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ASYMPTOTIC-PRESERVING AND WELL-BALANCED SCHEMEFOR THE 1D CATTANEO MODEL OF CHEMOTAXIS MOVEMENTIN BOTH HYPERBOLIC AND DIFFUSIVE REGIMESLAURENT GOSSE�Abstrat. The original well-balaned (WB) framework [19, 14℄ relying on nononservative (NC)produts [34℄ is set up in order to eÆiently treat the so{alled Cattaneo model of hemotaxis in1D [24℄. It proeeds by onentrating the soure terms onto Dira masses: this allows to handlethem by NC jump relations based on steady-state equations whih an be integrated expliitly. ARiemann solver is dedued and the orresponding WB Godunov sheme ompleted with the standardHo�-Smoller theory [24℄ for the di�usion-reation equation ruling the evolution of the hemotratantonentration is studied in detail. Later, following former results [16, 17℄, a simple rewriting of theNC jump relations allows to generate another version of the same Godunov sheme whih is welladapted to the paraboli saling involving a small parameter ". The standard BV framework is usedto study the uniform stability of this Asymptoti-Preserving (AP) sheme with respet to " allowsto pass to the limit and derive a simple entered disretization of the Keller-Segel model. Finally,results by Filbet [10℄ permit to pass to the omplementary limit when the spae-step h is sent tozero. Numerial results are inluded to illustrate the feasibility and the eÆieny of the method.Key words. Chemotaxis modeling; disrete veloity kineti model; non-onservative produts;quasi-monotone soure term; AP sheme; WB sheme.AMS subjet lassi�ations. 65M06, 35L60.1. Introdution.1.1. Modeling of hemotaxis dynamis. This paper is onerned with thefollowing semilinear model of hemotaxis movement, usually named after Cattaneo:8<: �t�+ �xJ = 0�tJ + �2�x� = ��x'� J�t'�D�xx' = ��� �':(1.1)One an rewrite it in a more mathematially tratable way by introduing its diagonalvariables (its Riemann invariants, in hyperboli terminology),w = 12 ��� J�� ; z = 12 ��+ J�� ;whih satisfy the following semilinear system of equations [18℄:8<: �tw � ��xw = � 12�G(�x';w; z)�tz + ��xz = 12�G(�x';w; z)�t'�D�xx' = ��� �':(1.2)with the onventional hoie of turning rates,G(�x';w; z) = (�x'+ �)w + (�x'� �)z:For stability reasons, we want the soure term G(�x'; :; :) to be quasi-monotone inthe terminology of [38℄ and this leads to the well-known subharateristi onditions:�wG(�x';w; z) � 0 and �zG(�x';w; z) � 0) j�x'j � �:(1.3)�IAC{CNR \MAURO PICONE" (SEZIONE DI BARI), VIA AMENDOLA 122/D, 70126BARI (ITALY) L.GOSSE�BA.IAC.CNR.IT 1



2 L. GosseThe system (1.2) an be seen as a 2-veloity disrete kineti model with w; z beingidenti�ed to f� in the notation of [17℄, the density of partiles moving with negativeand positive speed, respetively. The oupling with ' is weak in the sense that thelinear equation admits an expliit solution involving a onvolution with a dampedheat kernel and Duhamel's priniple (as written in [26℄, proof of Lemma 4); thus�x' is atually a funtion of '(t = 0) and �x�. We onsider its paraboli saling byintroduing a small parameter 0 < "� 1, and imposing �" = "2�, �" = "2�, [9℄8<: "2�tw � "��xw = � 12�G(�x';w; z)"2�tz + "��xz = 12�G(�x';w; z)"2 (�t'�D�xx') = �"�� �"';(1.4)meaning that we substitute t ! "2t, x ! "x, and \we look at the system (1.2) fromfar away with a lok whih turns very slowly". It is expeted that the behavior of(1.4) in the limit " ! 0 approahes the one indued by the so{alled Keller-Segelmodel whih ontains only a onvetion-di�usion equation for � oupled to ':�t�+ �x(�x' �) = �2�xx�; �t'�D�xx' = ��� �':(1.5)The �rst equation of (1.5) is a speial form of the lassial linear Fokker-Plank(or onservative forward Kolmogorov) equation in divergene form; however, sine 'satis�es a linear di�usion equation, �x' isn't a on�ning potential sine �xx' surelyhanges its sign when x 2 R. Observe also that the equation on � doesn't admit BV-bounds exept if �xx' � 0, whih is inompatible with the presribed equation: thiswill reate issues for the onvergene of the Asmptoti-Preserving proess. Imposingthe \small reation rates" �", �" in (1.4) is somewhat neessary; in the oppositesituation, we formally get ' = ��=�, whih leads to a nonlinear di�usion equation ofthe porous medium type, but endowed with the \wrong sign" (beause � � 0, � � 0):�t�+ �2� �xx(�2) = �2�xx�:From a mathematial point of view, this situation is related to the one ruling thebehavior of the so{alled Ruijgrok-Wu model of the Boltzmann equation, see [13, 36℄.The derivation of eÆient numerial shemes for this model has been arried out�rst in [30℄, and then in [17℄ where all the rigorous ompatness estimates have beenobtained together with numerial robustness by following the well-balaned anvasinvolving non-onservative produts (see also [34, 14, 16℄). The present text willexploit the same strategy, exept that new (and quite substantial) diÆulties arisefrom the oupling with the di�usion equation on '.1.2. WB and AP: two sides of the same oin. Asymptoti-Preseving andWell-Balaned shemes are two omplementary methodologies whih, besides havingbeen introdued roughly at the same moment (see [29, 28, 30, 32℄ and [19, 14℄), addresssimilar numerial issues in di�erent ontexts. Well-balaned shemes were designedby Greenberg and LeRoux for salar onservation laws with soure terms with twomain goals: handling sti� soure terms (thus allowing for problems displaying 2distint harateristi time-sales) without any time-step restrition besides the usualonvetive CFL ondition and being fully onsistent with a time-asymptotibehavior ruled by steady-state equations. Thus, through an original onentrationproess of soures onto Dira masses loated at both interfaes of eah omputationalell, sti�ness was disappearing beause soure terms were rendered by means of a



Well-balaned and Asymptoti-preserving for hemotaxis 3nononservative jump relation indued by the atomi measures, that have been alledlater \zero waves" [1℄. Clearly, if a soure term an be disretized in a onsistent wayby means of a supplementary jump relation inside a Riemann solver, its size (heneits \reation rate") is not relevant when it omes to time-step restrition. Moreover,Riemann problems involving a soure term onentrated on a Dira measure presentthe advantage of still being self-similar (as opposed to so{alled \generalized Rie-mann problems" [37℄) hene they still an be exatly solved in many interesting ases.An exat resolution of these Riemann problems in a Godunov sheme allows to de-rive an exat weak solution at steady-state; indeed, steady-states for one-dimensionalhomogeneous systems of onservation laws (possibly non-onservative) onsists in asuession of onstant states separated by stationary disontinuities. Assuming wehave derived the orret jump relation aross all the zero-waves resulting from thenumerial grid, thus ensuring onsisteny with the original problem, lassial resultsyield that numerial visosity e�ets ompletely disappear at steady states for thewell-balaned Godunov sheme. E�orts have been made in [14, 17℄ (see xx3.3-4 and2.1-2 respetively) to establish uniform BV-bounds in order to de�ne orretly thenononservative produts following the general framework of weak limits [34℄.It is at this point that it is easy to highlight the very lose relation with theAsymptoti-Preserving methodology. There, the two main objetives are handlingthe sti� paraboli saling of the type (1.4) for " � 1 without heavy restritionson the time-step and being onsistent with the time-dependent asymptotibehavior given in our partiular ontext by (1.5). This asymptoti behavior resultsfrom a deliate balane appearing between ux terms and the lower-order, but sti�,right-hand side as rigorous proofs learly explain in e.g. [13, 36, 43℄. Put this way, itomes with no surprise that well-balaned shemes, as soon as they an be eÆientlystabilized in order to handle onvetive veloities blowing up in 1" , furnish very reliableasymptoti-preserving disretizations. This is what has been shown in [16, 17℄ for thetelegraph equations and 2� 2 disrete kineti models; here, we shall follow the sameanvas in order to treat a more involved system arising from biologial modelling. Ob-viously, there may exist AP shemes whih don't result from a WB Godunov shemewhih onvetive step is treated impliitly in time and yield orret asymptoti limitsas " ! 0 [2, 5℄, however, the deep relation between these two numerial approahesshouldn't be overlooked. For instane, the reent sheme for Fokker-Plank equations[46℄ is a well-balaned sheme whih doesn't tell his name.This paper is organized as follows: x2 is devoted to realling theoretial resultsshown mainly in [24, 26℄. In x3, we study the well-balaned Godunov sheme for (1.2)in hyperboli regime; in partiular, smoothness estimates for the di�usive equationon ' are obtained from the Ho�-Smoller L1 study of numerial shemes for the heatequation [25℄. In x4, we onsider the asymptoti-preserving rewriting of this Godunovsheme and show various stability estimates as " ! 0. However, in ontrast withformer works [16, 17℄, it doesn't seem possible to derive BV estimates whih areuniform in both 1h , the maximum frequeny allowed by the grid, and "; we think thereason is that Keller-Segel equations don't have BV estimates at the ontinuous level.So it is neessary to pass �rst at the " ! 0 limit while maintaining h > 0 �xed,and then later send h ! 0. Finally, x5 displays numerial results illustrating formerstability estimates in both regimes and x6 gives onluding remarks.2. Theoretial results for the 1D Cattaneo model. In all the sequel, weshall taitly assume all the restritions whih are neessary to have existene anduniqueness of solutions for both (1.2) and (1.5). Here, we give a quik review of these



4 L. Gosseresults from [24, 26℄; let us onsider the Cauhy problem for (1.2), equivalently for(1.1), on the omplete real line (boundary onditions (b1) in [24℄)w(t = 0; :) = w0; z(t = 0; :) = z0; '(t = 0; :) = '0 for x 2 R;whih implies that �(t = 0; :) = w0 + z0 and J(t = 0; :) = �(z0 � w0). For tehnialreasons, besides � � 0 and � � 0, it is ustomary to assume:1. nonnegative initial values with ompat support: w0 � 0, z0 � 0, '0 � 0;moreover, some smoothness is required w0; z0 2 L1(R), '0 2 W 1;1(R).2. nonnegative turning rates: this is equivalent to the quasi-monotoniity of(1.2), whih is ensured by the subharateristi ondition. It is also postulatedthat turning rates should be symmetri when �x' hanges its sign.3. loal Lipshitz ontinuity and boundedness of turning rates: in our ase,they inherit all the smoothness of �x'. This assumption allows to enfore thequasi-monotoniity property if turning rates are taken as �max(0; ��j�x'j).Under all these assumptions, Hillen and Stevens prove in [24℄ that:Theorem 2.1. There exists a maximal time Tmax and a unique solution to (1.2),(w; z; ') 2 L1 �[0; Tmax[; L1(R)2 �W 1;1(R)� ;with Tmax possibly in�nite. If Tmax < +1, then limt!Tmax k'(t; :)kW 1;1(R) ! +1.Some further results have been published in [26℄, inluding the paraboli limit of (1.4):Theorem 2.2. Assume all the former hypotheses and moreover, that w0; z0; '0 2C1(R) with ompat support and steady-state initial distribution of '(t = 0; :):�'0 = D�xx'0 + �(w0 + z0):There exists a unique solution to (1.2) for any T > 0, (w; z; ') 2 C �[0; T [;W 1;1(R)3�.Passing to the limit with "! 0 in (1.2) in order to derive (1.5) is also studied in [26℄;however, we prefer to refer to [9℄. The framework of this paper orresponds to their\third saling" alled \small reation rates". An interesting estimate obtained in [26℄onerns the evolution in time of the norm of ' in W 1;1:Lemma 2.3. If � 2 L1(R+ ; L2 \ L1(R)), then for any t > 0, ' satis�es:k'(t; :)kL1(R) � Ck�0kL1(R);k�x'(t; :)kL1(R) � C �1 + k�0kL1(R)�1 +max(0; log t) + ����log(sup��t k�(�; :)kL2(R)������ ;with C depending only on �; � 2 (R+ )2.3. Spae loalization and Godunov sheme in hyperboli regime. Thehyperboli regime orresponds to a value of the relaxation parameter " ' 1; forsimpliity, we shall assume " = 1 in this setion and drop the orresponding indexes.In all the sequel, we shall work with a uniform numerial grid where the spae step isdenoted by h, the time step, �t; both are linked through the lassial CFL ondition��t � h:3.1. Soures on a Dira omb: jump relations aross zero-waves. Wenow arefully follow the ideas already presented in [16, 17℄, that is to say, we passfrom (1.2) to the non-linear and non-onservative system:8<: �tw � ��xw = � 12�Pj2ZhG(�x';w; z)Æ �x� (j � 12 )h��tz + ��xz = 12�Pj2ZhG(�x';w; z)Æ �x� (j � 12 )h��t'�D�xx' = ��� �';(3.1)



Well-balaned and Asymptoti-preserving for hemotaxis 5where Æ(:) stands for the Dira mass in x = 0. Clearly, in the ontext of disontinuousw; z, this formulation looks like being unstable beause of the produts \Heaviside �Dira" appearing on the right-hand side. However, it has been rigorously shown in[17℄ that these non-onservative produts an be rigorously de�ned as weak limits inthe framework of [34℄ thanks to the uniform BV estimates whih ome from the linearonvetion in (1.2) (similar estimates for salar balane laws are given in [14℄).The presene of the Dira masses indues new disontinuities on the loations(j � 12 )h, j 2 Z whih are alled the \zero waves"; in order to solve the Riemannproblem for (3.1), we must derive appropriate jump relations. Let us denote by �w; �zthe mirosopi pro�les whih are shrunk inside the non-onservative produts: theyare to satisfy the stationary equations of (1.2) whih read, for x 2 [0; h℄,2�2�x� �w�z � = � �x'+ � �x'� ��x'+ � �x'� � �� �w�z � :(3.2)The solution an be written expliitly, with obvious notation:�J(h) � �J(0); ��(h) = ���(0)� h �J(0)�2 � exp(h�x'=�2):At this mirosopi sale, the quantity �x' is a onstant. Hene we have the result:Lemma 3.1. For any h > 0, the stationary equations of (1.2) yield the followingjump relations aross the zero-waves of (3.1) loated in (j � 12 )h, j 2 Z:�w(0) = 21 +B �w(h) + 1�A1 +B �z(0); �z(h) = �1�B1 +B �w(h) + A+B1 +B �z(0);(3.3)with the notation:A = �1� h�� exp(h�x'=�2); B = �1 + h�� exp(h�x'=�2):In partiular, the following important relation holds: (ux onservation)�w(0)� �w(h) = 1�B1 +B �w(h) + 1�A1 +B �z(0) = �z(0)� �z(h):(3.4)Proof. We rewrite ��(h) with the diagonal variables �w, �z:�w(h) + �z(h) = � �w(0) + �z(0) + h �w(0)� �z(0)� � exp(h�x'�2 );and we also have that �w(h)� �w(0) = �z(0)� �z(h). This leads to the following system:� (1 + h� ) exp(h�x'�2 ) �11 1 �� �w(0)�z(h) � = � 1 �(1� h� ) exp(h�x'�2 )1 1 �� �w(h)�z(0) � :The matrix on the left is always invertible beause its determinant 1+(1+h� ) exp(h�x'�2 )is stritly positive. The oeÆients A and B are taken from these matries; invertingand multiplying them yields the jump relations (3.4).It is interesting to observe that a simple linearization of exponentials gives:1 � 1�A1 +B = exp(�h�x'=�2)� 1 + h=�exp(�h�x'=�2) + 1 + h=� ' h2� � �� �x'�� (�x'� �)h=2�� � 0;0 � 1�B1 +B = exp(�h�x'=�2)� 1� h=�exp(�h�x'=�2) + 1 + h=� ' � h2� � �x'+ ��� (�x'� �)h=2�� � �1:



6 L. GosseThese linearizations will be useful for establishing onsisteny as h ! 0 sine j�x'jremains bounded for D; � � 0 are big enough. In pratie, a �rst order divideddi�erene omputed at eah interfae x = (j � 12 )h and t = n�t will appear in plaeof �x'; there are no zero-waves involved in the disretization of ', obviously.3.2. Ho�-Smoller theory for the equation on '. It is well-known thatstritly paraboli equations indue an instantaneous regularizing e�et whih, in ourontext, makes '(t; :) a W 2;p(R) funtion for t > 0. This feature an't exatly bereprodued by a simple �nite-di�erene sheme, however, Ho� and Smoller showedthat a good deal of it still holds for onventional entered disretizations. In order topresent part of their results, let us �rst present the 1D heat equation:�tv = D�xxv; vn+1j = vnj + D�th2 �vnj+1 � 2vnj + vnj�1� :(3.5)Ho� and Smoller [25℄ introdue next the onept of \numerial fundamental solution":Definition 1. For any n 2 N, the numerial fundamental solution to (3.5) isthe sequene (Enj )j2Z2 `1 \ `1(Z) satisfying:E0j = 1hÆj=0; En+1j = Enj �1� 2D�th2 �+ D�th2 �Enj+1 + Enj�1� :It is nonnegative if 2D�t � h2.We denote by \*" the disrete onvolution produt:8a; b 2 `1 \ `1(Z); (a � b)j :=Xj2Zha`�jb`;whih satis�es (besides ommutativity):Xj2Zhj(a � b)j j � 0�Xj2Zhjaj j1A0�Xj2Zhjbj j1A ; supj2Zj(a � b)j j � supj2Zjaj j0�Xj2Zhjbj j1A :We propose therefore to de�ne a pieewise onstant approximation ~'h(n�t; :) for anyn 2 N as usual, 'h(t; x) := 'nj for t; x 2 [n�t; (n + 1)�t[�[(j � 12 )h; (j + 12 )h[; aonsequene of Theorem 2.1 in [25℄ is the expliit form of the following sheme,'n+1j (1 +�t�) = 'nj + ��t�nj + D�th2 �'nj+1 � 2'nj + 'nj�1� ;whih involves a disrete Duhamel's priniple:'nj = (1 +�t�)�n(En � '0) + ��t1 + ��t n�1Xk=0(1 +�t�)k�(n�1) �E(n�1)�k � �k� :(3.6)This notation is used hereafter:8j; n 2 Z� N; (�x')nj+ 12 := 1h �'nj+1 � 'nj � :The main interest in hoosing this sheme is the numerial analogue of the regularizinge�et whih holds at the ontinuous level as stated in Theorem 2.2 of [25℄:



Well-balaned and Asymptoti-preserving for hemotaxis 7Theorem 3.2. Assume 2�tD � h2, then:8n 2 N; Xj2ZEnj = 1; 0 � Enj � min� 1h; C0pn�t� ;and moreover,Xj2ZjEnj+1 � Enj j � C1pn�t ; 1hXj2ZjEnj+1 � 2Enj + Enj�1j � C2n�t :The onstants C0; C1; C2 depend only on D � 0.It is now possible to study the time propagation of the subharateristi ondition:Lemma 3.3. Let 2�tD = O(h2) and assume that '0 2 L1(R) \ W 1;1(R),�h(t; :) 2 L1\BV (R) for any t � 0. Then, for �t > 0, the subharateristi onditionholds for any n 2 N if one of the two following requirements is met:1. � supn TV (�h(n�t; :)) � ���� (1 + ��t)�n supj j(�x')0j+ 12 j� ;2. �� (1+��t)�n supj j(�x')0j+ 12 j � Snk�hkL1 + 2��th(1 + ��t)k�h(n�t; :)kL1(R);with Sn depends on n; �; � and C1. Moreover, there also holds:TV ((�x')(n�t; :)) :=Pj2Zj(�x')nj+ 12 � (�x')nj� 12 j � (1 + ��t)�n C2n�tk'0kL1(R)+~Snk�hkL1 + 4��th2(1+��t)k�h(n�t; :)kL1(R):Proof. Thanks to the �rst estimate of Theorem 3.2, everything starts with(�x')nj+ 12 � � = En � (�x')0j+ 12(1 + ��t)n � �!+ ��t1 + ��t n�1Xk=0 Æ[E(n�1)�k � �k℄h(1 + ��t)(n�1)�k ;whih should be negative. The �rst term is handled by taking advantage of theresulting onvex ombination and taking the supremum on j 2 Z. The seond termis deliate as we must deide on whih part we want to apply the divided di�ereneoperator denoted here Æ[:℄=h for easiness in reading. The �rst solution, whih leadsto Point 1 in Lemma 3.3 is to apply it on �h and suppose this funtion has boundedtotal variation in the spae variable. In this ase, it remains only to observe that:��t1 + ��t n�1Xk=0(1 + ��t)k�(n�1) � �� :To prove Point 2, we proeed by applying the divided di�erene on the fundamentalsolution. However, it an't be diretly applied for k = n� 1, but in this ase, we seethat TV (E0) = 2=h. The rest of the summation an be ontrolled by means of:k�hkL1(n�2Xk=0(1 + ��t)k�n C1��tp((n� 1)� k)�t) =: k�hkL1Sn:



8 L. GosseNow, in order to prove the estimate on the total variation of the �rst-order divideddi�erene, we observe that TV (ÆE0=h) = kÆ2E0=h2k`1(Z) = 4=h2 and we ompute:(�x')nj+ 12 � (�x')nj� 12 = '0 � [Æ2En℄h2(1 + ��t)n + ��t1 + ��t n�1Xk=0 Æ2[E(n�1)�k � �k℄h2(1 + ��t)(n�1)�k :We proeed by diretly applying the estimates of Theorem 3.2 to the �rst term. Thenew onstant ~Sn is given by the following summation:~Sn := n�2Xk=0 C2��t((n� 1)� k)�t (1 + ��t)k�n:Finally, the last term orresponding to k = n� 1 is bounded by:��t1 + ��tTV (ÆE0=h)k�h(n�t; :)kL1(R) � 4��th2(1 + ��t)k�h(n�t; :)kL1(R):A `1 bound on the seond order divided di�erene of 'h an be obtained the same wayby replaing k'0kL1(R) and k�h(n�t; :)kL1(R) by k'0kL1(R) and k�h(n�t; :)kL1(R),respetively.In the sequel (see Lemma 3.4), we shall see that the propagation in time of thesubharateristi ondition ensures that the Lp(R) norms of �(t; :) remain boundedas a onsequene of the quasi-monotoniity of the soure term G only whih is aonsequene of the subharateristi ondition. Establishing a BV-bound for �h(t; :)asks for a `1 bound on the seond order divided di�erene of 'h(t; :). Conerningthe hoie of having studied an expliit time disretization on the di�usion equationof ', there is a simple way to irumvent the restritive paraboli CFL ondition: itsuÆes to hoose the time-step for the di�usion equation as �h=D times the one forthe hyperboli system and to keep � onstant during the D=(�h) sub-iterations. Thisadjustment will disappear when setting up the Asymptoti-Preserving proess.3.3. Riemann solver and a Godunov sheme in hyperboli regime.Lemma 3.1 is the key to produe a Riemann solver for the non-onservative system(3.1) and thus a Godunov sheme. Let's denote wnj ' w(n�t; jh) and znj ' w(n�t; jh)for any j 2 Z and n 2 N; these numerial approximations indue pieewise onstantfuntions wh(t; x) and zh(t; x) suh that:wh(t; x) := wnj ; zh(t; x) := znj for t; x 2 [n�t; (n+ 1)�t[� �(j � 12)h; (j + 12)h� :The Godunov sheme proeeds in de�ning a ontrol ell ℄(j� 12 )h; (j+ 12 )h[�℄n�t; (n+1)�t[ around eah point xj = jh, solving a Riemann problem on both interfaes(j � 12 )h and averaging: see Fig. 3.3. Within the notation of this �gure, it holds:wn+1j = wnj + ��th �w�j+ 12 � wnj � ; zn+1j = znj � ��th �znj � z�j� 12� :A �rst onsequene is the onservation property on the �h := wh + zh variable:�h((n+ 1)�t; jh) := �n+1j = �nj � �th �� (znj � w�j+ 12 )| {z }(z�j+12�wnj+1) ��(z�j� 12 � wnj )�:(3.7)
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Fig. 3.1. Illustration of the ontrol ell for the non-onservative Godunov shemeClearly, the \interfae values" whih result from the inlusion of the zero-waves yield:8>>>>>>><>>>>>>>:
wn+1j = wnj + ��th �wnj+1 � wnj �+ ��th�1+Bnj+ 12� �(1�Bnj+ 12 )wnj+1 + (1�Anj+ 12 )znj � ;zn+1j = znj � ��th �znj � znj�1�� ��th�1+Bnj� 12� �(1�Bnj� 12 )wnj + (1�Anj� 12 )znj�1� :(3.8)We stress that sine A and B are omputed at the borders of eah ontrol ell, theterm �x' is very well de�ned beause odd derivatives \live on the staggered grid".Proposition 3.4. Let w0 and z0 belong to Lp(R), 1 � p � 1; under both theCFL ondition ��t � h and the subharateristi restrition � � j�x'j, there holds:8t 2 R+ ; kwh(t; :)kLp(R)+ kzh(t; :)kLp(R) � kw0kLp(R)+ kz0kLp(R):(3.9)Proof. One heks that the linear well-balaned sheme is a onvex ombination:jwn+1j j � jwnj j�1� ��th �+ ��th jwnj+1j 1 + 1�Bnj+ 121 +Bnj+ 12 !+ ��t(1�Anj+ 12 )h(1 +Bnj+ 12 ) jznj j;and our assumptions ensure that �1 � 1�Bnj+121+Bnj+ 12 � 0 and 0 � 1�Anj+121+Bnj+ 12 � 1, henejzn+1j j � jznj j�1� ��th �+ ��th jznj�1j 1� 1�Anj� 121 +Bnj� 12 !� ��t(1�Bnj� 12 )h(1 +Bnj� 12 ) jwnj j:It remains to sum up or to take the supremum on j 2 Z in order to onlude.The bound (3.9) is ruial; however, sine the subsystem of (3.1) ruling only wand z is not translation-invariant beause of �x', it doesn't lead to a BV-bound as



10 L. Gossediretly as one ould hope for at �rst glane. However, this bound ompletes nielyLemma 3.3 beause if we hoose p = 1 in (3.9), we see that the hypothesis made onk�h(t; :)kL1(R) � kwh(t; :)kL1(R)+ kzh(t; :)kL1(R) is satis�ed for instane if we assumethat w0 � 0 and z0 � 0, whih amounts to asking for a small momentum initially.3.4. Compatness for the Well-Balaned Godunov sheme. To establishstrong onvergene of wh and zh toward the unique solution of (1.2), we need a boundon the total variation of wh(t; :) and zh(t; :).Lemma 3.5. Let � � 0, '0 2 W 1;1(R) and w0; z0 2 L1 \BV (R); under both theCFL ondition ��t � h and the subharateristi restrition � � supj;n j(�x')nj+ 12 j,the following BV-bounds hold for any n 2 N:TV �wh(n�t; :)�+ TV �zh(n�t; :)� � TV (w0) + TV (z0)+L� n�t �kw0kL1(R)+ kz0kL1(R)� ;(3.10)where L is the Lipshitz onstant of � 1�A1+B ; 1�B1+B� depending on the values of (�x')nj+ 12 .Proof. One proeeds by omputing the di�erentiating the well-balaned sheme:jwn+1j+1 � wn+1j j � �1� ��th � jwnj+1 � wnj j+ ��th �1 + 1�Bnj+ 321+Bnj+ 32 � jwnj+2 � wnj+1j+��th ���� 1�Bnj+ 321+Bnj+ 32 � 1�Bnj+ 121+Bnj+ 12 ���� jwnj+1j+ ��th 1�Aj+321+Bj+ 32 jznj+1 � znj j+ ��th ���� 1�Anj+321+Bnj+ 32 � 1�Anj+ 121+Bnj+ 12 ���� jznj j;where the same properties on 1�A1+B � 0, 1�B1+B � 0 are used, and thenjzn+1j+1 � zn+1j j � �1� ��th � jznj+1 � znj j+ ��th �1� 1�Anj+ 121+Bnj+ 12 � jznj � znj�1j+��th ���� 1�Anj+121+Bnj+ 12 � 1�Anj� 121+Bnj� 12 ���� jznj�1j � ��th 1�Bj+121+Bj+ 12 jwnj+1 � wnj j+ ��th ����1�Bnj+ 121+Bnj+ 12 � 1�Bnj� 121+Bnj� 12 ���� jwnj j:Summing on j 2 Z, we have anellations exept for the terms rendering from theosillations of 1�A1+B and 1�B1+B whih depend on x through �x'. They read:O := 2��th Xj2Z�����1�Bnj+ 121 +Bnj+ 12 � 1�Bnj� 121 +Bnj� 12 ����� jwnj j+ �����1�Anj+ 321 +Bnj+ 32 � 1�Anj+ 121 +Bnj+ 12 ����� jznj j:Now, we know that these two quantities are perturbations of h(�x'� �)=2�2. More-over, from the disrete regularizing e�et of [25℄ and Lemma 3.3, we dedue theirLipshitz regularity (reall that the denominator never vanishes), so there exists aLipshitz onstant L depending on the initial data and the grid parameters suh thatO � 2L��th h2�2 Xj2Zjwnj j+ jznj j � L �t� �kw0kL1(R)+ kz0kL1(R)� ;the last inequality oming from Lemma 3.4.Remark 1. One sees here the big diÆulty in treating the system (1.2): theBV-bound (3.10) needs both seond order divided di�erenes for 'h(t; :) to be eitherin `1(Z), or in `1(Z) for laiming that L is uniformly bounded and also the subhar-ateristi ondition in order to keep the soure term G quasi-monotone and ensurethat the Lp bounds (3.9) hold through time.



Well-balaned and Asymptoti-preserving for hemotaxis 11We swith to time-equiontinuity:Lemma 3.6. Under the hypotheses of Lemma 3.5, the pieewise onstant approx-imations wh, zh are endowed with a L1-modulus of time equiontinuity:kwh(t+�t; :)� wh(t; :)kL1(R)+ kzh(t+�t; :)� zh(t; :)kL1(R) ��t �TV �wh(t; :)�+ TV �zh(t; :)�+ C �kw0kL1(R)+ kz0kL1(R)�� ;for any t 2 R+ and C := supj;n����� 1�Anj+121+Bnj+ 12 ���� ; ���� 1�Bnj+121+Bj+12n �����.Proof. It suÆes to add up the shemes on wn+1j �wnj and zn+1j � znj , to take themodulus, multiply by h and sum on j 2 Z:hPj2Zjwn+1j � wnj j+ jzn+1j � znj j � �tPj2Zjwnj+1 � wnj j+ jznj+1 � znj j+2�t� supj ����� 1�Anj+121+Bnj+ 12 ���� ; ���� 1�Bnj+121+Bj+12n �����hPj2Zjwnj+1j+ jznj j:Applying the BV-bound (3.10) and the Lp-bound (3.9) together with the propertiesof 'h(t; :) yields the onlusion.Finally we are in position to prove the onvergene of our well-balaned shemetoward the unique solution of (1.2):Theorem 3.7. Let � � 0, '0 2 L1 \W 1;1(R) and w0; z0 2 L1 \ BV (R); underboth the CFL and the subharateristi restritions, ��t � h, � � Lip('h(t:; )), thesequene wh; zh; 'h onverges strongly as h! 0 toward the unique solution of (1.2).Proof. The proof onsists in heking both the Lax requirements: stability andonsisteny. Lemmas 3.9, 3.5 and 3.6 ensure that one an extrat a subsequene in-dexed by hk ! 0 whih onverges strongly in L1lo(R+� � R). The results from [24℄yield the strong onvergene of 'h generated by the �nite di�erenes sheme (3.6).Conerning the onsisteny, the diagonal onvetive part is very lassial. The onsis-teny for the soure term G an be obtained from the linearization of the exponentialsfor small h and � > 0: (these quantities appear always multiplied by �t)�h � 1�A1 +B� ' �h h2� � �� �x'h�� (�x'h � �)h=2��! 12� (�� �x') ;�h �1�B1 +B� ' ��h h2� � �x'h + ��� (�x'h � �)h=2��! � 12� (�+ �x') :By uniqueness of the limit proved in [24, 26℄, the whole sequene onverges.Remark 2. Conerning the preservation of steady-states, the Godunov shemeon wnj and znj preserves all the steady-states of the 2 � 2 system. The issue omesfrom the entered sheme (3.6) on ': learly, even if we furnish an initial datum '0whih satis�es �t'0 = 0 as in [24, 26℄, it is likely to be perturbed and a spuriousdynami may be ignited. However, we aren't aware of any well-balaned sheme forthe di�usion equation; a remedy may be to approximate the equation on ' by a systemof \hyperboli heat equations" (like in [16℄), build a traditional well-balaned shemeon this approximation, and then plug it inside the present framework. This wouldonstitute a omplex system of 2 Cattaneo models (weakly) oupled by ' and �.4. Di�usive saling through a modi�ation of NC jump relations. Inthis setion, we adopt the di�usive saling (1.4) and, following [16, 17℄, we investigatehow the preeding well-balaned sheme an handle the limit "! 0 under the simpleparaboli CFL restrition �t = O(h2). Clearly, the onvetive part is to be treatedimpliitly in time, but this isn't ostly as it is linear.



12 L. Gosse4.1. Rewriting jump relations makes the Maxwellian appear. The �rstthing to observe is that the paraboli saling an be handled in the steady-stateequations (3.2) by simply hanging h! h=". Hene it makes sense to introdue newoeÆients de�ned as follows with � > 0 and " > 0:A" = �1� h"�� exp(h�x'="�2); B" = �1 + h"�� exp(h�x'="�2):We stress that when we resale x ! "x, the quantity �x' appearing in the jumprelations beomes �x'=" whih remains bounded. In the sequel and in the set ofresaled variables, we shall ontinue to work with the numerial approximation:8j; n 2 Z� N; (�x')nj+ 12 := 1h �'nj+1 � 'nj � :Starting from here, we shall use the onvention of writing �x' as the spae derivativeof ' with respet to the resaled variable "x, so the " in the denominator drops.Following [16℄, we rewrite the jump relations (3.3) ourring through the zero-waves:�w(0) = 21+B" �w(h) + 1�A"1+B" �z(0)= �z(0)� A"+B"1+B" �z(0) + 21+B" �w(h)= �z(0) + A"+B"1+B" ( �w(h)� �z(0)) + 2�(A"+B")1+B" �w(h);and, �z(h) = �z(0)� 1�B"1+B" �w(h)� 1�A"1+B" �z(0)= �w(h)� 21+B" �w(h) + A"+B"1+B" �z(0)= �w(h) + A"+B"1+B" (�z(0)� �w(h))� 2�(A"+B")1+B" �w(h):Observe also that for any " > 0, A" + B" = 2 exp(h�x'=�2). We rewrite the well-balaned Godunov sheme of the former setion with these jump relations and treatingpart of the onvetive term impliitly; denoting C" := 2� (A" +B"), it omes:8>>>>>>>>>><>>>>>>>>>>:
wn+1j = wnj + ��t"h �zn+1j � wn+1j �+��t�An";j+12+Bn";j+ 12�"h�1+Bn";j+ 12� �wnj+1 � znj �+ ��tCn";j+ 12"h�1+Bn";j+ 12�wnj+1;zn+1j = znj � ��t"h �zn+1j � wn+1j ����t�An";j� 12+Bn";j� 12�"h�1+Bn";j� 12 � �wnj � znj�1�� ��tCn";j� 12"h�1+Bn";j� 12�wnj :(4.1)

Let us pause here in order to distinguish between the various terms appearing in thisnew rewriting of the same Godunov sheme:� the impliit term zn+1j �wn+1j is penalized by "; it is a Maxwellian term whihis meant to enfore wh = zh = �h2 in the limit "! 0.� the oeÆient ��t"h A"+B"1+B" = 2��t exp(h�x'=�2)"h(1+(1+h="�)) exp(h�x'=�2) ! 2�2�th2 as "! 0; it istherefore meant to generate the entered disretization of the di�usion term�2�xx� when both the equations are added. No spurious term in h remains,this is one part of the AP property.



Well-balaned and Asymptoti-preserving for hemotaxis 13� �nally, the oeÆient ��tC""h(1+B") asks for more involved omputations:2��t(1� exp(h�x'�2 ))"h(1 + (1 + h=�) exp(h�x'�2 )) = 2�2�t(1� exp(h�x'�2 ))"h�+ ("h�+ h2) exp(h�x'�2 )' 2�2�th2 �exp(�h�x'"�2 )� 1�' 2�t�x'h ; "! 0:The spae derivative of ' inside the zero-wave has been resaled aording tothe onvention previously disussed. The AP property is omplete.As the impliit onvetion terms are linear, it possible to invert it expliitly; following[16, 17℄, we introdue the notations: a = 1 + ��t"h , b = ��t"h � 0. Inverting the matrixappearing in (4.1) gives the following sheme:8<: wn+1j = aa+b �wnj + ÆWnj+ 12�+ ba+b �znj � ÆZnj� 12 � ;zn+1j = ba+b �wnj + ÆWnj+ 12�+ aa+b �znj � ÆZnj� 12� ;(4.2)where the new quantities read,ÆWnj+ 12 = ��t"h " An";j+ 12 +Bn";j+ 121 +Bn";j+ 12 + Cn";j+ 121 +Bn";j+ 12 !wnj+1 � An";j+ 12 +Bn";j+ 121 +Bn";j+ 12 znj # ;and ÆZnj� 12 = ÆWnj� 12 . For any value of " � 0, there holds for j 2 Z: A" + B" � 0,A"+B"+C" = 2. Moreover, we shall hereafter impose the \paraboli CFL restrition":1 � ��t"h  An";j+ 12 +Bn";j+ 12 + Cn";j� 121 +Bn";j+ 12 ! ' 2�th2 ���'nj+1 � 'nj ��+ �2� :(4.3)We are now in position to study Lp bounds and BV-bounds by seeking to rewrite(4.1) as a onvex ombination of the neighboring ells. As in the previous setion, wede�ne the following funtions for any value of " > 0,8(j; n) 2 Z� N; wh(n�t; jh) := wnj ; zh(n�t; jh) := znj ;with the numerial values wnj and znj being generated by (4.1). We still treat thedi�usion equation on ' by means of the expliit entered sheme (3.6) whih is stableunder the paraboli CFL ondition 2D�t � h2.Lemma 4.1. Assume that " � ��th and the CFL ondition (4.3) holds, then:8t 2 R+ ; kwh(t; :)kLp(R)+ kzh(t; :)kLp(R) � kw0kLp(R)+ kz0kLp(R):(4.4)Proof. The proof is omputationally tedious but onsists only in heking thenonnegativity of ertain quantities whih are moreover asked to equal 1 when they



14 L. Gosseare summed up. Let us rewrite the equation on wn+1j �rst:wn+1j = wnj+1 aba+b �An";j+ 12+Bn";j+ 121+Bn";j+ 12 + Cn";j+121+Bn";j+12 �+znj ba+b �1� aAn";j+12+Bn";j+121+Bn";j+12 �+ wnja+b �a� b2�An";j� 12+Bn";j� 121+Bn";j� 12 + Cn";j� 121+Bn";j� 12 ��+znj�1 b2a+b �An";j� 12+Bn";j� 121+Bn";j� 12 � :At this point, the only thing to notie is that, sine a = 1 + b,a� b2A+B + C1 +B = 1 + b �1� b�A+B + C1 +B ��| {z }�0 by (4:3) � 0;and (4.3) also implies that the oeÆient on znj is nonnegative. Let's pass to zn+1j :zn+1j = wnj+1 b2a+b �An";j+12+Bn";j+121+Bn";j+ 12 + Cn";j+121+Bn";j+ 12 �+ znja+b �a� b2An";j+ 12+Bn";j+ 121+Bn";j+ 12 �+wnj ba+b �1� a�An";j� 12+Bn";j� 121+Bn";j� 12 + Cn";j� 121+Bn";j� 12 ��+znj�1 aba+b �An";j� 12+Bn";j� 121+Bn";j� 12 � :The oeÆient on wnj is nonnegative if 1� 1b � 0 and this is ensured by " � ��th � 1.One an now take the moduli in both equations and sum up; it omes that,Xj2Zh �jwn+1j j+ jzn+1j j� �Xj2Zh �jwnj j+ jznj j� :The BV-bound will be obtained the same way, exept that the spae dependene ofthe oeÆients A;B;C through �x' will make the omputations even more intriate.Proposition 4.2. Let " � ��th ; assume that for any n 2 N, (�x')nj+ 12�(�x')nj� 12hanges sign only at a �nite number N of loations jn1 ; jn2 ; :::; jnN 2 Z, that the CFLondition (4.3) holds and that Lip('h) ' Lh for some L 2 R+ , then for any t 2 R+ :TV (wh(t; :)) + TV (zh(t; :)) � exp(2Lt) �TV (w0) + TV (z0)�+O(")+N(kw0kL1(R)+ kz0kL1(R))(exp(2tL)� 1):(4.5)In the speial ase where (�x')nj+ 12 � (�x')n for all j 2 Z, the TVD property holds:8t 2 R+ ; TV (wh(t; :)) + TV (zh(t; :)) � TV (w0) + TV (z0) with L = 0:Proof. We proeed as in the proof of Lemma 4.1, with a �rst set of terms atingon di�erenes like wnj+1 � wnj and znj+1 � znj ; we don't repeat the omputations as



Well-balaned and Asymptoti-preserving for hemotaxis 15they are very similar. We onentrate on the new terms arising from the lak oftranslation-invariane and without loss of generality, we assume that N = 2 as thesituation for higher N an be handled the same way (moreover, the asymptoti pro�leof the heat equation is the Gaussian funtion whih has only 2 inexion points in R).wnj+1 aba+b �An";j+32+Bn";j+ 32+Cn";j+ 321+Bn";j+ 32 � An";j+ 12+Bn";j+ 12+Cn";j+121+Bn";j+ 12 ��znj aba+b �An";j+ 32+Bn";j+ 321+Bn";j+ 32 � An";j+ 12+Bn";j+ 121+Bn";j+ 12 ��wnj b2a+b �An";j+12+Bn";j+ 12+Cn";j+121+Bn";j+ 12 � An";j� 12+Bn";j� 12+Cn";j� 121+Bn";j� 12 �+znj�1 b2a+b �An";j+ 12+Bn";j+ 121+Bn";j+ 12 � An";j� 12+Bn";j� 121+Bn";j� 12 � ;for the equation on wnj , andwnj+1 b2a+b �An";j+32+Bn";j+ 32+Cn";j+ 321+Bn";j+ 32 � An";j+ 12+Bn";j+ 12+Cn";j+121+Bn";j+ 12 ��znj b2a+b �An";j+ 32+Bn";j+ 321+Bn";j+ 32 � An";j+ 12+Bn";j+ 121+Bn";j+ 12 ��wnj aa+b �An";j+12+Bn";j+ 12+Cn";j+121+Bn";j+ 12 � An";j� 12+Bn";j� 12+Cn";j� 121+Bn";j� 12 �+znj�1 aba+b �An";j+ 12+Bn";j+ 121+Bn";j+ 12 � An";j� 12+Bn";j� 121+Bn";j� 12 � ;for the equation on znj . Summing moduli on j 2 Z yields on the one hand:2bXj2Zjznj j �����An";j+ 32 +Bn";j+ 321 +Bn";j+ 32 � An";j+ 12 +Bn";j+ 121 +Bn";j+ 12 ����� = O(");and this quantity is of the order of " sine bAn";j+12+Bn";j+ 121+Bn";j+ 12 ! 2�2�t=h2 (independent ofj) as "! 0. On the other hand, let us introdue jn1 � jn2 whih are the points wherethe seond order divided di�erene of 'h(n�t; :) hanges its sign; for j 2 [jn1 ; jn2 ℄,(�x')nj+ 12 � (�x')nj� 12 � 0, and it is nonnegative elsewhere. Taking moduli in boththe former equalities and linearizing the exponentials yields, up to O("),2bPj2[jn1 ;jn2 ℄ jwnj j ���� 11+Bn";j+ 12 � 11+Bn";j� 12 ���� ' 2bPj2[jn1 ;jn2 ℄ jwnj j� 11+Bn";j+ 12 � 11+Bn";j� 12 �' Pj2[jn1 ;jn2 ℄ bCn";j+121+Bn";j+ 12 (jwnj j � jwnj+1j)+ bCn";jn1 + 121+Bn";jn1 + 12 jwnjn1 j � bCn";jn2 +121+Bn";jn2 + 12 jwnjn2 j� Pj2[jn1 ;jn2 ℄ ���� bCn";j+121+Bn";j+ 12 ���� jwnj+1 � wnj j+ ���� bCn";jn1 +121+Bn";jn1 + 12 ���� jwnjn1 j+ ���� bCn";jn2 + 121+Bn";jn2 + 12 ���� jwnjn2 jwhere we exploited �rst the onavity of 'h(n�t; :) (whih gives that Cn";j+121+Bn";j+ 12 isinreasing with respet to j), and then made a summation by parts inluding the



16 L. Gosseboundary terms. Form the strong assumption made on the Lipshitz onstant of 'h,����� bCn";j+ 121 +Bn";j+ 12 ����� � 2�th �supj j(�x')nj+ 12 j+O(")� � 2�t (L+O(")) ;and this allows to inlude nonnegative O(�t) terms. Finally, we obtain:Xj2Zjwn+1j+1 � wn+1j j+ jzn+1j+1 � zn+1j j � (1 + 2�tL)Xj2Zjwnj+1 � wnj j+ jznj+1 � znj j+O(") + 4�tL supj jwnj j:From (4.4), we get the deay in time of the L1 norms and sine the number ofinexion points is supposed �nite, the last term is bounded. Now, this quantity anbe summed up to n = 0 thanks to the �t whih appear in the all the terms responsiblefor an inrease of the total variation in spae. More preisely,TV (wh(n�t; :)) + TV (zh(n�t; :)) � (1 + 2�tL)n(TV (w0) + TV (z0)) +O(")+4Lip('h)�t(kw0kL1(R)+ kz0kL1(R)) 1�(1+2�tL)n1�(1+2�tL)� exp(2n�tL)(TV (w0) + TV (z0)) +O(")+2(kw0kL1(R)+ kz0kL1(R))(exp(2n�tL)� 1);where we have used (4.4) and the formula for the summation of a geometri sequene.The more general ase where more than 2 inexion points appear an be treated thesame way at the prie of more intriate omputations.4.2. Maxwellian ontrol and stability of the di�usive sheme. The sit-uation as presented in Proposition 4.2 is very deliate: it illustrates the fat thatthe approximation proess, whih generates stable BV numerial solutions hopefullystable uniformly in " � 1 (see Lemma below) is inompatible with the Keller-Segelsystem (1.5) whih appears to be the limit equation. Indeed, suh a linear Fokker-Plank equation endowed with a potential whih is neither divergene-free (in the 1Dontext, this redues to �xx' = 0) nor on�ning (meaning �xx' � 0) doesn't admitgenerally solutions whih are total-variation bounded. Hene the bound (4.5) existsfor any h > 0, but blows up and beome useless in the limit h ! 0 beause thereexists no BV-theory for the ontinuous 1D Keller-Segel system set on the real line.The bound (4.5) allows to ontrol the deviation from the Maxwellian equilibrium:Lemma 4.3. Under the assumptions of Proposition 4.2, if kw0� z0kL1(R) = O(")(well-prepared initial data) and for " small enough, there holds for any t > 0:kwh(t; :)� zh(t; :)kL1(R) = O("):(4.6)Proof. We subtrat the equations appearing in the semi-impliit sheme (4.1):(1 + 2b) �wn+1j � zn+1j � = wnj � znj + ��t�An";j+ 12+Bn";j+ 12�"h�1+Bn";j+12 � �wnj+1 � znj �+��t�An";j� 12+Bn";j� 12�"h�1+Bn";j� 12 � �wnj � znj�1�+ ��tCn";j+12"h�1+Bn";j+ 12�wnj+1 + ��tCn";j� 12"h�1+Bn";j� 12�wnj :



Well-balaned and Asymptoti-preserving for hemotaxis 17We add and subtrat the following 2 terms,��t(An";j+ 12 +Bn";j+ 12 )"h(1 +Bn";j+ 12 ) wnj ; and � ��t(An";j� 12 +Bn";j� 12 )"h(1 +Bn";j� 12 ) znj ;in the preeding equation in order to make appear all the available Maxwellian termstogether with other terms whih an be ontrolled by the Lp bounds and the BV-bound. Thus, we take the modulus and sum on j 2 Z to obtain �rst(1 + 2b)(wn+1j � zn+1j ) = (wnj � znj )�1 + bAn";j+ 12+Bn";j+ 121+Bn";j+ 12 + bAn";j� 12+Bn";j� 121+Bn";j� 12 �+bAn";j+12+Bn";j+ 121+Bn";j+ 12 (wnj+1 � wnj )� bAn";j� 12+Bn";j+121+Bn";j+12 (znj � znj�1)+b Cn";j+121+Bn";j+ 12 wnj+1 + b Cn";j� 121+Bn";j� 12 wnj ;and then, as 1+2bA+B1+B1+2b ' h2+4��th2(1+2�t�="h ' "h ;Pj2Zhjwn+1j � zn+1j j � "hPj2Zhjwnj � znj j+ 2b1+2bPj2Z���� Cn";j� 121+Bn";j� 12 ����hjwnj j+ b1+2bPj2Zh ����An";j+ 12+Bn";j+ 121+Bn";j+ 12 ���� �jwnj+1 � wnj j+ jznj+1 � znj j� :At this point, one noties that, up to an error of the order of "� 1,An";j+ 12 +Bn";j+ 121 +Bn";j+ 12 ' 2�"h ; Cn";j� 121 +Bn";j� 12 ' 2"(�x')nj+ 12� ; 2b1 + 2b ' 1;so, taking advantage of (4.4), it omes for any t 2 R+ :kwh(t+�t; :)� zh(t+�t; :)kL1(R) � "hkwh(t; :)� zh(t; :)kL1(R)+�" �TV (wh(t; :)) + TV (zh(t; :))�+ 2" �kw0kL1(R)+ kz0kL1(R)� :4.3. Compatness of the Asymptoti-Preserving sheme. With all theestimates (4.4), (4.5) and (4.6), it is routine to establish the L1 time equiontinuityproperty, so we omit the proof of the following lemma:Lemma 4.4. Under all the assumptions of Lemma 4.3, one has for any t > 0:kwh(t+�t; :)� wh(t; :)kL1(R)+ kzh(t+�t; :)� zh(t; :)kL1(R) � O(�t):At this point, sine the BV-bound (4.5) blows up as h! 0, we annot state results asstrong as those of [16, 17℄; the strategy will be �rst, to establish strong onvergene of�h = wh+zh for "! 0 only, keeping h > 0 in order to take advantage of (4.5), towarda pieewise onstant funtion satisfying a numerial sheme whih is a perturbationof a entered disretization of the Keller-Segel model (1.5). We stress that in thislimiting proess, nothing happens onerning the numerial treatment of the disreteequation whih rules the time evolution of 'h as it never deals with wh and zh, butonly with �h. And seond, to derive the onvergene of �h; 'h as h! 0 beause it isa drasti simpli�ation of the 2D �nite volume sheme studied by Filbet [10℄.



18 L. GosseTheorem 4.5. Under the assumptions of Lemma 4.3, for any n 2 N:�n+1j � �nj�t + (�x')nj+ 12 �nj+1 � (�x')nj� 12 �njh = �2 �nj+1 � 2�nj + �nj�1h2 +O("):In partiular, the sequenes wh; zh are relatively ompat in L1lo(R+� � R) as " ! 0with h > 0 �xed and the remaining term in O(") onverges to zero in L1.Proof. One proeeds simply by adding up both equations appearing in (4.1): theMaxwellian terms treated impliitly anel eah other. Then, taking advantage of thefats that both bAn";j+12+Bn";j+ 121+Bn";j+ 12 ! 2�2�t=h2 and b Cn";j+121+Bn";j+ 12 ! 2(�x')nj+ 12�t=h andwnj ; znj ! �nj =2 when "! 0 with h > 0 gives the aforementioned sheme on �h.In the limit "! 0, the onventional entered disretization ating on the Keller-Segel model (1.5), for small enough initial data, allows to apply the onvergene resultin [10℄ to pass later to the omplementary limit h ! 0 with a ompletely di�erentfuntional framework (in partiular, no BV-bound is neessary and the onvergene isweak). There is no hange on the sheme on 'h (3.6) thanks to the use of the resaledparameters �" and �" whih are alled the \small reation rates" in [9℄.5. Numerial results. The onvergene results obtained in the preeding se-tion are qualitatively di�erent from the ones of [16, 17℄; indeed, in these former works,it was possible to onsider for instane passing to the limit simultaneously in " ! 0,h ! 0 with " = h ,  > 1. Here, sine (4.5) blows up as h ! 0, one must pass �rstto the limit "! 0, h > 0, and later h! 0 as a distint proess.5.1. Hyperboli regime. We onsider the simple test-ase of the propagationof Riemann initial data in the omputational domain x 2 [�1; 1℄:w0 = z0 = 12�[� 13 ; 13 ℄; '0(x) = 15 exp(�50x2); � = 15; � = 35; D = 5;(5.1)with 255 grid points, whih gives h = 0:0078. The CFL number is hosen so as to get��t = 0:9h with � = 1:25 and the results at time t = 0:4 are shown in Fig. 5.1. The(initially Maxwellian) kineti densities split symmetrially between the ones movingin positive and negative diretion. The spae derivative �x' remains always below thered lines whih orrespond to the maximal values �� thus ensures quasi-monotoniityand onsequently the Lp and BV-bounds (3.9) and (3.10).5.2. Di�usive regime. We kept exatly the same parameters (exept for � =1:75) for heking the ability of the numerial sheme (4.2) whih omes from theinversion of the impliit terms in (4.1). Clearly, the time-step has to be modi�edaording to the paraboli CFL restrition (4.3); we used �2�t = 0:3h2 and iteratedup to t = 0:02 to produe the results of Fig. 5.2 with the hoie " = 0:001 � h.5.3. Numerial deay properties. In Fig. 5.3, we display on the 2 preedingonrete examples some theoretial properties shown in the former setions. For thehyperboli test-ase, we show the realization of the estimate (3.9) in the partiularase p = 2: the deay in time is very neat. For the paraboli test-ase, we display theL1 norm of the Maxwellian term divided by 16 values of " (the L1 norm of the uxJ=�) for the Riemann data (5.1) at time t = 0:01, thus illustrating the estimate (4.6).
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Fig. 5.1. Hyperboli test-ase with data (5.1) at time t = 0:4.6. Conlusion and outlook. The present work an be extended in variousdiretions: for instane, one may think about implementing the quasi-linear hyperbolimodels whih paraboli limits have been onsidered in [9℄. The main obstale onthis road is the handling of the non-linear resonane phenomenon, [1, 27℄, whihours when harateristi wave speeds vanish thus deeply ompliating the strutureof the well-balaned sheme. A theoretially simpler extension but perhaps moreasking omputationally ould be the development of a 2D approah with a moresophistiated method than simple dimensional splitting. From the point of view ofboth Asymptoti-Preserving and Well-Balaned methodologies, the linear di�usionequation on ' is not the most well-suited beause of its in�nite speed of propagationand its asymptoti pro�les endowed with several inexion points. Perhaps a bettermodel ould be the lassial porous medium equation, whih shares the advantage of avery smooth solution inside the interfaes [45℄, but whih propagates at a �nite speedand possesses onavity properties [4℄ whih should reveal themselves useful in thederivation of BV-bounds similar to (4.5). Lastly, there is an interesting onnetionbetween suh a nonlinear Keller-Segel model and the asymptoti system emerging fromWKB expansions for linear wave propagation as the relation between the eikonal andthe porous medium equations is a well-known fat, [3, 35℄. Hene, if the exponent ofthe nonlinear di�usion equation is lose to one, we may expet a behaviour somewhatsimilar to the one reported in [15℄ exept that no onentrations should our thanksto the linear di�usion term appearing in the ontinuity equation on �.
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Fig. 5.2. Paraboli test-ase with data (5.1) at time t = 0:02.

Decay of L2 norm with time
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

0.062

0.063

0.064

0.065

0.066

0.067

0.068

0.069

0.070

0.071

0.072

0.073

|w−z|/epsilon

−8
10

−7
10

−6
10

−5
10

−4
10

−3
10

0
10

1
10
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