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Abstractin this paper we present a CO-Simulation
Trace Analysis (COSITA) tool in order to analyze
functional/architectural properties, in the automotve
field. These properties should enhance a specificesign
requirement that we call functional/architectural
diagnosability. The validation process is appliedma real
automotive experimental embedded platform called
DIAFORE based on several Electronic Control Units.

In the design phase of a System Development Life €lg,
we aim to analyze the functional/architectural
diagnosability by analyzing its properties (observahility,
reachability, etc.), using a co-simulation-based gpoach.
In this paper, our objective is to verify that theanalysis
made on the real platform is consistent with the
theoretical analysis made on the co-simulation reds.

We believe that simulating a functional model is no
sufficient to analyze system properties, because da
hardware instantiation has its own properties constints
and limitations. Therefore, a hardware architecture
characteristics modification may change the system
requirements correctness. Hence, we co-simulate the
Hardware (HW) and Software (SW) models, and then we
analyze the interaction between them, by analyzinghe
co-simulation trace.

For co-simulation, we use SystemC and Matlab/Simuik
tool, with objectively selected simulation scenar®
reflecting the system behavior.

Keywords - Automotive electronic embedded systems,
Hardware-Software co-modeling and co-simulation,
Diagnosability analysis.

I. INTRODUCTION

OWADAYS, systems in the automotive
industry are becoming more complex due to the
growing demand on driving assistance functions. In
order to improve the reliability of the design, Wave
to foresee the possibility of system failure. Aséeg
the diagnosability of a system regarding a defised
of faults ensures that any eventual occurrencanefad
the faults will be correctly detected, identifiecida
hence isolated.

In [1], a new framework for design of automotive
systems was defined as result of the IDD (Integeati
Diagnosis in the Design of automotive systems)
European projects, especially Model-Based Diagnosis
which is suitable for integrating diagnosis in thesign
of electronic systems; both from the methodological
and the practical point of view [2].

In this work, we consider embedded on-line Model-
based Diagnosis [3] as a requirement at the design
time. The model-based approaches for diagnosis and
diagnosability analysis that were developed in the
domains of automatic control and artificial intgénce
can be classified into two categories:

« state-based approaches, which are suitable for
continuous systems as shown in [4],

e and event-based approaches [5], which are
suitable to use with discrete-events models to
represent an electronic embedded system [6]. At
the system modeling phase in event-based



approaches, we should provide the maximum of The diagnosability is often defined as a degree,a.
faults models. percentage combining the observable and reachable
There is also a recent approach that deals withidhyb 1/0Os or variables over their total number.
systems where both continuous and discrete aspects These metrics will be analyzed through Co-
coexist in modeling [7][8]. However, in all these modeling and Co-simulation techniques described in
categories, there is an absence of the architecturehe following section.
description. Hence, the Ilimitations on the
diagnosability imposed by the hardware architecture
are not considered, therefore we present in thiepa
the first step that will lead us to analyze, the

diagnosability requirement of an embedded hardware . .
architecture, taking into account simultaneously The electronic HW/SW architecture that we co-

functional (software) and architectural (hardware) M0delis composed of ECUs (Electronic Control Units
aspects. interconnected by a communication bus [9]. Every
ECU is composed of a processor, a memory, a CAN
interface and I/O interfaces.

. HW/SW CO-MODELING AND CO-

SIMULATION

To present our contributions, this paper is stmextu
as follows:

First, we present the functional/architectural
diagnosability analysis. Then in section I, wegent
the co-design technique that we use for co-simadati
In section IV, we describe our tool COSITA (CO-
Simulation Traces Analysis) that we have develdped
analyze several properties. In section V, we diste
hardware architecture properties.

Section VI shows some results. We validate the
results via an automotive platform in section VII.
Finally, we conclude this paper and present owrréut
works in section VIII.

A. SystemC/ Simulink Co-Modeling

In the first place, we used SystemC as a HW/SW
Co-Modeling language for the entire system [10].

Therefore, it is not possible to implement the
software part of the model developed in SystemC on
our platform (Fig. 7) since this latter supportdyo@
code generated from Simulink Blocks. Furthermore,
Simulink is well established in the automotive iatiy
as a quick modeling tool, offering automatic code
generation.

Therefore, we use SystemC as modeling language
for hardware architecture and Simulink as functiona
modeling language. So, we need to interface both
SystemC and Simulink models as it is done in [Wié.
used the «engine.h» C++ library (in the SystemC
code), which allows commanding Matlab, stopping it
and exchanging data with it from a program writiien
Diagnosability as the property of a system alloming C, C++, Fortran, etc. Then, Matlab launches Sinkulin
to react face to a set of anticipated faults, ideorto environment for simulation.
reduce the cases where no decision can be made afte
fault detection. B. ECUs and CAN Bus Modeling
In this part of the work, we have modeled in

II. FUNCTIONAL/ARCHITECTURAL

DIAGNOSABILITY

A. Diagnosability Definition
Our tentative definition would describe

B. Scope of the Functional/Architectural
Diagnosability Metrics
We have updated

the definition of

SystemC the CAN protocol real-time behavior to
realize communications between ECUs models (Fig.

classic 1). We have simplified the details to ease the ringle

diagnosability metrics and define new ones to adapby implementing a virtual arbiter in the bus. Witte

them for functional/architectural analysis: Obséilrgy
and reachability. The different diagnosability nmtr
that we defined are:

e The observability is defined as a Boolean
property, or a time schedule of available
windows for observations in a sub-system
(10, communication bus) or a degree for the
whole system,

e The reachability is a Boolean property,
representing the possibility for a node to reach
an I/O or a variable value;

Transaction Level Modeling (TLM), the
communication between components is described as
function calls.

Each ECU that needs to send a message transmits a
request to the bus. If at least 2 ECUs requestsa bu
transmission at the same time (i.e. in a time short
than a bus cycle), the bus arbiter selects the most
important message by comparing arbitration fielas i
the two messages. The same clock is used for all



processors as the level of modeling granularityig. f COSITA Tool \

It is important to note that full CAN protocol ised SYSTEMC
only in models with high level of granularity, Trarrhe (::> Simulation Scenarios
expressing transactions between ECUs. —a— Launcher Generator
—Y
e (OBSAN)
T \ /

Fig. 3. COSITA modules

A. Simulation Inputs

Il Ecul S . .
[ Ecuz One of our objectives is to generate scenarios for

Il Ecu:

B Channel + communication p the execution of the simulated and implemented

application. Therefore the first idea is to generat
Fig. 1. CAN bus SystemC model random values for Inputs/Outputs. But we aim toehav
a more intelligent approach to generate these salue
Therefore, we used the dichotomous approach torcove
C. SystemC / Simulink Co-Simulation the I/O_ signal range. On the other hand, sevetarot
The co-simulation interface may be in one of two SCEnarios generation methods may be used based on

ways: Either SystemC is in charge of controlling th condition and decision coverage techniques.
simulation (as SystemC environment includes also a  Our tests will then be based on running N
simulator) by running the Simulink model through Simulations, and in each run we apply new selected
MATLAB, or Simulink is considered as the master of INPut values that may be considered as criticalttier
the simulation and controls SystemC models [12][13] ~SYStem.

For our system, we adopted the first a roachB' Trace Files Generation and Analysis
y ’ P PP The SystemC-Simulink co-simulation generates

simply because it is the architecture (ECUs and CAN dated log files with all information about values

bus) that includes the embedded function (Fig. 2). changes of variables, ports...etc. While designirgy th

SystemC model, we should indicate that we need to

SYSTEMC generate the simulation trace files, by adding the

simple instruction “sc_create_vcd_trace_file()” ttee

SIMULINK program. . _ N .
Sl s Genorator SMULINK Trace generation will be done by writing in a
SW Implemented function chronogram file; each signal can be logged
—h simultaneously in several files.

These files reflect the activity of the system.CEéiles

HW model almost conform to the analysis can monitor the total behavior of a hardwa
real platform . .

architecture. For example, we can trace the intemma

Fig. 2. SystemC-Simulink interfacing external activities of an ECU through its ports

identifiers, variables identifiers, etc.
SystemC enables us to properly model the ECUs, the
CAN bus and the interconnections. The developed HW These trace files are in Value Change Dump (VCD)
model in SystemC will be our virtual platform quite format. This VCD format is specified in the stardiar
close to our real one. IEEE 1364.The VCD file starts with header information
giving the date, the simulator’s version number #mel
timescale used. Next, the file contains definitiafishe
IV. COSITA Tool scope and type of variables being dumped, followed
the actual value changes at each simulation time
We have developed the COSITA tool in order to increment. Only the variables that change valuendua

have an interface between co-simulation and prigsert time increment are listed. The simulation time rded in
analysis (Fig. 3) VCD file is the absolute value of the simulatioméi for

the changes in variable valudsd. 4).



§date
Mar 17, 2008
Send

$version
Send
$rimescale

1 ps
Send e

10:03:45

systemC 2.1.vl --- Jun 11 2007 17:21:36

stemC $end

aaa cl Send

aab wir_in [31:0] Send
aac wvir_out [31:0] Send
aad Jogic_in [15:0]_ Send
aae Togic_out [15:0] Send

§scope module
Svar wire
$var wire
$var wire
$var wire
%var wire5
upscope

Sendd

Sy
1
32
32
16
16
end
efinitions Send

$comment
A11 dinitial values are dumped below at time 0 sec = 0 T
Send

Sdumpvars

b111 aae

Fig. 4. VCD file format

The tool suite COSITA launches SystemC-Simulink
co-simulation by generating selected scenarioséor
simulation. After that, COSITA collects co-simutati
traces files, merges them and analyze
functional/architectural diagnosability metrics
(observability and reachability) by parsing thesscé
files.

In a similar way of formal methods property
checking techniques, we use the analysis of simonlat
traces method to verify certain HW-SW properties of
the system modeled in SystemC-Simulink. The
analysis of simulation traces has been discussdd an
compared to the SystemC-Simulink code parsing
possibility, before it is applied.

V. FUNCTIONAL/ARCHITECTURAL
DIAGNOSABILITY PROPERTIES
ANALYSIS

Setting HW-SW properties for analyzing electronic
architecture is strongly linked to the definitiorf o
requirements at the beginning of the development
cycle. Thus, to satisfy the requirement of
diagnosability in automotive architecture, we deéin
but not limited to, two properties to be analyzed,;
Observability and Reachability.

A. Observability Checking

By observability, we mean the possibility for
different functions of a system (identified by thBDs
and memory variables) to be observed by an
independent diagnosis process, without interfewith
the nominal operation of the system. Therefore, we

check the observability potential (property) for an
electronic system to allow adding a process of tiesd
observation of the system’s behavior.

We consider the observability property as a Boolean
indicator for the functional/architectural diagresi
ability. It is true when the time available is scint
for on observing process to carry out the periodic
surveillance process. Hence, to determine the ablail
time intervals for the observation process, we shek
free cycles not exploited by the nominal operatifn
the system.

After that, we compare the duration of the ava#abl
cycles with the time necessary to execute the
observation process using the same hardware
resources. Keeping the same principle of analysis,
property could be also represented as an obsenvatio
schedule. However, if the architecture becomes
complicated, observability is represented as aedegr
a Boolean as we cannot combine different obsemvatio
schedules. This subject has been discussed inrker ea
paper [14].

B. Reachability Checking

We define reachability property as a Boolean
indicator for the diagnosability of the hardware
architecture. It is true when an ECUi can get axd¢es
Inputs/Outputs values of an ECUj, when both ECUi
and ECUj are connected through the communication
bus

To determine the reachability of an ECUi to an
Input/Output proper to ECUj, we seek messages sent
from ECUi, having as a target the Input/Output in
ECUj, by analyzing communication traces.

For example in the (Fig. 5), we have S3=f(E1).Tb ge
the E1 value to compute f(E1), E1 of ECUj should be
reachable from ECUi.

( \ 14 \ S1
S3=f (E1) < >
e ECUi ECUj [Em
—
CAN
-/ -

Fig. 5. ECU Input/Output reachability

VI. PROPERTIES ANALYSIS RESULTS

We have tested our approach on the Smart Distance
Keeping (SDK) function, given by a truck
manufacturer. “SDK” is equivalent to the Adaptive
Cruise Control (ACC) function, except that the
distance/speed regulation is based only on a fixed



distance of 50n (compliant to European regulatic
for heavy trucks) [15]Thus, using embedded rad
the SDK subsystem maintains a safe headway ti
i.e. the intervehicle distance is varying as a functior
the velocity and is maintained at a minimum le
distance of 50 m (Fig. 6).

Fig. 6. SDK (Smarbistance Keeping) functic

TABLE 1 shows that 40% of the free cycles 1
execute observation process on @&N bus and 30%
on the global system (ECUs and CAN bt

The Boolean value “1” for the reachability
“Relative distance” (Input) and Vehicle speed ()|
confirm the observability of the eve

TABLE 1
Example of Functional/Architectural@pertiesAnalysis Values
Property Global New Relative | Vehicle | CAN
system distance | distance speed bus
Observability 30% 0 40%
Reachability 1 1

VII.  ANALYSIS VALIDATION

A. DIAFORE: The emulationlBtform
Simulation helps engineerglidate and to have

viewpoint of hardwarearchitectur design. However,
we are not able to test tiphysical real worltbehavior
of embedded functionthrough simulatio. Alongside
the simulation, emulation allowthe validation team t
make testyery close to the final operation on the fi
electronic system, but on a unique configuraticespt
by the manufacturer of the testing platfc

DIAFORE is an automotiveembedded platforr
composed of several Electronic Control U from
Continental Corporation and based  Motorola
microcontrollers These units can communicate W
each other, with a development PC and with ¢
devices through the CAN bus (Fig)-

To implement an application on the platform, thiet
step is to create a Simulink model of the applaa
using blocks with agiven sample tinr. When the
application is validatedluring the simulation pha,

we add MotohawkSimulink blocks to specify the
physical parameters of the ECUs (Inputs/Outf
CAN configuration, Triggers period et(16][17][18].

Once the system and the application are ready
generate the corresponding C ¢ using the RTW
(Real Time Workshop)f Simulink and Greenhills
software [19].

SmartCraft Interconnection

CAN USB Interface

ECM-0555
-080-0703

GCM-0563-048-
0802

Fig. 7. DIAFORE platform interconnected compone

B.Comparing SimulatiofemulationResults

In orderto validate the results can architecture
properties analysis, wehecl properties not only for
simulated models but asfor developecapplications
running on a reahutomotive hardware architecture.
Then we compareboth simulation and emulatic
results.

All simulated models are not 100% accu
compared to real devices due discrepancies in
sampling rates or to othphysical constraints

In order to compute and compare the differ
results, we generatgace file: from both simulation
and emulationTraces are obtained under two differ
formats depending of the sourcSimulation results
trace is obtained diregtlunder aVCD file format
while emulation results trace is obtained undeffileg
format.

e Trace file generation from emulatior

The generation of these files is done by u:
CANalyzer toolfrom VECTOR. CANalyzer is
software tool that allows users tanalyze
networks and distributed embedded sys
[19]. We used it to communicate with the EC
through the CAN interface. At each Input/Out
access, and each read or write of the variabl
the ECU’s memory, the Electronic Control U
sends a specific CAN packet on tt
communication bus (CAN bus) containing



value of Inputs/Outputs or variableswhile
CANalyzer collects these special packets. E
packet has its own I@IDentifier) that reflects
the ID of the considered Input/Output
variable. Therefore, at the end of the tests,
obtain a text file (lodile) that contains the tce
of all the values of Input§utputs and variable
with their access instants.

We have chosen CANalyzer to create log
file due to its time accuracy, wch is 1 ms. So
the program implemented in CANalyzer has
internal counter with a resolution of ms.
Comparedo the simulation tests, it is conside
as a restriction since with the simulation proc
we canobtain a resolution of about picoseco
or micreseconds, which is impossil for our
real platform tools.

»  Trace file generation from simulation
The generation of these files is done by
simulator in the VCD formaas described in IV.

In order to unify analysis methods and ea
compare simulation and emulation results,
transform the emulation traces files fronlog format
to a VCD format that contains only tlinstants where
there are values changes (Fig. 8).

Stimescale
1ms
Distance_Securite Send
Puissance_Moteur

Timestamp (msS) Vitesse_Vehicule_SDK
Distance_entre_vehicule
$scopemodule SystemC Send
o { 4 79.00 44.00 45.00 61.00 Svarwire 32 aab in [31:0] $end
ms

$varwire 32 aac out[31:0] Send
110 79.00 44,00 45.00 61.00 Supscope Send
C++ Senddefinitions Send

PrOBIaM <y mpvars

235 79.00 4400 45.00 61.00 b0 aab

63ms ‘{ b0 aac
207 79.00 4400 45.00 61.00

Send

1 79.00 44,00 4500 61.00

985 79.00 44,00 4500 61.00 #1047
blaac

1047 79.00 44,00 4500 62.00 #1110
blaab
1110 79.00 44.00 28.00 64.00 b0 aab

1172 79.00 44.00 33.00 78.00 #1172

m ‘{ b0 aab
1235 79.00 44,00 40,00 80.00 blaac
#1235

blaab

Fig. 8. Converting log filéo VCD file

C. Diagnosability metrics analyses comparis

The comparison analhysi results issued fro
simulation and emulation isdirectly relater to
SystemC-Simulink co-simulationresults and to
emulation on the automotivplatform. We have to
retrieve the generated VCiext filesissued from co-
simulation and from emulatipnanalyze them an
identify the differencesin the following we preser
different situations of the analgscompariso:

 The first situation shows exactly the sa
analyss results in both simuion and

emulation. For examp, for the SDK
embedded functionwe may have the same
observability analysis res where
observability frequency ai observable and
non observable slots of time are exactly
same in both testéFig. 9). This situation is
not frequent;it reflects aHW-SW co-model
precisely similar t the real platform, which is
hard to obtain.

Simulation: This system is observable with the mean frequency per period = 2.5

Emulation: This system is observable with the mean frequency per period =2.5
. — A n
sivi [N I S B R L
1 — — =
VN | [ | e rueruu
5 20 % 30 3

5 10 1

ility

Observab

40
{ime: *2000ps

Fig. 9.0bservability analyses comparison (First situa

e The second situatior presents a slight
discrepancy between the two res;
observable slots of time may slightly diff
between simulation and emulat (Fig. 10). It
may be the mogirobabl¢ situation.

Simulation: This system is observable with the mean frequency per period = 2.5

2 Emulation: This system is observable with the mean frequency per period = 2.875
s SIMQ

I 1 “a

g e, | I A e s S R R

o

time: *2000ps

Fig. 10.0bservability analyses comparison (Second situy

e The last situatiompresents two different cas
where a large differenc can occur. For
instance, concerning the observabi
analysis, we makiave two different scenaric

a. Both results are observable w
different observable time slots
(Fig. 11).

b. Only one of the tworesults is
observabl (Fig. 12).
These twoscenarios may be«caused by different

reasonsrelated to the hardware, because we use
same software model in simulation and emulal
such as:

e Hardwaremodelin¢ errors introduced in the
co-design phase,

e Hardware platform failure or
malfunctioningwhile emulatior

e Large difference  between H-SW
distributions used in simulation and
emulation.



This situation reflects a divergence between the-
SW comodel and the real platform and requires -
examination of both hardwareodel an real platform
hardware from designers ander tccheck them.

Simulation: This system is observable with the mean frequency per period = 2.5
Emulation: This system is observable with the mean frequency per period = 1.625

SIM é L1 M ey u
EMU; M L1
%0 % 4

5 10 15 20 % 0
time: *20000s

Observability

Fig. 11 Observability analyses comparison (Third situatfirst
scenario)

Simulation: This system is observable with the mean frequency per period = 2.5
Emulation: This system is obseryable with the mean [requency per period =0

S| [ M o nruu o
EMU'
0

g 10 15 % K 3% 40

Observability

20
fime:*20000s

Fig. 12 Observability analyses comparison (Third sion, second
scenario)

VIIl. CONCLUSIONS AND PERSPECTIVE
This paper presented tool and an approach
analyze functional/ardtectural diagnosabilit
properties in automotivelectronicarchitecture. This
approach is based on sonulation trace analy:. We

consider this work as a seed tool for
functional/architectural diagnosability analy
methodology.

In our future work we aim to extend COSITA tc
to analyze other propertitsat we are definir in order
to fulfill diagnosability analysisand to suggest
automatically new configurations of |
hardware/software architecture if the system i able
to integrate a diagnosis process. On the other,hHat
order tocover most of the different possitsimulation
scenarios, & aim also to use more advanced metl
to generate inputs andariables value taking into
account critical situation$n addition, we ar currently
developing SIMECO $IMulation/Emulatiol
COmparisohtool in order to automate the compatri
of simulation and emulation trace
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