Manel Khlif
email: manel.khlif@hds.utc.fr

Oussama Tahan
email: oussama.tahan@hds.utc.fr

Mohamed Shawky
email: shawky@hds.utc.fr

CO-SImulation Trace Analysis (COSITA) Tool for Vehicle Electronic Architecture Diagnosability Analysis

Keywords: Automotive electronic embedded systems, Hardware-Software co-modeling and co-simulation, Diagnosability analysis

In this paper we present a CO-SImulation Trace Analysis (COSITA) tool in order to analyze functional/architectural properties, in the automotive field. These properties should enhance a specific design requirement that we call functional/architectural diagnosability. The validation process is applied on a real automotive experimental embedded platform called DIAFORE based on several Electronic Control Units. In the design phase of a System Development Life Cycle, we aim to analyze the functional/architectural diagnosability by analyzing its properties (observability, reachability, etc.), using a co-simulation-based approach. In this paper, our objective is to verify that the analysis made on the real platform is consistent with the theoretical analysis made on the co-simulation results. We believe that simulating a functional model is not sufficient to analyze system properties, because each hardware instantiation has its own properties constraints and limitations. Therefore, a hardware architecture characteristics modification may change the system requirements correctness. Hence, we co-simulate the Hardware (HW) and Software (SW) models, and then we analyze the interaction between them, by analyzing the co-simulation trace. For co-simulation, we use SystemC and Matlab/Simulink tool, with objectively selected simulation scenarios reflecting the system behavior.

I. INTRODUCTION

OWADAYS, systems in the automotive industry are becoming more complex due to the growing demand on driving assistance functions. In order to improve the reliability of the design, we have to foresee the possibility of system failure. Assessing the diagnosability of a system regarding a defined set of faults ensures that any eventual occurrence of one of the faults will be correctly detected, identified and hence isolated.

In [START_REF] Picardi | IDD Integrating Diagnosis in the Design of automotive systems[END_REF], a new framework for design of automotive systems was defined as result of the IDD (Integrating Diagnosis in the Design of automotive systems) European projects, especially Model-Based Diagnosis which is suitable for integrating diagnosis in the design of electronic systems; both from the methodological and the practical point of view [START_REF] Console | Model real world: lessons learned and challenges remaining[END_REF].

In this work, we consider embedded on-line Modelbased Diagnosis [START_REF] Hamscher | Readings in model based diagnosis[END_REF] as a requirement at the design time. The model-based approaches for diagnosis and diagnosability analysis that were developed in the domains of automatic control and artificial intelligence can be classified into two categories:

• state-based approaches, which are suitable for continuous systems as shown in [START_REF] Travé-Massuyès | Comparing diagnosability in cs and des[END_REF],

• and event-based approaches [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF], which are suitable to use with discrete-events models to represent an electronic embedded system [START_REF] Lin | Diagnosability of discrete applications[END_REF]. At the system modeling phase in event-based N approaches, we should provide the maximum of faults models. There is also a recent approach that deals with hybrid systems where both continuous and discrete aspects coexist in modeling [START_REF] Fourlas | Diagnosability of hybrid systems[END_REF] [START_REF] Beyoudh | hybrid systems diagnosability by abstracting faulty continuous Dynamics[END_REF]. However, in all these categories, there is an absence of the architecture description. Hence, the limitations on the diagnosability imposed by the hardware architecture are not considered, therefore we present in this paper the first step that will lead us to analyze, the diagnosability requirement of an embedded hardware architecture, taking into account simultaneously functional (software) and architectural (hardware) aspects.

To present our contributions, this paper is structured as follows:

First, we present the functional/architectural diagnosability analysis. Then in section III, we present the co-design technique that we use for co-simulation. In section IV, we describe our tool COSITA (CO-Simulation Traces Analysis) that we have developed to analyze several properties. In section V, we discuss the hardware architecture properties.

Section VI shows some results. We validate the results via an automotive platform in section VII. Finally, we conclude this paper and present our future works in section VIII.

II. FUNCTIONAL/ARCHITECTURAL DIAGNOSABILITY

A. Diagnosability Definition

Our tentative definition would describe Diagnosability as the property of a system allowing it to react face to a set of anticipated faults, in order to reduce the cases where no decision can be made after fault detection.

B. Scope of the Functional/Architectural

Diagnosability Metrics We have updated the definition of classic diagnosability metrics and define new ones to adapt them for functional/architectural analysis: Observability and reachability. The different diagnosability metrics that we defined are:

• The observability is defined as a Boolean property, or a time schedule of available windows for observations in a sub-system (I/O, communication bus) or a degree for the whole system, • The reachability is a Boolean property, representing the possibility for a node to reach an I/O or a variable value;

The diagnosability is often defined as a degree, i.e. a percentage combining the observable and reachable I/Os or variables over their total number. These metrics will be analyzed through Comodeling and Co-simulation techniques described in the following section.

III. HW/SW CO-MODELING AND CO-SIMULATION

The electronic HW/SW architecture that we comodel is composed of ECUs (Electronic Control Units) interconnected by a communication bus [START_REF] Paret | Multiplexed Networks for Embedded Systems: CAN, LIN, FlexRay[END_REF]. Every ECU is composed of a processor, a memory, a CAN interface and I/O interfaces.

A. SystemC/ Simulink Co-Modeling

In the first place, we used SystemC as a HW/SW Co-Modeling language for the entire system [START_REF] Grötker | System Design with SystemC Chapter 8[END_REF]. Therefore, it is not possible to implement the software part of the model developed in SystemC on our platform (Fig. 7) since this latter supports only C code generated from Simulink Blocks. Furthermore, Simulink is well established in the automotive industry as a quick modeling tool, offering automatic code generation.

Therefore, we use SystemC as modeling language for hardware architecture and Simulink as functional modeling language. So, we need to interface both SystemC and Simulink models as it is done in [START_REF] Warwick | SystemC calls MATLAB[END_REF]. We used the «engine.h» C++ library (in the SystemC code), which allows commanding Matlab, stopping it and exchanging data with it from a program written in C, C++, Fortran, etc. Then, Matlab launches Simulink environment for simulation.

B. ECUs and CAN Bus Modeling

In this part of the work, we have modeled in SystemC the CAN protocol real-time behavior to realize communications between ECUs models (Fig. 1). We have simplified the details to ease the modeling by implementing a virtual arbiter in the bus. With the Transaction Level Modeling (TLM), the communication between components is described as function calls.

Each ECU that needs to send a message transmits a request to the bus. If at least 2 ECUs request a bus transmission at the same time (i.e. in a time shorter than a bus cycle), the bus arbiter selects the most important message by comparing arbitration fields in the two messages. The same clock is used for all processors as the level of modeling granularity is high.

It is important to note that full CAN protocol is used only in models with high level of granularity, expressing transactions between ECUs.

C. SystemC / Simulink Co-Simulation

The co-simulation interface may be in one of two ways: Either SystemC is in charge of controlling the simulation (as SystemC environment includes also a simulator) by running the Simulink model through MATLAB, or Simulink is considered as the master of the simulation and controls SystemC models [START_REF] Czerner | Hardware with Matlab/Simulink using SystemC SystemC Users Group Meeting (ESCUG)[END_REF][13].

For our system, we adopted the first approach simply because it is the architecture (ECUs and CAN bus) that includes the embedded function (Fig. 2).

IV. COSITA Tool

We have developed the COSITA tool in order to have an interface between co-simulation and properties analysis (Fig. 3).

A. Simulation Inputs

One of our objectives is to generate scenarios for the execution of the simulated and implemented application. Therefore the first idea is to generate random values for Inputs/Outputs. But we aim to have a more intelligent approach to generate these values. Therefore, we used the dichotomous approach to cover the I/O signal range. On the other hand, several other scenarios generation methods may be used based on condition and decision coverage techniques.

Our tests will then be based on running N simulations, and in each run we apply new selected input values that may be considered as critical for the system.

B. Trace Files Generation and Analysis

The SystemC-Simulink co-simulation generates dated log files with all information about values changes of variables, ports…etc. While designing the SystemC model, we should indicate that we need to generate the simulation trace files, by adding the simple instruction "sc_create_vcd_trace_file()" to the program. Trace generation will be done by writing in a chronogram file; each signal can be logged simultaneously in several files. These files reflect the activity of the system. Trace files analysis can monitor the total behavior of a hardware architecture. For example, we can trace the internal and external activities of an ECU through its ports identifiers, variables identifiers, etc. These trace files are in Value Change Dump (VCD) format. This VCD format is specified in the standard IEEE 1364. The VCD file starts with header information giving the date, the simulator's version number and the timescale used. Next, the file contains definitions of the scope and type of variables being dumped, followed by the actual value changes at each simulation time increment. Only the variables that change value during a time increment are listed. The simulation time recorded in VCD file is the absolute value of the simulation time for the changes in variable values (Fig. 4). In a similar way of formal methods property checking techniques, we use the analysis of simulation traces method to verify certain HW-SW properties of the system modeled in SystemC-Simulink. The analysis of simulation traces has been discussed and compared to the SystemC-Simulink code parsing possibility, before it is applied.

V. FUNCTIONAL/ARCHITECTURAL DIAGNOSABILITY PROPERTIES ANALYSIS

Setting HW-SW properties for analyzing electronic architecture is strongly linked to the definition of requirements at the beginning of the development cycle. Thus, to satisfy the requirement of diagnosability in automotive architecture, we defined, but not limited to, two properties to be analyzed; Observability and Reachability.

A. Observability Checking

By observability, we mean the possibility for different functions of a system (identified by their I/Os and memory variables) to be observed by an independent diagnosis process, without interfering with the nominal operation of the system. Therefore, we check the observability potential (property) for an electronic system to allow adding a process of real time observation of the system's behavior.

We consider the observability property as a Boolean indicator for the functional/architectural diagnosis ability. It is true when the time available is sufficient for on observing process to carry out the periodic surveillance process. Hence, to determine the available time intervals for the observation process, we seek the free cycles not exploited by the nominal operation of the system.

After that, we compare the duration of the available cycles with the time necessary to execute the observation process using the same hardware resources. Keeping the same principle of analysis, this property could be also represented as an observation schedule. However, if the architecture becomes complicated, observability is represented as a degree or a Boolean as we cannot combine different observation schedules. This subject has been discussed in an earlier paper [START_REF] Khlif | Observ Diagnosis of Real Time Electronic Systems[END_REF].

B. Reachability Checking

We define reachability property as a Boolean indicator for the diagnosability of the hardware architecture. It is true when an ECUi can get access to Inputs/Outputs values of an ECUj, when both ECUi and ECUj are connected through the communication bus.

To determine the reachability of an ECUi to an Input/Output proper to ECUj, we seek messages sent from ECUi, having as a target the Input/Output in ECUj, by analyzing communication traces. For example in the (Fig. 5), we have S3=f(E1).To get the E1 value to compute f(E1), E1 of ECUj should be reachable from ECUi.

VI. PROPERTIES ANALYSIS RESULTS

We have tested our approach on the Smart Distance Keeping (SDK) function, given by a truck manufacturer. "SDK" is equivalent to the Adaptive Cruise Control (ACC) function, except that the distance/speed regulation is based only on a fixed

ECUj CAN S3 = f (E1) S1 S2 ECUi E1 E2
distance of 50 m (compliant to European regulations for heavy trucks) [START_REF] Claeys | Chauffeur restricted to RENAULT TRUCKS[END_REF]. Thus, using embedded radar, the SDK sub-system maintains a safe headway time, i.e. the inter-vehicle distance is varying as a function of the velocity and is maintained at a minimum legal distance of 50 m (Fig. 6). Fig. 6. SDK (Smart Distance Keeping) function TABLE 1 shows that 40% of the free cycles can execute observation process on the on the global system (ECUs and CAN bus).

The Boolean value "1" for the reachability of "Relative distance" (Input) and Vehicle speed (Output) confirm the observability of the event.

Reachability

VII. ANALYSIS VALIDATION

A. DIAFORE: The emulation Platform

Simulation helps engineers validate and to have a viewpoint of hardware architecture we are not able to test the physical real world of embedded functions through simulation the simulation, emulation allows the validation team to make tests very close to the final operation on the final electronic system, but on a unique configuration preset by the manufacturer of the testing platform.

DIAFORE is an automotive embedded platform composed of several Electronic Control Units Continental Corporation and based on microcontrollers. These units can communicate with each other, with a development PC and with other devices through the CAN bus (Fig. 7 To implement an application on the platform, the first step is to create a Simulink model of the application using blocks with a given sample time application is validated during the simulation phase m (compliant to European regulations Thus, using embedded radar, system maintains a safe headway time, vehicle distance is varying as a function of the velocity and is maintained at a minimum legal Distance Keeping) function shows that 40% of the free cycles can CAN bus and 30% on the global system (ECUs and CAN bus).

The Boolean value "1" for the reachability of "Relative distance" (Input) and Vehicle speed (Output) confirm the observability of the event.

B. Comparing Simulation-Emulation

In order to validate the results of properties analysis, we check simulated models but also for developed running on a real automotiv Then we compare both simulation and emulation results.

All simulated models are not 100% accurate compared to real devices due to sampling rates or to other physical constraints.

In order to compute and compare the different results, we generate trace files and emulation. Traces are obtained under two different formats depending of the source. trace is obtained directly under a while emulation results trace is obtained under log files format.

•

Trace file generation from emulation The generation of these files is done by using CANalyzer tool from VECTOR. CANalyzer is a software tool that allows users to networks and distributed embedded systems [19]. We used it to communicate with the ECUs through the CAN interface. At each Input/Output access, and each read or write of the variables in the ECU's memory, the Electronic Control Unit sends a specific CAN packet on the communication bus (CAN bus) containing the

Trace file generation from emulation

The generation of these files is done by using from VECTOR. CANalyzer is a software tool that allows users to analyze networks and distributed embedded systems . We used it to communicate with the ECUs through the CAN interface. At each Input/Output access, and each read or write of the variables in the ECU's memory, the Electronic Control Unit a specific CAN packet on the communication bus (CAN bus) containing the ECM-0555 -080-0703 SmartCraft Interconnection value of Inputs/Outputs or variables, CANalyzer collects these special packets. Each packet has its own ID (IDentifier) the ID of the considered Input/Output or variable. Therefore, at the end of the tests, we obtain a text file (log file) that contains the tra of all the values of Inputs/Outputs and variables with their access instants.

We have chosen CANalyzer to create the file due to its time accuracy, whi the program implemented in CANalyzer has an internal counter with a resolution of 1 Compared to the simulation tests, it is considered as a restriction since with the simulation process we can obtain a resolution of about picoseconds or microseconds, which is impossible real platform tools.

•

Trace file generation from simulation The generation of these files is done by the simulator in the VCD format In order to unify analysis methods and easily compare simulation and emulation results, we transform the emulation traces files from a to a VCD format that contains only the there are values changes (Fig. 8).

C. Diagnosability metrics analyses comparison

The comparison analysis results issued from simulation and emulation is directly related SystemC-Simulink co-simulation emulation on the automotive platform. retrieve the generated VCD text files simulation and from emulation, analyze them and identify the differences. In the following we present different situations of the analysis comparison

•

The first situation shows exactly the same analysis results in both simula of Inputs/Outputs or variables, while CANalyzer collects these special packets. Each (IDentifier) that reflects the ID of the considered Input/Output or riable. Therefore, at the end of the tests, we file) that contains the trace Outputs and variables

We have chosen CANalyzer to create the log file due to its time accuracy, which is 1 ms. So the program implemented in CANalyzer has an counter with a resolution of 1 ms. to the simulation tests, it is considered as a restriction since with the simulation process obtain a resolution of about picoseconds seconds, which is impossible for our file generation from simulation The generation of these files is done by the as described in IV.

unify analysis methods and easily compare simulation and emulation results, we transform the emulation traces files from a log format to a VCD format that contains only the instants where to VCD file

Diagnosability metrics analyses comparison

s results issued from directly related to results and to platform. We have to text files issued from co-, analyze them and In the following we present s comparison:

The first situation shows exactly the same s results in both simulation and emulation. For example embedded function, observability analysis result observability frequency and non observable slots of time are exactly the same in both tests not frequent; it reflects a precisely similar to hard to obtain.

•

The second situation discrepancy between the two results observable slots of time may slightly differ between simulation and emulation may be the most probable 9). This situation is it reflects a HW-SW co-model precisely similar to the real platform, which is Observability analyses comparison (First situation) situation presents a slight discrepancy between the two results; observable slots of time may slightly differ between simulation and emulation (Fig. 10). It probable situation.

Observability analyses comparison (Second situation)

presents two different cases a large difference can occur. For instance, concerning the observability have two different scenarios:

Both results are observable with different observable time slots 11).

Only one of the two results is observable (Fig. 12). scenarios may be caused by different related to the hardware, because we use the same software model in simulation and emulation, modeling errors introduced in the platform failure or while emulation, Large difference between HW-SW used in simulation and This situation reflects a divergence between the HW SW co-model and the real platform and requires a re examination of both hardware model and hardware from designers in order to

VIII. CONCLUSIONS AND PERSPECTIVES

This paper presented a tool and an approach to analyze functional/architectural diagnosability properties in automotive electronic approach is based on co-simulation trace analysis consider this work as a seed tool for the functional/architectural diagnosability analysis methodology.

In our future work we aim to extend COSITA tool to analyze other properties that we are defining to fulfill diagnosability analysis automatically new configurations of the hardware/software architecture if the system is not to integrate a diagnosis process. On the other hand, in order to cover most of the different possible scenarios, we aim also to use more advanced methods to generate inputs and variables values account critical situations. In addition, we are developing SIMECO (SIMulation/Emulation COmparison) tool in order to automate the comparison of simulation and emulation traces.

IX. ACKNOWLEDGMENTS

The implementation on the physical platform has been done on the equipped vehicles of our laboratory, where the engineering team, including Mr. Dherbome and Mr. Hanna has been involved. This situation reflects a divergence between the HWmodel and the real platform and requires a remodel and real platform order to check them.

. Observability analyses comparison (Third situation, first . Observability analyses comparison (Third situation, second ONCLUSIONS AND PERSPECTIVES a tool and an approach to itectural diagnosability electronic architecture. This simulation trace analysis. We consider this work as a seed tool for the functional/architectural diagnosability analysis

In our future work we aim to extend COSITA tool that we are defining in order diagnosability analysis and to suggest automatically new configurations of the hardware/software architecture if the system is not able to integrate a diagnosis process. On the other hand, in cover most of the different possible simulation e aim also to use more advanced methods variables values taking into In addition, we are currently SIMulation/Emulation) tool in order to automate the comparison of simulation and emulation traces.

CKNOWLEDGMENTS

The implementation on the physical platform has been done on the equipped vehicles of our laboratory, team, including Mr. Dherbomez X. REFERENCES

Fig. 1 .

 1 Fig. 1. CAN bus SystemC model

Fig. 2 .

 2 Fig. 2. SystemC-Simulink interfacing SystemC enables us to properly model the ECUs, the CAN bus and the interconnections. The developed HW model in SystemC will be our virtual platform quite close to our real one.

Fig. 3 .

 3 Fig. 3. COSITA modules

Fig. 4 .

 4 Fig. 4. VCD file format The tool suite COSITA launches SystemC-Simulink co-simulation by generating selected scenarios for cosimulation. After that, COSITA collects co-simulation traces files, merges them and analyze functional/architectural diagnosability metrics (observability and reachability) by parsing these trace files.In a similar way of formal methods property checking techniques, we use the analysis of simulation traces method to verify certain HW-SW properties of the system modeled in SystemC-Simulink. The analysis of simulation traces has been discussed and compared to the SystemC-Simulink code parsing possibility, before it is applied.

Fig. 5 .

 5 Fig. 5. ECU Input/Output reachability

Fig. 7 .

 7 Fig. 7. DIAFORE platform interconnected components

Fig. 8 .

 8 Fig. 8. Converting log file to

Fig. 9 .

 9 Fig. 9. Observability analyses comparison (First situation)

Fig. 10 .

 10 Fig. 10. Observability analyses comparison (Second situation)

Fig. 11 .Fig. 12 .

 1112 Fig. 11. Observability analyses comparison (Third situation, first scenario)

TABLE 1

 1 Example of Functional/Architectural Properties

	Property	Global	New	Relative
		system	distance	distance
	Observability	30%	0