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Adrien Saumard�
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Abstract

We investigate optimality of model selection procedures in regard to the least-squares loss in a het-
eroscedatic with random design regression context. For the selection of some linear models endowed with
a localized basis, as for some Haar expansions, we show the optimality of a data-driven penalty calibration
procedure, the so-called slope heuristics. By doing so, we exhibit a minimal penalty being half of the op-
timal one. The optimal penalty shape being unknown in general, we also propose a hold-out penalization
procedure and show that the latter is asymptotically optimal.

Keywords: nonparametric regression, heteroscedastic noise, random design, model selection, slope heuris-
tics, hold-out.

1 Introduction

The slope heuristics [11] is a recent calibration method of penalization procedures in model selection : from
the knowledge of a (good) penalty shape it allows to calibrate a penalty that performs an accurate model
selection. It is based on the existence of a minimal penalty, around which there is a drastic change in the
behavior of the model selection procedure. Moreover, the optimal penalty is simply linked to the minimal one
by a factor two. The slope heuristics is thus a general method for the selection of M-estimators [6] and it has
been successfully applied in various methodological studies surveyed in [8].
However, there is a gap between the wide range of applicability of the slope heuristics and its theoretical

justi�cation. Indeed, there are only a few studies, in quite restrictive frameworks, that theoretically describe
the optimality of this penalty calibration procedure. First, Birgé and Massart [11] have shown the validity
of the slope heuristics in a generalized linear Gaussian model setting, including the case of homescedastic
regression with �xed design. Then, Arlot and Massart [6] validated the slope heuristics in a heteroscedastic
with random design regression framework, for the selection of linear models of histograms. These result has
been extended to the case of piecewise polynomial functions in [18]. Lerasle [12, 13] has shown the optimality
of the slope heuristics in least-squares density estimation for the selection of some linear models for both
independent and dependent data. Finally, it has been shown in [15] that the slope heuristics is valid for the
selection of histograms in maximum likelihood density estimation.
In the present paper, we extend previous results related to heteroscedastic regression by showing the opti-

mality of the slope heuristics for the selection of more general linear models. More precisely, the linear models
that we discuss are endowed with an orthonormal basis achieving a good enough control of the sup-norms of
its elements with respect to their quadratic norms, together with a control of the number of intersections of
the support of the elements of the basis, see Section 3.1. This assumption on the analytical structure of the
models is in particular closely related to the assumption of localized basis introduced by Birgé and Massart in
[10] to derive accurate exponential bounds on the excess risk of general bounded M-estimators on sieves. It
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allows us in particular to recover models of piecewise polynomial functions exposed in [18] and to treat, for
the �rst time in the context of the slope heuristics, models made of Haar expansions.
If the noise is homoscedastic, then the shape of the ideal penalty is known, and is linear in the dimension of

the models as in the case of Mallows�Cp. However, if the noise is heteroscedastic, then Arlot [5] showed that the
ideal penalty is not in general a function of the linear dimensions of the models. Hence, a suitable estimator
of this shape is needed. As emphasized by Arlot [3, 4], V -fold and resampling penalties are good, natural
candidates for this task. In this paper, we show that a hold-out penalty is indeed asymptotically optimal
under very mild conditions on the data split, extending to more general models previous results established in
[18]. As a matter of fact, a half-and-half split leads to an optimal penalization.
The paper is organized as follows. In Section 2, we describe the statistical framework. The linear models

are presented in Section 3. The slope heuristics is validated in Section 4, and the hold-out penalization is
considered in Section 5. The proofs, that build upon previous results obtained in [18], are exposed in Section
6.

2 Statistical framework

Let us take n independent observations �i = (Xi; Yi) 2 X�R with common distribution P . The feature space
X is a subset of Rd and in most of the examples we will take X = [0; 1]. The marginal distribution of Xi is
denoted by PX . We assume that the data satisfy the following relation

Yi = s� (Xi) + � (Xi) "i ; (1)

where s� 2 L2
�
PX
�
. Conditionally to Xi, the residual "i is assumed to have zero mean and variance equal

to one. The function � : X !R+ is the unknown heteroscedastic noise level. A generic random variable with
distribution P , independent of the sample (�1; :::; �n), is denoted by � = (X;Y ).
It follows from (1) that s� is the unknown regression function of Y with respect toX. Our aim is to estimate

s� from the sample. To do so, we are given a �nite collection of models Mn, with cardinality depending on
the sample size n. Each model M 2 Mn is assumed to be a �nite-dimensional vector space. We denote by
DM the linear dimension of M . The models to be considered in this paper are introduced in details in Section
3 below.
We denote by ksk2 =

�R
X s

2dPX
�1=2

the usual norm in L2
�
PX
�
and by sM the linear projection of s�

onto M in the Hilbert space
�
L2
�
PX
�
; k�k2

�
. For a function f 2 L1 (P ), we write P (f) = Pf = E [f (�)]. By

setting K : L2
�
PX
�
! L1 (P ) the least-squares contrast, de�ned by

K (s) : (x; y) 7! (y � s (x))2 , s 2 L2
�
PX
�
, (2)

the regression function s� satis�es
s� = arg min

s2L2(PX)
P (K (s)) . (3)

For the linear projections sM we get
sM = arg min

s2M
P (K (s)) . (4)

For each model M 2Mn, we consider a least-squares estimator sn (M) (possibly non unique), satisfying

sn (M) 2 arg min
s2M

fPn (K (s))g

= arg min
s2M

(
1

n

nX
i=1

(Yi � s (Xi))
2

)
,

where Pn = n�1
Pn

i=1 ��i is the empirical measure built from the data.
In order to avoid cumbersome notations, we will often write Ks in place of K (s) for the image of a suitable

function s by the contrast K. We measure the performance of the least-squares estimators by their excess loss,

` (s�; sn (M)) := P (Ksn (M)�Ks�) = ksn (M)� s�k22 .
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We have the following decomposition,

` (s�; sn (M)) = ` (s�; sM ) + ` (sM ; sn (M)) ,

where

` (s�; sM ) := P (KsM �Ks�) = ksM � s�k22 and ` (sM ; sn (M)) := P (Ksn (M)�KsM ) � 0 .

The quantity ` (s�; sM ) is called the bias of the model M and ` (sM ; sn (M)) is the excess loss of the least-
squares estimator sn (M) on the model M . By the Pythagorean identity, we have

` (sM ; sn (M)) = ksn (M)� sMk22 .

Given the collection of models Mn, an oracle model M� is de�ned as a minimizer of the losses - or
equivalently excess losses - of the estimators at hand,

M� 2 arg min
M2Mn

f` (s�; sn (M))g . (5)

The associated oracle estimator sn (M�) thus achieves the best performance in terms of excess loss among the
collection fsn (M) ;M 2Mng. The oracle model is a random quantity because it depends on the data and it
is also unknown as it depends on the distribution P of the data. We propose to estimate the oracle model by
a penalization procedure.
Given some known penalty pen, that is a function fromMn to R, we consider the following data-dependent

model, also called selected model,

cM 2 arg min
M2Mn

fPn (Ksn (M)) + pen (M)g : (6)

Our aim is then to �nd a good penalty, such that the selected model cM satis�es an oracle inequality of the
form

`
�
s�; sn

�cM�� � C � ` (s�; sn (M�)) ,

with some positive constant C as close to one as possible and with probability close to one, typically more
than 1� Ln�2 for some positive constant L.

3 Strongly localized bases

We de�ne here the analytic constraints that we need to put on the models in order to derive our model selection
results. We also provide examples of such models.

3.1 De�nition

Let us take a �nite-dimensional modelM with linear dimension D = DM and orthonormal basis ('k)
D
k=1. The

family ('k)
D
k=1 is called a strongly localized basis if the following assumption is satis�ed:

(Aslb) there exist rM > 0, p 2 N�, a partition (�i)pi=1 of f1; :::; Dg, positive constants (Ai)
p
i=1 and an

orthonormal basis ('k)
D
k=1 of (M; k�k2) such that 0 < A1 � A2 � ::: � Ap < +1,

pX
i=1

p
Ai � rM

p
D , (7)

and

for all � = (�k)
D
k=1 2 R

D,







DX
k=1

�k'k







1

� rM

pX
i=1

p
Aimax

k2�i
j�kj . (8)
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Moreover, for every (i; j) 2 f1; :::; pg and k 2 �i, we set

�j;k =
n
l 2 �j ; Support ('k)

\
Support ('l) 6= ;

o
and we assume that there exists a positive constant Ac such that for all j 2 f1; :::; pg,

max
k2�i

Card (�j;k) � Ac
�
AjA

�1
i _ 1

�
. (9)

It is worth noting that a strongly localized basis is a localized basis in the sense of Birgé and Massart [10].
More precisely, an orthonormal basis ('k)

D
k=1 of (M; k�k2) is a localized basis if there exists r' > 0 such that

for all � = (�k)
D
k=1 2 R

D,







DX
k=1

�k'k







1

� r'
p
D max
k2f1;:::;Dg

j�kj . (10)

Now, (7) and (8) imply (10). Moreover, we require in (9) a control of the number of intersections between the
supports of the elements of the considered orthonormal basis to be strongly localized.

3.2 Examples

3.2.1 Histogram models

Let P be a �nite partition of X . Consider the model

M =

(X
I2P

�I1I ; (�I)I2P 2 R
D

)
,

where D := jPj is the linear dimension of M and corresponds to the number of elements in P.
The following lemma states the existence of an orthonormal localized basis in (M; k�k2), if the partition P is
lower-regular for the law PX . This lemma is also stated and proved in [16].

Lemma 1 Let consider a linear model M of histograms de�ned on a �nite partition P on X , and write
jPj = D the dimension of M . Moreover, assume that for a positive �nite constant cM;P ,q

jPj inf
I2P

PX (I) � cM;P > 0 : (11)

Set, for I 2 P,
'I =

�
PX (I)

��1=2
1I .

Then the family ('I)I2�M is an orthonormal basis in L2
�
PX
�
and we have,

for all � = (�I)I2P 2 R
D;






X
I2P

�I'I







1

� c�1M;P

p
D j�j1 : (12)

By Lemma 1, we deduce that if the partition P satis�es the assumption of lower regularity given in (11)
then inequality (8) is satis�ed for M , with p = 1 and rM = c�1M;P > 0. Moreover, notice that for all

(i; j) 2 f1; :::; Dg2,
Card (�i;j) = �i;j

and in this case (Aslb) is straightforwardly satis�ed.
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3.2.2 Piecewise polynomials

Assume that X = [0; 1] is the unit interval, P is a �nite partition of X made of intervals and let

M = Span
�
pI;j : x 2 X 7! xj1I ; (I; j) 2 P�f0; :::; rg

	
be the linear model of piecewise polynomials on X , of degrees not larger than r. Notice that the linear
dimension of M is (r + 1) jPj.
The following lemma is given in [16] and states the existence, under suitable assumptions, of a localized
orthonormal basis in (M; k�k2). Its proof, which is not totally trivial as it requires arguments from the theory
of orthogonal polynomials, can be found in [16].

Lemma 2 Let Leb denotes the Lebesgue measure on [0; 1]. Let assume that X = [0; 1] and that PX has a
density f with respect to Leb satisfying, for a positive constant cmin,

f (x) � cmin > 0; x 2 [0; 1] :

Consider a linear model M of piecewise polynomials on [0; 1] with degree r or smaller, de�ned on a �nite
partition P made of intervals. Then there exists an orthonormal basis

�
'I;j ; I 2 P; j 2 f0; :::; rg

	
of (M; k�k2)

such that,
for all j 2 f0; :::; rg 'I;j is supported by the element I of P,

and a constant Lr;cmin depending only on r; cmin exists, satisfying for all I 2 P;

max
j2f0;:::;rg



'I;j

1 � Lr;cmin
1p

Leb (I)
. (13)

As a consequence, if it holds q
jPj inf

I2P
Leb (I) � cM;Leb > 0 , (14)

a constant Lr;cmin;cM;Leb
depending only on r; cmin and cM;Leb exists, such that for all � =

�
�I;j

�
I2P;j2f0;:::;rg 2

RD, 






X
I;j

�I;j'I;j








1

� Lr;cmin;cM;Leb

p
D j�j1 , (15)

where D = (r + 1) jPj is the dimension of M .

Lemma 2 states that if X = [0; 1] is the unit interval and PX has a density with respect to the Lebesgue
measure Leb on X uniformly bounded away form zero, then there exists an orthonormal basis in (M; k�k2) of
piecewise polynomials, where the sup-norm of its elements are suitably controlled by (13). Moreover, if we
assume the lower regularity of the partition with respect to Leb then the orthonormal basis is localized.
It is worth noticing that in the case of histograms developed in Section 3.2.1 above, we do not need to

assume the existence of a density for PX or to restrict ourselves to the unit interval.
Finally, under assumptions of Lemma 2, the property of strongly localized basis is satis�ed (p = 1 and

Ac = r + 1 are convenient).

3.2.3 Haar expansions

Let X = [0; 1], m 2 N. We set for every integers i; j; l � 0, satisfying i � j and 1 � l � 2i,

� (j) =
�
(j; k) ; 1 � k � 2j

	
, (16)

� (j; i; l) =
�
(j; k) ; 2j�i (l � 1) + 1 � k � 2j�il

	
. (17)

Moreover, we set

� (�1) = f�1g and �m =
m[

j=�1
� (j) .
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Notice that for every integers i; j � 0 such that i � j,
�
� (j; i; l) ; 1 � l � 2i

	
is a partition of � (j), which

means that

� (j) =
2i[
l=1

� (j; i; l) and for all 1 � l; h � 2i, � (j; i; l)
\
� (j; i; h) = ; .

Let � = 1[0;1], � = 1[0;1=2] � 1(1=2;1] and for every integers j � 0, 1 � k � 2j ,

�j;k : x 2 [0; 1] 7! 2j=2�
�
2jx� k + 1

�
.

Set ��1 = � and let m 2 N. We consider the model

M = Span f�� ; � 2 �mg . (18)

Notice that the linear dimension D of M satis�es D = 2m+1. The following lemma gives an explicit strongly
localized orthonormal basis of (M; k�k2).

Lemma 3 Let m 2 N. Assume that X = [0; 1] and let M be the model of dimension D given by (18). Then

D = Card(�m) = 2
m+1 : (19)

Set for every integers j � 0, 1 � k � 2j,

pj;k;� = PX
��
2�j (k � 1) ; 2�j (k � 1=2)

��
; pj;k;+ = PX

��
2�j

�
k � 1

2

�
; 2�jk

��

'j;k : x 2 [0; 1] 7!
1q

p2j;k;+pj;k;� + p
2
j;k;�pj;k;+

�
pj;k;+1[2�j(k�1);2�j(k�1=2)] � pj;k;�1(2�j(k� 1

2 );2�jk]

�
. (20)

Moreover we set '�1 = �. Assume that PX has a density f with respect to Leb on [0; 1] and that there exists
cmin > 0 such that for all x 2 [0; 1],

f (x) � cmin > 0 .

Then f'� ; � 2 �mg is a strongly localized orthonormal basis of (M; k�k2). Indeed, it holds for every integers
j � 0, 1 � k � 2j, 

'j;k

1 �

r
2

cmin
2j=2 . (21)

Moreover, by setting A�1 = 1 and Aj = 2j, j � 0, we have
mX

j=�1

p
Aj �

�p
2 + 1

�p
D (22)

and for all � = (��)�2�m 2 R
D,




 X

�2�m

��'�







1

�
r

2

cmin

mX
j=�1

p
Aj max

k2�j
j�kj . (23)

Finally, if �j;� =
�
� 2 �j ;Support

�
'�
�T

Support ('�) 6= ;
	
for � 2 �m and j 2 f�1; 0; 1; :::;mg,

max
�2�i

Card (�j;�) � AjA
�1
i _ 1 . (24)

By Lemma 3, which proof is straightforward and left to the reader, we see that if PX has a density which is
uniformly bounded away from zero on Z, then the model M given by (18) admits a strongly localized ortho-

normal basis for the L2
�
PX
�
-norm. More precisely, with notations of (Aslb), rM = max

�p
2 + 1;

q
2c�1min

�
and Ac = 1 are convenient.

6



4 The slope heuristics

4.1 Assumptions and comments

Set of assumptions : (SA)

(P1) Polynomial complexity ofMn: Card (Mn) � cMn�M :

(Auslb) Existence of strongly localized bases: there exist rM; Ac > 0 such that for every M 2 Mn, there
exist pM 2 N�, a partition (�i)pMi=1 of f1; :::; DMg, positive constants (Ai)pMi=1 and an orthonormal basis
('k)

D
k=1 of (M; k�k2) such that 0 < A1 � A2 � ::: � ApM < +1,

pMX
i=1

p
Ai � rM

p
DM ,

and

for all � = (�k)
D
k=1 2 R

D,







DX
k=1

�k'k







1

� rM

pMX
i=1

p
Aimax

k2�i
j�kj .

Moreover, for every (i; j) 2 f1; :::; pg and k 2 �i, we set

�j;k =
n
l 2 �j ; Support ('k)

\
Support ('l) 6= ;

o
and we assume that for all j 2 f1; :::; pg,

max
k2�i

Card (�j;k) � Ac
�
AjA

�1
i _ 1

�
.

(P2) Upper bound on dimensions of models inMn: there exists a positive constant AM;+ such that for every
M 2Mn; 1 � DM � max

�
DM ; p

2
MApM

	
� AM;+n (lnn)

�2 � n :

(P3) Richness ofMn: there exist M0;M1 2 Mn such that DM0
2 [
p
n; crich

p
n] and DM1

� Arichn (lnn)
�2

:

(Ab) A positive constant A exists, that bounds the data and the projections sM of the target s� over the
models M of the collectionMn: jYij � A <1; ksMk1 � A <1 for all M 2Mn:

(An) Uniform lower-bound on the noise level: � (Xi) � �min > 0 a:s:

(Apu) The bias decreases as a power of DM : there exist �+ > 0 and C+ > 0 such that

` (s�; sM ) � C+D
��+
M :

The set of assumptions (SA) can be divided into three groups. Firstly, assumptions (P1), (P2), (P3) and
(Apu) are linked to properties of the collection of models Mn. Secondly, assumptions (An) and (Ab) give
some constraints on the general regression relation stated in (1). Thirdly, assumption (Auslb) speci�es some
quantities related to the choice of models with strongly localized bases. More precisely, the latter assumption
ensures uniformity along the collection of models of the constants de�ning the strongly localized bases.
Assumption (P1) states that the collection of models has a �small� complexity, more precisely a poly-

nomially increasing one with respect to the amount of data. For this kind of complexities, if one wants to
design a good model selection procedure for prediction, the chosen penalty should estimate the mean of the
ideal one on each model. Indeed, as Talagrand�s type concentration inequalities for the empirical process are
exponential, they allow to neglect the deviations of the quantities of interest from their mean, uniformly over
the collection of models. This is not the case for large collections of models, where one has to put an extra-log
factor inside the penalty, depending on the complexity of the collection of models, see for instance [9, 7].

7



We assume in (P3) that the collection of models contains a model M0 of reasonably large dimension
and a model M1 of high dimension, which is necessary since we prove the existence of a jump between high
and reasonably large dimensions. One can notice that in practice, the parameter �+, which depends on the
bias of the model is not known and so the existence of M0 is not straightforward. However, it su¢ ces for
the statistician to take at least one model per dimension lower than the chosen upper bound to ensure the
existence of M0 and M1.
Assumption (Apu) states that the models have good enough approximation properties in terms of the

quadratic loss. Furthermore, assumption (Ab) is rather restrictive, since it excludes Gaussian noise. However,
the assumption of bounded noise is somehow classical when dealing with M-estimation and related procedures.
Indeed, a central tool in this �eld is empirical process theory and more especially, concentration inequalities
for the supremum of the empirical process. We used the classical inequalities of Bousquet, and Klein and Rio
in [17] and [18]. As a matter of fact, we do not know yet if an adaptation of our proofs (including results
established in [17]) by using extensions of the latter inequalities to some unbounded cases - as for instance in
Adamczak�s concentration inequalities [1] - would be possible.
The noise restriction stated in (An) is needed to derive our results which are optimal to the �rst order.

It is quite common in this context since it is also needed in the work of Arlot and Massart [6] concerning the
validation of the slope heuristics for histogram models and in [18] for piecewise polynomials.

4.2 Statement of the theorems

We are now able to state our main results leading to the slope heuristics. They describe the behavior of the
penalization procedure de�ned in (6).

Theorem 4 Take a positive penalty: for all M 2 Mn, pen (M) � 0. Suppose that the assumptions (SA) of
Section 4.1 hold, and furthermore suppose that for Apen 2 [0; 1) and Ap > 0 the model M1 of assumption (P3)
satis�es

0 � pen (M1) � ApenE [Pn (KsM1 �Ksn (M1))] ; (25)

with probability at least 1�Apn�2. Then there exist a constant A1 > 0 only depending on constants in (SA),
as well as an integer n0 and a positive constant A2 only depending on Apen and on constants in (SA) such
that, for all n � n0, it holds with probability at least 1�A1n�2,

DcM � A2n ln (n)
�2

and

`
�
s�; sn

�cM�� � n�+=(1+�+)

(lnn)
3 inf

M2Mn

f` (s�; sn (M))g ; (26)

where �+ > 0 is de�ned in assumption (Apu) of (SA).

Theorem 4 shows that there exists a level such that, if the penalty is smaller than this level for one of the
largest models, then the dimension of the output is among the largest dimensions of the collection and the
excess loss of the selected estimator is much larger than the excess loss of the oracle. Moreover, this level is
given by the mean of the empirical excess loss of the least-squares estimator on each model. Let us also notice
that the lower bound given in (26) gets worse as �+ increases. This is due to the fact that when �+ increases,
the approximation properties of the models improve and the performances in terms of excess loss for the oracle
estimator also improve.

Theorem 5 Suppose that the assumptions (SA) of Section 4.1 hold, and furthermore suppose that for some
� 2 [0; 1) and Ap; Ar > 0, there exists an event of probability at least 1 � Apn

�2 on which, for every model
M 2Mn such that DM � AM;+ (lnn)

3, it holds

jpen (M)� 2E [Pn (KsM �Ksn (M))]j � � (` (s�; sM ) + E [Pn (KsM �Ksn (M))]) (27)

together with

jpen (M)j � Ar

 
` (s�; sM )

(lnn)
2 +

(lnn)
3

n

!
. (28)
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Then, for any � 2
�
0; �+=

�
1 + �+

��
, there exist an integer n0 only depending on �; � and �+ and on constants

in (SA), a positive constant A3 only depending on cM given in (SA) and on Ap, two positive constants A4
and A5 only depending on constants in (SA) and on Ar and a sequence

�n �
A4

(lnn)
1=4

(29)

such that it holds for all n � n0, with probability at least 1�A3n�2,

DcM � n�+1=(1+�+)

and

`
�
s�; sn

�cM�� �  1 + �
1� � +

5�n

(1� �)2

!
` (s�; sn (M�)) +A5

(lnn)
3

n
. (30)

Assume that in addition, the following assumption holds,

(Ap) The bias decreases like a power of DM : there exist �� � �+ > 0 and C+; C� > 0 such that

C�D
���
M � ` (s�; sM ) � C+D

��+
M :

Then it holds for all n � n0
�
(SA) ; C�; ��; �+; �; �

�
, with probability at least 1�A3n�2,

AM;+ (lnn)
3 � DcM � n�+1=(1+�+) (31)

and

`
�
s�; sn

�cM�� �  1 + �
1� � +

5�n

(1� �)2

!
` (s�; sn (M�)) . (32)

Theorem 5 states that if the penalty is close to twice the minimal one, then the selected estimator satis�es
a pathwise oracle inequality with constant almost one, and so the model selection procedure is approximately
optimal. Moreover, the dimension of the selected model is of reasonable dimension, bounded by a power less
than one of the sample size.
Condition (Ap) allows to remove the remainder terms from the oracle inequality (30) by ensuring that

the selected model is of dimension not too small, as stated in (31). Assumption (Ap) is the conjunction of
assumption (Apu) with a polynomial lower bound of the bias of the models. On histogram models, Arlot
showed in Section 8.10 of [2] that this lower bound is satis�ed for non constant �-Hölder, � 2 (0; 1], regression
functions and for regular partitions.
Finally, from Theorems 4 and 5, we identify the minimal penalty with the mean of the empirical excess

loss on each model,
penmin (M) = E [Pn (KsM �Ksn (M))] ,

thus generalizing the results obtained in [6] and [18] to the case of models endowed with strongly localized
bases.

5 Hold-out penalization

The conditions on the penalty given in Theorems 4 and 5 can not be directly checked in practice. Indeed, they
are expressed in terms of the mean of the empirical excess loss on each model, which is an unknown quantity
in general.
In the case where the noise level is homoscedastic but unknown, Mallows�penalty, which is known to be

asymptotically optimal, is only known through a constant, the noise level, which can be estimated via the
slope heuristics (for practical issues about the slope heuristics, see Baudry et al. [8]). But in the common
situation where the noise level is su¢ ciently heteroscedastic, the shape of the ideal penalty is not linear in the
dimension of the models and not even a function of the linear dimensions. In such a case, Arlot [5] proved that
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any calibration of a linear penalty leads to a suboptimal procedure, but yet can achieve an oracle inequality
with a leading constant more than one.
In order to achieve a nearly optimal selection procedure in the general situation, it remains to estimate the

ideal penalty or, thanks to the slope heuristics, the shape of the ideal penalty. This section is devoted to this
task. We propose a hold-out type penalty that automatically adapts to heteroscedasticity. Let us now detail
our hold-out penalization procedure.
The ideal penalty is de�ned by

penid (M) := P (Ksn (M))� Pn (Ksn (M)) ,

for all M 2 Mn. A natural idea is to divide the data into two groups, indexed by I1 and I2, satisfying
I1 \ I2 = ; and I1 [ I2 = f1; :::; ng and to propose the following hold-out type penalty,

penho;C (M) := C (Pn2 (Ksn1 (M))� Pn1 (Ksn1 (M))) ,

where Pni = 1=ni
P

j2Ii ��j , ni =Card(Ii), for i = 1; 2, sn1 (M) 2 argmins2M Pn1 (Ks) and C > 0 is a
constant to be determined. Indeed, if n1 is not too small, Pn1 (Ksn1 (M)) is likely to vary like Pn (Ksn (M))
and Pn2 (Ksn1 (M)) is, conditionally to

�
�j
�
j2I1

, an unbiased estimate of P (Ksn1 (M)), which again is likely
to vary like P (Ksn (M)). Moreover, we see from Theorem 10 in [17] that when the model M is �xed, the
quantities Pn (Ksn (M)) and P (Ksn (M)) are almost inversely proportional to n, so a good constant in front
of the hold-out penalty should be Copt = n1=n.
The previous observation is justi�ed by the following theorem, where for the sake of clarity we �xed

n1 = n2 = n=2. We set

penho (M) =
1

2
(Pn2 (Ksn1 (M))� Pn1 (Ksn1 (M))) and cM1=2 2 arg min

M2Mn

fPn (Ksn (M)) + penho (M)g .
(33)

Theorem 6 Consider the procedure de�ned in (33), with n1 = n2 = n=2. Suppose that the assumptions (SA)
of Section 4.1 hold. Then, for any � 2

�
0; �+=

�
1 + �+

��
, there exist an integer n0 only depending on � and

on constants in (SA), a positive constant A6 only depending on cM given in (SA), two positive constants
A7 and A8 only depending on constants in (SA) and a sequence �n � A7 (lnn)

�1=4 such that it holds for all
n � n0, with probability at least 1�A6n�2,

DcM1=2
� n�+1=(1+�+)

and

`
�
s�; sn

�cM1=2

��
� (1 + �n) ` (s�; sn (M�)) +A8

(lnn)
3

n
. (34)

Assume that in addition (Ap) holds (see Theorem 5). Then it holds for all n � n0
�
(SA) ; C�; ��; �

�
, with

probability at least 1�A6n�2,
AM;+ (lnn)

3 � DcM1=2
� n�+1=(1+�+)

and
`
�
s�; sn

�cM1=2

��
� (1 + �n) inf

M2Mn

f` (s�; sn (M))g . (35)

Theorem 6 shows the asymptotic optimality of the hold-out penalization procedure, for a half-and-half split
of the data. This is a remarkable fact compared to the classical hold-out, de�ned by

cMho 2 arg min
M2Mn

fPn2 (Ksn1 (M))g . (36)

Indeed, the choice n1 = n=2 in (36) is likely to lead to an asymptotically suboptimal procedure, as the criterion
is close in expectation to P

�
Ksn=2 (M)

�
, and so is close to the oracle, but for n=2 data points. The hold-out
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penalization allows us to overcome this di¢ culty. Arlot [3, 4] described similar advantages for resampling and
V -fold penalties.
Notice also that the random hold-out penalty proposed by Arlot [4] is proportional to the mean along

the splits of our hold-out penalty, providing thus a �stabilization e¤ect� in practice. This should bring
some improvement compared to our unique split, at the price of increased computational cost. However, the
stabilization e¤ect seems more di¢ cult to study mathematically, and our results provide a �rst step toward
the study of the more complicated resampling penalties.

6 Proofs

We �rst recall from [18], Section 5, that Theorems 4, 5 and 6 are valid under the following general set of
assumptions (i.e. by replacing (SA) by (GSA) in the statement of the theorems):

General set of assumptions: (GSA)

Assume (P1), (P2), (P3), (Ab), (An) and (Apu) of (SA). Furthermore suppose that,

(Alb) there exists a constant rM such that for each M 2 Mn one can �nd an orthonormal basis ('k)
DM

k=1

satisfying, for all (�k)
DM

k=1 2 RDM ; 





DMX
k=1

�k'k







1

� rM
p
DM j�j1 ;

where j�j1 = max fj�kj ; k 2 f1; :::; DMgg.

(Ac1) a positive integer n1 exists such that, for all n � n1, there exist a positive constant Acons and an event

1 of probability at least 1� n�2��M , on which for all M 2Mn,

ksn (M)� sMk1 � Acons

r
DM lnn

n
: (37)

As assumption (Alb) in (GSA) is satis�ed under assumption (Auslb) of the set of assumptions (SA) (see
section 3.1), it remains to prove the convergence in sup-norm (Ac1) from assumption (Auslb) and the proofs
of Theorems 4, 5 and 6 will be complete. This is done via the following theorem.

Theorem 7 Let � > 0. Assume that M is a linear vector space of �nite dimension D satisfying (Aslb) and
use notations of (Aslb). Assume moreover that the following assumption holds:

(Ab�) There exists a constant A1;M > 0 such that
�� 1;M (X;Y )�� � A1;M a:s:

If there exists A+ > 0 such that

max
�
D; p2Ap

	
� A+

n

(lnn)
2 , (38)

then we have, for all n � n0 (A+; Ac; rM ; �),

P

 
ksn � sMk1 � LA1;M ;rM ;�

r
D lnn

n

!
� n�� . (39)

Notice that assumption (Ab�) in Theorem 7 is included in assumption (Ab) of (GSA). Before stating the
proof of Theorem 7, we need two preliminary lemmas.
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Lemma 8 Let � > 0. Consider a �nite-dimensional linear model M of linear dimension D and assume that
('k)

D
k=1 is a localized orthonormal basis of (M; k�k2) with index of localization rM > 0. More explicitly, we

thus assume that for all � = (�k)
D
k=1 2 RD,






DX
k=1

�k'k







1

� rM
p
D j�j1 .

If (Ab) holds and if for some positive constant A+,

D � A+
n

(lnn)
2 ,

then there exists a positive constant L(2)�;rM such that for all n � n0 (A+), we have

P

 
max

k2f1;:::;Dg2
j(Pn � P ) ('k � 'l)j � L(2)�;rM min fk'kk1 ; k'lk1g

r
lnn

n

!
� n�� . (40)

Proof of Lemma 8. For any (k; l) 2 f1; :::; Dg2, we have

E
h
('k � 'l)

2
i
� min

n
k'kk

2
1 ; k'lk

2
1

o
and

k'k � 'lk1 � min fk'kk1 ; k'lk1g �max fk'kk1 ; k'lk1g
� min fk'kk1 ; k'lk1g � rM

p
D .

Hence, we apply Bernstein�s inequality (see Proposition 2.9 in [14]) and we get, for all 
 > 0,

P

 
j(Pn � P ) ('k � 'l)j � min fk'kk1 ; k'lk1g

 r
2
 lnn

n
+
rM
p
D
 lnn

3n

!!
� 2n�
 . (41)

Since, for all n � n0 (A+),
rM
p
D lnn

n
�
rM
p
A+p

lnn
�
r
lnn

n
� rM

r
lnn

n
,

we get from (41) that for all n � n0 (A+),

P

 
max

(k;l)2f1;:::;Dg2
j(Pn � P ) ('k � 'l)j �

�p
2
 +


rM
3

�
min fk'kk1 ; k'lk1g

r
lnn

n

!

�
X

(k;l)2f1;:::;Dg2
P

 
j(Pn � P ) ('k � 'l)j �

�p
2
 +


rM
3

�
min fk'kk1 ; k'lk1g

r
lnn

n

!

�
X

(k;l)2f1;:::;Dg2
P

 
j(Pn � P ) ('k � 'l)j � min fk'kk1 ; k'lk1g

r
2
 lnn

n
+
rM
p
D
 lnn

3n

!
� 2D2n�
 � n�
+2 . (42)

We deduce from (42) that (40) holds with L(2)� =
p
2�+ 4 + (�+ 2) rM=3 > 0. �

Lemma 9 Let � > 0. Consider a �nite-dimensional linear model M of linear dimension D and assume that
('k)

D
k=1 is a localized orthonormal basis of (M; k�k2) with index of localization rM > 0. More explicitly, we

thus assume that for all � = (�k)
D
k=1 2 RD,






DX
k=1

�k'k







1

� rM
p
D j�j1 . (43)
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If (Ab) holds and for some positive constant A+,

D � A+
n

(lnn)
2 ,

then there exists a positive constant L(1)A1;M ;rM ;�
such that for all n � n0 (A+), we have

P

 
max

k2f1;:::;Dg

��(Pn � P ) � 1;M � 'k
��� � L

(1)
A1;M ;rM ;�

r
lnn

n

!
� n�� . (44)

Proof of Lemma 9. Let � > 0. By Bernstein�s inequality, we get by straightforward computations (of the
spirit of the proof of Lemma 8) that there exists LA1;M ;rM ;� > 0 such that, for all k 2 f1; :::; Dg,

P

 ��(Pn � P ) � 1;M � 'k
��� � L

(1)
A1;M ;rM ;�

r
lnn

n

!
� n�� .

Now the result follows from a simple union bound with � = �+ 1. �

Proof of Theorem 7. Let C > 0. Set

F1C := fs 2M ; ks� sMk1 � Cg

and
F1>C := fs 2M ; ks� sMk1 > Cg =MnF1C .

Take an orthonormal basis ('k)
D
k=1 of (M; k�k2) satisfying (Aslb). By Lemma 9, we get that there exists

L
(1)
A1;M ;rM ;�

> 0 such that, by setting


1 =

(
max

k2f1;:::;Dg

��(Pn � P ) � 1;M � 'k
��� � L

(1)
A1;M ;rM ;�

r
lnn

n

)
,

we have for all n � n0 (A+), P (
1) � 1� n��. Moreover, we set


2 =

(
max

k2f1;:::;Dg2
j(Pn � P ) ('k � 'l)j � L(2)�;rM min fk'kk1 ; k'lk1g

r
lnn

n

)
,

where L(2)�;rM is de�ned in Lemma 8. By Lemma 8, we have that for all n � n0 (A+), P (
2) � 1�n�� and so,
for all n � n0 (A+),

P
�

1
\

2

�
� 1� 2n�� : (45)

We thus have for all n � n0 (A+),

P (ksn � sMk1 > C)

� P
�
inf

s2F1
>C

Pn (Ks�KsM ) � inf
s2F1

C

Pn (Ks�KsM )
�

= P

 
sup

s2F1
>C

Pn (KsM �Ks) � sup
s2F1

C

Pn (KsM �Ks)
!

� P

 (
sup

s2F1
>C

Pn (KsM �Ks) � sup
s2F1

C=2

Pn (KsM �Ks)
)\


1
\

2

!
+ 2n�� . (46)

Now, for any s 2M such that

s� sM =
DX
k=1

�k'k, � = (�k)
D
k=1 2 R

D,
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we have

Pn (KsM �Ks)

= (Pn � P )
�
 1;M � (sM � s)

�
� (Pn � P )

�
(s� sM )2

�
� P (Ks�KsM )

=
DX
k=1

�k (Pn � P )
�
 1;M � 'k

�
�

DX
k;l=1

�k�l (Pn � P ) ('k � 'l)�
DX
k=1

�2k .

We set for any (k; l) 2 f1; :::; Dg2,

R
(1)
n;k = (Pn � P )

�
 1;M � 'k

�
and R

(2)
n;k;l = (Pn � P ) ('k � 'l) .

Moreover, we set a function hn, de�ned as follows,

hn : � = (�k)
D
k=1 7�!

DX
k=1

�kR
(1)
k �

DX
k;l=1

�k�lR
(2)
k;l �

DX
k=1

�2k .

We thus have for any s 2M such that s� sM =
PD

k=1 �k'k, � = (�k)
D
k=1 2 RD,

Pn (KsM �Ks) = hn (�) . (47)

In addition we set for any � = (�k)
D
k=1 2 RD,

j�jM;1 = rM

pX
i=1

p
Aimax

k2�i
j�kj . (48)

It is straightforward to see that j�jM;1 is a norm on RD. We also set for a real D �D matrix B, its operator
norm kAkM associated to the norm j�jM;1 on the D-dimensional vectors. More explicitly, we set for any
B 2 RD�D,

kBkM := sup
�2RD; � 6=0

jB�jM;1
j�jM;1

.

We have, for any B = (Bk;l)k;l=1::D 2 RD�D,

kBkM = sup
�2RD; j�jM;1=1

(
rM

pX
i=1

p
Aimax

k2�i

�����
DX
l=1

Bk;l�l

�����
)

= sup
�2RD; j�jM;1=1

8<:rM
pX
i=1

p
Aimax

k2�i

������
pX
j=1

X
l2�j

Bk;l�l

������
9=;

= sup
�2RD; j�jM;1=1

8<:
pX
i=1

p
Aimax

k2�i

8<:rM
pX
j=1

p
Aj max

l2�j
j�lj

0@qA�1j X
l2�j

jBk;lj

1A9=;
9=;

=

pX
i=1

p
Aimax

k2�i

8<: max
j2f1;:::;pg

8<:qA�1j X
l2�j

jBk;lj

9=;
9=; . (49)

Notice that by inequality (8) of (Aslb), it holds

F1>C �
(
s 2M ; s� sM =

DX
k=1

�k'k & j�jM;1 � C

)
(50)

and

F1C=2 �
(
s 2M ; s� sM =

DX
k=1

�k'k & j�jM;1 � C=2

)
. (51)
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Hence, from (46), (47) (50) and (51) we deduce that if we �nd on 
1
T

2 a value of C such that

sup
�2RD; j�jM;1�C

hn (�) < sup
�2RD; j�jM;1�C=2

hn (�) , (52)

then inequality (39) follows and Theorem 7 is proved. Taking the partial derivatives of hn with respect to the
coordinates of its arguments, it then holds for any (k; l) 2 f1; :::; Dg2 and � = (�i)

D
i=1 2 RD,

@hn
@�k

(�) = R
(1)
n;k � 2

DX
i=1

�iR
(2)
n;k;i � 2�k (53)

We look now at the set of solutions � of the following system,

@hn
@�k

(�) = 0 , 8k 2 f1; :::; Dg . (54)

We de�ne the D �D matrix R(2)n to be

R(2)n :=
�
R
(2)
n;k;l

�
k;l=1::D

and by (53), the system given in (54) can be written

2
�
ID +R

(2)
n

�
� = R(1)n , (S)

where R(1)n is a D-dimensional vector de�ned by

R(1)n =
�
R
(1)
n;k

�
k=1::D

.

Let us give an upper bound of the norm



R(2)n 




M
, in order to show that the matrix ID +R

(2)
n is nonsingular.

On 
2 we have




R(2)n 



M

=

pX
i=1

p
Aimax

k2�i

8<: max
j2f1;:::;pg

8<:qA�1j X
l2�j

���R(2)n;k;l���
9=;
9=;

=

pX
i=1

p
Aimax

k2�i

8<: max
j2f1;:::;pg

8<:qA�1j X
l2�j;k

���R(2)n;k;l���
9=;
9=;

�
pX
i=1

p
Aimax

k2�i

�
max

j2f1;:::;pg

�q
A�1j j�j;kjmax

l2�j
j(Pn � P ) ('k � 'l)j

��

� AcL
(2)
�;rM

r
lnn

n

pX
i=1

max
j2f1;:::;pg

(s
Ai
Aj

�
Aj
Ai
_ 1
�q

min fAi;Ajg
)

(55)

We deduce from (7) and (55) that on 
2,


R(2)n 



M
� LAc;�;rM � p

r
Ap lnn

n
. (56)

Hence, from (56) and the fact that p2Ap � A+
n

(lnn)2
, we get that for all n � n0 (A+; Ac; rM ; �), it holds on


2, 


R(2)n 



M
� 1

2
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and the matrix
�
Id +R

(2)
n

�
is nonsingular, of inverse

�
Id +R

(2)
n

��1
=
P+1

u=0

�
�R(2)n

�u
. Hence, the system

(S) admits a unique solution �(n), given by

�(n) =
1

2

�
Id +R

(2)
n

��1
R(1)n .

Now, on 
1 we have by (7),���R(1)n ���
M;1

� rM

 
pX
i=1

p
Ai

!
max

k2f1;:::;Dg

��(Pn � P ) � 1;M � 'k
��� � rML

(1)
A1;M ;rM ;�

r
D lnn

n
(57)

and we deduce that for all n0 (A+; Ac; rM ; �), it holds on 
2
T

1,����(n)���

M;1
� 1

2





�Id +R(2)n ��1




M

���R(1)n ���
M;1

� rML
(1)
A1;M ;rM ;�

r
D lnn

n
. (58)

Moreover, by the formula (47) we have

hn (�) = Pn (KsM )� Pn

 
Y �

DX
k=1

�k'k

!2

and we thus see that hn is concave. Hence, for all n0 (A+; Ac; rM ; �), we get that on 
2, �
(n) is the unique

maximum of hn and on 
2
T

1, by (58), concavity of hn and uniqueness of �

(n), we get

hn

�
�(n)

�
= sup

�2RD; j�jM;1�C=2
hn (�) > sup

�2RD; j�jM;1�C
hn (�) ,

with C = 2rML
(1)
A1;M ;rM ;�

q
D lnn
n , which concludes the proof. �
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