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Abstract: This paper proposes a new simulation method of thermal transfers 
based on the concepts of Brownian motion via the theory of potential and the 
characteristics of materials. In our simulation the particles take their origins on 
the surface and we propose an algorithm called ‘Surfacic Potential Algorithm’ 
that allows to determine the cartography of the temperatures. This algorithm 
has a better convergence than the one resulting from the potential theory and 
allows to treat adiabatic surfaces. It also includes the thermal heterogeneity  
of material. Its relevance is verified on thermal problems whose analytical 
solution is known. 
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1 Introduction 

Since in reality all engineering surfaces are rough to some degree, the modelling  
of the contact between these rough surfaces is very important. Modelling the contact 
between rough surfaces leads to an improved understanding of the friction, wear, thermal 
and electrical conductance between surfaces (Sellgren et al., 2003). A proper numerical 
treatment of the important physical phenomena that occur in a contact zone requires 
detailed discretisation of the actual topography and a thorough material model.  
For instance, to obtain a good estimate of the forces that are transferred through the 
contact zone, a reasonable portion of the actual assembly of bodies must also be 
represented in the numerical model (Batrouni, 2002). The need to make the model  
as simple as possible embodies the contradictory requirement to restrict the problem to a 
manageable size. Whenever there is steady heat transfer across a joint formed by  
two rough surfaces under relatively light contact pressures, a large temperature drop is 
observed at that joint. It is demonstrated that rms roughness and mean absolute slope are 
both needed for evaluating contact heat transfer (Xu and Xu, 2005). Thermoelastic 
deformations can have a significant effect on the contact between elastic bodies, 
particularly in cases where the thermal boundary conditions at the interface are 
influenced by the contact pressure (Barber, 1999). The main problems occur in the case 
of fractal surfaces when using the Finite Element Method (FEM) (Ciavarella et al., 2003; 
Hyun et al., 2004) that can lead to ill-posed steady-state problems. Contact problems  
for thermoelastic bodies can exhibit instability associated with thermomechanical 
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coupling at the contact interface (Liu et al., 2006). In this paper, we analyse a different 
way to treat thermal mechanism on surfaces because conventional physical computation 
based on roughness datum mesh may be time consuming. This approach is based  
on Monte Carlo procedure used to solve Laplace’s equation (Reynolds, 1965;  
Sadiku and Garcia, 1993) without the need to solve the boundary-value problem in the 
whole domain and so is an alternative to model physics phenomena on fractal interface.  
We propose an alternative methodology that consists to model the interface rather than 
the bulk. Briefly speaking, our methodology that extends Monte-Carlo EDP solver is an 
analogy on the problem between Boundary Element Method (BEM) and FEM. We focus 
on a classical problem related to heat transfer and analyse the efficiency of the new 
proposed algorithm. 

Many problems arise to the thermician concerning the validity of the Fourier law.  
The latter is commonly accepted by the heat transfer community for large values of time 
and space. However, the alternative model involves many problems with respect to the 
theories of statistical thermodynamics. Great controversies appear and nothing nowadays 
is allowed (Guillemet and Bardon, 2000). In spite of many efforts to ‘hyperbolise’  
the Fourier’s law, no model gives full satisfaction. The introduction of a hyperbolic term 
into the differential equation introduces conceptual artefacts which can be solved only  
by wave-particle duality of the phonons and free electrons. Which is the unknown origin 
of these dilemmas? We postulate that the origin of these controversies is due to the fact 
that at the distance and time where singularities appear, time and space cannot be 
considered any more independent as it is the case in the differential formulation. Indeed, 
it is not acceptable to consider the space–time as derivable. If the time scale (classical  
dt of the differential formalism) is such that the motion of the particles of heat transfer 
(phonons or Fermi electrons) is seen like a non-differentiable motion, it appears 
dangerous to postulate a differential law. Moreover, unless considering a purely wave 
theory (via Schrodinger wave equation), it becomes unreasonable to explain the physical 
origin of the hyperbolic corrective term introduced into the heat transfer equation.  
It is thus necessary to use a non-differential formalism of the heat transfer, and the  
Monte Carlo methods constitute an alternative. Unfortunately, these methods are rarely 
applied in thermal science for mesoscopic modelling. Admittedly, some publications 
preach the recourse to these methods to solve the heat equation. The principle consists in 
discretising space by a square grid and uses finite differences scheme of the heat 
equations. It involves that interface is almost everywhere derivable (and excludes any 
fractal surface). Then, the temperature is estimated at a point by taking into account the 
adjacent points of the grid. This methodology can be seen as equivalent to a simplex 
algorithm where jump probabilities in a direction are given by the adjacent temperatures 
themselves after an appropriate normalisation. However, in more complex problems of 
heat transfer, this normalisation is far from being easy due to negative jump probabilities 
(Kowsary and Arabi, 1999) 

2 Potential theory 

The potential theory is used to formulate heat transfer in an isotropic and homogeneous 
media in two dimensions. The retained classical algorithm is called the Volumic Potential 
Algorithm (VPA) (Sadiku, 2001). Principle of simulation (Figure 1): 
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• Make a square grid, which represents part θ(i, j), to represent the temperature  
as in point (i, j). 

• Take a random point (x0, y0) in the part that belongs to the grid. Simulate a random 
walk of length < L. 

• As the particle reaches the frontier, prescribed temperature of the boundary found  
is noted. By reproducing this simulation a great number of times, the average 
temperature of all boundary temperature corresponds to an estimate of the 
temperature at point (x0, y0). 

Figure 1 Simulation by VPA method of the calculation of the temperature located in the  
centre of the part (see online version for colours) 

 

3 2D analysis on a square mesh 

3.1 Analytical solution 

The solution of the heat transfer in a plate height H and width L in stationary  
regime if three faces would be at null temperature and the last (y = H) at temperature θ0  
is given by: 

1,3,5...0

( , ) 22 sin .
n

n yshx y n xL
n Hn Lsh

L

π
θ π

πθ π

∞

=

 
 

=  
  
 

∑  (1) 

3.2 Density of probability of the temperature in a point of the grid 

Let us now analyse at first the Probability Density Function (PDF) of the temperature 
distribution at a given point of the grid. We note θn(i, j) the temperature obtained  
at point (i, j) of the grid after n random walks and θN, θS, θE and θW the temperature 
respective on the borders north, south, east and west of the rectangular part and nX(i, j, n) 
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the number of particles which touch border X after n departures at point (i, j) of the grid 
with relation: 

( , , ) ( , , ) ( , , ) ( , , ).N S E Wn n i j n n i j n n i j n n i j n= + + +  (2) 

An estimate of the temperature at the point (i, j) is thus given by: 

( , ) ( ( , , ) ( , , ) ( , , ) ( , , ) ) / .n N N S S E E W Wi j n i j n n i j n n i j n n i j n nθ θ θ θ θ= + + +  (3) 

By noting pX(i, j, n) the probability that a particle reaches border X, one gets: 

( , ) ( , , ) ( , , ) ( , , ) ( , , ) .n N N S S E E W Wi j p i j n p i j n p i j n p i j nθ θ θ θ θ= + + +  (4) 

Let us note pX(i, j) the true probability, i.e., when the number of departures aims towards  
the infinity. Which is the form of the density of discrete probability (PDFD)? Which are 
the parameters likely to modify this PDFD? The probability pX(i, j) is as high as the 
starting point of the particle that approaches border X. Moreover, this probability is 
higher if the Euclidean distance of this point to the other surfaces is large. Then it 
becomes obvious that the highest probability is located at the closer point of the middle 
of the border where pX is calculated on four considered borders, pX(N/2, N − 1) and also 
pX(1, N/2) are the same probability for a grid square at the point. The estimation of  
pX(1, N/2) is not easy in dimension 2 because it requires to calculations on the Markovian 
processes. We now give a numerical estimate of these probabilities (Table 1). For that,  
a grid size N = 7, (i = 0.7, j = 0.7) is taken and 1000,000 departures are carried out on 
each interior point of the grid with jump with maximal length of 1/10. Applied to our 
example 1, we obtain relation θn(i, j) = (nN(i, j, n) × 100)/n = pN(i, j, n) where pN(i, j, n) 
represents an estimate of the probability that a particle at the point (i, j) reaches the 
northern border at 100°C. We note pN(i, j) the true probability, i.e., when the number  
of departures tends to infinity. This probability will be as high as the starting point of the 
particle approaches the ‘heating’ border, i.e., when i = 1. Once again, this probability is 
as high as the Euclidean distance from this point on the surface of null temperature  
is high. Then it becomes obvious that the highest probability is located at the point 
pN(N − 1, N/2). Now, we focus on the density of probability of the temperatures θn(i, j) 
obtained at the time of simulation. 

Table 1 Probability that a random walk reaches one of the four frontier (W, N, E, S) by taking 
origin from a (i, j) coordinate of the mesh 

i\j  1 2 3 4 5 

W 0.469 0.242 0.092 0.071 0.031 
E 0.031 0.071 0.092 0.242 0.469 
N 0.469 0.632 0.034 0.632 0.469 

1 

S 0.031 0.055 0.782 0.055 0.031 
W 0.632 0.380 0.203 0.120 0.055 
E 0.055 0.120 0.203 0.380 0.632 
N 0.242 0.380 0.489 0.380 0.242 

2 

S 0.071 0.120 0.105 0.120 0.071 
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Table 1 Probability that a random walk reaches one of the four frontier (W, N, E, S) by taking 
origin from a (i, j) coordinate of the mesh (continued) 

I\j  1 2 3 4 5 

W 0.782 0.489 0.250 0.105 0.034 
E 0.034 0.105 0.250 0.489 0.782 
N 0.092 0.203 0.250 0.203 0.092 

3 

S 0.092 0.203 0.250 0.203 0.092 
W 0.632 0.380 0.203 0.120 0.055 
E 0.055 0.120 0.203 0.380 0.632 
N 0.071 0.120 0.105 0.120 0.071 

4 

S 0.242 0.380 0.489 0.380 0.242 
W 0.469 0.071 0.092 0.071 0.031 
E 0.031 0.242 0.092 0.242 0.469 
N 0.031 0.055 0.034 0.055 0.031 

5 

S 0.469 0.632 0.782 0.632 0.469 

Equation (3) is the average temperature value (expectation) and does not include the 
statistical variations which depend on n. Each probability can thus be described in terms  
of binomial random variable. If we suppose the probability of the jumps known, then  
the variance of the temperatures can be expressed by: 

2 2

2 2

( ) ( , , ) ( ) ( , , )
[var[ ( , )]] .

( ) ( , , ) ( ) ( , , )
N N S S

n
W W E E

p i j n p i j n
E i j n

p i j n p i j n

θ θ θ θ
θ

θ θ θ θ
− + −

=
+ − + −

 (5) 

At (N/2, N/2) point, ( ) / 4N S E Wθ θ θ θ θ= + + +  and pX = 1/4, by taking θ0 = 20,  
one obtains: 

2 2 2 21/ 4[var[ ( / 2, / 2)]] ( ) ( ) ( ) ( )

125 / .

n N S E WE N N
n

n

θ θ θ θ θ θ θ θ θ = − + − + − + − 

=
 (6) 

These equations show that the variance is quadratic with respect to the temperature 
variations compared with the average temperature of the borders. Comparison between 
simulated and equation (6) is perfect (see Figure 2). This shows the relevance of our 
approach. Uncertainty on the determination of the temperature is then directly connected 
to the differences in temperature on the borders. When the number of jump n tends to the 
infinity, the variance tends to zero and thus the estimate of the temperature is carried out 
without noise. However, the PDF of the temperature is still unknown. According to the 
central limit theorem, as n tends to infinity, θn(i, j) converges to a Gaussian law with  
a mean given by the equation (4) and the standard deviation by equation (5). However, 
this theorem does not concern the speed of convergence. By taking back the 
demonstration of Lindenberg and Levy, the more the statistical moments of θn(i, j)  
of order greater than two are (Skewness, Kurtosis …), the less the rate of convergence is. 
Consequently, the strong skewness of the PDFD pX(i, j) let predict for grid points  
with a weak convergence. To quantify this convergence, random walks are proceeded  
at each point of the grid with a jump of 1/6 and the empirical PDF can be built.  
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For the middle point, Figure 3 represents the density of probability of the temperatures 
according to the number of jumps. Variance are calculated to test the adequacy with the 
gaussian model. As the probability for this particular point of reaching each border is 
equally likely, this PDF will be always symmetrical (Skewness nul). With n = 1/2p the 
number of random walks, in the case corresponding to p = 0 (only one departure),  
we have a density of discrete uniform probability. For the case corresponding to p = 1,  
the probability density function converges to a discrete triangular law (sum of two 
uniform discrete probability density functions). Then as p increases, the distribution 
converges towards Gaussian and consequently towards a continuous law (Figure 3). 

Figure 2 Comparison of the variance of the mean temperature between simulation (dot)  
and model given by equation (6) (dashed lines) (see online version for colours) 

 

Figure 3 Probability Density Function of temperatures for the centre point of the part according 
to the number of jump 2p (see online version for colours) 
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3.3 Size influence of the yardstick 

The size of the yardstick of the random walks is a difficult task in the Monte-Carlo 
simulation. In fact, the size must be small enough to conserve the fractal structure of the 
random walk. However, the larger the yardstick is, the longer the time simulation is.  
An issue must be emphasised: in the floating random walks, what means to reach the 
frontier? The probability the coordinates of the walk to be exactly those of the frontier  
is null. As a consequence, the value of temperature can only be incremented if the wall 
passes the frontier. If the temperature of the frontier is uniform, no problems occur  
but the temperature on the boundary presents a singularity, the temperature increment  
is ill-posed. For example, on the corner, the coordinates of the walk can pass over the 
vertical and the horizontal frontier. In this case, the mean of the temperature of the two 
frontiers will be retained. To test the efficiency of our approach, three origins are taken: 

X = 1, Y = 1: Border with geometry singularity and temperature singularity. 

X = 3, Y = 3: The lower probability to reach a corner. 

X = 5, Y = 5: Border with geometrical singularity but homogeneous temperature 
(θ = 0). 

By taking the yardstick size equal to 1/s (mesh size is equal to unity) 100,000 random 
walks are simulated. First time, the number of walks is computed such that errors are less 
than 0.1° in 95% confidence interval. Under the gaussian hypothesis of the temperature 
distribution, one gets that n > 16α/E2with 

2 2 2

2

( ) ( , , ) ( ) ( , , ) ( ) ( , , )

( ) ( , , )
N N S S w w

E E

p i j n p i j n p i j n

p i j n

α θ θ θ θ θ θ
θ θ

= − + − + −

+ −  (7) 

and E the wanted precision. For the three cases, one gets: 

[var[ (1,1)]] 780 , [var[ (3,3)]] 487 [var[ (5,5)]] 2970 .n n nE n E n et E nθ θ θ= = =  (8) 

The variance of the temperature increases with the frontier geometrical complexity and 
temperature singularities.One must have 1300,000, 5000,000 and 800,000 to obtain the 
precision of 0.1, respectively. However, the value of the variance does not mean that no 
bias can occur in the simulation, i.e., the simulated temperature is not equal to the 
analytical solution. To quantify this bias, the following indicator ∆ = |θM − θT|, where  
θM is the modelled temperature and θT the true one, is proposed and estimated with 
different size values. Figure 4 represents this bias value vs. the inverse yardstick size.  
A bias occurs with an amplitude that does not depend on the temperature singularities.  
As a consequence, bias is only due to geometrical complexity of the frontier. This bias 
diminishes with the yardstick size. This is of major importance for Monte Carlo 
simulation: in the classical algorithm of the potential theory, the size of the yardstick 
plays a major influence. Let’s now model this bias: under Gauss-Markov hypothesis (that 
are not rejected in our analyses), one gets a null intercept and finally the following 
equations are found: 

( 1, 1) 1.41 , ( 3, 3) 1.47 , ( 5, 5) 1.44 .X Y s X Y s X Y s∆ = = = ∆ = = = ∆ = = =  (9) 
 
 



   

 

   

   
 

   

   

 

   

   74 M. Bigerelle et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 4 Error on the temperature determination vs. the yardstick size of the random walk  
on three points of the mesh (X = 5, Y = 5; X = 3, Y = 3; X = 1, Y = 1) (see online version 
for colours) 

 

Roughly, one could admit that ∆ = 1.5/s. Of course, lim 0
s→∞

∆ =  but the slow convergence 
involves a high number of simulation to reach the true value with a high accuracy.  
For example, to have a bias lower than 0.2, s = 7.5 is needed. However, a surprising 
result is that the error does not depend on the location of the beginning of the walk: 
boundary geometrical singularity plays the same role near the surface and far from the 
interface on the temperature bias evaluation. However, intuitively, the bias takes its 
origin near the frontier: the yardstick must be small enough with regard to the 
geometrical singularity. It can be possible to increase the yardstick size when the origin 
of random walk becomes far from the interface (distance L) and, according to the 
macroscopic diffusion equation, can be weighted by a L  factor. However, we will 
propose in the next section an original algorithm that avoids this major discrepancy. 

3.4 The number of jump 

The number of jumps of the random walk is now analysed by taking into account both  
the yardstick length and the matrix size. 1,000,000 random walks are generated from  
the gravity centre of the piece. Then, the number of jumps who reach the surfaces  
is recorded. Relation 10 is found (see Figure 5): 

1.96 0.01 4.04 0.02
0.0060.140 .sn s t± ±

±=  (10) 

This equation is compatible with diffusion equation: diffusion front increases with 
respect to the square root of time. So, if the yardstick size is half reduced then the time  
to reach the same points must be then increased by a four factor and this is confirmed  
by the coefficient of 1.96 close to the two value. The same reasoning can by applied to 
the coefficient 4.04 of the mesh. Normalisation of the number of jump in each point  
of the mesh (one has to divide ns by t2) leads to the factor 2 again. 
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Figure 5 Number of jumps needed to reach the surface from the origin located in the centre  
of the piece vs. the yardstick size for different mesh sizes (see online version  
for colours) 

 

4 Surface Potential Algorithm (SPA) 

The principle of the algorithm is as follows: 

1 like VPA theory, volume as well as surface is discretised in a finished number  
of points 

2 in each point of surface, similar random walks of particles described in the VPA  
by noting the temperature are performed 

3 for each passage of the particle in a cell centred at a grid point other than surface, 
two counters are implemented receptively of an unit and the temperature 

4 as soon as the particle reaches a surface (except in the case of adiabatic surface),  
this one disappears and another departure is performed 

5 Steps 2–4 are reproduced a high number of times on each point of surface and,  
by carrying out the average temperature in each cell of the volume, the temperatures 
cartography is obtained. 

This algorithm postulates the existence of a flow in space that is in fact the resultant  
of two flows of opposite directions (Figure 6(a)). SPA converges towards the solution 
given by equation (1) (Figure 6(b)). The best algorithm (SPA or VPA) is the one that will 
give for a same number of jumps the best estimation of all temperatures (lower variance 
of the estimate in each point). For the SPA Method, an initial number of jumps is fixed 
and is the same for the VPA one. To quantify the accuracy, the standard deviation of the 
temperatures is computed and one finds σVPA = 1.75σSPA. This proves the efficiency  
of our algorithm (Figure 4(c)). 
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Figure 6 SPA simulations (a), SPA Result for the problem given by equation (1) (b), comparison 
of the standard deviation of the temperatures obtained from the two methods SPA and 
VPA (c) (see online version for colours) 

 
(a) 

 
(b) 

 
(c) 
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5 Conclusion 

A new stochastic method of calculation of the heat transfer was proposed and gives 
results less dispersed than the classical method of the floating random walk. A major 
advantage of this method is to consider that frontier is at the origin of the random walk 
and then no problem occurs to determine the temperature at the interface as in the 
classical algorithm (intersection random walk with frontiers). This property is of major 
interest in the case of fractal surfaces. In the future, this method will be applied on linear 
elasticity to model contact on fractal surfaces. 
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