
HAL Id: hal-00528695
https://hal.science/hal-00528695

Submitted on 10 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CO-SImulation Trace Analysis (COSITA) tool for
vehicle electronic architecture diagnosability analysis

Manel Khlif, M. Shawky, Oussama Tahan

To cite this version:
Manel Khlif, M. Shawky, Oussama Tahan. CO-SImulation Trace Analysis (COSITA) tool for vehicle
electronic architecture diagnosability analysis. Intelligent Vehicles Symposium (IV), 2010 IEEE, Jun
2010, San Diego, CA, United States. pp.572 - 578. �hal-00528695�

https://hal.science/hal-00528695
https://hal.archives-ouvertes.fr

CO-SImulation Trace Analysis (COSITA) Tool
for Vehicle Electronic Architecture

Diagnosability Analysis

Manel KHLIF, Oussama TAHAN, Mohamed SHAWKY

Heudiasyc-UMR CNRS 6599
Université de Technologie de Compiègne

Centre de Recherches de Royallieu-BP 20529
60205 COMPIEGNE cedex FRANCE

{manel.khlif; oussama.tahan; shawky}@hds.utc.fr

Abstract-In this paper we present a CO-SImulation
Trace Analysis (COSITA) tool in order to analyze
functional/architectural properties, in the automotive
field. These properties should enhance a specific design
requirement that we call functional/architectural
diagnosability. The validation process is applied on a real
automotive experimental embedded platform called
DIAFORE based on several Electronic Control Units.
In the design phase of a System Development Life Cycle,
we aim to analyze the functional/architectural
diagnosability by analyzing its properties (observability,
reachability, etc.), using a co-simulation-based approach.
In this paper, our objective is to verify that the analysis
made on the real platform is consistent with the
theoretical analysis made on the co-simulation results.
We believe that simulating a functional model is not
sufficient to analyze system properties, because each
hardware instantiation has its own properties constraints
and limitations. Therefore, a hardware architecture
characteristics modification may change the system
requirements correctness. Hence, we co-simulate the
Hardware (HW) and Software (SW) models, and then we
analyze the interaction between them, by analyzing the
co-simulation trace.
For co-simulation, we use SystemC and Matlab/Simulink
tool, with objectively selected simulation scenarios
reflecting the system behavior.

Keywords - Automotive electronic embedded systems,
Hardware-Software co-modeling and co-simulation,
Diagnosability analysis.

I. INTRODUCTION

OWADAYS, systems in the automotive
industry are becoming more complex due to the

growing demand on driving assistance functions. In
order to improve the reliability of the design, we have
to foresee the possibility of system failure. Assessing
the diagnosability of a system regarding a defined set
of faults ensures that any eventual occurrence of one of
the faults will be correctly detected, identified and
hence isolated.

In [1], a new framework for design of automotive
systems was defined as result of the IDD (Integrating
Diagnosis in the Design of automotive systems)
European projects, especially Model-Based Diagnosis
which is suitable for integrating diagnosis in the design
of electronic systems; both from the methodological
and the practical point of view [2].

In this work, we consider embedded on-line Model-
based Diagnosis [3] as a requirement at the design
time. The model-based approaches for diagnosis and
diagnosability analysis that were developed in the
domains of automatic control and artificial intelligence
can be classified into two categories:

• state-based approaches, which are suitable for
continuous systems as shown in [4],
• and event-based approaches [5], which are
suitable to use with discrete-events models to
represent an electronic embedded system [6]. At
the system modeling phase in event-based

N

approaches, we should provide the maximum of
faults models.

There is also a recent approach that deals with hybrid
systems where both continuous and discrete aspects
coexist in modeling [7][8]. However, in all these
categories, there is an absence of the architecture
description. Hence, the limitations on the
diagnosability imposed by the hardware architecture
are not considered, therefore we present in this paper
the first step that will lead us to analyze, the
diagnosability requirement of an embedded hardware
architecture, taking into account simultaneously
functional (software) and architectural (hardware)
aspects.

To present our contributions, this paper is structured

as follows:
First, we present the functional/architectural

diagnosability analysis. Then in section III, we present
the co-design technique that we use for co-simulation.
In section IV, we describe our tool COSITA (CO-
Simulation Traces Analysis) that we have developed to
analyze several properties. In section V, we discuss the
hardware architecture properties.

Section VI shows some results. We validate the
results via an automotive platform in section VII.
Finally, we conclude this paper and present our future
works in section VIII.

II. FUNCTIONAL/ARCHITECTURAL

DIAGNOSABILITY

A. Diagnosability Definition
Our tentative definition would describe

Diagnosability as the property of a system allowing it
to react face to a set of anticipated faults, in order to
reduce the cases where no decision can be made after
fault detection.

B. Scope of the Functional/Architectural

Diagnosability Metrics
We have updated the definition of classic

diagnosability metrics and define new ones to adapt
them for functional/architectural analysis: Observability
and reachability. The different diagnosability metrics
that we defined are:

• The observability is defined as a Boolean
property, or a time schedule of available
windows for observations in a sub-system
(I/O, communication bus) or a degree for the
whole system,

• The reachability is a Boolean property,
representing the possibility for a node to reach
an I/O or a variable value;

The diagnosability is often defined as a degree, i.e. a
percentage combining the observable and reachable
I/Os or variables over their total number.

These metrics will be analyzed through Co-
modeling and Co-simulation techniques described in
the following section.

III. HW/SW CO-MODELING AND CO-
SIMULATION

The electronic HW/SW architecture that we co-
model is composed of ECUs (Electronic Control Units)
interconnected by a communication bus [9]. Every
ECU is composed of a processor, a memory, a CAN
interface and I/O interfaces.

A. SystemC/ Simulink Co-Modeling
In the first place, we used SystemC as a HW/SW

Co-Modeling language for the entire system [10].
Therefore, it is not possible to implement the

software part of the model developed in SystemC on
our platform (Fig. 7) since this latter supports only C
code generated from Simulink Blocks. Furthermore,
Simulink is well established in the automotive industry
as a quick modeling tool, offering automatic code
generation.

Therefore, we use SystemC as modeling language
for hardware architecture and Simulink as functional
modeling language. So, we need to interface both
SystemC and Simulink models as it is done in [11]. We
used the «engine.h» C++ library (in the SystemC
code), which allows commanding Matlab, stopping it
and exchanging data with it from a program written in
C, C++, Fortran, etc. Then, Matlab launches Simulink
environment for simulation.

B. ECUs and CAN Bus Modeling

In this part of the work, we have modeled in
SystemC the CAN protocol real-time behavior to
realize communications between ECUs models (Fig.
1). We have simplified the details to ease the modeling
by implementing a virtual arbiter in the bus. With the
Transaction Level Modeling (TLM), the
communication between components is described as
function calls.

Each ECU that needs to send a message transmits a
request to the bus. If at least 2 ECUs request a bus
transmission at the same time (i.e. in a time shorter
than a bus cycle), the bus arbiter selects the most
important message by comparing arbitration fields in
the two messages. The same clock is used for all

processors as the level of modeling granularity is high.
 It is important to note that full CAN protocol is used

only in models with high level of granularity,
expressing transactions between ECUs.

Fig. 1. CAN bus SystemC model

C. SystemC / Simulink Co-Simulation

The co-simulation interface may be in one of two
ways: Either SystemC is in charge of controlling the
simulation (as SystemC environment includes also a
simulator) by running the Simulink model through
MATLAB, or Simulink is considered as the master of
the simulation and controls SystemC models [12][13].

For our system, we adopted the first approach
simply because it is the architecture (ECUs and CAN
bus) that includes the embedded function (Fig. 2).

Fig. 2. SystemC-Simulink interfacing

SystemC enables us to properly model the ECUs, the
CAN bus and the interconnections. The developed HW
model in SystemC will be our virtual platform quite
close to our real one.

IV. COSITA Tool

We have developed the COSITA tool in order to
have an interface between co-simulation and properties
analysis (Fig. 3).

Fig. 3. COSITA modules

A. Simulation Inputs
One of our objectives is to generate scenarios for

the execution of the simulated and implemented
application. Therefore the first idea is to generate
random values for Inputs/Outputs. But we aim to have
a more intelligent approach to generate these values.
Therefore, we used the dichotomous approach to cover
the I/O signal range. On the other hand, several other
scenarios generation methods may be used based on
condition and decision coverage techniques.

Our tests will then be based on running N
simulations, and in each run we apply new selected
input values that may be considered as critical for the
system.

B. Trace Files Generation and Analysis

The SystemC-Simulink co-simulation generates
dated log files with all information about values
changes of variables, ports…etc. While designing the
SystemC model, we should indicate that we need to
generate the simulation trace files, by adding the
simple instruction “sc_create_vcd_trace_file()” to the
program.
Trace generation will be done by writing in a
chronogram file; each signal can be logged
simultaneously in several files.
These files reflect the activity of the system. Trace files
analysis can monitor the total behavior of a hardware
architecture. For example, we can trace the internal and
external activities of an ECU through its ports
identifiers, variables identifiers, etc.

These trace files are in Value Change Dump (VCD)
format. This VCD format is specified in the standard
IEEE 1364. The VCD file starts with header information
giving the date, the simulator’s version number and the
timescale used. Next, the file contains definitions of the
scope and type of variables being dumped, followed by
the actual value changes at each simulation time
increment. Only the variables that change value during a
time increment are listed. The simulation time recorded in
VCD file is the absolute value of the simulation time for
the changes in variable values (Fig. 4).

SIMULINK

SYSTEMC

HW model almost conform to the
real platform

SW Implemented function

SIMULINK

Inputs Generator

Mathworks
Matlab/Simulink

SYSTEMC

COSITA Tool

Simulation
Launcher

Scenarios
Generator

Observability
Analyzer
(OBSAN)

Reachability
Analyzer

Load
distribution

Analyzer

Simulation-
Emulation

COmparison
SIMECO Master

aster

Master Slave

Slave

Slave

Arbiter

ECU1
ECU2
ECU3
Channel + communication port

Arbiter

ECU1
ECU2
ECU3

Fig. 4. VCD file format

The tool suite COSITA launches SystemC-Simulink
co-simulation by generating selected scenarios for co-
simulation. After that, COSITA collects co-simulation
traces files, merges them and analyze
functional/architectural diagnosability metrics
(observability and reachability) by parsing these trace
files.

 In a similar way of formal methods property
checking techniques, we use the analysis of simulation
traces method to verify certain HW-SW properties of
the system modeled in SystemC-Simulink. The
analysis of simulation traces has been discussed and
compared to the SystemC-Simulink code parsing
possibility, before it is applied.

V. FUNCTIONAL/ARCHITECTURAL
DIAGNOSABILITY PROPERTIES

ANALYSIS

Setting HW-SW properties for analyzing electronic
architecture is strongly linked to the definition of
requirements at the beginning of the development
cycle. Thus, to satisfy the requirement of
diagnosability in automotive architecture, we defined,
but not limited to, two properties to be analyzed;
Observability and Reachability.

A. Observability Checking
By observability, we mean the possibility for

different functions of a system (identified by their I/Os
and memory variables) to be observed by an
independent diagnosis process, without interfering with
the nominal operation of the system. Therefore, we

check the observability potential (property) for an
electronic system to allow adding a process of real time
observation of the system’s behavior.

We consider the observability property as a Boolean
indicator for the functional/architectural diagnosis
ability. It is true when the time available is sufficient
for on observing process to carry out the periodic
surveillance process. Hence, to determine the available
time intervals for the observation process, we seek the
free cycles not exploited by the nominal operation of
the system.

After that, we compare the duration of the available

cycles with the time necessary to execute the
observation process using the same hardware
resources. Keeping the same principle of analysis, this
property could be also represented as an observation
schedule. However, if the architecture becomes
complicated, observability is represented as a degree or
a Boolean as we cannot combine different observation
schedules. This subject has been discussed in an earlier
paper [14].

B. Reachability Checking

We define reachability property as a Boolean
indicator for the diagnosability of the hardware
architecture. It is true when an ECUi can get access to
Inputs/Outputs values of an ECUj, when both ECUi
and ECUj are connected through the communication
bus.

To determine the reachability of an ECUi to an
Input/Output proper to ECUj, we seek messages sent
from ECUi, having as a target the Input/Output in
ECUj, by analyzing communication traces.
For example in the (Fig. 5), we have S3=f(E1).To get
the E1 value to compute f(E1), E1 of ECUj should be
reachable from ECUi.

Fig. 5. ECU Input/Output reachability

VI. PROPERTIES ANALYSIS RESULTS

We have tested our approach on the Smart Distance

Keeping (SDK) function, given by a truck
manufacturer. “SDK” is equivalent to the Adaptive
Cruise Control (ACC) function, except that the
distance/speed regulation is based only on a fixed

ECUj

CAN

S3 = f (E1)
S1

S2

ECUi E1E2

distance of 50 m (compliant to European regulations
for heavy trucks) [15]. Thus, using embedded radar,
the SDK sub-system maintains a safe headway time,
i.e. the inter-vehicle distance is varying as a function of
the velocity and is maintained at a minimum legal
distance of 50 m (Fig. 6).

Fig. 6. SDK (Smart Distance Keeping) function

TABLE 1 shows that 40% of the free cycles can
execute observation process on the
on the global system (ECUs and CAN bus).

The Boolean value “1” for the reachability of
“Relative distance” (Input) and Vehicle speed (Output)
confirm the observability of the event.

TABLE 1

 Example of Functional/Architectural Properties
Property Global

system
New

distance
Relative
distance

Observability

30%

0

Reachability

VII. ANALYSIS VALIDATION

A. DIAFORE: The emulation Platform
Simulation helps engineers validate and to have a

viewpoint of hardware architecture
we are not able to test the physical real world
of embedded functions through simulation
the simulation, emulation allows the validation team to
make tests very close to the final operation on the final
electronic system, but on a unique configuration preset
by the manufacturer of the testing platform.

DIAFORE is an automotive embedded platform
composed of several Electronic Control Units
Continental Corporation and based on
microcontrollers. These units can communicate with
each other, with a development PC and with other
devices through the CAN bus (Fig. 7

To implement an application on the platform, the first
step is to create a Simulink model of the application
using blocks with a given sample time
application is validated during the simulation phase

m (compliant to European regulations
Thus, using embedded radar,

system maintains a safe headway time,
vehicle distance is varying as a function of

the velocity and is maintained at a minimum legal

Distance Keeping) function

shows that 40% of the free cycles can
 CAN bus and 30%

on the global system (ECUs and CAN bus).
The Boolean value “1” for the reachability of

“Relative distance” (Input) and Vehicle speed (Output)
confirm the observability of the event.

roperties Analysis Values
Relative
distance

Vehicle
speed

CAN
bus

40%

1

1

NALYSIS VALIDATION

latform
validate and to have a

architecture design. However,
physical real world behavior

through simulation. Alongside
the validation team to

very close to the final operation on the final
electronic system, but on a unique configuration preset
by the manufacturer of the testing platform.

embedded platform
composed of several Electronic Control Units from

Corporation and based on Motorola
. These units can communicate with

each other, with a development PC and with other
7).

To implement an application on the platform, the first
step is to create a Simulink model of the application

given sample time. When the
during the simulation phase,

we add Motohawk Simulink
physical parameters of the ECUs (Inputs/Outputs,
CAN configuration, Triggers period etc.)
Once the system and the application are ready, we
generate the corresponding C code
(Real Time Workshop) of Simulink
software [19].

Fig. 7. DIAFORE platform interconnected components

B. Comparing Simulation-Emulation

In order to validate the results of
properties analysis, we check
simulated models but also for developed
running on a real automotiv
Then we compare both simulation and emulation
results.

All simulated models are not 100% accurate
compared to real devices due to
sampling rates or to other physical constraints.

 In order to compute and compare the different
results, we generate trace files
and emulation. Traces are obtained under two different
formats depending of the source.
trace is obtained directly under a
while emulation results trace is obtained under log files
format.

• Trace file generation from emulation
The generation of these files is done by using
CANalyzer tool from VECTOR. CANalyzer is a
software tool that allows users to
networks and distributed embedded systems
[19]. We used it to communicate with the ECUs
through the CAN interface. At each Input/Output
access, and each read or write of the variables in
the ECU’s memory, the Electronic Control Unit
sends a specific CAN packet on the
communication bus (CAN bus) containing the

CAN USB Interface

GCM-0563-048-
0802

SmartCraft

Simulink blocks to specify the
physical parameters of the ECUs (Inputs/Outputs,
CAN configuration, Triggers period etc.) [16][17][18].
Once the system and the application are ready, we
generate the corresponding C code using the RTW

of Simulink and Greenhills

DIAFORE platform interconnected components

Emulation Results
to validate the results of an architecture

check properties not only for
o for developed applications

automotive hardware architecture.
both simulation and emulation

ll simulated models are not 100% accurate
compared to real devices due to discrepancies in

physical constraints.

to compute and compare the different
trace files from both simulation

Traces are obtained under two different
formats depending of the source. Simulation results

y under a VCD file format
while emulation results trace is obtained under log files

Trace file generation from emulation
The generation of these files is done by using

from VECTOR. CANalyzer is a
software tool that allows users to analyze
networks and distributed embedded systems

. We used it to communicate with the ECUs
through the CAN interface. At each Input/Output
access, and each read or write of the variables in
the ECU’s memory, the Electronic Control Unit

a specific CAN packet on the
communication bus (CAN bus) containing the

ECM-0555

-080-0703

SmartCraft Interconnection

value of Inputs/Outputs or variables,
CANalyzer collects these special packets. Each
packet has its own ID (IDentifier)
the ID of the considered Input/Output or
variable. Therefore, at the end of the tests, we
obtain a text file (log file) that contains the tra
of all the values of Inputs/Outputs and variables
with their access instants.

We have chosen CANalyzer to create the
file due to its time accuracy, whi
the program implemented in CANalyzer has an
internal counter with a resolution of 1
Compared to the simulation tests, it is considered
as a restriction since with the simulation process
we can obtain a resolution of about picoseconds
or microseconds, which is impossible
real platform tools.

• Trace file generation from simulation

The generation of these files is done by the
simulator in the VCD format

In order to unify analysis methods and easily

compare simulation and emulation results, we
transform the emulation traces files from a
to a VCD format that contains only the
there are values changes (Fig. 8).

Fig. 8. Converting log file to

C. Diagnosability metrics analyses comparison
The comparison analysis results issued from

simulation and emulation is directly related
SystemC-Simulink co-simulation
emulation on the automotive platform.
retrieve the generated VCD text files
simulation and from emulation, analyze them and
identify the differences. In the following we present
different situations of the analysis comparison

• The first situation shows exactly the same

analysis results in both simula

Timestamp (mS) Vitesse_Vehicule_SDK Distance_Securite

Distance_entre_vehicule Puissance_Moteur

47 79.00 44.00 45.00 61.00

110 79.00 44.00 45.00 61.00

172 79.00 44.00 45.00 61.00

235 79.00 44.00 45.00 61.00

297 79.00 44.00 45.00 61.00

985 79.00 44.00 45.00 61.00

.

1047 79.00 44.00 45.00 62.00

1110 79.00 44.00 28.00 64.00

1172 79.00 44.00 33.00 78.00

1235 79.00 44.00 40.00 80.00

63 ms

63 ms

63 ms

of Inputs/Outputs or variables, while
CANalyzer collects these special packets. Each

(IDentifier) that reflects
the ID of the considered Input/Output or

riable. Therefore, at the end of the tests, we
file) that contains the trace

Outputs and variables

We have chosen CANalyzer to create the log
file due to its time accuracy, which is 1 ms. So
the program implemented in CANalyzer has an

counter with a resolution of 1 ms.
to the simulation tests, it is considered

as a restriction since with the simulation process
obtain a resolution of about picoseconds
seconds, which is impossible for our

file generation from simulation
The generation of these files is done by the

 as described in IV.

unify analysis methods and easily
compare simulation and emulation results, we
transform the emulation traces files from a log format
to a VCD format that contains only the instants where

to VCD file

Diagnosability metrics analyses comparison
s results issued from

directly related to
 results and to

platform. We have to
text files issued from co-

, analyze them and
In the following we present

s comparison:

The first situation shows exactly the same
s results in both simulation and

emulation. For example
embedded function,
observability analysis result
observability frequency and
non observable slots of time are exactly the
same in both tests
not frequent; it reflects a
precisely similar to
hard to obtain.

Fig. 9. Observability analyses comparison (First situation)

• The second situation
discrepancy between the two results
observable slots of time may slightly differ
between simulation and emulation
may be the most probable

Fig. 10. Observability analyses comparison (Second situation)

• The last situation presents two different cases
where a large difference
instance, concerning the observability
analysis, we may have two different scenarios:

a. Both results are observable with

different
(Fig. 11

b. Only one of the two

observable
These two scenarios may be

reasons related to the hardware, because we use the
same software model in simulation and emulation,
such as:

• Hardware modeling
co-design phase,

• Hardware platform
malfunctioning while emulation,

• Large difference between HW
distributions used
emulation.

$timescale

1 ms

$end

$scope module SystemC $end

$var wire 32 aab in [31:0] $end

$var wire 32 aac out [31:0] $end

$upscope $end

$enddefinitions $end

$dumpvars

b0 aab

b0 aac

$end

#1047

b1 aac

#1110

b1 aab

b0 aab

#1172

b0 aab

b1 aac

#1235

b1 aab

C++

program

emulation. For example, for the SDK
embedded function, we may have the same
observability analysis result where
observability frequency and observable and
non observable slots of time are exactly the

 (Fig. 9). This situation is
it reflects a HW-SW co-model

precisely similar to the real platform, which is

Observability analyses comparison (First situation)

situation presents a slight
discrepancy between the two results;
observable slots of time may slightly differ
between simulation and emulation (Fig. 10). It

probable situation.

Observability analyses comparison (Second situation)

presents two different cases
a large difference can occur. For

instance, concerning the observability
have two different scenarios:

Both results are observable with
different observable time slots

11).

Only one of the two results is
observable (Fig. 12).

scenarios may be caused by different
related to the hardware, because we use the

same software model in simulation and emulation,

modeling errors introduced in the

platform failure or
while emulation,

Large difference between HW-SW
used in simulation and

This situation reflects a divergence between the HW
SW co-model and the real platform and requires a re
examination of both hardware model and
hardware from designers in order to

Fig. 11. Observability analyses comparison (Third situation, first
scenario)

Fig. 12. Observability analyses comparison (Third situati
scenario)

VIII. CONCLUSIONS AND PERSPECTIVES

This paper presented a tool and an approach to

analyze functional/architectural diagnosability
properties in automotive electronic
approach is based on co-simulation trace analysis
consider this work as a seed tool for the
functional/architectural diagnosability analysis
methodology.

In our future work we aim to extend COSITA tool
to analyze other properties that we are defining
to fulfill diagnosability analysis
automatically new configurations of the
hardware/software architecture if the system is not
to integrate a diagnosis process. On the other hand, in
order to cover most of the different possible
scenarios, we aim also to use more advanced methods
to generate inputs and variables values
account critical situations. In addition, we are
developing SIMECO (SIMulation/Emulation
COmparison) tool in order to automate the comparison
of simulation and emulation traces.

IX. ACKNOWLEDGMENTS

The implementation on the physical platform has
been done on the equipped vehicles of our laboratory,
where the engineering team, including Mr. Dherbome
and Mr. Hanna has been involved.

This situation reflects a divergence between the HW-
model and the real platform and requires a re-

model and real platform
order to check them.

. Observability analyses comparison (Third situation, first

. Observability analyses comparison (Third situation, second

ONCLUSIONS AND PERSPECTIVES

a tool and an approach to
itectural diagnosability

electronic architecture. This
simulation trace analysis. We

consider this work as a seed tool for the
functional/architectural diagnosability analysis

In our future work we aim to extend COSITA tool
that we are defining in order

diagnosability analysis and to suggest
automatically new configurations of the
hardware/software architecture if the system is not able
to integrate a diagnosis process. On the other hand, in

cover most of the different possible simulation
e aim also to use more advanced methods

variables values taking into
In addition, we are currently

SIMulation/Emulation
) tool in order to automate the comparison

of simulation and emulation traces.

CKNOWLEDGMENTS

The implementation on the physical platform has
been done on the equipped vehicles of our laboratory,

team, including Mr. Dherbomez

X. REFERENCES

[1] C. Picardi, R. Bray, F. Cascio, L. Console, P. Dague, O.

Dressler, D. Millet, B. Rehfus, P. Struss et C. Vallée, “IDD
Integrating Diagnosis in the Design of automotive systems,”
15th European Conference on
Lyon, juillet 2002

[2] L. Console, and O. Dressier, “Model
real world: lessons learned and challenges remaining,” in Proc.
16th IJCAI, pp.1393-1400, Stockholm, 1999.

[3] W. Hamscher, L. Console, and J. deKleer, “Readings in model
based diagnosis,” Morgan Kaufmann Publishers,
55860-249-6, San Francisco, CA, USA, 1992.

[4] L. Travé-Massuyès, M, O. Cordier, and X. Pucel, “Comparing
diagnosability in cs and des,”
Symposium on Fault Detection, Supervision and Safety of
Technical Processes, Beijing, China, August 2006

[5] M. Sampath, R. Sengupta, and S. Lafortune, “Diagnosability of
discrete-event systems,” IEEE trans. On Automatic Control
9(40), pp. 1555-1575, 1995.

[6] F. Lin, “Diagnosability of discrete
applications,” Discrete Event Dynamic Systems,
197-212, may 1994.

[7] G.K. Fourlas, K.J. Kyriakopoulos et N.J. Krikelis,
“Diagnosability of hybrid systems”,
IEEE Mediteranean Conference on Control and Automation
(MED2002), 2002.

[8] M. Beyoudh, L. Travé-Massuyès et X. Olive, “hybrid systems
diagnosability by abstracting faulty continuous Dynamics”,
Proceedings of the 17th International Workshop on Prin
of Diagnosis (DX’06), pp. 9-15, 2006.

[9] D. Paret, “ Multiplexed Networks for Embedded Systems:
CAN, LIN, FlexRay, Safe-by
03416-3, 2007

[10] T. Grötker, and al, “System Design with SystemC
Chapter 8, p. 131. ISBN 1402070721

[11] C. Warwick, “SystemC calls MATLAB,”
March 2003, http://www.mathworks.com/matlabcentral/

[12] F. Czerner, and J. Zellmann,
Hardware with Matlab/Simulink using SystemC
SystemC Users Group Meeting (ESCUG)

[13] J-F. Boland, and al, “Using Matlab and Simulink in a SystemC
verification Environment,” 2nd

Group. Santa Clara, CA, USA
[14] M. Khlif, and M. Shawky, “Observ

Diagnosis of Real Time Electronic Systems,”
12-th IEEE International Symposium on Distributed Simulation
and Real Time Applications
Vancouver, Canada, 2008

[15] X. Claeys, and al, “Chauffeur
restricted to RENAULT TRUCKS,
IST-1999-10048, Lyon, FRANCE

[16] MGM.Mototron Inc. ECM
20/10/2006

[17] MGM.Mototron Inc. GCM
14/08/2006

[18] http://www.mototron.com/support/wiki/index.php?title=MotoH
awk

[19] http://www.ghs.com/
[20] http://www.vector-france.fr/vf_canalyzer_fr.html

EFERENCES

C. Picardi, R. Bray, F. Cascio, L. Console, P. Dague, O.
Dressler, D. Millet, B. Rehfus, P. Struss et C. Vallée, “IDD :
Integrating Diagnosis in the Design of automotive systems,”
15th European Conference on Artificial Intelligence ECAI-02,

L. Console, and O. Dressier, “Model-based diagnosis in the
real world: lessons learned and challenges remaining,” in Proc.

1400, Stockholm, 1999.
W. Hamscher, L. Console, and J. deKleer, “Readings in model-

Morgan Kaufmann Publishers, ISBN: 1-
6, San Francisco, CA, USA, 1992.

Massuyès, M, O. Cordier, and X. Pucel, “Comparing
 In Proceedings of the 6th IFAC

Symposium on Fault Detection, Supervision and Safety of
Beijing, China, August 2006.

M. Sampath, R. Sengupta, and S. Lafortune, “Diagnosability of
IEEE trans. On Automatic Control

F. Lin, “Diagnosability of discrete-events systems and its
Discrete Event Dynamic Systems, vol. 4, pp.

G.K. Fourlas, K.J. Kyriakopoulos et N.J. Krikelis,
“Diagnosability of hybrid systems”, Proceedings of the 10th

Conference on Control and Automation

Massuyès et X. Olive, “hybrid systems
diagnosability by abstracting faulty continuous Dynamics”,
Proceedings of the 17th International Workshop on Principles

15, 2006.
Multiplexed Networks for Embedded Systems:

by-Wire,” Wiley, ISBN: 978-0-470-

System Design with SystemC,” Springer,
1402070721, 2002

“SystemC calls MATLAB,” MATLAB Central,
March 2003, http://www.mathworks.com/matlabcentral/

J. Zellmann, “Modeling Cycle-Accurate
Hardware with Matlab/Simulink using SystemC,” 6th European
SystemC Users Group Meeting (ESCUG). Stresa, Ilalia, 2002

Using Matlab and Simulink in a SystemC
nd North American SystemC User’s

Santa Clara, CA, USA, 2004
Observability Checking to Enhance

of Real Time Electronic Systems,” DS-RT 2008. The
th IEEE International Symposium on Distributed Simulation

and Real Time Applications.October 27 - 29, 2008.,

Chauffeur Assistant Functions,” Report
restricted to RENAULT TRUCKS, European Contract number

10048, Lyon, FRANCE, 2003
. ECM-0555-080-0703-F Data Sheet-

. GCM-0563-048-0802 Data Sheet-

.com/support/wiki/index.php?title=MotoH

france.fr/vf_canalyzer_fr.html

