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Abstract

We investigate optimality of model selection procedures in regard to the least-squares loss in a het-
eroscedatic with random design regression context. For the selection of some linear models endowed with
a localized basis, as for some Haar expansions, we show the optimality of a data-driven penalty calibration
procedure, the so-called slope heuristics. By doing so, we exhibit a minimal penalty being half of the op-
timal one. The optimal penalty shape being unknown in general, we also propose a hold-out penalization
procedure and show that the latter is asymptotically optimal.

Keywords: nonparametric regression, heteroscedastic noise, random design, model selection, slope heuris-
tics, hold-out.

1 Introduction

The slope heuristics [11] is a recent calibration method of penalization procedures in model selection : from
the knowledge of a (good) penalty shape it allows to calibrate a penalty that performs an accurate model
selection. It is based on the existence of a minimal penalty, around which there is a drastic change in the
behavior of the model selection procedure. Moreover, the optimal penalty is simply linked to the minimal one
by a factor two. The slope heuristics is thus a general method for the selection of M-estimators [6] and it has
been successfully applied in various methodological studies surveyed in [8].

However, there is a gap between the wide range of applicability of the slope heuristics and its theoretical
justification. Indeed, there are only a few studies, in quite restrictive frameworks, that theoretically describe
the optimality of this penalty calibration procedure. First, Birgé and Massart [11] have shown the validity
of the slope heuristics in a generalized linear Gaussian model setting, including the case of homescedastic
regression with fixed design. Then, Arlot and Massart [6] validated the slope heuristics in a heteroscedastic
with random design regression framework, for the selection of linear models of histograms. These result has
been extended to the case of piecewise polynomial functions in [18]. Lerasle [12, 13] has shown the optimality
of the slope heuristics in least-squares density estimation for the selection of some linear models for both
independent and dependent data. Finally, it has been shown in [15] that the slope heuristics is valid for the
selection of histograms in maximum likelihood density estimation.

In the present paper, we extend previous results related to heteroscedastic regression by showing the opti-
mality of the slope heuristics for the selection of more general linear models. More precisely, the linear models
that we discuss are endowed with an orthonormal basis achieving a good enough control of the sup-norms of
its elements with respect to their quadratic norms, together with a control of the number of intersections of
the support of the elements of the basis, see Section 3.1. This assumption on the analytical structure of the
models is in particular closely related to the assumption of localized basis introduced by Birgé and Massart in
[10] to derive accurate exponential bounds on the excess risk of general bounded M-estimators on sieves. It

*Research partly supported by the french Agence Nationale de la Recherche (ANR 2011 BS01 010 01 projet Calibration) and
by post-doctoral Fondecyt grant 3140600.



allows us in particular to recover models of piecewise polynomial functions exposed in [18] and to treat, for
the first time in the context of the slope heuristics, models made of Haar expansions.

If the noise is homoscedastic, then the shape of the ideal penalty is known, and is linear in the dimension of
the models as in the case of Mallows’ C,. However, if the noise is heteroscedastic, then Arlot [5] showed that the
ideal penalty is not in general a function of the linear dimensions of the models. Hence, a suitable estimator
of this shape is needed. As emphasized by Arlot [3, 4], V-fold and resampling penalties are good, natural
candidates for this task. In this paper, we show that a hold-out penalty is indeed asymptotically optimal
under very mild conditions on the data split, extending to more general models previous results established in
[18]. As a matter of fact, a half-and-half split leads to an optimal penalization.

The paper is organized as follows. In Section 2, we describe the statistical framework. The linear models
are presented in Section 3. The slope heuristics is validated in Section 4, and the hold-out penalization is
considered in Section 5. The proofs, that build upon previous results obtained in [18], are exposed in Section
6.

2 Statistical framework

Let us take n independent observations &, = (X;,Y;) € XXR with common distribution P. The feature space
X is a subset of R? and in most of the examples we will take X =[0,1]. The marginal distribution of X; is
denoted by PX. We assume that the data satisfy the following relation

Yi=s.(Xy) +o(Xi)ei, (1)

where s, € Lo (PX ) Conditionally to X;, the residual €; is assumed to have zero mean and variance equal
to one. The function o : X —R, is the unknown heteroscedastic noise level. A generic random variable with
distribution P, independent of the sample (&4, ...,&,,), is denoted by £ = (X,Y).

It follows from (1) that s, is the unknown regression function of Y with respect to X. Our aim is to estimate
s« from the sample. To do so, we are given a finite collection of models M,,, with cardinality depending on
the sample size n. Each model M € M,, is assumed to be a finite-dimensional vector space. We denote by
D the linear dimension of M. The models to be considered in this paper are introduced in details in Section
3 below.

We denote by [[s], = ([ szdPX)l/2 the usual norm in Ly (PX) and by sy the linear projection of s,
onto M in the Hilbert space (L2 (PX),|-|l,). For a function f € Ly (P), we write P(f) = Pf = E[f (€)]. By
setting K : Lo (PX ) — L; (P) the least-squares contrast, defined by

K(s):(wy)— (y—s@)®, sels(PY), (2)
the regression function s, satisfies
Sy = arg Seg%gx) P(K(s)) . (3)
For the linear projections sy; we get
Sm :arggreliﬁP(K (s)) - (4)

For each model M € M,,, we consider a least-squares estimator s,, (M) (possibly non unique), satisfying
n (M in{P, (K
s (M) € arg min (P, (K (5))}
1 n 9
= in ¢ — Yi—s(X; )
arggenz\l}{n;( s (X,)) }

where P, =n~1 Y1 | 6, is the empirical measure built from the data.
In order to avoid cumbersome notations, we will often write K's in place of K (s) for the image of a suitable
function s by the contrast K. We measure the performance of the least-squares estimators by their excess loss,

£(2y 80 (M) i= P (K5, (M) = K,) = ||, (M) — s.]|? .



We have the following decomposition,
(8w 80 (M) = (54, 80) + £ (801,80 (M)
where
C(ss,spr) =P (Ksy — Ksy) = ||lsy — 5*||§ and £ (spr, 80 (M)) =P (Ksp, (M) — Ksp) >0 .

The quantity £ (s.,sps) is called the bias of the model M and ¢ (sps, s, (M)) is the excess loss of the least-
squares estimator s, (M) on the model M. By the Pythagorean identity, we have

C(sarysn (M) = Jlsn (M) = sl -

Given the collection of models M,,, an oracle model M, is defined as a minimizer of the losses - or
equivalently excess losses - of the estimators at hand,

M, € arg Mngl}\r/lln {€ (84,80 (M))} . (5)

The associated oracle estimator s,, (M) thus achieves the best performance in terms of excess loss among the
collection {s,, (M); M € M,}. The oracle model is a random quantity because it depends on the data and it
is also unknown as it depends on the distribution P of the data. We propose to estimate the oracle model by
a penalization procedure.

Given some known penalty pen, that is a function from M,, to R, we consider the following data-dependent
model, also called selected model,

M € arg pin {Pn (Ksn (M) +pen (M)} . (6)

Our aim is then to find a good penalty, such that the selected model M satisfies an oracle inequality of the
form

C(ser80 (M) < Cx (5050 (M)

with some positive constant C' as close to one as possible and with probability close to one, typically more
than 1 — Ln~2 for some positive constant L.

3 Strongly localized bases

We define here the analytic constraints that we need to put on the models in order to derive our model selection
results. We also provide examples of such models.

3.1 Definition

Let us take a finite-dimensional model M with linear dimension D = Dj; and orthonormal basis (gpk)le. The
family (‘Pk)kD:1 is called a strongly localized basis if the following assumption is satisfied:

(Aslb) there exist ry > 0, p € N,, a partition (II;)?_, of {1,..., D}, positive constants (A4;)"_, and an
orthonormal basis (cpk) _, of (M, ]|]|,) such that 0 < A; < Ay < ... <A, < o0,

i\/zi<7"M\/5> (7)

and

for all 8 = (5kk 16R

p
<TMZ\/Az- masx | - (8)
=1



Moreover, for every (i,7) € {1,...,p} and k € II;, we set

I = {l € II; ; Support (¢y,) ﬂSupport (p;) # @}
and we assume that there exists a positive constant A. such that for all j € {1,...,p},

AL
max Card (I1; ) < Ac (4,471 V1) . 9)

It is worth noting that a strongly localized basis is a localized basis in the sense of Birgé and Massart [10].
More precisely, an orthonormal basis (cpk)D 1 of (M, ]]-||5) is a localized basis if there exists r, > 0 such that

Zﬁk@k

Now, (7) and (8) imply (10). Moreover, we require in (9) a control of the number of intersections between the
supports of the elements of the considered orthonormal basis to be strongly localized.

for all = (8,)r-, € RP <r¢¢5k max 18| - (10)

3.2 Examples
3.2.1 Histogram models
Let P be a finite partition of X. Consider the model

= {25111 i (Brep € RD} ,

IeP

where D := |P| is the linear dimension of M and corresponds to the number of elements in P.
The following lemma states the existence of an orthonormal localized basis in (M, ||||,), if the partition P is
lower-regular for the law P*. This lemma is also stated and proved in [16].

Lemma 1 Let consider a linear model M of histograms defined on a finite partition P on X, and write
|P| = D the dimension of M. Moreover, assume that for a positive finite constant cy p,

|’P‘Ilg7f)PX (I)ZCM,p>O . (11)

Set, for I € P,
—1/2

- (X ()

Then the family (¢1);cy,, 8 an orthonormal basis in Lo (PX) and we have,

Z 51@1

IeP

for all B = (B;);cp € RP, <y pVDIBl, - (12)

By Lemma 1, we deduce that if the partition P satisfies the assumption of lower regularity given in (11)
then inequality (8) is satisfied for M, with p = 1 and ry = CX/}’P > 0. Moreover, notice that for all

(i,5) € {1,..., D}?,
Card (Hz’,j) = 51‘73‘

and in this case (Aslb) is straightforwardly satisfied.



3.2.2 Piecewise polynomials

Assume that X =10, 1] is the unit interval, P is a finite partition of X made of intervals and let
M =Span{p;;:z € X — 1y ;5 (I,7) € Px {0, r}}

be the linear model of piecewise polynomials on X, of degrees not larger than r. Notice that the linear
dimension of M is (r+ 1) |P].

The following lemma is given in [16] and states the existence, under suitable assumptions, of a localized
orthonormal basis in (M, ||-||5). Its proof, which is not totally trivial as it requires arguments from the theory
of orthogonal polynomials, can be found in [16].

Lemma 2 Let Leb denotes the Lebesgue measure on [0,1]. Let assume that X =[0,1] and that PX has a
density f with respect to Leb satisfying, for a positive constant cin,

f('r)zcmin>0, xE[O,l} .

Consider a linear model M of piecewise polynomials on [0,1] with degree r or smaller, defined on a finite
partition P made of intervals. Then there exists an orthonormal basis {gom, IeP, je{0,....r}} of (M,|-],)
such that,

for all j € {0,...,r} ¢r.; is supported by the element I of P,

and a constant L depending only on T, cmin exists, satisfying for all I € P,

1

jeax lersll < Lr,cmin\/ﬁ . (13)

As a consequence, if it holds
|P| 1127f) Leb (I) > c¢arren >0, (14)

a constant Ly c. .. ey o, depending only onr, cuin and car,Leb exists, such that for all § = (ﬂl’j)lep,je{o,..i,r} S
RP,

Zﬁ],j‘ﬁ],j < L?",Cmin,CM,Leb\/E|B‘oo ; (15)

1,j -

where D = (r 4+ 1) |P| is the dimension of M.

Lemma 2 states that if X =[0,1] is the unit interval and PX has a density with respect to the Lebesgue
measure Leb on X uniformly bounded away form zero, then there exists an orthonormal basis in (M, ||-||,) of
piecewise polynomials, where the sup-norm of its elements are suitably controlled by (13). Moreover, if we
assume the lower regularity of the partition with respect to Leb then the orthonormal basis is localized.

It is worth noticing that in the case of histograms developed in Section 3.2.1 above, we do not need to
assume the existence of a density for PX or to restrict ourselves to the unit interval.

Finally, under assumptions of Lemma 2, the property of strongly localized basis is satisfied (p = 1 and
A. =r+ 1 are convenient).

3.2.3 Haar expansions

Let X =[0,1], m € N. We set for every integers 4, j, [ > 0, satisfying i < j and 1 <1 < 2¢,

AG) = {Uk) ; 1<k<2}, (16)
A l) = {Gk) ;277 1-1)+1<k<271} . (17)

Moreover, we set

m

A(=1)={-1} and A, = [J A(j) .

i=—1



Notice that for every integers 4,5 > 0 such that i < 7, {A (J,5,0) ; 1 <1< Qi} is a partition of A (j), which

means that ‘
o

A(j) = JA G i,0) and for all 1 < 1,h < 2%, A(5,4,0) [ VA (j,i,h) =0 .
=1

Let ¢ = 1p0,1), p = L[0,1/2] — L(1/2,1) and for every integers j > 0, 1 <k < 27,
Pk T €[0,1] =272 (2 —k+1) .
Set p_; = ¢ and let m € N. We consider the model
M =Span{p, ; A€ A} . (18)

Notice that the linear dimension D of M satisfies D = 2m*1. The following lemma gives an explicit strongly
localized orthonormal basis of (M, ||-],).

Lemma 3 Let m € N. Assume that X =10,1] and let M be the model of dimension D given by (18). Then
D = Card(A,,) = 2™ . (19)

Set for every integers 7 > 0,1 <k < 27,

pik— =P X ([277(k—1),277 (k—1/2)]) , pjp+ =P ((2—1' (k — ;) ,2‘jkD
1

2 2
\/pj,k7+17j,k,— + D} g, —Pik,+

i T €[0,1] (pj,k,+1[2*J’(k71),2*j(k71/2)] _pj,k,—l(gfj(k,%)}gfjk]) . (20)

Moreover we set ¢_, = ¢. Assume that PX has a density f with respect to Leb on [0,1] and that there exists
Cmin > 0 such that for all x € [0,1],
f(x) > cmin >0

Then {¢y ; A € Ay} is a strongly localized orthonormal basis of (M, ||-||,). Indeed, it holds for every integers

j>0,1<k<2,
2 .
o5kl <y QQJ/Q : (21)

Moreover, by setting A_1 =1 and A; =27, j >0, we have

Zm: VA; < (V2+1) VD (22)

Jj=-1

and for all B = (B)) e, € RP,

Z Brea

AEA L,

2 m
<y D0 VAmax|By (23)
oo min J:—l € J

Finally, if A;, = {\ € A;; Support (‘Pu) N Support (py) # 0} for p € Ay, and j € {-1,0,1,...,m},

max Card (A;,) < A;A7' V1. (24)

HEA;

By Lemma 3, which proof is straightforward and left to the reader, we see that if PX has a density which is
uniformly bounded away from zero on Z, then the model M given by (18) admits a strongly localized ortho-

normal basis for the Lo (PX)—norm. More precisely, with notations of (Aslb), rj; = max {\/§ +1,4/2¢} }

min

and A, = 1 are convenient.



4 The slope heuristics

4.1 Assumptions and comments

Set of assumptions : (SA)
(P1) Polynomial complexity of M,,: Card (M) < cpn®M .

(Auslb) Existence of strongly localized bases: there exist ra¢, Ac > 0 such that for every M € M,,, there
exist pys € Ny, a partition (IL;)? of {1,..., Dy}, positive constants (A;):*; and an orthonormal basis

(pr) by of (M, ||-[|,) such that 0 < 4; < Ay < ... < A, < 400,

pm
Z VA; <rmv/Dur
i=1

and

for all 8= (8,)r_, € RP,

Zﬁk@k

Moreover, for every (i,5) € {1,...,p} and k € II;, we set

PmM
<) VAimax |
=1

I, = {l € TI; ; Support () ] Support (g;) # (?)}
and we assume that for all j € {1, ..., p},

< AT :
max Card (I ;) < Ac (A;A71 V1)

(P2) Upper bound on dimensions of models in M,,: there exists a positive constant Ay 4+ such that for every
-2
M e M, 1§DM§maX{DM,p?\4ApM} <Apmqn(lnn) " <n.

(P3) Richness of M,,: there exist My, My € M,, such that Dy, € [\/n, ¢ricn/n] and Dy, > Avienn (In n)_2

(Ab) A positive constant A exists, that bounds the data and the projections sp; of the target s, over the
models M of the collection M,,: |Y;| < A < oo, [|sum|l,, < A < oo forall M € M,,.

(An) Uniform lower-bound on the noise level: o (X;) > omin > 0 a.s.

(Ap.,) The bias decreases as a power of Dy there exist 3, > 0 and C > 0 such that

0(50,50) < C DY *

The set of assumptions (SA) can be divided into three groups. Firstly, assumptions (P1), (P2), (P3) and
(Ap,) are linked to properties of the collection of models M,,. Secondly, assumptions (An) and (Ab) give
some constraints on the general regression relation stated in (1). Thirdly, assumption (Auslb) specifies some
quantities related to the choice of models with strongly localized bases. More precisely, the latter assumption
ensures uniformity along the collection of models of the constants defining the strongly localized bases.
Assumption (P1) states that the collection of models has a “small” complexity, more precisely a poly-
nomially increasing one with respect to the amount of data. For this kind of complexities, if one wants to
design a good model selection procedure for prediction, the chosen penalty should estimate the mean of the
ideal one on each model. Indeed, as Talagrand’s type concentration inequalities for the empirical process are
exponential, they allow to neglect the deviations of the quantities of interest from their mean, uniformly over
the collection of models. This is not the case for large collections of models, where one has to put an extra-log
factor inside the penalty, depending on the complexity of the collection of models, see for instance [9, 7].



We assume in (P3) that the collection of models contains a model My of reasonably large dimension
and a model M, of high dimension, which is necessary since we prove the existence of a jump between high
and reasonably large dimensions. One can notice that in practice, the parameter 3, , which depends on the
bias of the model is not known and so the existence of My is not straightforward. However, it suffices for
the statistician to take at least one model per dimension lower than the chosen upper bound to ensure the
existence of My and Mj.

Assumption (Ap,,) states that the models have good enough approximation properties in terms of the
quadratic loss. Furthermore, assumption (Ab) is rather restrictive, since it excludes Gaussian noise. However,
the assumption of bounded noise is somehow classical when dealing with M-estimation and related procedures.
Indeed, a central tool in this field is empirical process theory and more especially, concentration inequalities
for the supremum of the empirical process. We used the classical inequalities of Bousquet, and Klein and Rio
in [17] and [18]. As a matter of fact, we do not know yet if an adaptation of our proofs (including results
established in [17]) by using extensions of the latter inequalities to some unbounded cases - as for instance in
Adamczak’s concentration inequalities [1] - would be possible.

The noise restriction stated in (An) is needed to derive our results which are optimal to the first order.
It is quite common in this context since it is also needed in the work of Arlot and Massart [6] concerning the
validation of the slope heuristics for histogram models and in [18] for piecewise polynomials.

4.2 Statement of the theorems

We are now able to state our main results leading to the slope heuristics. They describe the behavior of the
penalization procedure defined in (6).

Theorem 4 Take a positive penalty: for all M € M,,, pen (M) > 0. Suppose that the assumptions (SA) of
Section 4.1 hold, and furthermore suppose that for Apen € [0,1) and A, > 0 the model My of assumption (P3)
satisfies

0 <pen (M) < ApenB [P, (Ksy, — Ks, (M1))] (25)

with probability at least 1 — Ayn=2. Then there exist a constant A1 > 0 only depending on constants in (SA),

as well as an integer ng and a positive constant Ay only depending on Apen and on constants in (SA) such
that, for all n > ng, it holds with probability at least 1 — A1n~2,

Dy > Asnln (n)—?

and
£ (5050 (M)) = "ﬁ(l/n(n:ﬂ) A (G (M)} (26)

where B, > 0 is defined in assumption (Ap,) of (SA).

Theorem 4 shows that there exists a level such that, if the penalty is smaller than this level for one of the
largest models, then the dimension of the output is among the largest dimensions of the collection and the
excess loss of the selected estimator is much larger than the excess loss of the oracle. Moreover, this level is
given by the mean of the empirical excess loss of the least-squares estimator on each model. Let us also notice
that the lower bound given in (26) gets worse as /3, increases. This is due to the fact that when 3, increases,
the approximation properties of the models improve and the performances in terms of excess loss for the oracle
estimator also improve.

Theorem 5 Suppose that the assumptions (SA) of Section 4.1 hold, and furthermore suppose that for some
§ €10,1) and Ay, A, > 0, there exists an event of probability at least 1 — A,n=2 on which, for every model

M e M,, such that Dpy; > Apq 4 (In n)3, 1t holds
|pen (M) — 2E [P, (Ksy — Ksp (M))]| < 8 (€ (54, 80m) + B[P, (Ksy — Ksp, (M))]) (27)

together with

pen (M)] < 4, (5 (5e,50) | ““”>3> . (25)

(Inn)? n



Then, for anyn € (O, B/ (1 + B+)), there exist an integer ng only depending onn,0 and 3, and on constants
in (SA), a positive constant As only depending on cpq given in (SA) and on Ay, two positive constants As
and As only depending on constants in (SA) and on A, and a sequence

Ay
On < ——7 (29
(Inn)*/* )
such that it holds for all n > ng, with probability at least 1 — Asn~2,
D]/\-[\ S nn+1/(l+/8+)
and s
= 1+94 56, (Inn)
E(*,n(M)>< 0 ) i (sa, 80 (M) + A .
8 S\Ts g ) e AT (30)
Assume that in addition, the following assumption holds,
(Ap) The bias decreases like a power of Dys: there exist 3_ > B, >0 and Cy,C_ > 0 such that
-8_ -8,
C_D,; ~ <{l(ss,sm)<CyD, " .
Then it holds for all n > ng ((SA) , C_,,B_,ﬂ+,7),5), with probability at least 1 — Azn~2,
Apiy (Inn)® < Doy < gt/ (1454 (31)

and

¢ (5050 (1)) < (}jg + (1595)> {50000 (L) )

Theorem 5 states that if the penalty is close to twice the minimal one, then the selected estimator satisfies
a pathwise oracle inequality with constant almost one, and so the model selection procedure is approximately
optimal. Moreover, the dimension of the selected model is of reasonable dimension, bounded by a power less
than one of the sample size.

Condition (Ap) allows to remove the remainder terms from the oracle inequality (30) by ensuring that
the selected model is of dimension not too small, as stated in (31). Assumption (Ap) is the conjunction of
assumption (Ap,) with a polynomial lower bound of the bias of the models. On histogram models, Arlot
showed in Section 8.10 of [2] that this lower bound is satisfied for non constant a-Holder, « € (0, 1], regression
functions and for regular partitions.

Finally, from Theorems 4 and 5, we identify the minimal penalty with the mean of the empirical excess
loss on each model,
min (

pen M) =E[P, (Ksy — Ks, (M))] ,

thus generalizing the results obtained in [6] and [18] to the case of models endowed with strongly localized
bases.

5 Hold-out penalization

The conditions on the penalty given in Theorems 4 and 5 can not be directly checked in practice. Indeed, they
are expressed in terms of the mean of the empirical excess loss on each model, which is an unknown quantity
in general.

In the case where the noise level is homoscedastic but unknown, Mallows’ penalty, which is known to be
asymptotically optimal, is only known through a constant, the noise level, which can be estimated via the
slope heuristics (for practical issues about the slope heuristics, see Baudry et al. [8]). But in the common
situation where the noise level is sufficiently heteroscedastic, the shape of the ideal penalty is not linear in the
dimension of the models and not even a function of the linear dimensions. In such a case, Arlot [5] proved that



any calibration of a linear penalty leads to a suboptimal procedure, but yet can achieve an oracle inequality
with a leading constant more than one.

In order to achieve a nearly optimal selection procedure in the general situation, it remains to estimate the
ideal penalty or, thanks to the slope heuristics, the shape of the ideal penalty. This section is devoted to this
task. We propose a hold-out type penalty that automatically adapts to heteroscedasticity. Let us now detail
our hold-out penalization procedure.

The ideal penalty is defined by

peny (M) := P (Ksy, (M)) — P, (Ksp, (M))

for all M € M,. A natural idea is to divide the data into two groups, indexed by I; and I, satisfying
LNIb=0and I; Ul ={1,...,n} and to propose the following hold-out type penalty,

peny, ¢ (M) i= C (P, (Ksp, (M)) = Po, (Ksn, (M)))

where P, = 1/n;> o, d¢ . ni =Card(l;), for i = 1,2, s,, (M) € argmingen Py, (Ks) and C > 0 is a
constant to be determined. Indeed, if n1 is not too small, P,, (Ks,, (M)) is likely to vary like P, (Ks, (M))
and P,, (Ksp, (M)) is, conditionally to (gj)jeh’ an unbiased estimate of P (Ks,, (M)), which again is likely
to vary like P (Ks, (M)). Moreover, we see from Theorem 10 in [17] that when the model M is fixed, the
quantities P, (Ks, (M)) and P (Ks, (M)) are almost inversely proportional to n, so a good constant in front
of the hold-out penalty should be C,p; = n1/n.

The previous observation is justified by the following theorem, where for the sake of clarity we fixed
ny =ng = n/2. We set

peny, (M) = 5 (Pay (Ksn, (M) = Po, (Ksu, (M) and My € arg min {Py (s, (M)) + pen,, (M)} -

(33)

N =

Theorem 6 Consider the procedure defined in (33), with ny = ng = n/2. Suppose that the assumptions (SA)
of Section 4.1 hold. Then, for any n € (O,ﬁ+/ (1 + ,3+)), there exist an integer ng only depending on n and
on constants in (SA), a positive constant Ag only depending on cpyq given in (SA), two positive constants
Az and Ag only depending on constants in (SA) and a sequence 6,, < A7 (In n)_1/4 such that it holds for all
n > ng, with probability at least 1 — Agn=2,

Dy < L/ (1464)

1/2

and
(Inn)?®

¢ (s*,sn (ﬁl/g)) < (14 0,) € (54,50 (M) + Ag (34)

Assume that in addition (Ap) holds (see Theorem 5). Then it holds for all n > ng ((SA) ,C,,B_,n), with
probability at least 1 — Agn~2,

AM#mmng@mgﬁﬁme)

and
¢ (s 5n (ﬁm)) < (U40,) inf (£ (5050 (M)} - (35)

Theorem 6 shows the asymptotic optimality of the hold-out penalization procedure, for a half-and-half split
of the data. This is a remarkable fact compared to the classical hold-out, defined by

]/\Zho € arg Mnel.l/\r/ll {Pn2 (Ksnl (M))} . (36)

Indeed, the choice ny = n/2 in (36) is likely to lead to an asymptotically suboptimal procedure, as the criterion
is close in expectation to P (Ksn/g (M))7 and so is close to the oracle, but for n/2 data points. The hold-out
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penalization allows us to overcome this difficulty. Arlot [3, 4] described similar advantages for resampling and
V-fold penalties.

Notice also that the random hold-out penalty proposed by Arlot [4] is proportional to the mean along
the splits of our hold-out penalty, providing thus a “stabilization effect” in practice. This should bring
some improvement compared to our unique split, at the price of increased computational cost. However, the
stabilization effect seems more difficult to study mathematically, and our results provide a first step toward
the study of the more complicated resampling penalties.

6 Proofs

We first recall from [18], Section 5, that Theorems 4, 5 and 6 are valid under the following general set of
assumptions (i.e. by replacing (SA) by (GSA) in the statement of the theorems):

General set of assumptions: (GSA)
Assume (P1), (P2), (P3), (Ab), (An) and (Ap,) of (SA). Furthermore suppose that,

(Alb) there exists a constant 74 such that for each M € M, one can find an orthonormal basis (gok)szMl
satisfying, for all (ﬁk)kD:Ml € RPm

Dn

Zﬁk@k
k=1

where |3| = max {|5,];k € {1,...,Dm}}.

(Acs) a positive integer ny exists such that, for all n > ny, there exist a positive constant A..,s and an event
Qo of probability at least 1 —n~2~**, on which for all M € M,,,

Dyrlnn
”Sn (M) - SMHOO < Acons\/T . (37)

As assumption (Alb) in (GSA) is satisfied under assumption (Auslb) of the set of assumptions (SA) (see
section 3.1), it remains to prove the convergence in sup-norm (Ac,) from assumption (Auslb) and the proofs
of Theorems 4, 5 and 6 will be complete. This is done via the following theorem.

<rmvVDum Bl

oo

Theorem 7 Let o > 0. Assume that M is a linear vector space of finite dimension D satisfying (Aslb) and
use notations of (Aslb). Assume moreover that the following assumption holds:

(Ab’) There exists a constant Ay v > 0 such that |1/)17M (X, Y)| < Aim a.s.

If there exists Ay > 0 such that
n

max {D,p*A,} < A, —— | (38)
(Inn)
then we have, for all n > ng (A4, Ae, i, @),
Dlnn e
P <||Sn - SMHoo > LAl,M,TMJl n ) <n . (39)

Notice that assumption (Ab’) in Theorem 7 is included in assumption (Ab) of (GSA). Before stating the
proof of Theorem 7, we need two preliminary lemmas.

11



Lemma 8 Let a > 0. Consider a finite-dimensional linear model M of linear dimension D and assume that
(gpk) _1 1s a localized orthonormal basis of (M, ||-||y) with index of localization vy > 0. More explicitly, we

thus assume that for all § = (5k)k:1 € RP,

< T'M\/Bwoo

If (Ab) holds and if for some positive constant AL,

n
D<A —
N +(lnn)2

then there exists a positive constant L((IQ,)TM such that for all n > ng (A1), we have

Inn e
P( max (P = P) (¢, 0)] = L2, min{lg,l s lorll} )sfz . (40)
ke{l,...,D} n

Proof of Lemma 8. For any (k,1) € {1, ...,D}Q, we have
2 . 2 2
E (o 00?] < min {0l s leal% }
and

ok eille < min{[Jogllo s lerlloe} x max {|lepll 5 lleill o }
< min{||oglloo : lorlloc} x T VD

Hence, we apply Bernstein’s inequality (see Proposition 2.9 in [14]) and we get, for all v > 0,

P ((Pn ~P)(er- 0l 2 min (e i) (\/ L TM@“M)) <wm.

Since, for all n > ng (A4),
rvyVDInn er/A+ llnn llnn
= <rum
n

we get from (41) that for all n > ng (Ay),

k)e{l,...,D}?

YT M Inn
P(( max (P = P) (g 00l 2 (V27 + 50 min {lleell s lerllo) n)

M Inn
< X P((an (er 20l = (v2y+ 50 ) min{llpgll o s lorll oo} /= )
(k,1)e{1,...,D}?
. 2ylnn 7y vDylnn
< > IP’<(Pn—P) (er - )| = min {[[oplloo 5 1ol oo } T "
(k,1)€{1,...,D}?
< 2D <pTH2 (42)

We deduce from (42) that (40) holds with LY = v2a + 4+ (a+2)ry /3> 0. B

Lemma 9 Let a > 0. Consider a finite-dimensional linear model M of linear dimension D and assume that
(gpk) _1 1s a localized orthonormal basis of (M, ||-||y) with index of localization ryr > 0. More explicitly, we

thus assume that for all § = (Bk,)k:l € RP,

<ruvD||, - (43)
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If (Ab) holds and for some positive constant A,

D<A —"_,
(Inmn)
then there exists a positive constant LSI)_M’TM’Q such that for all n > ng (A4), we have
(1) Inn a
P (ke«%nl,aXD} |(P” - P) (djLM ’ sOk)| = LAl,M77']\47Oé ’I”L) =n . (44)

Proof of Lemma 9. Let 5 > 0. By Bernstein’s inequality, we get by straightforward computations (of the
spirit of the proof of Lemma 8) that there exists L, ,,r,,,3 > 0 such that, for all £ € {1,..., D},

n

1

Now the result follows from a simple union bound with S =a+1. B

Proof of Theorem 7. Let C > 0. Set
F&={seM;|s—sul, <C}

and
So={seM;|s—sul, >C}=MZF.

Take an orthonormal basis (gpk)szl of (M,|-||,) satisfying (Aslb). By Lemma 9, we get that there exists
LW > 0 such that, by setting

A1 MM
_ ) [lnn
Ql - {’CE%Ill,a}fD} |(Pn - P) (qpl,M ' gpk‘)’ S LA171\4,T‘]\4,OL n} ’

we have for all n > ng (A1), P(21) > 1 —n~%. Moreover, we set

. Inn
Qo = { max __|(P, — P) (¢, - o)l < LY, min{[lo ]l 1]l } n} ;

ke{1,...,D}?

where L(OizﬂM is defined in Lemma 8. By Lemma 8, we have that for all n > ng (Ay), P(22) > 1 —n"% and so,
for all n > ng (A4),

P (Ql ﬂQg) >1- 207, (45)
We thus have for all n > ng (44),

P(l[sn = samlloe > C)

< IP’( inf P, (Ks— Ksy) < inf P,L(KS—KSM)>
SE.F;CC seFE
= P| sup P,(Ksy —Ks)> sup P, (Ksy — Ks)
56.77;"0 seFg
< P sup P, (Ksy — Ks)> sup P, (Ksy — Ks) ﬂleQZ +2n7“ . (46)
SEFSH se}‘gc/z

Now, for any s € M such that

D
s— sy = Zﬁk%’m B = (/Bk)le €R?,

k=1

13



we have
P, (Ksy — Ks)
= (Pa=P) (101 (531 = 9)) = (Pu = P) (s = sa0)" ) = P (K5 = Ks)

D
> By (Pa—P) (1 0+ 04) — Zﬁ;ﬁ;P — P) (¢), - ¢1) Zﬂk.

k=1 k=1
We set for any (k,1) € {1,..., D}?,
2
RSL = (P, — P) (¢1,M ) ‘Pk) and R'Ez}c,l = (Pn = P)(pr - ¢1) -
Moreover, we set a function h,,, defined as follows,
D
D 2
s = (B0 — SO0 — 3 BAiRE) - Zﬂk .
k=1 k=1
We thus have for any s € M such that s — sy = Zszl Brer, B = (ﬂk)szl € RP,
P, (Ksy — Ks)=h, (B) . (47)

In addition we set for any 8 = (ﬁk)szl € RP,
P
18l 01,00 :TMZ;\/ A; kme%XWk' : (48)

It is straightforward to see that |-|,, . is a norm on RP. We also set for a real D x D matrix B, its operator
norm |A|,, associated to the norm |-|,,  on the D-dimensional vectors. More explicitly, we set for any
Be RDXD’

[Blly = sup  ————

BERP, B#£0 |B|J\4,oo

}

= sup TMZ \ﬁmax Z Z By.15,

We have, for any B = (Bi,), ,_, p € RP*P,

p
IBll,, = sup 1{7"M;\/Ai£%%)§

BERD, |B|M,oo:

D
Z By 8
=1

BERP, |8l 00=1 j=11€cl;
= sup Z\/ i X rMZ\/ max|ﬂl /A Z | B.1]
BERP, |B] 5y, 00 =1 L€l
— Z VA, imax §  max VAT l; | Bl : (49)
Notice that by inequality (8) of (Aslb), it holds
D
]—‘;"CC{SGM; S_SM:Z/BM% & |B|]W,OOZC} (50)
k=1
and
D
F&y D {sEM; s—su=Y Bupp & |5|M700§0/2} . (51)
k=1
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Hence, from (46), (47) (50) and (51) we deduce that if we find on €4 [ €2 a value of C such that

sup hn (B) < sup ha (B) (52)
BERD, |8l . 2C BERD, |85, <C/2

then inequality (39) follows and Theorem 7 is proved. Taking the partial derivatives of h,, with respect to the
coordinates of its arguments, it then holds for any (k,1) € {1, ..., D}2 and 8 = (Bi)f)zl € RP,

Ohy,
e

(8) —2 Z B,RY), . — 2P, (53)

We look now at the set of solutions 3 of the following system,

o,
0By,

We define the D x D matrix Rg? ) to be

(8)=0,Vke{l,..,D} . (54)

@) ._ (p®
R (R"’“>kl 1.D
and by (53), the system given in (54) can be written
2(1p + BY) 6= B (8)
where Rg) is a D-dimensional vector defined by

R = (R())k 1.D

Let us give an upper bound of the norm H , in order to show that the matrix I'p + Rg) is nonsingular.

On €y we have

|5

= VA e 37T R
lEHj

Jj€{l,....p}

_ -1 (2)
- > Vg e, VAT Y[R

ZEH]‘JC

-1
Z\ﬁggﬁx{je%ax {\/Aj Hj,k|?61%};|(Pn_P)(<pk'¢l)}}

.....

llnn /A Aj
< (2) J /i AL
ALy, E 76{1) 7p} { < \Y 1> min {A4;; A} (55)

We deduce from (7) and (55) that on Qg,

A,Inn
|72, = v mf =255 (56)

Hence, from (56) and the fact that p?A, < A, (1 T2 We get that for all n > ng (A4, Ac, 7a, @), it holds on
927

IN

1
<,
2
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-1 u
and the matrix (Id + R%2)> is nonsingular, of inverse (Id + Rg)) = Z;ﬁ% (—Rg)) . Hence, the system

(S) admits a unique solution (n) given by

1
(n) — = (2) (1)
B 5 (Id + R,; ) R .
Now, on ©; we have by (7),
(1) \/> (1) Dlnn
‘Rn ‘M, <rum Z e ﬁlax }’ (P, — P) (qpl)M . @k)’ STMLAL v - (57)

and we deduce that for all ng (A4, A, rar, ), it holds on Q9 ()24,

1H Id+R(2) H ’Rﬁj)
M

Dlnn
=9 A1, m,mM L :

M, 00 n

<7ruym LY

’5(”)

Moreover, by the formula (47) we have

hn (B) = Pr (Ksy) — (Y Z%%)

and we thus see that h,, is concave. Hence, for all ng (A4, Ac, 7, @), we get that on g, B(") is the unique
maximum of h,, and on Qs (24, by (58), concavity of h,, and uniqueness of B("), we get

a(87) = s ha(B)>  swp ha(B)
BERP, Bl 0 <C/2 BERP, |Blp1,062C
with C = 27y, L} i\ B2 which concludes the proof. W
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