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ASYMPTOTIC-PRESERVING AND WELL-BALANCED SCHEME
FOR THE 1D CATTANEO MODEL OF CHEMOTAXIS MOVEMENT
IN BOTH HYPERBOLIC AND DIFFUSIVE REGIMES

LAURENT GOSSE*

Abstract. The original well-balanced (WB) framework [19, 14] relying on nonconservative (NC)
products [34] is set up in order to efficiently treat the so—called Cattaneo model of chemotaxis in
1D [24]. Tt proceeds by concentrating the source terms onto Dirac masses: this allows to handle
them by NC jump relations based on steady-state equations which can be integrated explicitly. A
Riemann solver is deduced and the corresponding WB Godunov scheme completed with the standard
Hoff-Smoller theory [24] for the diffusion-reaction equation ruling the evolution of the chemotractant
concentration is studied in detail. Later, following former results [16, 17], a simple rewriting of the
NC jump relations allows to generate another version of the same Godunov scheme which is well
adapted to the parabolic scaling involving a small parameter . The standard BV framework is used
to study the uniform stability of this Asymptotic-Preserving (AP) scheme with respect to £ allows
to pass to the limit and derive a simple centered discretization of the Keller-Segel model. Finally,
results by Filbet [10] permit to pass to the complementary limit when the space-step h is sent to
zero. Numerical results are included to illustrate the feasibility and the efficiency of the method.

Key words. Chemotaxis modeling; discrete velocity kinetic model; non-conservative products;
quasi-monotone source term; AP scheme; WB scheme.

AMS subject classifications. 65M06, 35L60.

1. Introduction.

1.1. Modeling of chemotaxis dynamics. This paper is concerned with the
following semilinear model of chemotaxis movement, usually named after Cattaneo:

8tp + OEJ =0
(1.1) Ot + N20pp = pOpp — J
Opp — DOypap = ap — Bep.

One can rewrite it in a more mathematically tractable way by introducing its diagonal
variables (its Riemann invariants, in hyperbolic terminology),

_1i 0 J _i0,7
YT ) T2\l )

which satisfy the following semilinear system of equations [18]:

Orw — N0 w = —%G(azap;w,z)
(1.2) Oz 4+ M0y z = 55:G(0r 3w, 2)
Orp — DOyrp = ap — Bep.

with the conventional choice of turning rates,
G(Orp;w, 2) = (Opp + Nw + (020 — N)z.

For stability reasons, we want the source term G(9,;.,.) to be quasi-monotone in
the terminology of [38] and this leads to the well-known subcharacteristic conditions:

(1.3) OwG(Orp;w, 2) > 0 and 0.G(0,p;w, z) < 0= |0, < A
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The system (1.2) can be seen as a 2-velocity discrete kinetic model with w, z being
identified to f¥ in the notation of [17], the density of particles moving with negative
and positive speed, respectively. The coupling with ¢ is weak in the sense that the
linear equation admits an explicit solution involving a convolution with a damped
heat kernel and Duhamel’s principle (as written in [26], proof of Lemma 4); thus
O is actually a function of ¢(t = 0) and d,p. We consider its parabolic scaling by
introducing a small parameter 0 < & < 1, and imposing o = &%, 35 = 23, [9]

20w — eX0pw = — 55 G (003w, 2)
(1.4) 2012 + eX0y 2 = 535G (B i W, 2)
g? (Orp — DOyap) = a®p — ¢,

meaning that we substitute t — €2, * — ez, and “we look at the system (1.2) from
far away with a clock which turns very slowly”. It is expected that the behavior of
(1.4) in the limit e — 0 approaches the one induced by the so—called Keller-Segel
model which contains only a convection-diffusion equation for p coupled to :

(1.5) Oip + 02 (020 p) = N2 Dyap, Orp — DOy = ap — Bo.

The first equation of (1.5) is a special form of the classical linear Fokker-Planck
(or conservative forward Kolmogorov) equation in divergence form; however, since ¢
satisfies a linear diffusion equation, 0, isn’t a confining potential since 9,,(p surely
changes its sign when 2 € R. Observe also that the equation on p doesn’t admit BV-
bounds except if 0., = 0, which is incompatible with the prescribed equation: this
will create issues for the convergence of the Asmptotic-Preserving process. Imposing
the “small reaction rates” af, 5° in (1.4) is somewhat necessary; in the opposite
situation, we formally get ¢ = ap/f3, which leads to a nonlinear diffusion equation of
the porous medium type, but endowed with the “wrong sign” (because a > 0, § > 0):

a
28

From a mathematical point of view, this situation is related to the one ruling the
behavior of the so—called Ruijgrok-Wu model of the Boltzmann equation, see [13, 36].
The derivation of efficient numerical schemes for this model has been carried out
first in [30], and then in [17] where all the rigorous compactness estimates have been
obtained together with numerical robustness by following the well-balanced canvas
involving non-conservative products (see also [34, 14, 16]). The present text will
exploit the same strategy, except that new (and quite substantial) difficulties arise
from the coupling with the diffusion equation on .

8tp + Om(pQ) = AQ@mmp

1.2. WB and AP: two sides of the same coin. Asymptotic-Preseving and
Well-Balanced schemes are two complementary methodologies which, besides having
been introduced roughly at the same moment (see [29, 28, 30, 32] and [19, 14]), address
similar numerical issues in different contexts. Well-balanced schemes were designed
by Greenberg and LeRoux for scalar conservation laws with source terms with two
main goals: handling stiff source terms (thus allowing for problems displaying 2
distinct characteristic time-scales) without any time-step restriction besides the usual
convective CFL condition and being fully consistent with a time-asymptotic
behavior ruled by steady-state equations. Thus, through an original concentration
process of sources onto Dirac masses located at both interfaces of each computational
cell, stiffness was disappearing because source terms were rendered by means of a
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nonconservative jump relation induced by the atomic measures, that have been called
later “zero waves” [1]. Clearly, if a source term can be discretized in a consistent way
by means of a supplementary jump relation inside a Riemann solver, its size (hence
its “reaction rate”) is not relevant when it comes to time-step restriction. Moreover,
Riemann problems involving a source term concentrated on a Dirac measure present
the advantage of still being self-similar (as opposed to so—called “generalized Rie-
mann problems” [37]) hence they still can be exactly solved in many interesting cases.
An exact resolution of these Riemann problems in a Godunov scheme allows to de-
rive an exact weak solution at steady-state; indeed, steady-states for one-dimensional
homogeneous systems of conservation laws (possibly non-conservative) consists in a
succession of constant states separated by stationary discontinuities. Assuming we
have derived the correct jump relation across all the zero-waves resulting from the
numerical grid, thus ensuring consistency with the original problem, classical results
yield that numerical viscosity effects completely disappear at steady states for the
well-balanced Godunov scheme. Efforts have been made in [14, 17] (see §§3.3-4 and
2.1-2 respectively) to establish uniform BV-bounds in order to define correctly the
nonconservative products following the general framework of weak limits [34].

It is at this point that it is easy to highlight the very close relation with the
Asymptotic-Preserving methodology. There, the two main objectives are handling
the stiff parabolic scaling of the type (1.4) for ¢ < 1 without heavy restrictions
on the time-step and being consistent with the time-dependent asymptotic
behavior given in our particular context by (1.5). This asymptotic behavior results
from a delicate balance appearing between flux terms and the lower-order, but stiff,
right-hand side as rigorous proofs clearly explain in e.g. [13, 36, 43]. Put this way, it
comes with no surprise that well-balanced schemes, as soon as they can be efficiently
stabilized in order to handle convective velocities blowing up in %, furnish very reliable
asymptotic-preserving discretizations. This is what has been shown in [16, 17] for the
telegraph equations and 2 x 2 discrete kinetic models; here, we shall follow the same
canvas in order to treat a more involved system arising from biological modelling. Ob-
viously, there may exist AP schemes which don’t result from a WB Godunov scheme
which convective step is treated implicitly in time and yield correct asymptotic limits
as € = 0 [2, 5], however, the deep relation between these two numerical approaches
shouldn’t be overlooked. For instance, the recent scheme for Fokker-Planck equations
[46] is a well-balanced scheme which doesn’t tell his name.

This paper is organized as follows: §2 is devoted to recalling theoretical results
shown mainly in [24, 26]. In §3, we study the well-balanced Godunov scheme for (1.2)
in hyperbolic regime; in particular, smoothness estimates for the diffusive equation
on ¢ are obtained from the Hoff-Smoller L! study of numerical schemes for the heat
equation [25]. In §4, we consider the asymptotic-preserving rewriting of this Godunov
scheme and show various stability estimates as ¢ — 0. However, in contrast with
former works [16, 17], it doesn’t seem possible to derive BV estimates which are
uniform in both %, the maximum frequency allowed by the grid, and ¢; we think the
reason is that Keller-Segel equations don’t have BV estimates at the continuous level.
So it is necessary to pass first at the e — 0 limit while maintaining A > 0 fixed,
and then later send h — 0. Finally, §5 displays numerical results illustrating former
stability estimates in both regimes and §6 gives concluding remarks.

2. Theoretical results for the 1D Cattaneo model. In all the sequel, we
shall tacitly assume all the restrictions which are necessary to have existence and
uniqueness of solutions for both (1.2) and (1.5). Here, we give a quick review of these
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results from [24, 26]; let us consider the Cauchy problem for (1.2), equivalently for
(1.1), on the complete real line (boundary conditions (bcl) in [24])

w(t=0,)=uw’ 2(t=0,)=2° @t=0,.)=¢° for z € R,

which implies that p(t = 0,.) = w® + 2% and J(¢t = 0,.) = A(2° — wP). For technical
reasons, besides a > 0 and g > 0, it is customary to assume:

1. nonnegative initial values with compact support: w® > 0, 2° > 0, ¢ > 0;
moreover, some smoothness is required w?, 20 € L>®(R), ¢° € W1 (R).

2. nonnegative turning rates: this is equivalent to the quasi-monotonicity of
(1.2), which is ensured by the subcharacteristic condition. It is also postulated
that turning rates should be symmetric when 9,¢ changes its sign.

3. local Lipschitz continuity and boundedness of turning rates: in our case,
they inherit all the smoothness of 0, . This assumption allows to enforce the
quasi-monotonicity property if turning rates are taken as + max(0, A — |9,¢|).

Under all these assumptions, Hillen and Stevens prove in [24] that:
THEOREM 2.1. There exists a maximal time Tyyq. and a unique solution to (1.2),

(w,z,¢) € L= ([0, Tz, L2 (R)* x W' (R)) ,

with Tyax possibly infinite. If Tinax < 400, then limy,7, . [|0(t,.)|lw1.e @) — +o00.

Some further results have been published in [26], including the parabolic limit of (1.4):
THEOREM 2.2. Assume all the former hypotheses and moreover, that w®, 2°, ©° €

C*(R) with compact support and steady-state initial distribution of p(t =0,.):

B’ = Dpp® + a(w® + 2°).

There ezists a unique solution to (1.2) for anyT > 0, (w, z,¢) € C ([0, T[, W' (R)?).
Passing to the limit with ¢ — 0 in (1.2) in order to derive (1.5) is also studied in [26];
however, we prefer to refer to [9]. The framework of this paper corresponds to their
“third scaling” called “small reaction rates”. An interesting estimate obtained in [26]

concerns the evolution in time of the norm of ¢ in W1:°°:
LEMMA 2.3. If p € L®(R*, L2 N L>®(R)), then for any t > 0, ¢ satisfies:

llo(t, Nlre=®) < CllAlL1(r).

1)

3. Space localization and Godunov scheme in hyperbolic regime. The
hyperbolic regime corresponds to a value of the relaxation parameter ¢ ~ 1; for
simplicity, we shall assume € = 1 in this section and drop the corresponding indexes.
In all the sequel, we shall work with a uniform numerical grid where the space step is
denoted by h, the time step, At; both are linked through the classical CFL condition

AAt < h.

10z0(t; Iz ) < C (1 + 1%l e) {1 + max(0, log#) + log(sup [|o(, )|z =)

with C' depending only on a, 3 € (RT)2.

3.1. Sources on a Dirac comb: jump relations across zero-waves. We
now carefully follow the ideas already presented in [16, 17], that is to say, we pass
from (1.2) to the non-linear and non-conservative system:

dw — ANopw = — 5= > jez WG (Oxpiw, 2)0 (z-(—3)h)
(3.1) Orz + Ms2 = 55 3 1 WG (Datpsw, 2)6 (2 — (j = )h)
Orp — DOyrp = ap — B,
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where 4(.) stands for the Dirac mass in z = 0. Clearly, in the context of discontinuous
w, z, this formulation looks like being unstable because of the products “Heaviside x
Dirac” appearing on the right-hand side. However, it has been rigorously shown in
[17] that these non-conservative products can be rigorously defined as weak limits in
the framework of [34] thanks to the uniform BV estimates which come from the linear
convection in (1.2) (similar estimates for scalar balance laws are given in [14]).

The presence of the Dirac masses induces new discontinuities on the locations
(j — %)h, Jj € Z which are called the “zero waves”; in order to solve the Riemann
problem for (3.1), we must derive appropriate jump relations. Let us denote by o, Z
the microscopic profiles which are shrunk inside the non-conservative products: they
are to satisfy the stationary equations of (1.2) which read, for = € [0, h],

(3.2) 2Aax<2>_<6w+A M_J(f).

The solution can be written explicitly, with obvious notation:

I = 0, p(h) = |p(0) = 55| exv(h, o),

At this microscopic scale, the quantity 0, is a constant. Hence we have the result:
LEMMA 3.1. For any h > 0, the stationary equations of (1.2) yield the following
Jump relations across the zero-waves of (3.1) located in (j — %)h, JEL:
i 2 1—-A_ B 1-B _ A+ B _
(3-3) w(0) = ;g wlh) + ©0),  2h) =—ggeth) + 7520,

with the notation:

A= (1 - ;) exp(hd, /),  B= <1 + g) exp(hdyp/A\?).

™

In particular, the following important relation holds: (flux conservation)

(3.4) w(0) —w(h) = i—gu‘;(h) + i;—gz(o) = 2(0) — z(h).

Proof. We rewrite p(h) with the diagonal variables o, z:

200 o M

and we also have that w(h) —@w(0) = 2(0) — Z(h). This leads to the following system:

< L+ pewngs) -1 ) < 70 ) _ < 1 -(1- bexn(h) ) < i )

The matrix on the left is always invertible because its determinant 1+(1+2) exp(h 8;2“’)
is strictly positive. The coefficients A and B are taken from these matrices; inverting
and multiplying them yields the jump relations (3.4). O

It is interesting to observe that a simple linearization of exponentials gives:

L L=A _exp(=hdsp/N) —1+h/X  h A= Dy
1+ B exp(—=hO,0/ )+ 1+h/X " 2X \ X — (80 — M)h/2X
L—B _ exp(=hd.p/X)=1=h/X RVEDN -
=14 B  exp(—hdep/N2)+14+h/X " 2X\ A= (oo — Nh/2)) =

w(h) 4+ 2(h) = (u‘)(O) +2(0)+h

>0,
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These linearizations will be useful for establishing consistency as h — 0 since |0, ¢)|
remains bounded for D,3 > 0 are big enough. In practice, a first order divided
difference computed at each interface x = (j — %)h and ¢t = nAt will appear in place
of 0,p; there are no zero-waves involved in the discretization of ¢, obviously.

3.2. Hoff-Smoller theory for the equation on ¢. It is well-known that
strictly parabolic equations induce an instantaneous regularizing effect which, in our
context, makes ¢(t,.) a W2P(R) function for ¢ > 0. This feature can’t exactly be
reproduced by a simple finite-difference scheme, however, Hoff and Smoller showed
that a good deal of it still holds for conventional centered discretizations. In order to
present part of their results, let us first present the 1D heat equation:

DAt
(35) at/l} = Dazzv, U?+1 — ’U? + 7

(vfr = 207 +0fy)
Hoff and Smoller [25] introduce next the concept of “numerical fundamental solution”:
DEFINITION 1. For any n € N, the numerical fundamental solution to (3.5) is

the sequence (E7)jez € N (°°(Z) satisfying:

1 n n
£ = Zbjm0, EPti=g] (1

2D At DAt
J h 7 T2 Tp2

h2 h2 ( ]71+1 + Jn*l)'

It is nonnegative if 2DAt < h2.
We denote by “*” the discrete convolution product:

Va,be €' Ne=(Z),  (axb); = has;by,

JEZ
which satisfies (besides commutativity):
D hl(axb);[ < [ D hlag| | [ Do Rlbs] | supl(axb);] < suplaj| | > hlbl
€z JEZ. JEZ JEz ez JEZ.
We propose therefore to define a piecewise constant approximation ¢"(nAt, .) for any

n € N as usual, p"(t,z) := ¢} for t,z € [nAt, (n + 1)ALx[(j — 3)h, (j + $)h[; a
consequence of Theorem 2.1 in [25] is the explicit form of the following scheme,

5 (14 AB) = f + altpf + =5 (1 — 207 +971)

which involves a discrete Duhamel’s principle:

n—1
n __ —n(en 0 aAt k—(n—1) (n—1)—k k
(3.6p7 = (1+AtB) (€ *¢)+1+6At§(1+m6) (¢ ).

This notation is used hereafter:
. 1
Vin€LXN,  (9:9)},y =3 (91— 4])

The main interest in choosing this scheme is the numerical analogue of the regularizing
effect which holds at the continuous level as stated in Theorem 2.2 of [25]:
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THEOREM 3.2. Assume 2AtD < h?, then:

C())
Vn € N, Er=1, 0<&r<
! j%] mm(hm

and moreover,

Cq n n Cs
]EZZ‘J+1 ] \/m: h]EZZ‘J+1 25 +(€ 1|< WAL
The constants Cy, Cy,Cs depend only on D > 0.
It is now possible to study the time propagation of the subcharacteristic condition:
LEMMA 3.3. Let 2AtD = O(h?) and assume that ¢° € L'(R) N W (R),
ph(t,.) € L'NBV(R) for anyt > 0. Then, for At > 0, the subcharacteristic condition
holds for any n € N if one of the two following requirements is met:

1.
@S TV (180, < 5 (A= 1+ 580" sup 0.0,
2.
A= (14580 sup (00, 5| 2 Sl 1= + h(fji%nphmm, M

with S, depends on n,a, 8 and Cy. Moreover, there also holds:

TV((9:¢)(nAt,.)) := Zjez\(aw);l%—(ax@) <+ BA) T 10wy
+5ullo"| + piipan 10" (AL )ln )

Proof. Thanks to the first estimate of Theorem 3.2, everything starts with

(8z<p)j+; aAt 2 5[5(”71)7k*pk]
Oep)jy A= ((1 Taanr ) T Ty BA ]; h(1 + BAt)(n=1D=k’

which should be negative. The first term is handled by taking advantage of the
resulting convex combination and taking the supremum on j € Z. The second term
is delicate as we must decide on which part we want to apply the divided difference
operator denoted here d[.]/h for easiness in reading. The first solution, which leads
to Point 1 in Lemma 3.3 is to apply it on p" and suppose this function has bounded
total variation in the space variable. In this case, it remains only to observe that:

n—1
alt e
— E 1+ gAYk < =
1+ At k:o( +5 ) - B

To prove Point 2, we proceed by applying the divided difference on the fundamental
solution. However, it can’t be directly applied for K = n — 1, but in this case, we see
that TV (£°) = 2/h. The rest of the summation can be controlled by means of:

CiraAt

h 1 h

p oo E 1+ [)’At =:||p Sp-
H ||L {k (( 1) k) t} H ”L
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Now, in order to prove the estimate on the total variation of the first-order divided
difference, we observe that TV (6€°/h) = ||6°£°/h?|| 1 (z) = 4/h* and we compute:

@ % [62€7] aAt ”i S2[E(n=D—k 4 pk]

Oue)jy = 0e2)iy = 24 pans T+ Bat £ B2(1 4 BAL) Dk

We proceed by directly applying the estimates of Theorem 3.2 to the first term. The
new constant S, is given by the following summation:

i __Godl a1+ AAN

(n—1)

Finally, the last term corresponding to £k = n — 1 is bounded by:

aAt 4aAt

mTV((sEO/h)th(nAt, Mriw) < m”ﬂh(”Ata Mz w)
A (> bound on the second order divided difference of " can be obtained the same way
by replacing [|¢°(|r1(m) and [|p"(nAt, )|z by [|¢°]l=(®) and [|p"(nAt, )|z ),
respectively. O

In the sequel (see Lemma 3.4), we shall see that the propagation in time of the
subcharacteristic condition ensures that the LP(R) norms of p(¢,.) remain bounded
as a consequence of the quasi-monotonicity of the source term G only which is a
consequence of the subcharacteristic condition. Establishing a BV-bound for p”(t,.)
asks for a /> bound on the second order divided difference of (" (¢,.). Concerning
the choice of having studied an explicit time discretization on the diffusion equation
of ¢, there is a simple way to circumvent the restrictive parabolic CFL condition: it
suffices to choose the time-step for the diffusion equation as Ah/D times the one for
the hyperbolic system and to keep p constant during the D/(\h) sub-iterations. This
adjustment will disappear when setting up the Asymptotic-Preserving process.

3.3. Riemann solver and a Godunov scheme in hyperbolic regime.
Lemma 3.1 is the key to produce a Riemann solver for the non-conservative system
(3.1) and thus a Godunov scheme. Let’s denote w} ~ w(nAt, jh) and 27 ~ w(nAt, jh)
for any j € Z and n € N; these numerical approximations induce p1ecew1se constant
functions w” (¢, z) and 2" (¢, x) such that:

1 1
wh(t,z) = wy, 2t x) = zj for t,z € [nAt, (n + 1)At[x [(] - §)h’ (G + §)h[

The Godunov scheme proceeds in defining a control cell |(j— 1), (j+ 3)h[x]nAt, (n+
1)At[ around each point z; = jh, solving a Riemann problem on both interfaces
(j+ %)h and averaging: see Fig. 3.3. Within the notation of this figure, it holds:

AAL AAL
n+l __ . n * PN 1) n+l _ ,n _ no__ Lk
w;" =wj + o (ij% wj) , zZ; =z o (zj z];%) .
A first consequence is the conservation property on the p” := w" + 2" variable:

. . At
(3.7) p"((n+ )AL, jh) = pi* = pff —
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n+l _n+1
(n+1)At Wi
l it N
* n * L
w]:% Zipj . Wiy wiy g
Z] 1 ]‘*% Z? 27+%
=
£
=S X : DY .
fl\_g (only z jumps) © (only w jumps) =
ey . e
| ® ;
=8 :
| % :
=5 r
o :
o] :
N .
nAt v 4
__________________ e e e e e e e e e -
(j—h z = jh (G+3)h

Fia. 3.1. Lllustration of the control cell for the non-conservative Godunov scheme

Clearly, the “interface values” which result from the inclusion of the zero-waves yield:

with = wp + AR (Wl —w])
+— 2L (1= Br Jwhy, + (1- A7, )2r),
n 2 2
(38) n+1 n /\Zglgij+%)n )
2" = R _Aat(pn _ ot
J J h J j—1
—*7M(1—B7? w4 (1= A" |)zn )
L h(l—&-B’“ 1) ( ]_%) 7 ( ]_%) j—1
i-g

We stress that since A and B are computed at the borders of each control cell, the

term 0, is very well defined because odd derivatives “live on the staggered grid”.
PROPOSITION 3.4. Let w® and 2° belong to LP(R), 1 < p < oo; under both the

CFL condition AAt < h and the subcharacteristic restriction X\ > |0, ¢|, there holds:

(3.9) VteR", llw" (¢, )l o) + 12"t e @) < 100l Le@) + 120020 &)
Proof. One checks that the linear well-balanced scheme is a convex combination:

M\ AAt 1-B? , AAE(1— A% )
< (1= = i Y JT2
gt < o (1= 220) + 23 |w]+1|(1+ ) T

h 1 —}—Bj+1
and our assumptions ensure that —1 < 1;B’n+2 <0and 0< 1;B’n+2 < 1, hence
2 2
|27 <[ (1= 5 ) + S5l [ 1= — ) - — w7 .
J I h h Y 1+ B, h(1 +Bn_l)
2 2

It remains to sum up or to take the supremum on j € Z in order to conclude. O
The bound (3.9) is crucial; however, since the subsystem of (3.1) ruling only w
and z is not translation-invariant because of d,¢, it doesn’t lead to a BV-bound as
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directly as one could hope for at first glance. However, this bound completes nicely
Lemma, 3.3 because if we choose p = 1 in (3.9), we see that the hypothesis made on
o™t i) < 1w (8, )l w) + [|2"(F, )| (r) is satisfied for instance if we assume
that w® > 0 and 2° > 0, which amounts to asking for a small momentum initially.

3.4. Compactness for the Well-Balanced Godunov scheme. To establish
strong convergence of w” and z" toward the unique solution of (1.2), we need a bound
on the total variation of w"(¢,.) and z"(t,.).

LEMMA 3.5. Let 3 >0, ¢ € WH(R) and w®, 2° € L' N BV(R); under both the
CFL condition AAt < h and the subcharacteristic restriction A\ > sup; , |(8x<p);?+%\,

the following BV-bounds hold for any n € N:

TV (wh(nAt,.)) + TV (2"(nAt,.)) < TV (w°) + TV (2°)

3.10
(310 YL mA (0 gy 1200 0rce)

where L is the Lipschitz constant of (1+B’ LLB) depending on the values of (0, ) 1
2

Proof. One proceeds by computing the differentiating the well-balanced scheme:

I
n+l _  n+l g AAL n
[wihl —wi < (1= 220) jwhy, —wh] + 22 <1+1+B" 3) [wh o —wly |+
1-B™ ; 1-B" , —A Atan o oa-ar,
AAL ity ity |w ‘ + /\At i+ ‘Z _ Zn‘ 4 AAt /\At ity ity |z
kR |1+B" 1+B" i+ T TR T4B, g Fitl 1+B" 1+B”
+ i+3 + it3 / + J + i+d + itd
where the same properties on ; >0, ng < 0 are used, and then
+1 +1 AAL =A%
n _ N Y ) _ 2 n _ n
[2f = 2 < (1= 2 |Z]+1 Z+ 54 1 +B7 |27 = 2jal+
n n 27 n _Rpn
e [y A 127 | — aar Py |w wh| + 281 At By By
h |1+B™ | 1+B™ | Jj—1 “h 1+B,, J+1 1+B™ 1+B™ |
it3 i=3 its i=3

Summing on j 6 7, we have cancellations except for the terms rendering from the
oscillations of 1 ey and Ey B which depend on x through d,¢. They read:

1-A4A" ., 1-A",

_ nn _ nn
T n n J n J
hZ\T+By, 1+By, 1+B]+3 1+Bj+%

Now, we know that these two quantities are perturbations of h(9,p F A)/2X%. More-
over, from the discrete regularizing effect of [25] and Lemma 3.3, we deduce their
Lipschitz regularity (recall that the denominator never vanishes), so there exists a
Lipschitz constant L depending on the initial data and the grid parameters such that

A
0 <2822 RS 1291 < 228 (il ey + 1% e)
JEZ

the last inequality coming from Lemma 3.4. O

REMARK 1. One sees here the big difficulty in treating the system (1.2): the
BV-bound (3.10) needs both second order divided differences for ©"(t,.) to be either
in £1(7Z), or in (>°(7Z) for claiming that L is uniformly bounded and also the subchar-
acteristic condition in order to keep the source term G quasi-monotone and ensure
that the LP bounds (3.9) hold through time.
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We switch to time-equicontinuity:

LEMMA 3.6. Under the hypotheses of Lemma 3.5, the piecewise constant approz-

imations w", z" are endowed with a L'-modulus of time equicontinuity:

[w(t + At,) —wh(t, )@y + |27 (8 + At, ) = 2"(8,)|[p1(r) <
At [TV (wh(t, )) +TV (zh(t, )) +C (||w0||L1(R) + ||zo||L1(R))] ,

+ =A% =B
or any t € R™ and C := sup; 2 21,
f Yy jn H_BH% | TFB
Proof. Tt suffices to add up the schemes on w}”’l —w} and z}”l — 27, to take the

modulus, multiply by h and sum on j € Z:
hZ]’eZ |w?+1 - w;l| + ‘Zyjl - 23n| SnAt ZjeZ ‘w;lﬂ - w;’\ + ‘Z]T‘LH -z

j
1-A"
+1
2AtA sup; (‘ 1+B;+? hY ez Wil + |27
ity

|+

itd

3

1+B].

1n
+t3

Applying the BV-bound (3.10) and the LP-bound (3.9) together with the properties
of ©"(t,.) yields the conclusion. O

Finally we are in position to prove the convergence of our well-balanced scheme
toward the unique solution of (1.2):

THEOREM 3.7. Let B >0, ¢ € L' N WL (R) and w°,2° € L' N BV (R); under
both the CFL and the subcharacteristic restrictions, AAt < h, X > Lip(p"(t.,)), the
sequence w", 2" " converges strongly as h — 0 toward the unique solution of (1.2).

Proof. The proof consists in checking both the Lax requirements: stability and
consistency. Lemmas 3.9, 3.5 and 3.6 ensure that one can extract a subsequence in-
dexed by hy — 0 which converges strongly in L, (R} x R). The results from [24]
yield the strong convergence of ©" generated by the finite differences scheme (3.6).
Concerning the consistency, the diagonal convective part is very classical. The consis-
tency for the source term G can be obtained from the linearization of the exponentials
for small h and A > 0: (these quantities appear always multiplied by At)

h
i<ﬂ>:é£< A= Oap >—>i(z\—6mtp),
h\1+B h 2\ A—([‘)m(p’;—)\)h/Q)\ 2\
A(1-B Ah 00" + A 1
h (1 + B) = Thox <A — (Oap — /\)h/2/\> = oy A F00).
By uniqueness of the limit proved in [24, 26], the whole sequence converges. O
REMARK 2. Concerning the preservation of steady-states, the Godunov scheme
on wj and zj preserves all the steady-states of the 2 x 2 system. The issue comes
from the centered scheme (3.6) on : clearly, even if we furnish an initial datum ¢°
which satisfies 0;° = 0 as in [24, 26], it is likely to be perturbed and a spurious
dynamic may be ignited. However, we aren’t aware of any well-balanced scheme for
the diffusion equation; a remedy may be to approximate the equation on @ by a system
of “hyperbolic heat equations” (like in [16]), build a traditional well-balanced scheme

on this approzimation, and then plug it inside the present framework. This would
constitute a complex system of 2 Cattaneo models (weakly) coupled by ¢ and p.

4. Diffusive scaling through a modification of NC jump relations. In
this section, we adopt the diffusive scaling (1.4) and, following [16, 17], we investigate
how the preceding well-balanced scheme can handle the limit € — 0 under the simple
parabolic CFL restriction At = O(h?). Clearly, the convective part is to be treated
implicitly in time, but this isn’t costly as it is linear.
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4.1. Rewriting jump relations makes the Maxwellian appear. The first
thing to observe is that the parabolic scaling can be handled in the steady-state
equations (3.2) by simply changing h — h/e. Hence it makes sense to introduce new
coefficients defined as follows with A > 0 and £ > O:

_(_I > _ N >
A, = (1 5/\> exp(hdyp/eX?), B, = <1 + €>\> exp(hd,p/eX?).

We stress that when we rescale x — ez, the quantity d,¢ appearing in the jump
relations becomes 0,¢/c which remains bounded. In the sequel and in the set of
rescaled variables, we shall continue to work with the numerical approximation:

. 1
Vin€ZXN,  (:9)},y =3 (9fh1 —4])

Starting from here, we shall use the convention of writing 0, ¢ as the space derivative
of ¢ with respect to the rescaled variable ez, so the £ in the denominator drops.
Following [16], we rewrite the jump relations (3.3) occurring through the zero-waves:

w(0) = Fw(h)+ 5520)
= 2(0) - 452=2(0) + - w(h)
= 2(0) + A=l (i (h) — £(0)) + 4B (h),
and,
2(h) = Z0) ~ pgzd(h) — g2 E(0
= w(h) - P w(h) + 455220
@(h) + AsEP= (2(0) — w(h) - 2=t g (1),

Observe also that for any ¢ > 0, A. + B. = 2exp(hdp/)\?). We rewrite the well-
balanced Godunov scheme of the former section with these jump relations and treating
part of the convective term implicitly; denoting C. := 2 — (A. + B.), it comes:

n+1 _ n AAtL n+l _  n+l
( w; = wj + 5 (zj w; )
AAt( A™  {+B™ ) AALC™
+ ( EVJJr% E,JJr% (wn — ") + 6,]+% w
J+1 J J+1
eh|(14+B™ eh|14+B™
4.1 eit3 eit3
( . 2n+1 — m_ AAL (2n+1 _ wn+1)
J J ch J J
AAL (A" . 1+B" . 1) AALC™
_ &) 5 €05 (U)n _ Zn ) _ g0 35 wn
eh(14B™ I I sh(14Br ) 7
L SiTyg Si=3g

Let us pause here in order to distinguish between the various terms appearing in this
new rewriting of the same Godunov scheme:

e the implicit term z}”l —w;.”l is penalized by ¢; it is a Maxwellian term which
h
is meant to enforce w" = 2" = £- in the limit & — 0.
. MAt A.+B. _ 2AA¢t exp(h8. ¢ /A?) IN2AL L
e the coefficient “h 1T7B. = Th(F(IFh/-N) exp(hoa o 37) — =57 ase — 0; it is

therefore meant to generate the centered discretization of the diffusion term
A20,.p when both the equations are added. No spurious term in h remains,
this is one part of the AP property.
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e finally, the coefficient sh)\(?ii%i) asks for more involved computations:
2XA(1 — exp(2252)) B 2X2At(1 — exp(2252))
eh(1+ (1+h/\) exp(2252)) — chA + (ehA + h?) exp(2252)
202 At hdy
=~ = exp(— e ) — 1)
2At0
~ TM’ e = 0.

The space derivative of ¢ inside the zero-wave has been rescaled according to
the convention previously discussed. The AP property is complete.

As the implicit convection terms are linear, it possible to invert it explicitly; following
[16, 17], we introduce the notations: a = 1 + )‘ﬁlt, b= ’\—Aht > 0. Inverting the matrix

appearing in (4.1) gives the following scheme:

B Y (wﬂ +6W?1 ;) + Lb (Z? - 627'17%) ’

(4.2) o “b“’ ot J
n+l _ a n n
Zj = atb (w +6 j+1)+a_+b(zj_6zj—%)’

where the new quantities read,

n n n n
5 AAL (A ,J+§+B,J+2 C7J+2 ) n A7J+§+B7J+2 n
= Wipy =~ z

1 R
]+ ch

3

n n n J
1+B,J+2 1+B,J+2 1+B,J+2

and 6Z” , = 6W” . For any value of ¢ > 0, there holds for j € Z: A. + B. > 0,
2
A.+B: +C’ =2. Moreover we shall hereafter impose the “parabolic CFL restriction”

At Ag,j+1 +an+1 +Csn7j—% 2At n 9
(4.3)  1>-—- B ~ S (e — e[+ X))
£+ %

We are now in position to study L? bounds and BV-bounds by seeking to rewrite
(4.1) as a convex combination of the neighboring cells. As in the previous section, we
define the following functions for any value of € > 0,

Y(j,n) € Z x N, w" (nAt, jh) = wy, 2M(nAt, jh) =

with the numerical values w} and 2] being generated by (4.1). We still treat the

diffusion equation on ¢ by means of the explicit centered scheme (3.6) which is stable
under the parabolic CFL condition 2DAt < h2.

LEMMA 4.1. Assume that ¢ < ATM and the CFL condition (4.3) holds, then:

(44) VteR*, lw"(t, Mre@) + 12" @) < 1wllpem) + [12°] e )

Proof. The proof is computationally tedious but consists only in checking the
nonnegativity of certain quantities which are moreover asked to equal 1 when they
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are summed up. Let us rewrite the equation on w?“ first:

wttl = g, ab Afvj+%+BE'j+% + OE'J'*% )
j - j+1 b 1+B" 1+B"™
J J + + Citd +B! i+d
Am lipn
40 b 1 ity eitd
7 a+b 1+B™ 1
e j+3
n A" +B™ . cr
_I_wj a_b2 57_% E’]_% + 5’]_%
a+b 1+B"™ 1+B™
ci—3 i—

o (M
L7 BT, '
At this point, the only thing to notice is that, since a = 1 + b,

A+B+C A+B+C
— 27:1 1— B ——— >
a=b 1+ B +b{ b< 1+ B >}_0’

>0 by (4.3)

and (4.3) also implies that the coefficient on 27 is nonnegative. Let’s pass to z}”’lz

Lntl o wh be (AE,H%;BE,H% + C;H% )
1 " 1 "
j J+1at 5 1 B 1
I A T S s
atb (@ T+B"
£,7 E

i)
A" +B".
40 ab Evi—% Evi—%
j—1a+b 1+B™ :
2

The coefficient on w? is nonnegative if 1 — % > 0 and this is ensured by £ < ’\TM <1.
One can now take the moduli in both equations and sum up; it comes that,

S b (it 2 E) <SR (wf 4 127)
JEZ JEZ
a
The BV-bound will be obtained the same way, except that the space dependence of
the coefficients A, B, C' through 9, ¢ will make the computations even more intricate.
PROPOSITION 4.2. Lete < )‘TAt; assume that for anyn € N, (ax@?_,_L —(aw);?_l
changes sign only at a finite number N of locations ji*, j3,....j5 € 7Z, tQhat the CFi
condition (4.3) holds and that Lip(p") ~ Lh for some L € RY, then for anyt € Rt :

4 5)TV(wh(t, ) +TV(z"(t,.)) < exp(2Lt) (TV(w°) + TV (2°)) + O(e)+
' N ([l o= (r) + [12°]|£o= (=) (exp(2tL) — 1).

In the special case where (0,p) = (0,p)" for all j € Z, the TVD property holds:

n —
ity —

Vt € Rt, TV (wh(t,.) + TV (2"(t,.)) < TV (w®) + TV (2°) with L = 0.

Proof. We proceed as in the proof of Lemma 4.1, with a first set of terms acting

on differences like wiy, —wj and 27, — 2"; we don’t repeat the computations as
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they are very similar. We concentrate on the new terms arising from the lack of
translation-invariance and without loss of generality, we assume that N = 2 as the
situation for higher N can be handled the same way (moreover, the asymptotic profile
of the heat equation is the Gaussian function which has only 2 inflexion points in R).

ab Ae,j+%+Bs, +§+Oe,j+% _ A7 J+§+B +1+0 gt E
J+1 atb T+BT 3 T+BT 1
n n ’ 2 n ’ 2 -
—n ab E'j+%+BE'j+3 _ AE'j+%+BE'j+%
J atb 1+B™ 1+B™
. i+5 €i+3
n 7 n 7 n n 1
n b2 Ae,j+%+Be,j+%+Ce,j+% AT tBL 1 +Cl 3
Wi aks 1+B” 1+B”
Jat EyJ‘F% €, %
b2 Al tBli A1 tBl s
+Z 2 2 __ 2 2
j—1la+b 1+an+1 1+B"] f ’
dts -3
for the equation on w7, and
I As,j+%+Bs,j+%+Os,j+3 Aa;+1+B +1+Osg+1
Wit a5p 1+B:]‘+§ 1+B"]+
n n ’ 2 n ’ 2 -
on b2 As,j+%+Bs i+5 As,j+%+Bs,j+%
J a+b 1+B™ . 1+B™
i+ 5 i+ 5
n 7 n 7 n n 1
—wn A7 +%+Bs,j+%+oa,j+% A %"'Ba,] 1+
i B B |
ab caritBlivr  ALS1tBli
+Z 2 2 __ 2
i—1la+b 1+B? 1+B™ ’
J+2 -5

for the equation on z

26 |27

JEZ

. Summing moduli on j € Z yields on the one hand:

n n n
e, j+2 + Bs7j+% A

1+BZJ.+3

n
ENEE +B cj+3
1+ng+1

2

= 0(e),

o 1+B
LS BICELS BN 2)\2At/h? (independent of
1

and this quantity is of the order of € since b 5
€,

2

j) as € = 0. On the other hand, let us introduce j* < j# which are the points where

the second order divided difference of " (nAt,.) changes its sign; for j € [}, 7],

(890(,0);?+l - (896@);?_1 < 0, and it is nonnegative elsewhere. Taking moduli in both
2

the former equalities and linearizing the exponentials yields, up to O(e),

205" rin np |07 L ~ 203 i W7 L 1
i€l iz Wi BTy By JELT 5117 By B
bC™
~ _ ity n
= Zje[jl",jz"] BT, (\w | - |wj+1|)
2
o™ n
5,j1"+2 £,3% +2
tirE ‘“’ Rl ‘“’ |
P +i €. j5+
eitd no _ ,m
< Zje[jl",jz"] BT, [wiy 4 w].|
n ’ 2 n
E'j{ur% n €dg+s n
g | Wi+ | g
1T g Ty
Clisl
where we exploited first the concavity of ¢"(nAt,.) (which gives that W is
J+1

increasing with respect to j), and then made a summation by parts including the
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boundary terms. Form the strong assumption made on the Lipschitz constant of ",

bC™ .

5,]+l At
— | <2 ) < 2At (L ,
L+ B2 o7 D <Slgl‘p(a <P)]+§\ +O(E)> < 2A4{L+0()

and this allows to include nonnegative O(At) terms. Finally, we obtain:

STl — w4 =T < (U 200) Y fwlyy —wl |+ |2, — 2
JEL JEZ
+0(g) + 4AtLsup; [w}|.

From (4.4), we get the decay in time of the L® norms and since the number of
inflexion points is supposed finite, the last term is bounded. Now, this quantity can
be summed up to n = 0 thanks to the At which appear in the all the terms responsible
for an increase of the total variation in space. More precisely,

TV (wh(nAt,.)) + TV (2" (nAt,.)) < (14 2AtL)"(TV (w°) + TV (2°)) + O(e)
HALip(o") At([[0] o ) + 1120 1o (r) T ey

< exp(2nAtL)(TV (w°) + TV (2%)) + O(e)

+2(][w? | o () + 12| (1)) (exp(2RALL) — 1),

where we have used (4.4) and the formula for the summation of a geometric sequence.
The more general case where more than 2 inflexion points appear can be treated the
same way at the price of more intricate computations. O

4.2. Maxwellian control and stability of the diffusive scheme. The sit-
uation as presented in Proposition 4.2 is very delicate: it illustrates the fact that
the approximation process, which generates stable BV numerical solutions hopefully
stable uniformly in ¢ <« 1 (see Lemma below) is incompatible with the Keller-Segel
system (1.5) which appears to be the limit equation. Indeed, such a linear Fokker-
Planck equation endowed with a potential which is neither divergence-free (in the 1D
context, this reduces to 0., = 0) nor confining (meaning 0,,¢ < 0) doesn’t admit
generally solutions which are total-variation bounded. Hence the bound (4.5) exists
for any h > 0, but blows up and become useless in the limit h — 0 because there
exists no BV-theory for the continuous 1D Keller-Segel system set on the real line.

The bound (4.5) allows to control the deviation from the Maxwellian equilibrium:

LEMMA 4.3. Under the assumptions of Proposition 4.2, if [[w® —2°|| 1 =) = O(e)
(well-prepared initial data) and for € small enough, there holds for any t > 0:

(4.6) " (1) = (¢, )l e) = O(E):

Proof. We subtract the equations appearing in the semi-implicit scheme (4.1):

(1 + 2b) (w;?“ -2t = wh — 2 +

J

AAL[ AT +B" . )
( citg ' ety (wn _Zn)
Jj+1 J
eh| 14+B"

a,j+%)
AALCT
d-3 n

)\At(A:j_leBn‘
= n
wh, + —25w".
+1
) J Eh(l-i—B"‘ 1) J
€1— 3

€,0—

S

_|_

) ’\AtC:H_L
(wf -2 ) + 22
Eh(l-i—B"‘ 1

s, i+3

6h(1+B" 1
€,1— E
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We add and subtract the following 2 terms,
)\At(An P B 7]+2)wn o )\At(Ag’]._% + ng_%)z

eh(1+ B, ) 7 eh(1+Br; ,)

in the preceding equation in order to make appear all the available Maxwellian terms
together with other terms which can be controlled by the LP bounds and the BV-
bound. Thus, we take the modulus and sum on j € Z to obtain first

(U 2y =5t = =) (1 bk )
i+ 3 e

sits 3
A" +B A" +B"™
b cit3 E]"'2 n n b ci-3 <itd (n n
+ W(wﬁrl - “’j) - W(zj - zjfl)
eit3 e, it+3
cr ooy cr oy
ity on £Ii=3 .m
Hop—wihy + b —wy,
e j+3 -5
142648 21 404
1B h=4+427t &
and then, as ——3= ~ @aTsAn/ ~ W
n+l _ n+1 = n _ .n 2b % n
Z]ezh\w j | < h Zjezh\wj Z; |+ T+25 Z]EZ 1+B" o ‘h|w |
i3

n n
., 1+B" .
E,JJr% E,JJr%

b
+_1+2b Zjez 1+B:j+l (‘w?.H - w?‘ + |Z?+1 - Z?D .
! 2

At this point, one notices that, up to an error of the order of ¢ <« 1,

7]+1 + Bn7]+2 2\e On,]—— N 28(8’”(‘0)?+% 2b

1+ B" “=h' 1tB" X 142

o1
,+2 €0~ 3

so, taking advantage of (4.4), it comes for any ¢t € R :

< Sllwh(t,) = 2"(t, )l )
2e (Jlw°|lpi ) + 112°ll21 (=) -

ot + A, — 2+ A ey
+Xe (TV (wh(t,.)) + TV (2"(t,.))) +

4.3. Compactness of the Asymptotic-Preserving scheme. With all the
estimates (4.4), (4.5) and (4.6), it is routine to establish the L' time equicontinuity
property, so we omit, the proof of the following lemma:

LEMMA 4.4. Under all the assumptions of Lemma 4.3, one has for any t > 0:

lw (t + At, ) = w (t, ) + 12"+ At) = 2" (2, )llpw) < O(AD).

At this point, since the BV-bound (4.5) blows up as h — 0, we cannot state results as
strong as those of [16, 17]; the strategy will be first, to establish strong convergence of
p" = wh 42" for ¢ — 0 only, keeping h > 0 in order to take advantage of (4.5), toward
a piecewise constant function satisfying a numerical scheme which is a perturbation
of a centered discretization of the Keller-Segel model (1.5). We stress that in this
limiting process, nothing happens concerning the numerical treatment of the discrete
equation which rules the time evolution of ¢” as it never deals with w” and 2", but
only with p". And second, to derive the convergence of p", " as h — 0 because it is
a drastic simplification of the 2D finite volume scheme studied by Filbet [10].
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THEOREM 4.5. Under the assumptions of Lemma 4.3, for any n € N:

p;H'l Py N (39590)?_,_%9?4-1 - (ax@]__,o] _ P — 207 + pjy
At h h?

+ O(e).

In particular, the sequences w", z" are relatively compact in L, (Rf xR) ase — 0

with h > 0 fized and the remaining term in O(e) converges to zero in L'.
Proof. One proceeds simply by adding up both equations appearing in (4.1): the
Maxwellian terms treated implicitly cancel each other Then taking advantage of the

,+B"
facts that both b% — 2X2At/h?* and b1+37+ = 2(0a)}, ; At/h and
+— its

7,27 — pj /2 when ¢ — 0 with h > 0 gives the aforementioned scheme on ph. O

In the limit € — 0, the conventional centered discretization acting on the Keller-
Segel model (1.5), for small enough initial data, allows to apply the convergence result
in [10] to pass later to the complementary limit h — 0 with a completely different
functional framework (in particular, no BV-bound is necessary and the convergence is
weak). There is no change on the scheme on (" (3.6) thanks to the use of the rescaled
parameters o and $° which are called the “small reaction rates” in [9].

w?

5. Numerical results. The convergence results obtained in the preceding sec-
tion are qualitatively different from the ones of [16, 17]; indeed, in these former works,
it was possible to consider for instance passing to the limit simultaneously in € — 0,
h — 0 with e = b7, v > 1. Here, since (4.5) blows up as h — 0, one must pass first
to the limit ¢ — 0, h > 0, and later h — 0 as a distinct process.

5.1. Hyperbolic regime. We consider the simple test-case of the propagation
of Riemann initial data in the computational domain z € [—1,1]:

1
(5.1) w® =2° = SX[— 1,115 ©O(z) = gexp(—50x2), a=15, =35, D =25,

305
with 255 grid points, which gives h = 0.0078. The CFL number is chosen so as to get
AAt = 0.9h with A = 1.25 and the results at time ¢ = 0.4 are shown in Fig. 5.1. The
(initially Maxwellian) kinetic densities split symmetrically between the ones moving
in positive and negative direction. The space derivative 9, remains always below the
red lines which correspond to the maximal values +\ thus ensures quasi-monotonicity
and consequently the LP and BV-bounds (3.9) and (3.10).

5.2. Diffusive regime. We kept exactly the same parameters (except for A =
1.75) for checking the ability of the numerical scheme (4.2) which comes from the
inversion of the implicit terms in (4.1). Clearly, the time-step has to be modified
according to the parabolic CFL restriction (4.3); we used A2At = 0.3h? and iterated
up to t = 0.02 to produce the results of Fig. 5.2 with the choice ¢ = 0.001 < h.

5.3. Numerical decay properties. In Fig. 5.3, we display on the 2 preceding
concrete examples some theoretical properties shown in the former sections. For the
hyperbolic test-case, we show the realization of the estimate (3.9) in the particular
case p = 2: the decay in time is very neat. For the parabolic test-case, we display the
L' norm of the Maxwellian term divided by 16 values of £ (the L' norm of the flux
J/A) for the Riemann data (5.1) at time ¢ = 0.01, thus illustrating the estimate (4.6).
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Initial density Chemotractant
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FiG. 5.1. Hyperbolic test-case with data (5.1) at time t = 0.4.

6. Conclusion and outlook. The present work can be extended in various
directions: for instance, one may think about implementing the quasi-linear hyperbolic
models which parabolic limits have been considered in [9]. The main obstacle on
this road is the handling of the non-linear resonance phenomenon, [1, 27], which
occurs when characteristic wave speeds vanish thus deeply complicating the structure
of the well-balanced scheme. A theoretically simpler extension but perhaps more
asking computationally could be the development of a 2D approach with a more
sophisticated method than simple dimensional splitting. From the point of view of
both Asymptotic-Preserving and Well-Balanced methodologies, the linear diffusion
equation on ¢ is not the most well-suited because of its infinite speed of propagation
and its asymptotic profiles endowed with several inflexion points. Perhaps a better
model could be the classical porous medium equation, which shares the advantage of a
very smooth solution inside the interfaces [45], but which propagates at a finite speed
and possesses concavity properties [4] which should reveal themselves useful in the
derivation of BV-bounds similar to (4.5). Lastly, there is an interesting connection
between such a nonlinear Keller-Segel model and the asymptotic system emerging from
WKB expansions for linear wave propagation as the relation between the eikonal and
the porous medium equations is a well-known fact, [3, 35]. Hence, if the exponent of
the nonlinear diffusion equation is close to one, we may expect a behaviour somewhat
similar to the one reported in [15] except that no concentrations should occur thanks
to the linear diffusion term appearing in the continuity equation on p.
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