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Nadaraya’s estimates for large quantiles and free

disposal support curves

Abdelaati Daouia∗ Laurent Gardes† Stéphane Girard‡

May 26, 2010

Abstract

A new characterization of partial boundaries of a free disposal multivariate support,
lying near the true support curve, is introduced by making use of large quantiles of a
simple transformation of the underlying multivariate distribution. Pointwise empirical
and smoothed estimators of the full and partial support curves are built as extreme
sample and smoothed quantiles. The extreme-value theory holds then automatically
for the empirical frontiers and we show that some fundamental properties of extreme
order statistics carry over to Nadaraya’s estimates of upper quantile-based frontiers.
The benefits of the new class of partial boundaries are illustrated through simulated
examples and a real data set, and both empirical and smoothed estimates are compared
via Monte Carlo experiments. When the transformed distribution is attracted to the
Weibull extreme-value type distribution, the smoothed estimator of the full frontier
outperforms frankly the sample estimator in terms of both bias and Mean-Squared
Error, under optimal bandwidth. In this domain of attraction, Nadaraya’s estimates
of extreme quantiles might be superior to the sample versions in terms of MSE although
they have a higher bias. However, smoothing seems to be useless in the heavy tailed
case.
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1 Main results

Let (X, Y ), (X1, Y1), (X2, Y2) . . . be independent random vectors from a common probability

distribution on Rp
+ × R+ whose support boundary is assumed to be nondecreasing. For

x ∈ Rp
+ such that P(X ≤ x) > 0, the graph of the frontier function1

ξ1(x) = inf{y ≥ 0 : P(Y ≤ y|X ≤ x) = 1}
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‡Team Mistis, INRIA Rhône-Alpes and Laboratoire Jean Kuntzmann, 655 avenue de l’Europe, Montbon-

not, 38334 Saint-Ismier cedex, France (stephane.girard@inrialpes.fr)
1For two vectors x1 and x2 with x1 ≤ x2 componentwise, ξ1(·) satisfies ξ1(x1) ≤ ξ1(x2).



coincides with the monotone surface of the joint support Ψ of (X, Y ) (Cazals, Florens and

Simar, 2002). As a matter of fact, the graph of ξ1(·) is the lowest nondecreasing curve larger

than or equal to the upper frontier of Ψ. In applied econometrics for instance, the support

Ψ is interpreted as the set of all feasible production units, i.e., (x, y) ∈ Ψ in a certain sector

of technology if and only if it is possible for a given firm to produce a quantity y of goods

by making use of a quantity x of resources. The production set Ψ is by construction free

disposal. This means that its optimal frontier which represents the set of the most efficient

firms is nondecreasing. The free disposal hull (FDH) estimator of ξ1(·) is given by

ξ1,n(x) = max{Yi|i : Xi ≤ x}

(Deprins, Simar and Tulkens, 1984). The FDH frontier is clearly the lowest step and mono-

tone curve which envelopes all the data points (Xi, Yi) and so it is very non-robust to extreme

observations. To reduce this vexing defect, instead of estimating the frontier of the support

Ψ, Aragon, Daouia and Thomas-Agnan (2005) have suggested to estimate a partial bound-

ary of Ψ of order α ∈ (0, 1) lying near its true full boundary. The frontier function ξ1(x)

being the quantile function of order one of the distribution of Y given X ≤ x, they rather

proposed to estimate the αth quantile function of this non-standard conditional distribution

qα(x) = inf{y ≥ 0 : P(Y ≤ y|X ≤ x) ≥ α}.

The resulting sample quantile function, obtained by plugging the empirical version of the

conditional distribution function may suffer from a lack of efficiency due to the large variation

of the extreme observations involved in its construction. A smoothed variant q̂α(x) of this

sample estimator may be then preferable as shown in Martins-Filho and Yao (2008), where

P(Y ≤ y|X ≤ x) is estimated by

F̂Y x(y) =
n

∑

i=1

1I(Xi ≤ x)H ((y − Yi)/h) /
n

∑

i=1

1I(Xi ≤ x),

with h = hn → 0, H(y) =
∫ y

−∞
K(u)du and K(·) being a density kernel. However no

attention was devoted to the limit distribution of q̂α(x) := F̂−1
Y x (α) = inf{y ≥ 0 : F̂Y x(y) ≥ α}

when it estimates the optimal boundary itself. Daouia, Gardes and Girard (2009) have

addressed this problem by specifying the asymptotic distribution of the smoothed α-frontier

for fixed orders α ∈ (0, 1] as well as for sequences α = αn tending to one as n → ∞.

It is important to note that the distribution of Y being conditioned by X ≤ x, the

estimation of the corresponding quantiles does not require a smoothing procedure in x which

would be the case if the distribution was conditioned by X = x (see e.g. Girard and Jacob,

2004). It should be also clear that although the simple nature of the conditioning X ≤ x,
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it requires more powerful techniques of proof than the unconditional quantile setting. Our

main contribution in this note is to get rid of this conditioning by exploiting the fact that

ξ1(x) = inf{y ≥ 0 : P(Zx ≤ y) = 1},

where Zx = Y 1I(X ≤ x). This simple formulation of the monotone frontier function was

pointed out by Daouia, Florens and Simar (2008, Appendix). Note also that the FDH

estimator coincides with the maximum of the random variables Zx
i = Yi1I(Xi ≤ x), i =

1, . . . , n. Moreover, given that the interest is also on the estimation of a concept of a partial

frontier well inside the sample but near from the optimal boundary of Ψ, a natural idea is

to define the alternative simple αth frontier function

ξα(x) := F−1
Zx (α) = inf{y ≥ 0 : FZx(y) ≥ α},

where FZx(y) = P(Zx ≤ y). In the context of productivity and efficiency analysis, when

the performance of firms is measured in terms of their distance from partial frontiers rather

than the full frontier, the use of the αth production frontier qα(x) as a benchmark can be

criticized for its divergence from the optimal frontier as x increases. Instead, Wheelock and

Wilson (2008) favored the use of a hyperbolic unconditional variant of qα(x). Our partial

unconditional quantile-type frontier ξα(x) provides a more attractive alternative to reduce

the vexing defect of the conditional version qα(x) because of its construction and conceptual

simplicity. The benefits of using this new class of partial support curves are demonstrated

in Subsection 3.1 via two examples in the cases where FZx(·) is attracted to the Weibull and

Fréchet extreme value type distributions.

A natural estimator of ξα(x) is given by the sample quantile

ξα,n(x) := F−1
Zx,n(α) = inf{y ≥ 0 : FZx,n(y) ≥ α},

where FZx,n(y) = n−1
∑n

i=1 1I(Zx
i ≤ y). Therefore, the extreme-value theory holds automati-

cally when α = 1 and when letting α = αn ↑ 1 as n → ∞, which is not the case for previous

concepts of partial support curves such as those of Cazals et al (2002), Girard and Jacob

(2004), Aragon et al (2005), Wheelock and Wilson (2008) and Martins-Filho and Yao (2008).

Following Nadaraya (1964), an alternative estimator to ξα,n(x) is given by the αth quantile

ξ̂α(x) := F̂−1
Zx (α) = inf{y ≥ 0 : F̂Zx(y) ≥ α} (1)

of the kernel-smoothed empirical distribution function F̂Zx(y) = n−1
∑n

i=1 H ((y − Zx
i )/h)

based on a sequence of bandwidths h and an integrated kernel H(·). In the ordinary frame-

work where the order α is a fixed constant in (0, 1), Azzalini (1981) established a second-order
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approximation to the mean squared error of the smoothed quantile ξ̂α(x) under optimal h,

which makes ξ̂α(x) more efficient than the sample version ξα,n(x). The smoothed estimator

may also be preferable to the sample one for the following additional respect: the construc-

tion of asymptotic confidence intervals for ξα(x) using the asymptotic normality of ξα,n(x)

requires the estimation of the derivative F ′
Zx(ξα(x)), whereas smoothing gives a naturally

derived estimator of this quantile density function. Nadaraya (1964) has proved under mild

conditions the asymptotic normality of ξ̂α(x) when the order α is fixed in (0, 1). In the

present paper, we rather concentrate in Section 2 on specifying the asymptotic distributions

of Nadaraya’s estimates ξ̂α(x) when α = αn → 1 at different rates as n → ∞, and we verify

whether the benefits of smoothing are still valid when considering these extreme quantiles.

This does not seem to have been appreciated before in the literature. Theorem 1 characterizes

possible limit distributions of ξ̂1(x) and Theorem 2 discusses moment convergence. When

n(1−αn) is a constant, Theorem 3 shows that ξ̂αn
(x) converges with the same centering and

scaling as ξ̂1(x) to a different extreme value distribution. However, when n(1 − αn) → ∞,

Theorem 4 establishes the asymptotic normality of ξ̂αn
(x) as an estimator of ξαn

(x).

As a matter of fact, in this context where the underlying distribution function FZx(·)
has a jump at the left-endpoint of its support, we show by using simple arguments that the

smoothed maximum ξ̂1(x) is equal to a deterministic translation of the sample maximum

ξ1,n(x) for all n ≥ 1. Likewise, it turns out that a smoothed quantile of the form ξ̂(n−k+1)/n(x)

is within a fixed multiple of the bandwidth of the sample quantile ξ(n−k+1)/n,n(x) for all n

large enough. As an immediate consequence, the asymptotic theory of the sample extremes

ξ1,n(x) and ξ(n−k+1)/n,n(x) carry over to the smoothed variants.

Our Monte Carlo exercise, provided in Subsection 3.2, shows that the smoothed FDH

function ξ̂1(x) is a remarkable bias-corrected estimator of the frontier function ξ1(x) < ∞.

It outperforms frankly the sample FDH estimator ξ1,n(x) in terms of both bias and mean-

squared error (MSE). Moreover, an explicit expression of the optimal bandwidth is derived

in this case by minimizing the asymptotic MSE. Simulations seem to indicate also that,

when FZx(·) belongs to the maximum domain of attraction of Weibull and the bandwidth

is chosen appropriately, the smoothed extreme quantile function ξ̂(n−k+1)/n(x) is superior to

the empirical version in terms of MSE although it has a higher positive bias. This result

is similar to what happens in the ordinary framework. Although the naive extreme sample

quantile ξ(n−k+1)/n,n(x) might not be so efficient, it has the advantage of not requiring the

choice of the bandwidth which is not addressed here. In the heavy tailed case, it appears that

ξ̂(n−k+1)/n(x) achieves at most the same performance as the empirical version ξ(n−k+1)/n,n(x)

in terms of both bias and MSE and so, smoothing seems to be useless in this case.

The limit theorems in Section 2 are provided in the general setting where the distribution
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function of Zx, or equivalently the conditional distribution function of Y given X ≤ x, is

attracted to the three Fisher-Tippett extreme value type distributions, whereas the previous

results of e.g. Martins-Filho and Yao (2008) and Daouia et al. (2009) only cover the domain

of attraction of Weibull. These results and their proofs, postponed to Appendix, are also

extensions of some results and techniques described in Daouia et al. (2008) and Daouia

et al. (2009). Illustrations on how the new class of unconditional quantile-based frontiers

{ξα(·), ξ̂α(·)} differs from the class of conditional quantile-type frontiers {qα(·), q̂α(·)} are

provided in Section 3 through simulated examples and a real data set.

2 Limit theorems

To simplify the notation we write ξα and ξ̂α, respectively, for ξα(x) and ξ̂α(x) throughout

this section. We first show that the smooth estimator ξ̂1 of the endpoint ξ1 has a similar

asymptotic behaviour as the maximum Z(n) = max{Z1, . . . , Zn} under the assumption that

(A1)
∫ c

−c
K(u)du = 1 for some constant c > 0.

This is a standard condition in nonparametric estimation, which is satisfied by commonly

used density kernels such as Biweight, Triweight, Epanechnikov, etc.

Theorem 1. Assume that (A1) holds.

(i) We have ξ̂1 = Z(n) + hc, for all n ≥ 1.

(ii) Suppose there exist an > 0, bn ∈ R, n ≥ 1 such that

P[a−1
n (ξ̂1 − bn) ≤ z] −→ G(z) as n → ∞, (2)

where G is assumed nondegenerate. Then G has one of the three forms

Fréchet : G(z) = Φρ(z) =

{

0 z < 0
exp{−z−ρ} z ≥ 0

for some ρ > 0

Weibull : G(z) = Ψρ(z) =

{

exp{−(−z)ρ} z < 0
1 z ≥ 0

for some ρ > 0

Gumbel : G(z) = Λ(z) = exp{−e−z}, z ∈ R.

It is clear from Theorem 1(i) that (2) holds if and only if FZ belongs to the maximum

domain of attraction2 of an extreme value distribution G ∈ {Φρ, Ψρ, Λ}. Then the char-

acterization of an and bn can be easily deduced from the classical theory of limit laws for

2We write FZ ∈ DA(G) if there exist normalizing constants an > 0, cn ∈ R such that a−1
n (Z(n)−cn)

d→ G.
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maxima (see e.g. Resnick 1987) in conjunction with Theorem 1(i). Putting F̄Z = 1− FZ , it

is well-known that FZ ∈ DA(Ψρ) iff ξ1 < ∞ and3 F̄Z(ξ1 − 1
t
) ∈ RV−ρ, t → ∞; in this case we

may set an = ξ1−ξ1−1/n and bn = ξ1 +hc. Likewise FZ ∈ DA(Φρ) iff F̄Z ∈ RV−ρ; in this case

ξ1 = ∞ and (an, bn) can be taken equal to (ξ1−1/n, hc). Finally FZ ∈ DA(Λ) iff there exists a

strictly positive function g on R such that F̄Z(t + g(t)z)/F̄Z(t) → e−z as t ↑ ξ1, for every

z ∈ R; in this case the constants (an, bn) can be taken equal to (g(ξ1−1/n), ξ1−1/n + hc).

On the other hand, by making use of Theorem 1(i), it is easy to show that the convergence

in distribution (2) of the smoothed maximum ξ̂1 implies the convergence of moments in the

three cases G ∈ {Φρ, Ψρ, Λ} under some condition on the left tail of FZ .

Theorem 2. Let (A1) and (2) hold and denote by Γ(k) the kth derivative of the gamma

function Γ.

(i) If G = Φρ in (2) with (an, bn) = (ξ1−1/n, hc) and
∫ 0

−∞
|z|kFZ(dz) < ∞ for some integer

0 < k < ρ, then

lim
n→∞

E{a−1
n (ξ̂1 − hc)}k =

∫

R

zkΦρ(dz) = Γ(1 − k/ρ).

(ii) If G = Ψρ with (an, bn) = (ξ1 − ξ1−1/n, ξ1 + hc) and
∫ ξ1
−∞

|z|kFZ(dz) < ∞ for some

integer k > 0, then

lim
n→∞

E{a−1
n (ξ̂1 − ξ1 − hc)}k =

∫ 0

−∞

zkΨρ(dz) = (−1)kΓ(1 + k/ρ).

(iii) If G = Λ with (an, bn) = (g(ξ1−1/n), ξ1−1/n + hc) and
∫ 0

−∞
|z|kFZ(dz) < ∞ for some

integer k > 0, then

lim
n→∞

E{a−1
n (ξ̂1 − bn)}k =

∫

R

zkΛ(dz) = (−1)kΓ(k)(1).

When estimating the endpoint ξ1 < ∞ of FZ ∈ DA(Ψρ), an optimal value of h can be

derived by minimizing the asymptotic mean-squared error of ξ̂1. By making use of Theo-

rem 2(ii), it is not hard to check that the optimal bandwidth is given by

hopt = an(cρ)−1Γ(1/ρ). (3)

Next we show that if ξ̂1 converges in distribution, then ξ̂1−k/n converges in distribution

as well, with the same centering and scaling, but a different limit distribution.

3A measurable function ℓ : R+ → R+ is regularly varying at ∞ with index γ (written ℓ ∈ RVγ) if
limt→∞ ℓ(tx)/ℓ(t) = xγ for all x > 0.
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Theorem 3. Assume that (A1) holds. If a−1
n (ξ̂1 − bn)

d−→ G and a−1
n h → 0, then for any

integer k ≥ 0,

a−1
n (ξ̂n−k

n

− bn)
d−→ G as n → ∞

for the distribution function G(z) = G(z)
∑k

i=0(− log G(z))i/i!.

For the condition a−1
n h → 0 to be satisfied in the case G = Φρ, one only needs to suppose

for instance that limn→∞ h < ∞. However, for the case G = Ψρ, the condition a−1
n h → 0

holds if h/(ξ1 − ξ1−1/n) → 0. The case G = Λ is less flexible since the characterization of the

normalization constant an = g(ξ1−1/n) is not as explicit here than in the cases G ∈ {Φρ, Ψρ}
(see e.g. Resnick (1987, p.38) for more details). It should be also clear that for ξ̂α to converge

to the extreme-value distribution G, it suffices to choose the sequence α = αn ↑ 1 such that

n(1 − α) = k, with k < n being an integer, whereas for ξ̂α to have an asymptotic normal

distribution, we show in the next theorem that it suffices to choose α → 1 slowly so that

n(1 − α) → ∞.

The three Fisher-Tippett extreme-value distributions can be defined as a one-parameter

family of types

Gγ(z) =

{

exp{−(1 + γz)−1/γ}, γ 6= 0, 1 + γz > 0
exp{−e−z} γ = 0, z ∈ R,

where γ is the so-called extreme-value index (see, e.g., Beirlant, Teugels, Goegebeur and

Segers (2004)). The heavy-tailed case FZ ∈ DA(Φρ) corresponds to γ > 0 and ρ = 1/γ. For

γ = 0, it is clear that Gγ = Λ. The case FZ ∈ DA(Ψρ) corresponds to γ < 0 and ρ = −1/γ.

In either case we give in the next theorem asymptotic confidence intervals for high quantiles

ξα by imposing the extra condition that

(A2) The derivative U ′ of U(t) = ξ1−1/t exists so that it satisfies U ′ ∈ RVγ−1.

As pointed out in Dekkers and de Haan (1989), the assumption U ′ ∈ RVγ−1 on the inverse

function U(t) = (1/(1 − FZ))−1(t) is equivalent to F ′
Z ∈ RV−1−1/γ for γ > 0, F ′

Z(ξ1 − 1/t) ∈
RV1+1/γ for γ < 0 and 1/F ′

Z is Γ-varying for γ = 0 (for the Γ-Variation, see e.g. Resnick

1987, p.26).

Theorem 4. Given (A1) and (A2),

√
k

(

ξ̂n−k+1
n

− ξαn

)

/
(

ξ̂n−k+1
n

− ξ̂n−2k+1
n

)

is asymptotically normal with mean zero and variance 22γγ2/(2γ − 1)2, provided that αn ↑ 1,

n(1 − αn) → ∞ and the integer part k of n(1 − αn) satisfies hk3/2{nU ′(n/k)}−1 → 0 as

n → ∞.
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Note that in the case γ = 0, the asymptotic variance is understood to be the limit

{1/ log 2}2 obtained as γ → 0. This theorem enables one to construct an asymptotic confi-

dence interval for ξαn
by replacing the tail index γ in the asymptotic variance with a con-

sistent estimator. One can use for example the moment’s estimator introduced by Dekkers,

Einmahl and de Haan (1989) or the recent proposal by Segers (2005). Note also that in fron-

tier and efficiency analysis, econometric considerations often lead to the assumption that the

joint density of the random vector (X, Y ) ∈ Rp+1
+ has a jump at its support boundary, which

corresponds to the case where γ is known and equal to −1/(p + 1) as established in Daouia,

Florens and Simar (2008).

3 Numerical illustrations

We provide in this section some modest illustrations in the context of frontier analysis, i.e.,

when Z = Zx and ξ̂α = ξ̂α(x). In this case, it is important to note that the bandwidth h,

the normalizing sequences (an, bn), the extreme value index γ or equivalently the tail index

ρ, the order αn and the sequence kn should depend on the fixed level x ∈ Rp
+. We do not

enter here into the question of how to choose in an optimal way h, αn and kn. Deriving

asymptotically optimal values of these parameters is a tedious matter. Using for instance

(3) calls for selection of subsidiary smoothing parameters (using plug-in methods requires

explicit estimation of the spacing an and the tail index ρ, which demands optimal selection

of the amount of extreme data involved in each estimate, etc). Such complexity is arguably

not justified. Instead, we suggest an approximate empirical method as follows. We tune the

bandwidth h involved in ξ̂α(x) = F̂−1
Zx (α) so that approximately a reasonable percentage λ%

of the data points Zx
1 , · · · , Zx

n fall into the support of u 7→ K((z − u)/h). In case of kernels

with support [−1, 1], as Triweight and Epanechnikov kernels, we use the explicit formula

hx =
λ

200
( max
i=1,··· ,n

Zx
i − min

i=1,··· ,n
Zx

i ).

Our method itself requires selection of a smoothing parameter λ, but it has the advantage

to be very simple to interpret and to implement, particularly in the difficult context of

nonparametric curve estimation. The same rule can be applied to the estimator q̂α(x) =

F̂−1
Y x (α) whose computation is similar to ξ̂α(x). Indeed, similarly to F̂Zx(y) we have F̂Y x(y) =

(1/Nx)
∑Nx

i=1 H ((y − Y x
i )/h), where Nx =

∑n
i=1 1I(Xi ≤ x) and Y x

1 , · · · , Y x
Nx

are the Yi’s

such that Xi ≤ x. As a matter of fact, Y x
1 , · · · , Y x

Nx
are the Nx largest statistics of the

sample (Zx
1 , · · · , Zx

n). Note also that the two families of nonparametric (unconditional and

conditional) quantile-based partial frontiers ξ̂α(·) and q̂α(·) coincide for α = 1, but they differ

from one another when α < 1. This difference is illustrated through a real data set and two
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simulated examples in the cases where the support boundary is finite and infinite.

For our practical computations in Subsection 3.1, the smooth estimators will be evaluated

only for fixed extreme orders α by using a Triweight kernel K and for a grid of values of

λ. Subsection 3.2 provides a comparison between the sample extreme frontiers and their

smoothed versions via Monte Carlo experiments.

3.1 Illustrative examples on one sample

3.1.1 Case of a finite support boundary

We choose (X, Y ) uniformly distributed over the support Ψ = {(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ x}.
In this case, the true frontier function is ξ1(x) = q1(x) = x and the class of conditional

quantile-based frontiers qα(x) = x(1 −
√

1 − α) is different from our class of unconditional

quantile-type frontiers ξα(x) = max{0, x −
√

1 − α}, for α ∈ (0, 1]. Both partial order-α

frontiers are graphed in Figure 1 for some large values of α = 0.9, 0.95, 0.99.
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Figure 1: The full frontier in green line and the partial frontiers qα(·) in blue lines and ξα(·)
in red lines. In dashed lines α = .9, in solid lines α = .95, in dotted lines α = .99.

Note that in traditional applied econometrics, the distance from the full support frontier

is used as a benchmark to measure the production performance of firms. The economic

efficiency can also be measured in terms of partial frontiers as suggested recently in the

econometric literature to avoid non-robustness of the envelopment nonparametric frontier

estimators. It is clear that the partial frontiers {(x, qα(x)) : 0 ≤ x ≤ 1} of the support Ψ

diverge from the support boundary as x increases and so, measuring efficiency relative to

these curves may result in misleading efficiency measures. To reduce this defect, Wheelock

and Wilson (2008) favored the use of a hyperbolic unconditional variant of qα(x). The new

partial frontiers ξα(x) parallel the full frontier ξ1(x) providing thus a simple alternative for

measuring partial efficiencies without recourse to the hyperbolic framework. However, this
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desirable property is valid only for input factors x ranging from the (1−α)th quantile of the

marginal distribution of X to its endpoint. It is easy to see that the value of ξα(x) is zero

whenever P(X 
 x) ≥ α, but the class {qα(x)} does not take necessarily advantage from

this drawback of {ξα(x)}. Indeed, given that the interest is in estimating partial frontiers ξα

and qα lying close to the full support boundary, the order α shall be selected large enough

in such a way that the estimates of ξα and qα capture the shape of the sample’s upper

boundary without envelopping all the data points4. For such a choice of α ↑ 1, the (1−α)th

quantile of the distribution of X should be very small and so, the shortcoming ξ̂α(xi) = 0

is expected to hold only for a very few observations (xi, yi) at the left border of the sample.

For these few observations with too samll inputs-usage xi, the estimates q̂α(xi) of qα(xi) are

expected by construction to coincide with the non-robust envelopment FDH estimates (as

illustrated below in Figures 2, 4 and 5), which goes against the concept of partial frontier

modeling. Examples are also provided below in Figure 8 where only q̂α(·) suffers from left

border defects, whereas ξ̂α(·) is clearly the winner.
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Figure 2: In solid lines the frontiers ξ1 (green), ξα (red) and qα (blue). In dotted lines the
estimators ξ̂1 (green), ξ̂α (red) and q̂α (blue). n = 100 and from left to right λ = 5, 30, 60.
From top to bottom α = .95, .99.

Figure 2 (top) depicts the true α-frontiers qα(x) and ξα(x) with estimated smooth frontiers

q̂α(x) and ξ̂α(x) for α ranging over {0.95, 1} for a simulated data set of size n = 100. The

4Once a reasonable large value of α is picked out, the idea in practice is then to interpret the observations
left outside the αth frontier estimator as highly efficient and to assess the performance of the points lying
below the estimated partial frontier by measuring their distances from this frontier in the output-direction.
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three pictures correspond to the values 5, 30, 60 of the parameter λ. The kernel estimator

ξ̂1 of the full frontier ξ1 is clearly sensible to the choice of the smoothing parameter λ. The

worse behavior of this estimator for too large and too small values of λ is explained by

Theorem 1(i) which states that ξ̂1(x) is nothing else than a shifted value of the conventional

FDH estimator. The choice of hx according to a high percentage λ% generates a very

large bandwidth, which may result in over-estimations of the true frontier. On the other

hand, when λ ↓ 0 we have hx ↓ 0, and so ξ̂1(x) converges to the FDH estimator which

underestimates the frontier ξ1(x). In contrast, ξ̂.95 and q̂.95 are less sensible to the choice

of λ in this particular case. Figure 2 (bottom) corresponds to the same exercise with α

ranging over {0.99, 1}. Again we obtain the same results as before. Reasonable values of the

smooth frontier ξ̂1 require, via computer simulation, the choice of a moderate parameter λ,

say λ = 20, 25, 30, 35.

3.1.2 Case of an infinite support boundary

We consider the standard case where the distribution of Y given X = x is Pareto of parameter

β > 0, that is

P(Y ≤ y|X = x) =

{

1 − (x/y)β if y ≥ x
0 if y < x.

Here we choose X uniform on (0, 1). The two partial αth frontiers are then given by

qα(x) = max{x, x[(1 − α)(1 + β)]−1/β},
ξα(x) = max{x, x1+1/β [(1 − α)(1 + β)]−1/β}.

Both families of partial frontiers differ following the values of the distribution parameter β.

A graphical illustration is displayed in Figure 3. In each picture we superimpose the lower

support boundary, the quantile functions qα(x) and ξα(x) and the regression αth quantiles

of Y given X = x, for a fixed β ∈ {1; 10} and for two large values of α = 0.95, 0.99. First

note that ξα(·) is overall smaller than qα(·) and that qα(·) itself is overall smaller than the

αth regression quantile function, for any α ∈ (0, 1). Second note that for small values of β

(e.g. β = 1), the use of extreme regression quantiles (e.g. α = 0.99) to capture the most

efficient firms seems in this particular case to be less justified than the use of qα(·) and ξα(·).
Indeed, from an economic point of view, it is not reasonable for optimal dominating firms to

be too far in the output direction from the set of relatively inefficient firms (lower support

boundary). The use of the three types of quantile-based frontiers seems to be more justified

from an economic viewpoint for large values of the parameter β (e.g. β = 10). In particular

the parabolic shape of the function ξα(·) diminishes as β increases. The three αth quantile

functions converge to the linear lower support frontier as β → ∞.
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Figure 3: The lower support boundary in green line, the quantile functions qα(·) in blue lines
and ξα(·) in red lines and the regression quantiles in cyan lines. On the left-hand side β = 1,
on the right-hand side β = 10. In solid lines α = .95, in dotted lines α = .99.

For a simulated data set of size n = 100 using β = 3, the true frontiers qα(x) and ξα(x)

with the smooth estimators q̂α(x) and ξ̂α(x) are graphed in Figure 4 for α ∈ {0.95, 1} and

λ = 5, 30, 60. We obtain the same conclusions as in the preceding example. Here also, while

q̂.95(x) diverges from the extreme smooth frontier ξ̂1(x) as x increases, the partial frontier

ξ̂.95 parallels ξ̂1(x) in much the same way as the partial frontiers ξ̂α do in Figure 2. In this

particular example, it is clear that q̂.95 is more attracted by extreme data points with small

Xi’s. In general, for α < 1, the frontiers ξ̂α are by construction more robust to extremes

than q̂α and are less sensible to the border effects from which the frontiers q̂α suffer due to

the conditioning X ≤ x.
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Figure 4: Here β = 3. In solid lines: true lower frontier (green), ξ.95 (red), q.95 (blue). In
dotted lines: ξ̂1 (green), ξ̂.95 (red) and q̂.95 (blue). n = 100 and from left to right λ = 5, 30, 60.

3.1.3 Frontier analysis of French post offices

To illustrate our methodology, we employ data on 4000 post offices from France reported in

Cazals et al. (2002). These data consist of the cost variable Xi which represents the quantity

12



of labor and the output variable Yi defined as the volume of delivered mail.
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Figure 5: n = 4000 French post offices. In dotted green line ξ̂1. In solid lines ξ̂α (red) and
q̂α (blue). From left to right α = .99, .995, .999. From top to bottom λ = 25, 35.

In Figure 5, we provide in each picture a scatterplot of the data and plot the frontiers

ξ̂1, ξ̂α and q̂α, for α = 0.99, 0.995 and 0.999, from left to right. From top to bottom, we

used λ = 25 and λ = 35 in our computations. We first observe that both αth frontiers

ξ̂α and q̂α are not influenced by the choice of the smoothing parameter λ, whereas the

full extreme frontier ξ̂1 changes slightly. We also see that large frontiers ξ̂α suggest better

capability of fitting efficient post offices than large q̂α. It is apparent that the estimates ξ̂α

(red lines) are less sensitive to the choice of extreme orders α than the frontiers q̂α are (blue

lines). Figure 6 plots the αth frontier estimates ξ̂α (respectively, q̂α) for the three values

α = 0.99, 0.995, 0.999 against each other: each blue (respectively, cyan) panel compares

estimates {(ξ̂α1(Xi), ξ̂α2(Xi)) : i = 1, . . . , n} (respectively {(q̂α1(Xi), q̂α2(Xi)) : i = 1, . . . , n})
for a pair (α1, α2) of values for α. Unlike cyan panels, most points fall on or near a straight

line for all blue panels, confirming thus the impression from Figure 5, i.e., while the frontier

estimates ξ̂α obtained with the three extreme values of α are somewhat similar, one sees

substantial differences for the frontiers q̂α.

Note that the full extreme frontier ξ̂1(x) (green line) is far from large partial frontiers

ξ̂α(x) (red lines) even when α increases (this is not the case for q̂α(x)). This might suggest

the heavy-tailed case FZx ∈ DA(Gγx
) with γx > 0. However, this assumption can hardly be
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Figure 6: The blue (respectively, cyan) plot consists of the points {(ξ̂α1(Xi), ξ̂α2(Xi)) : i =
1, . . . , n} (respectively {(q̂α1(Xi), q̂α2(Xi)) : i = 1, . . . , n}). From left to right (α1, α2) =
(.99, .995), (.995, .999), (.999, .99). Here λ = 25.

accepted by looking to the two first moments5 plots displayed in Figure 7 and consisting of

the sets of points {(k, γ̂x(k)) : 1 ≤ k ≤ Nx}, for x = 1000, 2000 (top panels). In contrast,

when the bottom graphs (for x = 3000, 4000) look stable, they correspond to values γ̂x ≥ 0.

0 50 100 150 200 250 300 350 400 450 500
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

Values of k

E
st

im
at

es
 o

f g
am

m
a x

Moment’s estimate for x=1000

0 500 1000 1500 2000 2500 3000 3500
−25

−20

−15

−10

−5

0

5

Values of k

E
st

im
at

es
 o

f g
am

m
a x

Moment’s estimate for x=2000

0 500 1000 1500 2000 2500 3000 3500 4000
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

Values of k

E
st

im
at

es
 o

f g
am

m
a x

Moment’s estimate for x=3000

0 500 1000 1500 2000 2500 3000 3500 4000
−18

−16

−14

−12

−10

−8

−6

−4

−2

0

2

Values of k

E
st

im
at

es
 o

f g
am

m
a x

Moment’s estimate for x=4000

Figure 7: Moments plots for x = 1000, 2000, 3000, 4000, respectively from left to right and
from top to bottom.

The frontier ξ̂1(x) being by construction a shifted variant of the FDH estimator, it is

5The moment’s estimator γ̂x of the tail index γx is defined as γ̂x = H
(1)
n + 1 − 1

2{1 − (H
(1)
n )2/H

(2)
n }−1,

with H
(j)
n = (1/k)

∑k−1
i=0 (log Zx

(n−i) − log Zx
(n−k))

j for k < n and j = 1, 2 (Dekkers et al (1989)).
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more sensitive to extreme values. This frontier is clearly determined by a very few outlying

post offices. At the opposite, the partial frontier ξ̂α(x) is more resistant to these outliers

than ξ̂1(x) and q̂α(x) even for too high values of α. This is the reason which explains the

substantial difference between ξ̂α(x) and ξ̂1(x) even when α = 0.9993, 0.9995 and 0.9997 as

shown in Figure 8.
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Figure 8: As in Figure 5 with λ = 25 and, from left to right, α = .9993, .9995, .9997.

3.2 Monte Carlo experiments

3.2.1 Comparison of the full frontier estimators

Let us first compare the performance of both estimators ξ̂1(·) and ξ1,n(·) of the full frontier

function ξ1(·). In the particular example described above in Paragraph 3.1.1 where ξ1(x) = x,

we have FZx ∈ DA(Ψρx
) with ρx = −1/γx = 2 and an(x) = x − max{0, x −

√

1/n}.
For the computation of the smoothed estimator ξ̂1(x), we use here the true value of the

optimal bandwidth hopt(x) = an(x)ρ−1
x Γ(ρ−1

x ) derived in (3), as well as the plug-in values

hopt,1(x) = ân(x)ρ−1
x Γ(ρ−1

x ) and hopt,2(x) = ân(x)ρ̂−1
x Γ(ρ̂−1

x ) obtained by replacing an(x)

and ρx, respectively, with the empirical counterpart ân(x) = Zx
(n) −Zx

(n−1) and the moment’s

estimator ρ̂x = −1/γ̂x. The computation of ρ̂x depends on the sample fraction k whose choice

is difficult in practice. By definition of the moment’s estimator, the sequence k = kn(x) must

be chosen as a function of both n and x such that Zx
(n−k) > 0, which is equivalent to selecting

k in {1, . . . , Nx − 1}, with Nx =
∑n

i=1 1I(Xi ≤ x) being the number of strictly positive Zx
i ’s.

Here, we only use the values k ∈ {[N0.5
x ], [N0.7

x ], [N0.9
x ]} to illustrate how much the estimates

ξ̂1(x) based on hopt,2(x) differ from those based on hopt,1(x) and hopt(x).

Figure 9 provides the Monte Carlo estimates of the Bias and the Mean-Squared Error

(MSE) of ξ̂1(x) and ξ1,n(x) computed over 2000 random replications with n = 1000 (what

is important is not the sample size n itself but the number Nx of observations Xi smaller

than or equal to x). The results are displayed for the FDH estimator ξ1,n(x) in solid blue

line and for the smoothed version ξ̂1(x) computed with the true bandwidth hopt(x) in solid
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red line. We see clearly that the resulting smoothed maximum ξ̂1(x) outperforms the sample

maximum ξ1,n(x) in terms of both Bias (top picture) and MSE (bottom), for every x.

When only the tail-index ρx is supposed to be known and equal to −1/2 as it is typically

the case in the econometric literature on nonparametric frontier estimation, the results for

ξ̂1(x) obtained with the plug-in bandwidth hopt,1(x) are displayed in dotted red line. We ob-

serve that the smoothed maximum’s performance deteriorates when using the naive spacing

ân(x) in place of the theoretical scaling an(x), but it remains still appreciably better than

the sample maximum’s performance in terms of both Bias and MSE, say, for all x ≥ 0.05

(for too small values of x < 0.05, ξ̂1(x) performs at least as ξ1,n(x)).

When ρx is estimated by ρ̂x, the results for ξ̂1(x) obtained by using the plug-in bandwidth

hopt,2(x) with k = [N0.5
x ], [N0.7

x ], [N0.9
x ], are displayed respectively in dotted green, cyan and

magenta lines. These three lines are graphed only for the values of x where ξ̂1(x) behaves

better than ξ1,n(x) in terms of Bias and MSE. We see that, when Nx is large enough (x > 0.5),

the three different selected values of k used for the computation of ρ̂x in hopt,2(x) give very

similar results to the “benchmarked” case hopt,1(x) (the idea is that for a properly chosen

value k, both cases hopt,1(x) and hopt,2(x) should approximately yield similar values of ξ̂1(x)).

In contrast, the results are all the more sensitive to the choice of k as Nx becomes small :

large values of k seem to be needed as Nx decreases in order to get sensible results.

It should be also clear that the minimal value of Nx computed over the 2000 realizations

is given, for instance, by N0.3 = 60 for x = 0.3 and by N0.1 = 1 for x = 0.1. While the

estimation of ρx from the sample {Zx
(n−Nx+1), . . . , Z

x
(n)} of size Nx as small as N0.3 can hardly

result in satisfactory moment’s estiamte (or any other extreme-value based estimates), it is

not even feasible when Nx < 2. This is a recurent problem in extreme-value theory.

Apart from this vexing border defect, we could say in view of the results described above

that the smoothed estimator’s performance may be improved in terms of Bias and MSE by

deriving a more efficient estimate for an(x) than the naive spacing ân(x), and by providing

an appropriate choice of the sample fraction k = kn(x) involved in the tail-index estimates.

3.2.2 Comparison of extreme partial frontiers

Let us now compare the asymptotic normal estimators ξ̂(n−k+1)/n and ξ(n−k+1)/n,n = Zx
(n−k+1)

of the extreme partial frontier ξ(n−k+1)/n, for two values of k = kn ∈ {[n0.5], [n0.75]} and two

sample sizes n ∈ {100, 1000}.

Case of a finite frontier : In the scenario of Paragraph 3.1.1 above, the derivative of

the quantile tail function Ux(t) := ξ1−1/t(x) exists for all t > x−2 and is given by U ′
x(t) =

tγx−1/2 ∈ RVγx−1. Hence Condition (A2) holds in this case and the assumption of Theorem 4
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that hk3/2{nU ′
x(n/k)}−1 → 0 reduces to the simple condition that n1/2h → 0. For the

computation of the smoothed estimator ξ̂(n−k+1)/n, we use here h = n−r with three values of

r ∈ {0.5, 1, 1.5} : the choice r = 0.5 (for which n1/2h 6→ 0 and nh → ∞) corresponds rather

to the asymptotic normality of ordinary smoothed quantiles, whereas the cases with r > 0.5

(for which n1/2h → 0 and nh 6→ ∞) correspond to the asymptotic normality of extreme

smoothed quantiles. The Monte Carlo estimates of the Bias and MSE of the empirical

partial frontier ξ(n−k+1)/n,n and the resulting smoothed three variants ξ̂(n−k+1)/n are shown

in Figure 10 for k = [n0.5] and in Figure 11 for k = [n0.75].

It may be seen that the smoothed extreme frontier ξ̂(n−k+1)/n achieves its best performance

in terms of MSE as h approaches to n−1/2 and behaves in this case (i.e., for r ≈ 0.5) better

than ξ(n−k+1)/n,n, but not by much, as is to be expected from their asymptotic behavior. This

appears to be true uniformly in x except for the too small values : a plausible explanation is

that what is important when estimating ξ(n−k+1)/n(x) is not the sample size n itself, but the

number of non-null transformed observations Zx
i = Yi1I(Xi ≤ x), which becomes negligible

for x too small and so, smoothing fails in this case.

It is also interesting to note that when ξ̂(n−k+1)/n attains its greatest gains in terms of

MSE (as h approaches to n−1/2), its bias becomes however considerably larger, as it is the

case for ordinary smoothed quantiles.

Case of an infinite frontier : In the scenario of Paragraph 3.1.2 above, where FZx ∈
DA(Φρx

) with ρx = 1/γx = β, Condition (A2) holds and the assumption of Theorem 4 that

hk3/2{nU ′
x(n/k)}−1 → 0 is equivalent to hn−1/βk3/2+1/β−1 → 0. When β = 3 as chosen

above, this assumption reduces to n1/12h → 0 for k = [n0.5] and to n7/24h → 0 for k = [n0.75].

Here, our Monte Carlo experiments are not in favor of the smoothed extreme quantiles and

so we do not reproduce the figures for saving place : ξ̂(n−k+1)/n performs at most as well as

the sample version ξ(n−k+1)/n,n in terms of both Bias and MSE.

Appendix: Proofs

Proof of Theorem 1 (i) For any x < Z(n) + hc, we have
x−Z(n)

h
< c, then H

(

x−Z(n)

h

)

< 1

and so F̂Z(x) < 1. Whence Z(n) +hc ≤ ξ̂1. On the other hand, for any x ≥ Z(n) +hc we have
x−Zi

h
≥ c for each i = 1, · · · , n. Whence H

(

x−Zi

h

)

= 1 for each i = 1, · · · , n. Consequently

F̂Z(x) = 1 for any x ≥ Z(n) + hc. Thus Z(n) + hc ≥ ξ̂1.

(ii) Since P[a−1
n (ξ̂1 − bn) ≤ x] → G(x) and ξ̂1 = Z(n) + hc, we have P[a−1

n (Z(n) − cn) ≤
x] → G(x) for the sequence cn := bn −hc. As an immediate consequence, the nondegenerate

distribution function G has one of the three forms described in Theorem 1(ii) according to

the Fisher-Tippett Theorem (see e.g. Resnick 1987, Proposition 0.3, p.9). �
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Proof of Theorem 2 By Theorem 1(i) the convergence in distribution (2) implies a−1
n (Z(n)−

cn)
d→ G, that is FZ ∈ DA(G) with cn = bn − hc. For the first assertion of the theorem

we have G = Φρ with an = (1/(1 − FZ))−1(n) and cn = 0. Then by Proposition 2.1(i) in

Resnick (1987, p.77), we have

lim
n→∞

E{a−1
n Z(n)}k =

∫

R

zkΦρ(dz) = Γ(1 − k/ρ)

and the assertion (i) follows by using (ξ̂1 − hc) = Z(n). Assertions (ii) and (iii) follow in the

same way by an easy application of Proposition 2.1(ii)-(iii) of Resnick (1987). �

Proof of Theorem 3 First note that for any fixed integer k ≥ 0 we have k < n for all n

large enough. Denote by Z(n−k) the (k + 1)-th largest order statistic and let us show that

Z(n−k) − hc < ξ̂n−k

n

≤ Z(n−k) + hc for all n large enough. (A.1)

For any x ≥ Z(n−k) + hc, we have
x−Z(i)

h
≥ c for each i ≤ n − k. Then F̂Z(x) ≥

(1/n)
∑

i≤n−k H
(

x−Z(i)

h

)

= n−k
n

. Therefore Z(n−k) + hc ≥ ξ̂n−k

n

. On the other hand,

F̂Z(Z(n−k) − hc) = (1/n)
∑

i<n−k H
(

Z(n−k)−Z(i)

h
− c

)

≤ n−k−1
n

< n−k
n

= F̂Z(ξ̂n−k

n

). Which

implies Z(n−k) − hc < ξ̂n−k

n

. Now we can turn to the desired assertion of the theorem. If

a−1
n (ξ̂1 − bn)

d−→ G we have a−1
n (Z(n) + hc − bn)

d−→ G by Theorem 1(i). Then following

Theorem 21.18 in van der Vaart (1998, p.313), we obtain a−1
n (Z(n−k) +hc− bn)

d−→ H . Since

a−1
n (Z(n−k) + hc − bn) − 2hca−1

n < a−1
n (ξ̂n−k

n

− bn) ≤ a−1
n (Z(n−k) + hc − bn),

the desired conclusion follows immediately from the condition a−1
n h → 0. �

Proof of Theorem 4 Let σ = (Z(n−k+1) − Z(n−2k+1))/
√

2k. First, we know from Dekkers

and de Haan (1989, Theorem 3.1) that σ−1(Z(n−k+1) − ξα) is asymptotically normal with

mean zero and variance 22γ+1γ2/(2γ − 1)2, provided that α → 1, n(1−α) → ∞ and k is the

integer part of n(1−α). We also know from Dekkers and de Haan (1989, Corollary 3.1) that

(Z(n−k+1) − Z(n−2k+1))/(n/2k)U ′(n/2k)
p→ (2γ − 1)/γ and so, it follows from the condition

h(2k)3/2{nU ′(n/2k)}−1 → 0 that σ−1h
p→ 0. Thus we conclude by making use of (A.1) that

σ−1(ξ̂n−k+1
n

− ξα) has the same asymptotic distribution as σ−1(Z(n−k+1) − ξα). We also have

by (A.1) for all n sufficiently large,

(Z(n−k+1) − Z(n−2k+1)) − 2hc <
(

ξ̂n−k+1
n

− ξ̂n−2k+1
n

)

< (Z(n−k+1) − Z(n−2k+1)) + 2hc.

Since σ−1h
p→ 0, we get h/(Z(n−k+1)−Z(n−2k+1))

p→ 0. Therefore (ξ̂n−k+1
n

−ξ̂n−2k+1
n

)/(Z(n−k+1)−
Z(n−2k+1))

p→ 1, which completes the proof by using Slutsky Lemma. �
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Figure 9: Bias (top) and MSE (bottom) of the FDH estimator ξ1,n (solid blue line) and of

the smoothed estimates ξ̂1 computed with : hopt (solid red line), hopt,1 (dotted red line) and
hopt,2 with k = [N0.5

x ], [N0.7
x ], [N0.9

x ] (respectively in dotted green, cyan and magenta lines).
2000 Monte-Carlo simulations with n = 1000.
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Figure 10: Results for k = [n0.5]. Bias (right panels) and MSE (left panels) of the estimates
ξ(n−k+1)/n,n (blue) and ξ̂(n−k+1)/n (red, green and magenta, respectively, for r = 0.5, 1, 1.5)
over 2000 Monte-Carlo simulations, sample size n = 100 (top) and n = 1000 (bottom).
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Figure 11: As above with k = [n0.75].
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