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ASYMPTOTIC-PRESERVING AND WELL-BALANCED SCHEMEFOR THE 1D CATTANEO MODEL OF CHEMOTAXIS MOVEMENTIN BOTH HYPERBOLIC AND DIFFUSIVE REGIMESLAURENT GOSSE�Abstra
t. The original well-balan
ed (WB) framework [19, 14℄ relying on non
onservative (NC)produ
ts [34℄ is set up in order to eÆ
iently treat the so{
alled Cattaneo model of 
hemotaxis in1D [24℄. It pro
eeds by 
on
entrating the sour
e terms onto Dira
 masses: this allows to handlethem by NC jump relations based on steady-state equations whi
h 
an be integrated expli
itly. ARiemann solver is dedu
ed and the 
orresponding WB Godunov s
heme 
ompleted with the standardHo�-Smoller theory [24℄ for the di�usion-rea
tion equation ruling the evolution of the 
hemotra
tant
on
entration is studied in detail. Later, following former results [16, 17℄, a simple rewriting of theNC jump relations allows to generate another version of the same Godunov s
heme whi
h is welladapted to the paraboli
 s
aling involving a small parameter ". The standard BV framework is usedto study the uniform stability of this Asymptoti
-Preserving (AP) s
heme with respe
t to " allowsto pass to the limit and derive a simple 
entered dis
retization of the Keller-Segel model. Finally,results by Filbet [10℄ permit to pass to the 
omplementary limit when the spa
e-step h is sent tozero. Numeri
al results are in
luded to illustrate the feasibility and the eÆ
ien
y of the method.Key words. Chemotaxis modeling; dis
rete velo
ity kineti
 model; non-
onservative produ
ts;quasi-monotone sour
e term; AP s
heme; WB s
heme.AMS subje
t 
lassi�
ations. 65M06, 35L60.1. Introdu
tion.1.1. Modeling of 
hemotaxis dynami
s. This paper is 
on
erned with thefollowing semilinear model of 
hemotaxis movement, usually named after Cattaneo:8<: �t�+ �xJ = 0�tJ + �2�x� = ��x'� J�t'�D�xx' = ��� �':(1.1)One 
an rewrite it in a more mathemati
ally tra
table way by introdu
ing its diagonalvariables (its Riemann invariants, in hyperboli
 terminology),w = 12 ��� J�� ; z = 12 ��+ J�� ;whi
h satisfy the following semilinear system of equations [18℄:8<: �tw � ��xw = � 12�G(�x';w; z)�tz + ��xz = 12�G(�x';w; z)�t'�D�xx' = ��� �':(1.2)with the 
onventional 
hoi
e of turning rates,G(�x';w; z) = (�x'+ �)w + (�x'� �)z:For stability reasons, we want the sour
e term G(�x'; :; :) to be quasi-monotone inthe terminology of [38℄ and this leads to the well-known sub
hara
teristi
 
onditions:�wG(�x';w; z) � 0 and �zG(�x';w; z) � 0) j�x'j � �:(1.3)�IAC{CNR \MAURO PICONE" (SEZIONE DI BARI), VIA AMENDOLA 122/D, 70126BARI (ITALY) L.GOSSE�BA.IAC.CNR.IT 1



2 L. GosseThe system (1.2) 
an be seen as a 2-velo
ity dis
rete kineti
 model with w; z beingidenti�ed to f� in the notation of [17℄, the density of parti
les moving with negativeand positive speed, respe
tively. The 
oupling with ' is weak in the sense that thelinear equation admits an expli
it solution involving a 
onvolution with a dampedheat kernel and Duhamel's prin
iple (as written in [26℄, proof of Lemma 4); thus�x' is a
tually a fun
tion of '(t = 0) and �x�. We 
onsider its paraboli
 s
aling byintrodu
ing a small parameter 0 < "� 1, and imposing �" = "2�, �" = "2�, [9℄8<: "2�tw � "��xw = � 12�G(�x';w; z)"2�tz + "��xz = 12�G(�x';w; z)"2 (�t'�D�xx') = �"�� �"';(1.4)meaning that we substitute t ! "2t, x ! "x, and \we look at the system (1.2) fromfar away with a 
lo
k whi
h turns very slowly". It is expe
ted that the behavior of(1.4) in the limit " ! 0 approa
hes the one indu
ed by the so{
alled Keller-Segelmodel whi
h 
ontains only a 
onve
tion-di�usion equation for � 
oupled to ':�t�+ �x(�x' �) = �2�xx�; �t'�D�xx' = ��� �':(1.5)The �rst equation of (1.5) is a spe
ial form of the 
lassi
al linear Fokker-Plan
k(or 
onservative forward Kolmogorov) equation in divergen
e form; however, sin
e 'satis�es a linear di�usion equation, �x' isn't a 
on�ning potential sin
e �xx' surely
hanges its sign when x 2 R. Observe also that the equation on � doesn't admit BV-bounds ex
ept if �xx' � 0, whi
h is in
ompatible with the pres
ribed equation: thiswill 
reate issues for the 
onvergen
e of the Asmptoti
-Preserving pro
ess. Imposingthe \small rea
tion rates" �", �" in (1.4) is somewhat ne
essary; in the oppositesituation, we formally get ' = ��=�, whi
h leads to a nonlinear di�usion equation ofthe porous medium type, but endowed with the \wrong sign" (be
ause � � 0, � � 0):�t�+ �2� �xx(�2) = �2�xx�:From a mathemati
al point of view, this situation is related to the one ruling thebehavior of the so{
alled Ruijgrok-Wu model of the Boltzmann equation, see [13, 36℄.The derivation of eÆ
ient numeri
al s
hemes for this model has been 
arried out�rst in [30℄, and then in [17℄ where all the rigorous 
ompa
tness estimates have beenobtained together with numeri
al robustness by following the well-balan
ed 
anvasinvolving non-
onservative produ
ts (see also [34, 14, 16℄). The present text willexploit the same strategy, ex
ept that new (and quite substantial) diÆ
ulties arisefrom the 
oupling with the di�usion equation on '.1.2. WB and AP: two sides of the same 
oin. Asymptoti
-Preseving andWell-Balan
ed s
hemes are two 
omplementary methodologies whi
h, besides havingbeen introdu
ed roughly at the same moment (see [29, 28, 30, 32℄ and [19, 14℄), addresssimilar numeri
al issues in di�erent 
ontexts. Well-balan
ed s
hemes were designedby Greenberg and LeRoux for s
alar 
onservation laws with sour
e terms with twomain goals: handling sti� sour
e terms (thus allowing for problems displaying 2distin
t 
hara
teristi
 time-s
ales) without any time-step restri
tion besides the usual
onve
tive CFL 
ondition and being fully 
onsistent with a time-asymptoti
behavior ruled by steady-state equations. Thus, through an original 
on
entrationpro
ess of sour
es onto Dira
 masses lo
ated at both interfa
es of ea
h 
omputational
ell, sti�ness was disappearing be
ause sour
e terms were rendered by means of a



Well-balan
ed and Asymptoti
-preserving for 
hemotaxis 3non
onservative jump relation indu
ed by the atomi
 measures, that have been 
alledlater \zero waves" [1℄. Clearly, if a sour
e term 
an be dis
retized in a 
onsistent wayby means of a supplementary jump relation inside a Riemann solver, its size (hen
eits \rea
tion rate") is not relevant when it 
omes to time-step restri
tion. Moreover,Riemann problems involving a sour
e term 
on
entrated on a Dira
 measure presentthe advantage of still being self-similar (as opposed to so{
alled \generalized Rie-mann problems" [37℄) hen
e they still 
an be exa
tly solved in many interesting 
ases.An exa
t resolution of these Riemann problems in a Godunov s
heme allows to de-rive an exa
t weak solution at steady-state; indeed, steady-states for one-dimensionalhomogeneous systems of 
onservation laws (possibly non-
onservative) 
onsists in asu

ession of 
onstant states separated by stationary dis
ontinuities. Assuming wehave derived the 
orre
t jump relation a
ross all the zero-waves resulting from thenumeri
al grid, thus ensuring 
onsisten
y with the original problem, 
lassi
al resultsyield that numeri
al vis
osity e�e
ts 
ompletely disappear at steady states for thewell-balan
ed Godunov s
heme. E�orts have been made in [14, 17℄ (see xx3.3-4 and2.1-2 respe
tively) to establish uniform BV-bounds in order to de�ne 
orre
tly thenon
onservative produ
ts following the general framework of weak limits [34℄.It is at this point that it is easy to highlight the very 
lose relation with theAsymptoti
-Preserving methodology. There, the two main obje
tives are handlingthe sti� paraboli
 s
aling of the type (1.4) for " � 1 without heavy restri
tionson the time-step and being 
onsistent with the time-dependent asymptoti
behavior given in our parti
ular 
ontext by (1.5). This asymptoti
 behavior resultsfrom a deli
ate balan
e appearing between 
ux terms and the lower-order, but sti�,right-hand side as rigorous proofs 
learly explain in e.g. [13, 36, 43℄. Put this way, it
omes with no surprise that well-balan
ed s
hemes, as soon as they 
an be eÆ
ientlystabilized in order to handle 
onve
tive velo
ities blowing up in 1" , furnish very reliableasymptoti
-preserving dis
retizations. This is what has been shown in [16, 17℄ for thetelegraph equations and 2� 2 dis
rete kineti
 models; here, we shall follow the same
anvas in order to treat a more involved system arising from biologi
al modelling. Ob-viously, there may exist AP s
hemes whi
h don't result from a WB Godunov s
hemewhi
h 
onve
tive step is treated impli
itly in time and yield 
orre
t asymptoti
 limitsas " ! 0 [2, 5℄, however, the deep relation between these two numeri
al approa
hesshouldn't be overlooked. For instan
e, the re
ent s
heme for Fokker-Plan
k equations[46℄ is a well-balan
ed s
heme whi
h doesn't tell his name.This paper is organized as follows: x2 is devoted to re
alling theoreti
al resultsshown mainly in [24, 26℄. In x3, we study the well-balan
ed Godunov s
heme for (1.2)in hyperboli
 regime; in parti
ular, smoothness estimates for the di�usive equationon ' are obtained from the Ho�-Smoller L1 study of numeri
al s
hemes for the heatequation [25℄. In x4, we 
onsider the asymptoti
-preserving rewriting of this Godunovs
heme and show various stability estimates as " ! 0. However, in 
ontrast withformer works [16, 17℄, it doesn't seem possible to derive BV estimates whi
h areuniform in both 1h , the maximum frequen
y allowed by the grid, and "; we think thereason is that Keller-Segel equations don't have BV estimates at the 
ontinuous level.So it is ne
essary to pass �rst at the " ! 0 limit while maintaining h > 0 �xed,and then later send h ! 0. Finally, x5 displays numeri
al results illustrating formerstability estimates in both regimes and x6 gives 
on
luding remarks.2. Theoreti
al results for the 1D Cattaneo model. In all the sequel, weshall ta
itly assume all the restri
tions whi
h are ne
essary to have existen
e anduniqueness of solutions for both (1.2) and (1.5). Here, we give a qui
k review of these



4 L. Gosseresults from [24, 26℄; let us 
onsider the Cau
hy problem for (1.2), equivalently for(1.1), on the 
omplete real line (boundary 
onditions (b
1) in [24℄)w(t = 0; :) = w0; z(t = 0; :) = z0; '(t = 0; :) = '0 for x 2 R;whi
h implies that �(t = 0; :) = w0 + z0 and J(t = 0; :) = �(z0 � w0). For te
hni
alreasons, besides � � 0 and � � 0, it is 
ustomary to assume:1. nonnegative initial values with 
ompa
t support: w0 � 0, z0 � 0, '0 � 0;moreover, some smoothness is required w0; z0 2 L1(R), '0 2 W 1;1(R).2. nonnegative turning rates: this is equivalent to the quasi-monotoni
ity of(1.2), whi
h is ensured by the sub
hara
teristi
 
ondition. It is also postulatedthat turning rates should be symmetri
 when �x' 
hanges its sign.3. lo
al Lips
hitz 
ontinuity and boundedness of turning rates: in our 
ase,they inherit all the smoothness of �x'. This assumption allows to enfor
e thequasi-monotoni
ity property if turning rates are taken as �max(0; ��j�x'j).Under all these assumptions, Hillen and Stevens prove in [24℄ that:Theorem 2.1. There exists a maximal time Tmax and a unique solution to (1.2),(w; z; ') 2 L1 �[0; Tmax[; L1(R)2 �W 1;1(R)� ;with Tmax possibly in�nite. If Tmax < +1, then limt!Tmax k'(t; :)kW 1;1(R) ! +1.Some further results have been published in [26℄, in
luding the paraboli
 limit of (1.4):Theorem 2.2. Assume all the former hypotheses and moreover, that w0; z0; '0 2C1(R) with 
ompa
t support and steady-state initial distribution of '(t = 0; :):�'0 = D�xx'0 + �(w0 + z0):There exists a unique solution to (1.2) for any T > 0, (w; z; ') 2 C �[0; T [;W 1;1(R)3�.Passing to the limit with "! 0 in (1.2) in order to derive (1.5) is also studied in [26℄;however, we prefer to refer to [9℄. The framework of this paper 
orresponds to their\third s
aling" 
alled \small rea
tion rates". An interesting estimate obtained in [26℄
on
erns the evolution in time of the norm of ' in W 1;1:Lemma 2.3. If � 2 L1(R+ ; L2 \ L1(R)), then for any t > 0, ' satis�es:k'(t; :)kL1(R) � Ck�0kL1(R);k�x'(t; :)kL1(R) � C �1 + k�0kL1(R)�1 +max(0; log t) + ����log(sup��t k�(�; :)kL2(R)������ ;with C depending only on �; � 2 (R+ )2.3. Spa
e lo
alization and Godunov s
heme in hyperboli
 regime. Thehyperboli
 regime 
orresponds to a value of the relaxation parameter " ' 1; forsimpli
ity, we shall assume " = 1 in this se
tion and drop the 
orresponding indexes.In all the sequel, we shall work with a uniform numeri
al grid where the spa
e step isdenoted by h, the time step, �t; both are linked through the 
lassi
al CFL 
ondition��t � h:3.1. Sour
es on a Dira
 
omb: jump relations a
ross zero-waves. Wenow 
arefully follow the ideas already presented in [16, 17℄, that is to say, we passfrom (1.2) to the non-linear and non-
onservative system:8<: �tw � ��xw = � 12�Pj2ZhG(�x';w; z)Æ �x� (j � 12 )h��tz + ��xz = 12�Pj2ZhG(�x';w; z)Æ �x� (j � 12 )h��t'�D�xx' = ��� �';(3.1)



Well-balan
ed and Asymptoti
-preserving for 
hemotaxis 5where Æ(:) stands for the Dira
 mass in x = 0. Clearly, in the 
ontext of dis
ontinuousw; z, this formulation looks like being unstable be
ause of the produ
ts \Heaviside �Dira
" appearing on the right-hand side. However, it has been rigorously shown in[17℄ that these non-
onservative produ
ts 
an be rigorously de�ned as weak limits inthe framework of [34℄ thanks to the uniform BV estimates whi
h 
ome from the linear
onve
tion in (1.2) (similar estimates for s
alar balan
e laws are given in [14℄).The presen
e of the Dira
 masses indu
es new dis
ontinuities on the lo
ations(j � 12 )h, j 2 Z whi
h are 
alled the \zero waves"; in order to solve the Riemannproblem for (3.1), we must derive appropriate jump relations. Let us denote by �w; �zthe mi
ros
opi
 pro�les whi
h are shrunk inside the non-
onservative produ
ts: theyare to satisfy the stationary equations of (1.2) whi
h read, for x 2 [0; h℄,2�2�x� �w�z � = � �x'+ � �x'� ��x'+ � �x'� � �� �w�z � :(3.2)The solution 
an be written expli
itly, with obvious notation:�J(h) � �J(0); ��(h) = ���(0)� h �J(0)�2 � exp(h�x'=�2):At this mi
ros
opi
 s
ale, the quantity �x' is a 
onstant. Hen
e we have the result:Lemma 3.1. For any h > 0, the stationary equations of (1.2) yield the followingjump relations a
ross the zero-waves of (3.1) lo
ated in (j � 12 )h, j 2 Z:�w(0) = 21 +B �w(h) + 1�A1 +B �z(0); �z(h) = �1�B1 +B �w(h) + A+B1 +B �z(0);(3.3)with the notation:A = �1� h�� exp(h�x'=�2); B = �1 + h�� exp(h�x'=�2):In parti
ular, the following important relation holds: (
ux 
onservation)�w(0)� �w(h) = 1�B1 +B �w(h) + 1�A1 +B �z(0) = �z(0)� �z(h):(3.4)Proof. We rewrite ��(h) with the diagonal variables �w, �z:�w(h) + �z(h) = � �w(0) + �z(0) + h �w(0)� �z(0)� � exp(h�x'�2 );and we also have that �w(h)� �w(0) = �z(0)� �z(h). This leads to the following system:� (1 + h� ) exp(h�x'�2 ) �11 1 �� �w(0)�z(h) � = � 1 �(1� h� ) exp(h�x'�2 )1 1 �� �w(h)�z(0) � :The matrix on the left is always invertible be
ause its determinant 1+(1+h� ) exp(h�x'�2 )is stri
tly positive. The 
oeÆ
ients A and B are taken from these matri
es; invertingand multiplying them yields the jump relations (3.4).It is interesting to observe that a simple linearization of exponentials gives:1 � 1�A1 +B = exp(�h�x'=�2)� 1 + h=�exp(�h�x'=�2) + 1 + h=� ' h2� � �� �x'�� (�x'� �)h=2�� � 0;0 � 1�B1 +B = exp(�h�x'=�2)� 1� h=�exp(�h�x'=�2) + 1 + h=� ' � h2� � �x'+ ��� (�x'� �)h=2�� � �1:



6 L. GosseThese linearizations will be useful for establishing 
onsisten
y as h ! 0 sin
e j�x'jremains bounded for D; � � 0 are big enough. In pra
ti
e, a �rst order divideddi�eren
e 
omputed at ea
h interfa
e x = (j � 12 )h and t = n�t will appear in pla
eof �x'; there are no zero-waves involved in the dis
retization of ', obviously.3.2. Ho�-Smoller theory for the equation on '. It is well-known thatstri
tly paraboli
 equations indu
e an instantaneous regularizing e�e
t whi
h, in our
ontext, makes '(t; :) a W 2;p(R) fun
tion for t > 0. This feature 
an't exa
tly bereprodu
ed by a simple �nite-di�eren
e s
heme, however, Ho� and Smoller showedthat a good deal of it still holds for 
onventional 
entered dis
retizations. In order topresent part of their results, let us �rst present the 1D heat equation:�tv = D�xxv; vn+1j = vnj + D�th2 �vnj+1 � 2vnj + vnj�1� :(3.5)Ho� and Smoller [25℄ introdu
e next the 
on
ept of \numeri
al fundamental solution":Definition 1. For any n 2 N, the numeri
al fundamental solution to (3.5) isthe sequen
e (Enj )j2Z2 `1 \ `1(Z) satisfying:E0j = 1hÆj=0; En+1j = Enj �1� 2D�th2 �+ D�th2 �Enj+1 + Enj�1� :It is nonnegative if 2D�t � h2.We denote by \*" the dis
rete 
onvolution produ
t:8a; b 2 `1 \ `1(Z); (a � b)j :=Xj2Zha`�jb`;whi
h satis�es (besides 
ommutativity):Xj2Zhj(a � b)j j � 0�Xj2Zhjaj j1A0�Xj2Zhjbj j1A ; supj2Zj(a � b)j j � supj2Zjaj j0�Xj2Zhjbj j1A :We propose therefore to de�ne a pie
ewise 
onstant approximation ~'h(n�t; :) for anyn 2 N as usual, 'h(t; x) := 'nj for t; x 2 [n�t; (n + 1)�t[�[(j � 12 )h; (j + 12 )h[; a
onsequen
e of Theorem 2.1 in [25℄ is the expli
it form of the following s
heme,'n+1j (1 +�t�) = 'nj + ��t�nj + D�th2 �'nj+1 � 2'nj + 'nj�1� ;whi
h involves a dis
rete Duhamel's prin
iple:'nj = (1 +�t�)�n(En � '0) + ��t1 + ��t n�1Xk=0(1 +�t�)k�(n�1) �E(n�1)�k � �k� :(3.6)This notation is used hereafter:8j; n 2 Z� N; (�x')nj+ 12 := 1h �'nj+1 � 'nj � :The main interest in 
hoosing this s
heme is the numeri
al analogue of the regularizinge�e
t whi
h holds at the 
ontinuous level as stated in Theorem 2.2 of [25℄:



Well-balan
ed and Asymptoti
-preserving for 
hemotaxis 7Theorem 3.2. Assume 2�tD � h2, then:8n 2 N; Xj2ZEnj = 1; 0 � Enj � min� 1h; C0pn�t� ;and moreover,Xj2ZjEnj+1 � Enj j � C1pn�t ; 1hXj2ZjEnj+1 � 2Enj + Enj�1j � C2n�t :The 
onstants C0; C1; C2 depend only on D � 0.It is now possible to study the time propagation of the sub
hara
teristi
 
ondition:Lemma 3.3. Let 2�tD = O(h2) and assume that '0 2 L1(R) \ W 1;1(R),�h(t; :) 2 L1\BV (R) for any t � 0. Then, for �t > 0, the sub
hara
teristi
 
onditionholds for any n 2 N if one of the two following requirements is met:1. � supn TV (�h(n�t; :)) � ���� (1 + ��t)�n supj j(�x')0j+ 12 j� ;2. �� (1+��t)�n supj j(�x')0j+ 12 j � Snk�hkL1 + 2��th(1 + ��t)k�h(n�t; :)kL1(R);with Sn depends on n; �; � and C1. Moreover, there also holds:TV ((�x')(n�t; :)) :=Pj2Zj(�x')nj+ 12 � (�x')nj� 12 j � (1 + ��t)�n C2n�tk'0kL1(R)+~Snk�hkL1 + 4��th2(1+��t)k�h(n�t; :)kL1(R):Proof. Thanks to the �rst estimate of Theorem 3.2, everything starts with(�x')nj+ 12 � � = En � (�x')0j+ 12(1 + ��t)n � �!+ ��t1 + ��t n�1Xk=0 Æ[E(n�1)�k � �k℄h(1 + ��t)(n�1)�k ;whi
h should be negative. The �rst term is handled by taking advantage of theresulting 
onvex 
ombination and taking the supremum on j 2 Z. The se
ond termis deli
ate as we must de
ide on whi
h part we want to apply the divided di�eren
eoperator denoted here Æ[:℄=h for easiness in reading. The �rst solution, whi
h leadsto Point 1 in Lemma 3.3 is to apply it on �h and suppose this fun
tion has boundedtotal variation in the spa
e variable. In this 
ase, it remains only to observe that:��t1 + ��t n�1Xk=0(1 + ��t)k�(n�1) � �� :To prove Point 2, we pro
eed by applying the divided di�eren
e on the fundamentalsolution. However, it 
an't be dire
tly applied for k = n� 1, but in this 
ase, we seethat TV (E0) = 2=h. The rest of the summation 
an be 
ontrolled by means of:k�hkL1(n�2Xk=0(1 + ��t)k�n C1��tp((n� 1)� k)�t) =: k�hkL1Sn:



8 L. GosseNow, in order to prove the estimate on the total variation of the �rst-order divideddi�eren
e, we observe that TV (ÆE0=h) = kÆ2E0=h2k`1(Z) = 4=h2 and we 
ompute:(�x')nj+ 12 � (�x')nj� 12 = '0 � [Æ2En℄h2(1 + ��t)n + ��t1 + ��t n�1Xk=0 Æ2[E(n�1)�k � �k℄h2(1 + ��t)(n�1)�k :We pro
eed by dire
tly applying the estimates of Theorem 3.2 to the �rst term. Thenew 
onstant ~Sn is given by the following summation:~Sn := n�2Xk=0 C2��t((n� 1)� k)�t (1 + ��t)k�n:Finally, the last term 
orresponding to k = n� 1 is bounded by:��t1 + ��tTV (ÆE0=h)k�h(n�t; :)kL1(R) � 4��th2(1 + ��t)k�h(n�t; :)kL1(R):A `1 bound on the se
ond order divided di�eren
e of 'h 
an be obtained the same wayby repla
ing k'0kL1(R) and k�h(n�t; :)kL1(R) by k'0kL1(R) and k�h(n�t; :)kL1(R),respe
tively.In the sequel (see Lemma 3.4), we shall see that the propagation in time of thesub
hara
teristi
 
ondition ensures that the Lp(R) norms of �(t; :) remain boundedas a 
onsequen
e of the quasi-monotoni
ity of the sour
e term G only whi
h is a
onsequen
e of the sub
hara
teristi
 
ondition. Establishing a BV-bound for �h(t; :)asks for a `1 bound on the se
ond order divided di�eren
e of 'h(t; :). Con
erningthe 
hoi
e of having studied an expli
it time dis
retization on the di�usion equationof ', there is a simple way to 
ir
umvent the restri
tive paraboli
 CFL 
ondition: itsuÆ
es to 
hoose the time-step for the di�usion equation as �h=D times the one forthe hyperboli
 system and to keep � 
onstant during the D=(�h) sub-iterations. Thisadjustment will disappear when setting up the Asymptoti
-Preserving pro
ess.3.3. Riemann solver and a Godunov s
heme in hyperboli
 regime.Lemma 3.1 is the key to produ
e a Riemann solver for the non-
onservative system(3.1) and thus a Godunov s
heme. Let's denote wnj ' w(n�t; jh) and znj ' w(n�t; jh)for any j 2 Z and n 2 N; these numeri
al approximations indu
e pie
ewise 
onstantfun
tions wh(t; x) and zh(t; x) su
h that:wh(t; x) := wnj ; zh(t; x) := znj for t; x 2 [n�t; (n+ 1)�t[� �(j � 12)h; (j + 12)h� :The Godunov s
heme pro
eeds in de�ning a 
ontrol 
ell ℄(j� 12 )h; (j+ 12 )h[�℄n�t; (n+1)�t[ around ea
h point xj = jh, solving a Riemann problem on both interfa
es(j � 12 )h and averaging: see Fig. 3.3. Within the notation of this �gure, it holds:wn+1j = wnj + ��th �w�j+ 12 � wnj � ; zn+1j = znj � ��th �znj � z�j� 12� :A �rst 
onsequen
e is the 
onservation property on the �h := wh + zh variable:�h((n+ 1)�t; jh) := �n+1j = �nj � �th �� (znj � w�j+ 12 )| {z }(z�j+12�wnj+1) ��(z�j� 12 � wnj )�:(3.7)
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(z

er
o-

w
av

e:

wandzjump)

Fig. 3.1. Illustration of the 
ontrol 
ell for the non-
onservative Godunov s
hemeClearly, the \interfa
e values" whi
h result from the in
lusion of the zero-waves yield:8>>>>>>><>>>>>>>:
wn+1j = wnj + ��th �wnj+1 � wnj �+ ��th�1+Bnj+ 12� �(1�Bnj+ 12 )wnj+1 + (1�Anj+ 12 )znj � ;zn+1j = znj � ��th �znj � znj�1�� ��th�1+Bnj� 12� �(1�Bnj� 12 )wnj + (1�Anj� 12 )znj�1� :(3.8)We stress that sin
e A and B are 
omputed at the borders of ea
h 
ontrol 
ell, theterm �x' is very well de�ned be
ause odd derivatives \live on the staggered grid".Proposition 3.4. Let w0 and z0 belong to Lp(R), 1 � p � 1; under both theCFL 
ondition ��t � h and the sub
hara
teristi
 restri
tion � � j�x'j, there holds:8t 2 R+ ; kwh(t; :)kLp(R)+ kzh(t; :)kLp(R) � kw0kLp(R)+ kz0kLp(R):(3.9)Proof. One 
he
ks that the linear well-balan
ed s
heme is a 
onvex 
ombination:jwn+1j j � jwnj j�1� ��th �+ ��th jwnj+1j 1 + 1�Bnj+ 121 +Bnj+ 12 !+ ��t(1�Anj+ 12 )h(1 +Bnj+ 12 ) jznj j;and our assumptions ensure that �1 � 1�Bnj+121+Bnj+ 12 � 0 and 0 � 1�Anj+121+Bnj+ 12 � 1, hen
ejzn+1j j � jznj j�1� ��th �+ ��th jznj�1j 1� 1�Anj� 121 +Bnj� 12 !� ��t(1�Bnj� 12 )h(1 +Bnj� 12 ) jwnj j:It remains to sum up or to take the supremum on j 2 Z in order to 
on
lude.The bound (3.9) is 
ru
ial; however, sin
e the subsystem of (3.1) ruling only wand z is not translation-invariant be
ause of �x', it doesn't lead to a BV-bound as
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tly as one 
ould hope for at �rst glan
e. However, this bound 
ompletes ni
elyLemma 3.3 be
ause if we 
hoose p = 1 in (3.9), we see that the hypothesis made onk�h(t; :)kL1(R) � kwh(t; :)kL1(R)+ kzh(t; :)kL1(R) is satis�ed for instan
e if we assumethat w0 � 0 and z0 � 0, whi
h amounts to asking for a small momentum initially.3.4. Compa
tness for the Well-Balan
ed Godunov s
heme. To establishstrong 
onvergen
e of wh and zh toward the unique solution of (1.2), we need a boundon the total variation of wh(t; :) and zh(t; :).Lemma 3.5. Let � � 0, '0 2 W 1;1(R) and w0; z0 2 L1 \BV (R); under both theCFL 
ondition ��t � h and the sub
hara
teristi
 restri
tion � � supj;n j(�x')nj+ 12 j,the following BV-bounds hold for any n 2 N:TV �wh(n�t; :)�+ TV �zh(n�t; :)� � TV (w0) + TV (z0)+L� n�t �kw0kL1(R)+ kz0kL1(R)� ;(3.10)where L is the Lips
hitz 
onstant of � 1�A1+B ; 1�B1+B� depending on the values of (�x')nj+ 12 .Proof. One pro
eeds by 
omputing the di�erentiating the well-balan
ed s
heme:jwn+1j+1 � wn+1j j � �1� ��th � jwnj+1 � wnj j+ ��th �1 + 1�Bnj+ 321+Bnj+ 32 � jwnj+2 � wnj+1j+��th ���� 1�Bnj+ 321+Bnj+ 32 � 1�Bnj+ 121+Bnj+ 12 ���� jwnj+1j+ ��th 1�Aj+321+Bj+ 32 jznj+1 � znj j+ ��th ���� 1�Anj+321+Bnj+ 32 � 1�Anj+ 121+Bnj+ 12 ���� jznj j;where the same properties on 1�A1+B � 0, 1�B1+B � 0 are used, and thenjzn+1j+1 � zn+1j j � �1� ��th � jznj+1 � znj j+ ��th �1� 1�Anj+ 121+Bnj+ 12 � jznj � znj�1j+��th ���� 1�Anj+121+Bnj+ 12 � 1�Anj� 121+Bnj� 12 ���� jznj�1j � ��th 1�Bj+121+Bj+ 12 jwnj+1 � wnj j+ ��th ����1�Bnj+ 121+Bnj+ 12 � 1�Bnj� 121+Bnj� 12 ���� jwnj j:Summing on j 2 Z, we have 
an
ellations ex
ept for the terms rendering from theos
illations of 1�A1+B and 1�B1+B whi
h depend on x through �x'. They read:O := 2��th Xj2Z�����1�Bnj+ 121 +Bnj+ 12 � 1�Bnj� 121 +Bnj� 12 ����� jwnj j+ �����1�Anj+ 321 +Bnj+ 32 � 1�Anj+ 121 +Bnj+ 12 ����� jznj j:Now, we know that these two quantities are perturbations of h(�x'� �)=2�2. More-over, from the dis
rete regularizing e�e
t of [25℄ and Lemma 3.3, we dedu
e theirLips
hitz regularity (re
all that the denominator never vanishes), so there exists aLips
hitz 
onstant L depending on the initial data and the grid parameters su
h thatO � 2L��th h2�2 Xj2Zjwnj j+ jznj j � L �t� �kw0kL1(R)+ kz0kL1(R)� ;the last inequality 
oming from Lemma 3.4.Remark 1. One sees here the big diÆ
ulty in treating the system (1.2): theBV-bound (3.10) needs both se
ond order divided di�eren
es for 'h(t; :) to be eitherin `1(Z), or in `1(Z) for 
laiming that L is uniformly bounded and also the sub
har-a
teristi
 
ondition in order to keep the sour
e term G quasi-monotone and ensurethat the Lp bounds (3.9) hold through time.
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ed and Asymptoti
-preserving for 
hemotaxis 11We swit
h to time-equi
ontinuity:Lemma 3.6. Under the hypotheses of Lemma 3.5, the pie
ewise 
onstant approx-imations wh, zh are endowed with a L1-modulus of time equi
ontinuity:kwh(t+�t; :)� wh(t; :)kL1(R)+ kzh(t+�t; :)� zh(t; :)kL1(R) ��t �TV �wh(t; :)�+ TV �zh(t; :)�+ C �kw0kL1(R)+ kz0kL1(R)�� ;for any t 2 R+ and C := supj;n����� 1�Anj+121+Bnj+ 12 ���� ; ���� 1�Bnj+121+Bj+12n �����.Proof. It suÆ
es to add up the s
hemes on wn+1j �wnj and zn+1j � znj , to take themodulus, multiply by h and sum on j 2 Z:hPj2Zjwn+1j � wnj j+ jzn+1j � znj j � �tPj2Zjwnj+1 � wnj j+ jznj+1 � znj j+2�t� supj ����� 1�Anj+121+Bnj+ 12 ���� ; ���� 1�Bnj+121+Bj+12n �����hPj2Zjwnj+1j+ jznj j:Applying the BV-bound (3.10) and the Lp-bound (3.9) together with the propertiesof 'h(t; :) yields the 
on
lusion.Finally we are in position to prove the 
onvergen
e of our well-balan
ed s
hemetoward the unique solution of (1.2):Theorem 3.7. Let � � 0, '0 2 L1 \W 1;1(R) and w0; z0 2 L1 \ BV (R); underboth the CFL and the sub
hara
teristi
 restri
tions, ��t � h, � � Lip('h(t:; )), thesequen
e wh; zh; 'h 
onverges strongly as h! 0 toward the unique solution of (1.2).Proof. The proof 
onsists in 
he
king both the Lax requirements: stability and
onsisten
y. Lemmas 3.9, 3.5 and 3.6 ensure that one 
an extra
t a subsequen
e in-dexed by hk ! 0 whi
h 
onverges strongly in L1lo
(R+� � R). The results from [24℄yield the strong 
onvergen
e of 'h generated by the �nite di�eren
es s
heme (3.6).Con
erning the 
onsisten
y, the diagonal 
onve
tive part is very 
lassi
al. The 
onsis-ten
y for the sour
e term G 
an be obtained from the linearization of the exponentialsfor small h and � > 0: (these quantities appear always multiplied by �t)�h � 1�A1 +B� ' �h h2� � �� �x'h�� (�x'h � �)h=2��! 12� (�� �x') ;�h �1�B1 +B� ' ��h h2� � �x'h + ��� (�x'h � �)h=2��! � 12� (�+ �x') :By uniqueness of the limit proved in [24, 26℄, the whole sequen
e 
onverges.Remark 2. Con
erning the preservation of steady-states, the Godunov s
hemeon wnj and znj preserves all the steady-states of the 2 � 2 system. The issue 
omesfrom the 
entered s
heme (3.6) on ': 
learly, even if we furnish an initial datum '0whi
h satis�es �t'0 = 0 as in [24, 26℄, it is likely to be perturbed and a spuriousdynami
 may be ignited. However, we aren't aware of any well-balan
ed s
heme forthe di�usion equation; a remedy may be to approximate the equation on ' by a systemof \hyperboli
 heat equations" (like in [16℄), build a traditional well-balan
ed s
hemeon this approximation, and then plug it inside the present framework. This would
onstitute a 
omplex system of 2 Cattaneo models (weakly) 
oupled by ' and �.4. Di�usive s
aling through a modi�
ation of NC jump relations. Inthis se
tion, we adopt the di�usive s
aling (1.4) and, following [16, 17℄, we investigatehow the pre
eding well-balan
ed s
heme 
an handle the limit "! 0 under the simpleparaboli
 CFL restri
tion �t = O(h2). Clearly, the 
onve
tive part is to be treatedimpli
itly in time, but this isn't 
ostly as it is linear.



12 L. Gosse4.1. Rewriting jump relations makes the Maxwellian appear. The �rstthing to observe is that the paraboli
 s
aling 
an be handled in the steady-stateequations (3.2) by simply 
hanging h! h=". Hen
e it makes sense to introdu
e new
oeÆ
ients de�ned as follows with � > 0 and " > 0:A" = �1� h"�� exp(h�x'="�2); B" = �1 + h"�� exp(h�x'="�2):We stress that when we res
ale x ! "x, the quantity �x' appearing in the jumprelations be
omes �x'=" whi
h remains bounded. In the sequel and in the set ofres
aled variables, we shall 
ontinue to work with the numeri
al approximation:8j; n 2 Z� N; (�x')nj+ 12 := 1h �'nj+1 � 'nj � :Starting from here, we shall use the 
onvention of writing �x' as the spa
e derivativeof ' with respe
t to the res
aled variable "x, so the " in the denominator drops.Following [16℄, we rewrite the jump relations (3.3) o

urring through the zero-waves:�w(0) = 21+B" �w(h) + 1�A"1+B" �z(0)= �z(0)� A"+B"1+B" �z(0) + 21+B" �w(h)= �z(0) + A"+B"1+B" ( �w(h)� �z(0)) + 2�(A"+B")1+B" �w(h);and, �z(h) = �z(0)� 1�B"1+B" �w(h)� 1�A"1+B" �z(0)= �w(h)� 21+B" �w(h) + A"+B"1+B" �z(0)= �w(h) + A"+B"1+B" (�z(0)� �w(h))� 2�(A"+B")1+B" �w(h):Observe also that for any " > 0, A" + B" = 2 exp(h�x'=�2). We rewrite the well-balan
ed Godunov s
heme of the former se
tion with these jump relations and treatingpart of the 
onve
tive term impli
itly; denoting C" := 2� (A" +B"), it 
omes:8>>>>>>>>>><>>>>>>>>>>:
wn+1j = wnj + ��t"h �zn+1j � wn+1j �+��t�An";j+12+Bn";j+ 12�"h�1+Bn";j+ 12� �wnj+1 � znj �+ ��tCn";j+ 12"h�1+Bn";j+ 12�wnj+1;zn+1j = znj � ��t"h �zn+1j � wn+1j ����t�An";j� 12+Bn";j� 12�"h�1+Bn";j� 12 � �wnj � znj�1�� ��tCn";j� 12"h�1+Bn";j� 12�wnj :(4.1)

Let us pause here in order to distinguish between the various terms appearing in thisnew rewriting of the same Godunov s
heme:� the impli
it term zn+1j �wn+1j is penalized by "; it is a Maxwellian term whi
his meant to enfor
e wh = zh = �h2 in the limit "! 0.� the 
oeÆ
ient ��t"h A"+B"1+B" = 2��t exp(h�x'=�2)"h(1+(1+h="�)) exp(h�x'=�2) ! 2�2�th2 as "! 0; it istherefore meant to generate the 
entered dis
retization of the di�usion term�2�xx� when both the equations are added. No spurious term in h remains,this is one part of the AP property.
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hemotaxis 13� �nally, the 
oeÆ
ient ��tC""h(1+B") asks for more involved 
omputations:2��t(1� exp(h�x'�2 ))"h(1 + (1 + h=�) exp(h�x'�2 )) = 2�2�t(1� exp(h�x'�2 ))"h�+ ("h�+ h2) exp(h�x'�2 )' 2�2�th2 �exp(�h�x'"�2 )� 1�' 2�t�x'h ; "! 0:The spa
e derivative of ' inside the zero-wave has been res
aled a

ording tothe 
onvention previously dis
ussed. The AP property is 
omplete.As the impli
it 
onve
tion terms are linear, it possible to invert it expli
itly; following[16, 17℄, we introdu
e the notations: a = 1 + ��t"h , b = ��t"h � 0. Inverting the matrixappearing in (4.1) gives the following s
heme:8<: wn+1j = aa+b �wnj + ÆWnj+ 12�+ ba+b �znj � ÆZnj� 12 � ;zn+1j = ba+b �wnj + ÆWnj+ 12�+ aa+b �znj � ÆZnj� 12� ;(4.2)where the new quantities read,ÆWnj+ 12 = ��t"h " An";j+ 12 +Bn";j+ 121 +Bn";j+ 12 + Cn";j+ 121 +Bn";j+ 12 !wnj+1 � An";j+ 12 +Bn";j+ 121 +Bn";j+ 12 znj # ;and ÆZnj� 12 = ÆWnj� 12 . For any value of " � 0, there holds for j 2 Z: A" + B" � 0,A"+B"+C" = 2. Moreover, we shall hereafter impose the \paraboli
 CFL restri
tion":1 � ��t"h  An";j+ 12 +Bn";j+ 12 + Cn";j� 121 +Bn";j+ 12 ! ' 2�th2 ���'nj+1 � 'nj ��+ �2� :(4.3)We are now in position to study Lp bounds and BV-bounds by seeking to rewrite(4.1) as a 
onvex 
ombination of the neighboring 
ells. As in the previous se
tion, wede�ne the following fun
tions for any value of " > 0,8(j; n) 2 Z� N; wh(n�t; jh) := wnj ; zh(n�t; jh) := znj ;with the numeri
al values wnj and znj being generated by (4.1). We still treat thedi�usion equation on ' by means of the expli
it 
entered s
heme (3.6) whi
h is stableunder the paraboli
 CFL 
ondition 2D�t � h2.Lemma 4.1. Assume that " � ��th and the CFL 
ondition (4.3) holds, then:8t 2 R+ ; kwh(t; :)kLp(R)+ kzh(t; :)kLp(R) � kw0kLp(R)+ kz0kLp(R):(4.4)Proof. The proof is 
omputationally tedious but 
onsists only in 
he
king thenonnegativity of 
ertain quantities whi
h are moreover asked to equal 1 when they



14 L. Gosseare summed up. Let us rewrite the equation on wn+1j �rst:wn+1j = wnj+1 aba+b �An";j+ 12+Bn";j+ 121+Bn";j+ 12 + Cn";j+121+Bn";j+12 �+znj ba+b �1� aAn";j+12+Bn";j+121+Bn";j+12 �+ wnja+b �a� b2�An";j� 12+Bn";j� 121+Bn";j� 12 + Cn";j� 121+Bn";j� 12 ��+znj�1 b2a+b �An";j� 12+Bn";j� 121+Bn";j� 12 � :At this point, the only thing to noti
e is that, sin
e a = 1 + b,a� b2A+B + C1 +B = 1 + b �1� b�A+B + C1 +B ��| {z }�0 by (4:3) � 0;and (4.3) also implies that the 
oeÆ
ient on znj is nonnegative. Let's pass to zn+1j :zn+1j = wnj+1 b2a+b �An";j+12+Bn";j+121+Bn";j+ 12 + Cn";j+121+Bn";j+ 12 �+ znja+b �a� b2An";j+ 12+Bn";j+ 121+Bn";j+ 12 �+wnj ba+b �1� a�An";j� 12+Bn";j� 121+Bn";j� 12 + Cn";j� 121+Bn";j� 12 ��+znj�1 aba+b �An";j� 12+Bn";j� 121+Bn";j� 12 � :The 
oeÆ
ient on wnj is nonnegative if 1� 1b � 0 and this is ensured by " � ��th � 1.One 
an now take the moduli in both equations and sum up; it 
omes that,Xj2Zh �jwn+1j j+ jzn+1j j� �Xj2Zh �jwnj j+ jznj j� :The BV-bound will be obtained the same way, ex
ept that the spa
e dependen
e ofthe 
oeÆ
ients A;B;C through �x' will make the 
omputations even more intri
ate.Proposition 4.2. Let " � ��th ; assume that for any n 2 N, (�x')nj+ 12�(�x')nj� 12
hanges sign only at a �nite number N of lo
ations jn1 ; jn2 ; :::; jnN 2 Z, that the CFL
ondition (4.3) holds and that Lip('h) ' Lh for some L 2 R+ , then for any t 2 R+ :TV (wh(t; :)) + TV (zh(t; :)) � exp(2Lt) �TV (w0) + TV (z0)�+O(")+N(kw0kL1(R)+ kz0kL1(R))(exp(2tL)� 1):(4.5)In the spe
ial 
ase where (�x')nj+ 12 � (�x')n for all j 2 Z, the TVD property holds:8t 2 R+ ; TV (wh(t; :)) + TV (zh(t; :)) � TV (w0) + TV (z0) with L = 0:Proof. We pro
eed as in the proof of Lemma 4.1, with a �rst set of terms a
tingon di�eren
es like wnj+1 � wnj and znj+1 � znj ; we don't repeat the 
omputations as



Well-balan
ed and Asymptoti
-preserving for 
hemotaxis 15they are very similar. We 
on
entrate on the new terms arising from the la
k oftranslation-invarian
e and without loss of generality, we assume that N = 2 as thesituation for higher N 
an be handled the same way (moreover, the asymptoti
 pro�leof the heat equation is the Gaussian fun
tion whi
h has only 2 in
exion points in R).wnj+1 aba+b �An";j+32+Bn";j+ 32+Cn";j+ 321+Bn";j+ 32 � An";j+ 12+Bn";j+ 12+Cn";j+121+Bn";j+ 12 ��znj aba+b �An";j+ 32+Bn";j+ 321+Bn";j+ 32 � An";j+ 12+Bn";j+ 121+Bn";j+ 12 ��wnj b2a+b �An";j+12+Bn";j+ 12+Cn";j+121+Bn";j+ 12 � An";j� 12+Bn";j� 12+Cn";j� 121+Bn";j� 12 �+znj�1 b2a+b �An";j+ 12+Bn";j+ 121+Bn";j+ 12 � An";j� 12+Bn";j� 121+Bn";j� 12 � ;for the equation on wnj , andwnj+1 b2a+b �An";j+32+Bn";j+ 32+Cn";j+ 321+Bn";j+ 32 � An";j+ 12+Bn";j+ 12+Cn";j+121+Bn";j+ 12 ��znj b2a+b �An";j+ 32+Bn";j+ 321+Bn";j+ 32 � An";j+ 12+Bn";j+ 121+Bn";j+ 12 ��wnj aa+b �An";j+12+Bn";j+ 12+Cn";j+121+Bn";j+ 12 � An";j� 12+Bn";j� 12+Cn";j� 121+Bn";j� 12 �+znj�1 aba+b �An";j+ 12+Bn";j+ 121+Bn";j+ 12 � An";j� 12+Bn";j� 121+Bn";j� 12 � ;for the equation on znj . Summing moduli on j 2 Z yields on the one hand:2bXj2Zjznj j �����An";j+ 32 +Bn";j+ 321 +Bn";j+ 32 � An";j+ 12 +Bn";j+ 121 +Bn";j+ 12 ����� = O(");and this quantity is of the order of " sin
e bAn";j+12+Bn";j+ 121+Bn";j+ 12 ! 2�2�t=h2 (independent ofj) as "! 0. On the other hand, let us introdu
e jn1 � jn2 whi
h are the points wherethe se
ond order divided di�eren
e of 'h(n�t; :) 
hanges its sign; for j 2 [jn1 ; jn2 ℄,(�x')nj+ 12 � (�x')nj� 12 � 0, and it is nonnegative elsewhere. Taking moduli in boththe former equalities and linearizing the exponentials yields, up to O("),2bPj2[jn1 ;jn2 ℄ jwnj j ���� 11+Bn";j+ 12 � 11+Bn";j� 12 ���� ' 2bPj2[jn1 ;jn2 ℄ jwnj j� 11+Bn";j+ 12 � 11+Bn";j� 12 �' Pj2[jn1 ;jn2 ℄ bCn";j+121+Bn";j+ 12 (jwnj j � jwnj+1j)+ bCn";jn1 + 121+Bn";jn1 + 12 jwnjn1 j � bCn";jn2 +121+Bn";jn2 + 12 jwnjn2 j� Pj2[jn1 ;jn2 ℄ ���� bCn";j+121+Bn";j+ 12 ���� jwnj+1 � wnj j+ ���� bCn";jn1 +121+Bn";jn1 + 12 ���� jwnjn1 j+ ���� bCn";jn2 + 121+Bn";jn2 + 12 ���� jwnjn2 jwhere we exploited �rst the 
on
avity of 'h(n�t; :) (whi
h gives that Cn";j+121+Bn";j+ 12 isin
reasing with respe
t to j), and then made a summation by parts in
luding the



16 L. Gosseboundary terms. Form the strong assumption made on the Lips
hitz 
onstant of 'h,����� bCn";j+ 121 +Bn";j+ 12 ����� � 2�th �supj j(�x')nj+ 12 j+O(")� � 2�t (L+O(")) ;and this allows to in
lude nonnegative O(�t) terms. Finally, we obtain:Xj2Zjwn+1j+1 � wn+1j j+ jzn+1j+1 � zn+1j j � (1 + 2�tL)Xj2Zjwnj+1 � wnj j+ jznj+1 � znj j+O(") + 4�tL supj jwnj j:From (4.4), we get the de
ay in time of the L1 norms and sin
e the number ofin
exion points is supposed �nite, the last term is bounded. Now, this quantity 
anbe summed up to n = 0 thanks to the �t whi
h appear in the all the terms responsiblefor an in
rease of the total variation in spa
e. More pre
isely,TV (wh(n�t; :)) + TV (zh(n�t; :)) � (1 + 2�tL)n(TV (w0) + TV (z0)) +O(")+4Lip('h)�t(kw0kL1(R)+ kz0kL1(R)) 1�(1+2�tL)n1�(1+2�tL)� exp(2n�tL)(TV (w0) + TV (z0)) +O(")+2(kw0kL1(R)+ kz0kL1(R))(exp(2n�tL)� 1);where we have used (4.4) and the formula for the summation of a geometri
 sequen
e.The more general 
ase where more than 2 in
exion points appear 
an be treated thesame way at the pri
e of more intri
ate 
omputations.4.2. Maxwellian 
ontrol and stability of the di�usive s
heme. The sit-uation as presented in Proposition 4.2 is very deli
ate: it illustrates the fa
t thatthe approximation pro
ess, whi
h generates stable BV numeri
al solutions hopefullystable uniformly in " � 1 (see Lemma below) is in
ompatible with the Keller-Segelsystem (1.5) whi
h appears to be the limit equation. Indeed, su
h a linear Fokker-Plan
k equation endowed with a potential whi
h is neither divergen
e-free (in the 1D
ontext, this redu
es to �xx' = 0) nor 
on�ning (meaning �xx' � 0) doesn't admitgenerally solutions whi
h are total-variation bounded. Hen
e the bound (4.5) existsfor any h > 0, but blows up and be
ome useless in the limit h ! 0 be
ause thereexists no BV-theory for the 
ontinuous 1D Keller-Segel system set on the real line.The bound (4.5) allows to 
ontrol the deviation from the Maxwellian equilibrium:Lemma 4.3. Under the assumptions of Proposition 4.2, if kw0� z0kL1(R) = O(")(well-prepared initial data) and for " small enough, there holds for any t > 0:kwh(t; :)� zh(t; :)kL1(R) = O("):(4.6)Proof. We subtra
t the equations appearing in the semi-impli
it s
heme (4.1):(1 + 2b) �wn+1j � zn+1j � = wnj � znj + ��t�An";j+ 12+Bn";j+ 12�"h�1+Bn";j+12 � �wnj+1 � znj �+��t�An";j� 12+Bn";j� 12�"h�1+Bn";j� 12 � �wnj � znj�1�+ ��tCn";j+12"h�1+Bn";j+ 12�wnj+1 + ��tCn";j� 12"h�1+Bn";j� 12�wnj :
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hemotaxis 17We add and subtra
t the following 2 terms,��t(An";j+ 12 +Bn";j+ 12 )"h(1 +Bn";j+ 12 ) wnj ; and � ��t(An";j� 12 +Bn";j� 12 )"h(1 +Bn";j� 12 ) znj ;in the pre
eding equation in order to make appear all the available Maxwellian termstogether with other terms whi
h 
an be 
ontrolled by the Lp bounds and the BV-bound. Thus, we take the modulus and sum on j 2 Z to obtain �rst(1 + 2b)(wn+1j � zn+1j ) = (wnj � znj )�1 + bAn";j+ 12+Bn";j+ 121+Bn";j+ 12 + bAn";j� 12+Bn";j� 121+Bn";j� 12 �+bAn";j+12+Bn";j+ 121+Bn";j+ 12 (wnj+1 � wnj )� bAn";j� 12+Bn";j+121+Bn";j+12 (znj � znj�1)+b Cn";j+121+Bn";j+ 12 wnj+1 + b Cn";j� 121+Bn";j� 12 wnj ;and then, as 1+2bA+B1+B1+2b ' h2+4��th2(1+2�t�="h ' "h ;Pj2Zhjwn+1j � zn+1j j � "hPj2Zhjwnj � znj j+ 2b1+2bPj2Z���� Cn";j� 121+Bn";j� 12 ����hjwnj j+ b1+2bPj2Zh ����An";j+ 12+Bn";j+ 121+Bn";j+ 12 ���� �jwnj+1 � wnj j+ jznj+1 � znj j� :At this point, one noti
es that, up to an error of the order of "� 1,An";j+ 12 +Bn";j+ 121 +Bn";j+ 12 ' 2�"h ; Cn";j� 121 +Bn";j� 12 ' 2"(�x')nj+ 12� ; 2b1 + 2b ' 1;so, taking advantage of (4.4), it 
omes for any t 2 R+ :kwh(t+�t; :)� zh(t+�t; :)kL1(R) � "hkwh(t; :)� zh(t; :)kL1(R)+�" �TV (wh(t; :)) + TV (zh(t; :))�+ 2" �kw0kL1(R)+ kz0kL1(R)� :4.3. Compa
tness of the Asymptoti
-Preserving s
heme. With all theestimates (4.4), (4.5) and (4.6), it is routine to establish the L1 time equi
ontinuityproperty, so we omit the proof of the following lemma:Lemma 4.4. Under all the assumptions of Lemma 4.3, one has for any t > 0:kwh(t+�t; :)� wh(t; :)kL1(R)+ kzh(t+�t; :)� zh(t; :)kL1(R) � O(�t):At this point, sin
e the BV-bound (4.5) blows up as h! 0, we 
annot state results asstrong as those of [16, 17℄; the strategy will be �rst, to establish strong 
onvergen
e of�h = wh+zh for "! 0 only, keeping h > 0 in order to take advantage of (4.5), towarda pie
ewise 
onstant fun
tion satisfying a numeri
al s
heme whi
h is a perturbationof a 
entered dis
retization of the Keller-Segel model (1.5). We stress that in thislimiting pro
ess, nothing happens 
on
erning the numeri
al treatment of the dis
reteequation whi
h rules the time evolution of 'h as it never deals with wh and zh, butonly with �h. And se
ond, to derive the 
onvergen
e of �h; 'h as h! 0 be
ause it isa drasti
 simpli�
ation of the 2D �nite volume s
heme studied by Filbet [10℄.



18 L. GosseTheorem 4.5. Under the assumptions of Lemma 4.3, for any n 2 N:�n+1j � �nj�t + (�x')nj+ 12 �nj+1 � (�x')nj� 12 �njh = �2 �nj+1 � 2�nj + �nj�1h2 +O("):In parti
ular, the sequen
es wh; zh are relatively 
ompa
t in L1lo
(R+� � R) as " ! 0with h > 0 �xed and the remaining term in O(") 
onverges to zero in L1.Proof. One pro
eeds simply by adding up both equations appearing in (4.1): theMaxwellian terms treated impli
itly 
an
el ea
h other. Then, taking advantage of thefa
ts that both bAn";j+12+Bn";j+ 121+Bn";j+ 12 ! 2�2�t=h2 and b Cn";j+121+Bn";j+ 12 ! 2(�x')nj+ 12�t=h andwnj ; znj ! �nj =2 when "! 0 with h > 0 gives the aforementioned s
heme on �h.In the limit "! 0, the 
onventional 
entered dis
retization a
ting on the Keller-Segel model (1.5), for small enough initial data, allows to apply the 
onvergen
e resultin [10℄ to pass later to the 
omplementary limit h ! 0 with a 
ompletely di�erentfun
tional framework (in parti
ular, no BV-bound is ne
essary and the 
onvergen
e isweak). There is no 
hange on the s
heme on 'h (3.6) thanks to the use of the res
aledparameters �" and �" whi
h are 
alled the \small rea
tion rates" in [9℄.5. Numeri
al results. The 
onvergen
e results obtained in the pre
eding se
-tion are qualitatively di�erent from the ones of [16, 17℄; indeed, in these former works,it was possible to 
onsider for instan
e passing to the limit simultaneously in " ! 0,h ! 0 with " = h
 , 
 > 1. Here, sin
e (4.5) blows up as h ! 0, one must pass �rstto the limit "! 0, h > 0, and later h! 0 as a distin
t pro
ess.5.1. Hyperboli
 regime. We 
onsider the simple test-
ase of the propagationof Riemann initial data in the 
omputational domain x 2 [�1; 1℄:w0 = z0 = 12�[� 13 ; 13 ℄; '0(x) = 15 exp(�50x2); � = 15; � = 35; D = 5;(5.1)with 255 grid points, whi
h gives h = 0:0078. The CFL number is 
hosen so as to get��t = 0:9h with � = 1:25 and the results at time t = 0:4 are shown in Fig. 5.1. The(initially Maxwellian) kineti
 densities split symmetri
ally between the ones movingin positive and negative dire
tion. The spa
e derivative �x' remains always below thered lines whi
h 
orrespond to the maximal values �� thus ensures quasi-monotoni
ityand 
onsequently the Lp and BV-bounds (3.9) and (3.10).5.2. Di�usive regime. We kept exa
tly the same parameters (ex
ept for � =1:75) for 
he
king the ability of the numeri
al s
heme (4.2) whi
h 
omes from theinversion of the impli
it terms in (4.1). Clearly, the time-step has to be modi�eda

ording to the paraboli
 CFL restri
tion (4.3); we used �2�t = 0:3h2 and iteratedup to t = 0:02 to produ
e the results of Fig. 5.2 with the 
hoi
e " = 0:001 � h.5.3. Numeri
al de
ay properties. In Fig. 5.3, we display on the 2 pre
eding
on
rete examples some theoreti
al properties shown in the former se
tions. For thehyperboli
 test-
ase, we show the realization of the estimate (3.9) in the parti
ular
ase p = 2: the de
ay in time is very neat. For the paraboli
 test-
ase, we display theL1 norm of the Maxwellian term divided by 16 values of " (the L1 norm of the 
uxJ=�) for the Riemann data (5.1) at time t = 0:01, thus illustrating the estimate (4.6).
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Fig. 5.1. Hyperboli
 test-
ase with data (5.1) at time t = 0:4.6. Con
lusion and outlook. The present work 
an be extended in variousdire
tions: for instan
e, one may think about implementing the quasi-linear hyperboli
models whi
h paraboli
 limits have been 
onsidered in [9℄. The main obsta
le onthis road is the handling of the non-linear resonan
e phenomenon, [1, 27℄, whi
ho

urs when 
hara
teristi
 wave speeds vanish thus deeply 
ompli
ating the stru
tureof the well-balan
ed s
heme. A theoreti
ally simpler extension but perhaps moreasking 
omputationally 
ould be the development of a 2D approa
h with a moresophisti
ated method than simple dimensional splitting. From the point of view ofboth Asymptoti
-Preserving and Well-Balan
ed methodologies, the linear di�usionequation on ' is not the most well-suited be
ause of its in�nite speed of propagationand its asymptoti
 pro�les endowed with several in
exion points. Perhaps a bettermodel 
ould be the 
lassi
al porous medium equation, whi
h shares the advantage of avery smooth solution inside the interfa
es [45℄, but whi
h propagates at a �nite speedand possesses 
on
avity properties [4℄ whi
h should reveal themselves useful in thederivation of BV-bounds similar to (4.5). Lastly, there is an interesting 
onne
tionbetween su
h a nonlinear Keller-Segel model and the asymptoti
 system emerging fromWKB expansions for linear wave propagation as the relation between the eikonal andthe porous medium equations is a well-known fa
t, [3, 35℄. Hen
e, if the exponent ofthe nonlinear di�usion equation is 
lose to one, we may expe
t a behaviour somewhatsimilar to the one reported in [15℄ ex
ept that no 
on
entrations should o

ur thanksto the linear di�usion term appearing in the 
ontinuity equation on �.
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Density (w^h+z^h)
z^h moving right
w^h moving left

Initial density
−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Chemotractant
Initial chemotractant

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Kinetic flux
Macroscopic flux

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
−5

−4

−3

−2

−1

0

1

2

3

4

5

Space derivative
Initial space derivative

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Fig. 5.2. Paraboli
 test-
ase with data (5.1) at time t = 0:02.
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Fig. 5.3. Evolution of the L2 norms (left) and Maxwellian divided by " in L1 (right).REFERENCES[1℄ D. Amadori, L. Gosse, G. Guerra, Godunov-type approximation for a general resonant balan
elaw with large data, J. Di�. Eqns. 198 (2004) 233-274.[2℄ D. Aregba-Driollet, M. Briani, R. Natalini, Asymptoti
 high-order s
hemes for 2�2 dissipativehyperboli
 systems, SIAM J. Numer. Anal. 46 (2008) 869{894,[3℄ D. Aronson, J.L. Vazquez, The porous medium equation as a �nite-speed approximation to aHamilton-Ja
obi equation, Ann. Instit. Henri Poin
ar�e 4 (1987) 203{230.



Well-balan
ed and Asymptoti
-preserving for 
hemotaxis 21[4℄ D. Aronson, J.L. Vazquez, Eventual C1 regularity and 
on
avity for 
ow in one-dimensionalporous media, Ar
h. Rational Me
h. Anal. 99 (1987), 329-348.[5℄ F. Bou
hut, H. Ounaissa, B. Perthame, Upwinding of the sour
e term at interfa
es for Eulerequations with high fri
tion, Comp. Math. Appli
. 53 (2007), 361{375.[6℄ F. Chalub, P. Markowi
h, B. Perthame, and C. S
hmeiser, Kineti
 models for 
hemotaxis andtheir drift-di�usion limits, Monats. Math. 142 (2004) 123-141.[7℄ A. Cherto
k, A. Kurganov, A se
ond-order positivity preserving 
entral-upwind s
heme for
hemotaxis and haptotaxis models, Numeris
he Mathematik 111 (2008) 169-205.[8℄ Y. Dolak, T. Hillen, Cattaneo Models for Chemosensitive Movement: Numeri
al Solution andPattern Formation, J. Math. Biol. 46 (2003), pp. 153-170[9℄ D. Donatelli and M. Di Fran
es
o. Singular 
onvergen
e of nonlinear hyperboli
 
hemotaxissystems to Keller-Segel type models. Dis
rete and Cont. Dynami
al system. Series B, 13(2010), 79-100.[10℄ F. Filbet, A �nite volume s
heme for the Patlak-Keller-Segel 
hemotaxis model, Numer. Math.104 (2006) 457{488.[11℄ F. Filbet, P. Laurenot, and B. Perthame, Derivation of hyperboli
 models for 
hemosensitivemovement, J. Math. Biol. 50 189 (2005).[12℄ F. Filbet F, C.-W. Shu, Approximation of hyperboli
 models for 
hemosensitive movement,SIAM J. S
ient. Comp. 27 (2005) 850-872[13℄ E. Gabetta, B. Perthame, S
aling limits for the Ruijgrok-Wu model of the Boltzmann equation,Math. Mod. Appl. S
i. 24 (2001) 949{967.[14℄ L. Gosse, Lo
alization e�e
ts and measure sour
e terms in numeri
al s
hemes for balan
e laws,Math. Comp. 71 (2002), 553{582.[15℄ L. Gosse, F. James, Convergen
e results for an inhomogeneous system arising in various highfrequen
y approximations, Nmer. Math., 90 (2002), no 4, 721-753.[16℄ L. Gosse, G. Tos
ani, An asymptoti
-preserving well-balan
ed s
heme for the hyperboli
 heatequations, C.R. Math. A
ad. S
i. Paris 334 (2002) 337{342.[17℄ L. Gosse, G. Tos
ani, Spa
e lo
alization and well-balan
ed s
heme for dis
rete kineti
 modelsin di�usive regimes, SIAM J. Numer. Anal. 41 (2003) 641{658.[18℄ J. Greenberg, W. Alt, Stability results for a di�usion equation with fun
tional shift approxi-mating a 
hemotaxis model, Trans. Amer. Math. So
. 300 (1987) 235{258.[19℄ J. Greenberg, A.Y. LeRoux, A well balan
ed s
heme for the numeri
al pro
essing of sour
eterms in hyperboli
 equations, SIAM J. Numer. Anal. 33 (1996) 1 { 16.[20℄ F. Guarguaglini, C. Mas
ia, R. Natalini, M. Ribot, Global stability of 
onstant states andqualitative behavior of solutions to a one dimensional hyperboli
 model of 
hemotaxis,Dis
rete Contin. Dyn. Syst. Ser. B 12 (2009) 39-76.[21℄ T. Hillen, Hyperboli
 Models for Chemosensitive Movement, Math. Models Methods Appl. S
i.12 (2002) 1007-1034.[22℄ T. Hillen, A. Potapov, The one-dimensional 
hemotaxis model: global existen
e and asymptoti
pro�le, Math. Meth. Appl. S
i. 27 (2004) 1783{1801.[23℄ T. Hillen, C. Rohde, and F. Luts
her, Existen
e of weak solutions for a hyperboli
 model of
hemosensitive movement, J. Math. Anal. Appli
. 260 (2001) 173-199[24℄ T. Hillen , A. Stevens, Hyperboli
 models for 
hemotaxis in 1-D, Nonlinear Analysis: RealWorld Appli
ations, v.1 n.3, p.409-433,[25℄ D. Ho�, J. Smoller, Error bounds for �nite-di�eren
e approximations for a 
lass of nonlinearparaboli
 systems, Math. Comp. 171 (1985) 35-49.[26℄ Hyung Ju Hwang, Kyungkeun Kang, Angela Stevens, Global existen
e of 
lassi
al solutions fora hyperboli
 
hemotaxis model and its paraboli
 limit, Indiana Univ. Math. J. 55 (2006)289-316.[27℄ E. Isaa
son, B. Temple, Convergen
e of the 2 � 2 Godunov method for a general resonantnonlinear balan
e law, SIAM J. Appl. Math. 55 (1995) 625-640[28℄ S. Jin, EÆ
ient asymptoti
-preserving (AP) s
hemes for some multis
ale kineti
 equations,SIAM J. S
i. Comput. 21 (1999), 441{454.[29℄ S. Jin, F. Golse, C.D. Levermore, The 
onvergen
e of numeri
al transfer s
hemes in di�usiveregimes I: The dis
rete-ordinate method, SIAM J. Numer. Anal. 36 (1999), 1333{1369.[30℄ S. Jin, L. Pares
hi, G. Tos
ani, Di�usive relaxation s
hemes for multis
ale dis
rete-velo
itykineti
 equations, SIAM J. Numer. Anal. 35 (1998), 2405{2439[31℄ E.F. Keller, L.A. Segel, Initiation of slime mold aggregation viewed as an instability. J. Theor.Biol. 26, 399[32℄ A. Klar, An asymptoti
 indu
ed s
heme for nonstationary transport equations in the di�usivelimit, SIAM J. Numer. Anal. 35 (1998) 1073{1094[33℄ C. Le Bris, P.-L. Lions, Existen
e and Uniqueness of Solutions to Fokker-Plan
k Type Equations



22 L. Gossewith Irregular CoeÆ
ients, Comm. P.D.E. 33 (2008) 1272{1317.[34℄ Ph. LeFlo
h, A.E. Tzavaras, Representation of weak limits and de�nition of non
onservativeprodu
ts, SIAM J. Math. Anal. 30 (1999), 1309 { 1342.[35℄ P.L. Lions, P.E. Souganidis, J.L. Vazquez, The relation between the porous medium and theeikonal equations in several spa
e dimensions, Rev. Mat. Iberoameri
ana 3 (1987), 275{310.[36℄ P.L. Lions, G. Tos
ani, Di�usive limit for �nite velo
ity Boltzmann kineti
 models, Rev. Mat.Iberoameri
ana 13 (1997), 473{513.[37℄ T.P. Liu, Quasilinear hyperboli
 systems, Comm. Math. Phys. 68 (1979) 141{172.[38℄ R. Natalini, B. Hanouzet, Weakly 
oupled systems of quasilinear hyperboli
 equations, Di�.Integ. Equations 9 (1997) 1279{1292[39℄ R. Natalini, M. Ribot, An asymptoti
 high order mass-preserving s
heme for a hyperboli
 modelof 
hemotaxis, preprint (2010)[40℄ K. Osaki, A. Yagi, Finite dimensional attra
tor for one-dimensional Keller-Segel equations,Funk
ialaj Ekva
ioj 44 (2001) 441{469.[41℄ H. Othmer, T. Hillen, The di�usion limit of transport equations II: Chemotaxis equations,SIAM J. Appl. Math. 62, 1222-1250, (2002)[42℄ B. Perthame, Transport equations in biology, Birkh�auser Verlag 2007[43℄ M. Portilheiro, A.E. Tzavaras, Hydrodynami
 limits for kineti
 equations and the di�usiveapproximation of radiative transport for a
ousti
 waves, Trans. Amer. Math. So
. 359(2007), 529-565.[44℄ L.A. Segel, A theoreti
al study of re
eptor me
hanisms in ba
terial 
hemotaxis, SIAM. J. Appl.Math., 32 653-665, 1977[45℄ J.L. Vazquez, Asymptoti
 behaviour and propagation properties of the one-dimensional 
ow ofgas in a porous medium, Trans. Amer. MAth. So
. 277 (1983) 507{527.[46℄ Hongyun Wang, Convergen
e of a numeri
al method for solving dis
ontinuous Fokker-Plan
kequations, SIAM J. Numer. Anal. 45 (2007) 1425{1452.


