 
the ECU’s memory, the Electronic Control Unit 
sends a specific CAN packet on the 
communication bus (CAN bus) containing the 

CAN USB Interface

GCM-0563-048-
0802

SmartCraft

Simulink blocks to specify the 
physical parameters of the ECUs (Inputs/Outputs, 
CAN configuration, Triggers period etc.) [16][17][18]. 
Once the system and the application are ready, we 
generate the corresponding C code using the RTW 

of Simulink and Greenhills 

 

DIAFORE platform interconnected components 

Emulation Results 
to validate the results of an architecture 

check properties not only for 
o for developed applications 

automotive hardware architecture. 
both simulation and emulation 

ll simulated models are not 100% accurate 
compared to real devices due to discrepancies in 

physical constraints.  

to compute and compare the different 
trace files from both simulation 

Traces are obtained under two different 
formats depending of the source. Simulation results 

y under a VCD file format 
while emulation results trace is obtained under log files 

Trace file generation from emulation 
The generation of these files is done by using 

from VECTOR. CANalyzer is a 
software tool that allows users to analyze 
networks and distributed embedded systems 

. We used it to communicate with the ECUs 
through the CAN interface. At each Input/Output 
access, and each read or write of the variables in 
the ECU’s memory, the Electronic Control Unit 

a specific CAN packet on the 
communication bus (CAN bus) containing the 

ECM-0555

-080-0703

SmartCraft Interconnection



 
 

value of Inputs/Outputs or variables, 
CANalyzer collects these special packets. Each 
packet has its own ID (IDentifier) 
the ID of the considered Input/Output or 
variable. Therefore, at the end of the tests, we 
obtain a text file (log file) that contains the tra
of all the values of Inputs/Outputs and variables 
with their access instants. 

We have chosen CANalyzer to create the 
file due to its time accuracy, whi
the program implemented in CANalyzer has an 
internal counter with a resolution of 1
Compared to the simulation tests, it is considered 
as a restriction since with the simulation process 
we can obtain a resolution of about picoseconds 
or microseconds, which is impossible
real platform tools.  

 
• Trace file generation from simulation

The generation of these files is done by the 
simulator in the VCD format 

 
In order to unify analysis methods and easily

compare simulation and emulation results, we 
transform the emulation traces files from a 
to a VCD format that contains only the 
there are values changes (Fig. 8). 

 

Fig. 8. Converting log file to 

C. Diagnosability metrics analyses comparison 
The comparison analysis results issued from 

simulation and emulation is directly related
SystemC-Simulink co-simulation 
emulation on the automotive platform. 
retrieve the generated VCD text files 
simulation and from emulation, analyze them and 
identify the differences. In the following we present 
different situations of the analysis comparison

 
• The first situation shows exactly the same 

analysis results in both simula

Timestamp (mS) Vitesse_Vehicule_SDK Distance_Securite

Distance_entre_vehicule Puissance_Moteur

47 79.00 44.00 45.00 61.00

110 79.00 44.00 45.00 61.00

172 79.00 44.00 45.00 61.00

235 79.00 44.00 45.00 61.00

297 79.00 44.00 45.00 61.00

985 79.00 44.00 45.00 61.00

. . . . . . . . . . . . . . .

1047 79.00 44.00 45.00 62.00

1110 79.00 44.00 28.00 64.00

1172 79.00 44.00 33.00 78.00

1235 79.00 44.00 40.00 80.00

63 ms

63 ms

63 ms

of Inputs/Outputs or variables, while 
CANalyzer collects these special packets. Each 

(IDentifier) that reflects 
the ID of the considered Input/Output or 

riable. Therefore, at the end of the tests, we 
file) that contains the trace 

Outputs and variables 

We have chosen CANalyzer to create the log 
file due to its time accuracy, which is 1 ms. So 
the program implemented in CANalyzer has an 

counter with a resolution of 1 ms. 
to the simulation tests, it is considered 

as a restriction since with the simulation process 
obtain a resolution of about picoseconds 
seconds, which is impossible for our 

file generation from simulation 
The generation of these files is done by the 

 as described in IV. 

unify analysis methods and easily 
compare simulation and emulation results, we 
transform the emulation traces files from a log format 
to a VCD format that contains only the instants where 

 
to VCD file 

Diagnosability metrics analyses comparison   
s results issued from 

directly related to 
 results and to 

platform. We have to 
text files issued from co-

, analyze them and 
In the following we present 

s comparison: 

The first situation shows exactly the same 
s results in both simulation and 

emulation. For example
embedded function, 
observability analysis result
observability frequency and
non observable slots of time are exactly the 
same in both tests 
not frequent; it reflects a 
precisely similar to
hard to obtain.  

 

Fig. 9. Observability analyses comparison (First situation)

• The second situation
discrepancy between the two results
observable slots of time may slightly differ 
between simulation and emulation
may be the most probable

 

Fig. 10. Observability analyses comparison (Second situation)

• The last situation presents two different cases 
where a large difference
instance, concerning the observability 
analysis, we may have two different scenarios:

 
a. Both results are observable with 

different 
(Fig. 11

 
b. Only one of the two 

observable
These two scenarios may be 

reasons related to the hardware, because we use the 
same software model in simulation and emulation, 
such as: 

• Hardware modeling
co-design phase, 

• Hardware platform
malfunctioning while emulation,

• Large difference between HW
distributions used 
emulation. 

$timescale

1 ms

$end

$scope module SystemC $end

$var wire   32  aab in [31:0]  $end

$var wire   32  aac out [31:0]  $end

$upscope $end

$enddefinitions $end

$dumpvars

b0 aab

b0 aac

$end

#1047

b1 aac

#1110

b1 aab

b0 aab

#1172

b0 aab

b1 aac

#1235

b1 aab

C++ 

program

emulation. For example, for the SDK 
embedded function, we may have the same 
observability analysis result where 
observability frequency and observable and 
non observable slots of time are exactly the 

 (Fig. 9). This situation is 
it reflects a HW-SW co-model 

precisely similar to the real platform, which is 

 
Observability analyses comparison (First situation) 

situation presents a slight 
discrepancy between the two results; 
observable slots of time may slightly differ 
between simulation and emulation (Fig. 10). It 

probable situation. 

 
Observability analyses comparison (Second situation) 

presents two different cases 
a large difference can occur. For 

instance, concerning the observability 
have two different scenarios: 

Both results are observable with 
different observable time slots 

11). 
 

Only one of the two results is 
observable (Fig. 12). 

scenarios may be caused by different 
related to the hardware, because we use the 

same software model in simulation and emulation, 

modeling errors introduced in the 
 

platform failure or 
while emulation, 

Large difference between HW-SW 
used in simulation and 



 
 

This situation reflects a divergence between the HW
SW co-model and the real platform and requires a re
examination of both hardware model and
hardware from designers in order to
 

Fig. 11. Observability analyses comparison (Third situation, first 
scenario) 

Fig. 12. Observability analyses comparison (Third situati
scenario) 

VIII.  CONCLUSIONS AND PERSPECTIVES
 
This paper presented a tool and an approach to 

analyze functional/architectural diagnosability 
properties in automotive electronic 
approach is based on co-simulation trace analysis
consider this work as a seed tool for the 
functional/architectural diagnosability analysis
methodology. 

In our future work we aim to extend COSITA tool 
to analyze other properties that we are defining
to fulfill diagnosability analysis 
automatically new configurations of the
hardware/software architecture if the system is not
to integrate a diagnosis process. On the other hand, in 
order to cover most of the different possible 
scenarios, we aim also to use more advanced methods 
to generate inputs and variables values
account critical situations. In addition, we are
developing SIMECO (SIMulation/Emulation
COmparison) tool in order to automate the comparison 
of simulation and emulation traces.  
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