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Abstract

Recent advances in the theoritical analysis of optimality in model selection via penalization procedures,
and more precisely concerning the validity of the Slope Heurisitcs �rst formulated by Birgé and Massart
[3] and then extended by Arlot and Massart [1], have led to investigate the consistency in sup-norm of M-
estimators in order to derive controls of the excess risk and of the empirical excess risk of an M-estimator,
that are optimal at the �rst order (see [13], [14] and [12]). Indeed, such controls are one of the keystones to
justify the Slope Heuristics, as claimed in [1]. In [13] (and also in [14]), the author has been able to show
the consistency of least-squares estimators in an heteroscedastic with random design regression setting, on
suitable linear models of histograms and piecewise polynomials . We investigate in the present paper a
systematical approach of convergence in sup-norm for least-squares regression on �nite dimensional linear
models. We give general constraints on the structure of these models that are su¢ cient to derive the
consistency of the considered estimators, and these constraints appear to be slightly more restrictive than
the classical assumption of localized basis. Nevertheless, our approach allows to consider for example some
models of compactly supported wavelets, such as Haar expansions.

Keywords: Least-squares estimators, sup-norm, �nite-dimensional models, localized basis.

1 Introduction

Let P be the unknown law of independent and identically distributed data (X1; :::; Xn). The sup-norm, i.e. the
norm that classically de�ne the Banach space L1 (P ) is, as far as one can say, one of the three fundamental
norms in nonparametric statistics, the two others being the classical norms endowing L2 (P ) and L1 (P ).
Among the fundamental tools describing the behavior of the empirical process associated to (X1; :::; Xn) and
indexed by a given class of functions, the celebrated Talagrand�s type concentration inequalities indeed require
a control in sup-norm of the indexes of the considered process (see e.g., Bousquet [5] and Klein-Rio [9], for
optimal constants in the concentration of the empirical process at the right of its mean, and nearly optimal
constants - and best available now, as far as we know - in the concentration at left of the empirical process,
respectively). Also, when one wants to achieve an accurate control of the �rst moment of the empirical process,
it appears that informations concerning sup-norm of indexes become unavoidable, as claimed by Talagrand
concerning the generic chaining techniques applied to the empirical process and its symmetrised version, the
Rademacher process, see Sections 2.6, 2.7 and 4 of [16]. Such sharp controls, by upper and by below, of the �rst
moment of an empirical process indexed by functions, appeared to be an essential step in recent and innovating
proofs related to the theoritical understanding of the so-called Slope Heuristics, discovered a few years ago by
Birgé and Massart [3]. It is not surprising then that the convergence in sup-norm of the considered estimators
appeared as essential in the proofs of the Slope Heuristics phenomena - see [13], [14], [12]. Before describing
some existing results on sup-norm of convergence of statistical estimators and the problem to be addressed,
let us recall to the reader a few fundamental aspects of researches related to the Slope Heuristics.
Concerned by the central practical issue, that consists in rightly calibrating a penalty in penalization

procedures, Birgé and Massart [3] have shown the existence in a general Gaussian model selection framework,
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of a minimal penalty such that a model selection via penalization procedure totally misbehaves under this
minimal level of penalty. Moreover, the procedure behaves quite well, in the sense that it satis�es an oracle
inequality, as soon as the penalty is uniformly higher than the minimal one. They also proved the existence of
a slope in the selected dimensions around this level, which is used in practice to estimate Birgé and Massart�s
minimal penalty. A very beautiful fact that they have shown, and that explains the practical success of the
method, is that a (nearly) optimal penalty is twice the minimal one in their setting. By optimal penalty,
understand a penalty that achieves a nonasymptotic oracle inequality with leading constant almost one and
tending to one when the number of data tends to in�nity. Based on these heuristics, many successful simulations
and confrontations to real data sets have been achieved, see [2] for a survey of practical issues about the Slope
Heuristics. These heuristics have then been naturally extended by Arlot and Massart [1] to more general
problems of selection of M-estimators and they conjectured that the mean of the empirical excess risk of
the M-estimators on each model was a good and general candidate to be the minimal penalty. They proved
their conjecture on an heteroscedastic with random design regression setting, when using linear histogram
models. Then Lerasle [10] recovered Arlot and Massart propositions in least-squares density estimation. More
recently, these results have been generalized in papers [13], [14] and [12] considering heteroscedatic regression
on linear models and maximum likelihood estimation of density using histograms. In these works, the author
highlights the fact that the convergence in sup-norm of the considered M-estimators in essential, and prove it
on particular models, such as histograms and piecewise polynomials, at the rate

p
D lnn=n, where D is the

linear dimension of the considered linear model.
Our goal in this paper is to derive by a more systematical approach, the consistency in sup-norm of the

least-squares estimators in a general regression setting, under structural constraints on the considered linear
models. To our knowledge, no such generality in the question of the consistency in sup-norm of the least-
squares estimators of a regression function has been addressed yet. Nonparametric minimax rates under
various regularity assumptions for the estimation in sup-norm of a regression function are well-known, see
[7] and Stone [15]. Korotselev [8] moreover found the exact asymptotic constant in the minimax problem,
considering the estimation of a �-Lipschitz regression function. This discovery has been then extended by
Donoho [6], using a beautiful method inspired by optimal recovery techniques, considering the estimation of
a �-Lipschitz function in Gaussian white noise setting, closely related to nonparametric regression with �xed
design and homoscedastic Gaussian noise. Donoho also claims that "the subject area is appealing because
L1-loss has special importance in connection with setting �xed-width simultaneous con�dence bands for an
unknown regression". This connexion seems in the idea, not so far from model selection interests, even if our
interest in sup-norm consistency of least-squares estimators comes from the fact that is allows to derive upper
and lower bounds in probability that are optimal - and equal - for the L2-loss in certain �nite dimensional
models. We also highlight the work of Tsybakov [17], concerning again the convergence in sup-norm (and the
pointwise convergence) in the Gaussian white noise model, but in Sobolev classes. It is shown in this latter
article that a sharp adaptative estimator - in regard with the regularity parameter of the Sobolev classes - can
be construsted using developments in Fourier basis and some ideas due to Lepski. The reader interested to
references in sup-norm problems for other settings than the regression one, can consult references in [17], for
example concerning density estimation related problems.
The present study is made in a quite di¤erent spirit than the works cited above, since we take the more

general regression framework concerning hypothesis on the noise, which is taken heteroscedastic and non-
parametric, and we study the behavior of the least-squares estimator of the regression function on a linear
parametric space. As we argue, this framework is directly motivated by modern issues in model selection
theory, related to e¤ective optimality of penalization procedures.
The paper is organized as follows. We describe in Section 2 the statistical framework of our study and we

give in Section 3 a general, tractable formulation of probability upper bounds for the L1-loss of the least-
squares estimator. We then state in Section 4 our main result, where we derive the consistency in sup-norm
of the least-squares at the rate

p
D lnn=n, when the model is ful�lled with an orthonormal basis in L2 (P )

satisfying a criterium which is a little more restrictive than the assumption of localized basis (see Section 7.4 of
Massart [11]). We call these basis the "strongly localized basis". We give three explicit examples of such basis,
namely histogram basis, piecewise polynomial basis and Haar basis, this latter example being the simplest
case of compactly supported wavelet basis. The proofs are postponed to the end of the paper.
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2 Regression Framework

Let (X ; TX ) be a measurable space and set Z = X�R. We assume that �i = (Xi;Yi) 2 X�R, i 2 f1; :::; ng are
n i.i.d. observations with law P . The marginal law of Xi is denoted by PX : We assume that the data satisfy
the following relation

Yi = s� (Xi) + � (Xi) "i ;

where s� 2 L2
�
PX
�
, "i are i.i.d. random variables with mean 0 and variance 1 conditionally to Xi and � :

X �!R is an heteroscedastic noise level. A generic random variable of law P , independent of (�1; :::; �n), is
denoted by � = (X;Y ) :
Hence, s� is the regression function of Y with respect toX, that we want to estimate. Given a �nite dimensional
linear vector space M , we denote by sM the linear projection of s� onto M in L2

�
PX
�
and by D the linear

dimension of the model M .
We consider on M a least-squares estimator sn (possibly non unique), de�ned as follows

sn 2 arg min
s2M

(
1

n

nX
i=1

(Yi � s (Xi))
2

)
= arg min

s2M
fPn (K (s))g , (1)

where K : L2
�
PX
�
�! L1 (P ) is the least-squares contrast, de�ned by

K (s) = (x; y) 2 Z ! (y � s (x))2 , s 2 L2
�
PX
�

and

Pn =
1

n

nX
i=1

�(Xi;Yi)

is the empirical distribution of the data.
We denote by

ksk2 =
�Z

X
s2dPX

�1=2
the quadratic norm on L2

�
PX
�
. Recall that we then have for all s 2M ,

P (Ks�Ks�) = ks� s�k22 � 0

Moreover, we denote by sM the linear projection of s� onto M in L2
�
PX
�
, and by the Pythagorean theorem,

we have
P (Ks�KsM ) = ks� sMk22 � 0 :

Hence, the excess risk on M is given by the quadratic norm. In addition, the least-squares contrast satis�es
the following expansion, for all s 2M and for all z = (x; y) 2 Z;

(Ks) (z)� (KsM ) (z) =  1;M (z) (s� sM ) (x) + ((s� sM ) (x))
2 , (2)

where
 1;M : z = (x; y) 2 Z 7�!  1;M (z) = �2 (y � sM (x)) .

We will not discuss how to choose a model M and to achieve an accurate trade-o¤ between the bias of the
model, given by P (KsM �Ks�), and the excess risk on M of the estimator sn, given by P (Ks�KsM ). See
for instance, [11] and [14].
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3 The problem of convergence in sup-norm

We are interested by the quantity ksn � sMk1, where k�k1 is the sup-norm on Z, that we want to bound
from above with high probability. More precisely, for some � > 0, the problem is to �nd C > 0 such that

P (ksn � sMk1 > C) � n�� . (3)

We formulate below the problem stated in (3) in a more tractable but general formulation. Let us now de�ne
two slices of interest in M , that are localized in sup-norm. We set

F1C := fs 2M ; ks� sMk1 � Cg (4)

and
F1>C := fs 2M ; ks� sMk1 > Cg =MnF1C . (5)

Notice that since M is a linear vector space, F1C is the closed L1-ball in M centered at sM and of radius C.
By the de�nition of the least-squares estimator sn given in (1), we then have

P (ksn � sMk1 � C)

� P
�
inf

s2F1
>C

Pn (Ks) � inf
s2F1

C

Pn (Ks)

�
= P

 
sup

s2F1
>C

Pn (KsM �Ks) � sup
s2F1

C

Pn (KsM �Ks)
!
. (6)

It is worth mentioning that inequality (6) is a general fact of M-estimation, as we only used the de�nition of the
least-squares estimator as a M-estimator. Formulation (6) is now more tractable than the original inequality
(3). Indeed, by using the fact that the least-squares contrast achieves an expansion, which is recalled in (2),
we have

Pn (KsM �Ks) = (Pn � P )
�
 1;M � (sM � s)

�
� (Pn � P )

�
(s� sM )2

�
� P (Ks�KsM )

= (Pn � P )
�
 1;M � (sM � s)

�
� (Pn � P )

�
(s� sM )2

�
� ks� sMk22 . (7)

In the proof of Theorem 1, where we derive the rate of convergence in sup-norm of the least-squares estimator
under general conditions on the model M , we use formula (7) to control and compare the two quantities of
interest,

sup
s2F1

C

Pn (KsM �Ks) and sup
s2F1

>C

Pn (KsM �Ks) .

4 Results

We give here our mains results concerning the convergence in sup-norm of the least-squares estimator in a
bounded heteroscedastic regression setting. We �rst give in Section 4.1 general constraints on the �nite-
dimensional model M , that allow us to derive in Section 4.2 a general theorem. We then give in Section
4.3 three classical examples that are covered by our theorem, namely histogram models, models of piecewise
polynomials and Haar expansions on the unit interval.

4.1 Strongly localized basis

We �rst give the general assumption on the linear modelM needed to prove Theorem 1 below. An orthonormal
basis ('k)

D
k=1 of (M; k�k2) satisfying this assumption will be called a "strongly localised basis".

(Aslb) there exist rM > 0, p 2 N�, a partition (�i)pi=1 of f1; :::; Dg, positive constants (Ai)
p
i=1 and an

orthonormal basis ('k)
D
k=1 of (M; k�k2) such that 0 < A1 � A2 � ::: � Ap,

pX
i=1

p
Ai � rM

p
D , (8)
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and

for all � = (�k)
D
k=1 2 R

D,


DX
k=1

�k'k


1

�
pX
i=1

p
Aimax

k2�i
j�kj . (9)

Moreover, for every (i; j) 2 f1; :::; pg and k 2 �i, we set

�j;k =
n
l 2 �j ; Support ('k)

\
Support ('l) 6= ;

o
and we assume that there exists a positive constant Ac such that for all j 2 f1; :::; pg,

max
k2�i

Card (�j;k) � Ac
�
AjA

�1
i _ 1

�
. (10)

It is directly seen that a strongly localized basis is a localized basis in the sense of Birgé and Massart [4], the
latter notion having been introduced by these authors to derive accurate exponential bounds of the excess risk
of general bounded M-estimators on sieves. More precisely, an orthonormal basis ('k)

D
k=1 of (M; k�k2) is a

localized basis if there exists r' > 0 such that

for all � = (�k)
D
k=1 2 R

D,


DX
k=1

�k'k


1

�
p
D max
k2f1;:::;Dg

j�kj . (11)

Now, (8) and (9) imply (11). Moreover, we require in (10) a control of the number of intersections of support
of element of the considered orthonormal basis to be strongly localized. As we will see in Section 4.3 below, the
main practical examples of localized basis seem to be also strongly localized, as for example Haar expansions,
which are a simple example of compactly supported wavelets, are strongly localized in L2

�
PX
�
under rather

mild assumptions on PX .

4.2 A Structural Theorem

We give here our main result concerning the convergence in sup-norm of the least-squares estimator in a
bounded heteroscedastic regression setting. Three corollaries corresponding to explicit models will be derived
in Section 4.3.

Theorem 1 Let � > 0. Assume that M is a linear vector space of �nite dimension D satisfying (Aslb).
Assume moreover that the following assumption holds:

(Ab) There exists a constant A1 > 0 such that
�� 1;M (X;Y )�� � A1 a:s:

If there exists A+ > 0 such that

max
�
p2Ap ; D

	
� A+

n

(lnn)
2 ,

then we have, for all n � n0 (A+; Ac; rM ),

P

 
ksn � sMk1 � LA;rM ;�

r
D lnn

n

!
� n�� . (12)

Let us brie�y comment on Theorem 1. We derive here a probability upper bound for the L1-loss of the least-
square estimator of a regression function towards the orthonormal projection in a �nite-dimensional linear
model ful�lled with
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4.3 Examples and corollaries

4.3.1 Histogram models

Let P be a �nite partition of X . Consider the model

M =

(X
I2P

�I1I ; (�I)I2P 2 R
D

)
,

where D := jPj is the linear dimension of M and corresponds to the number of elements in P.
The following lemma states the existence of an orthonormal localized basis in (M; k�k2), if the partition P is
lower-regular for the law PX . This lemma is also stated and proved in [13].

Lemma 2 Let consider a linear model M of histograms de�ned on a �nite partition P on X , and write
jPj = D the dimension of M . Moreover, assume that for a positive �nite constant cM;P ,q

jPj inf
I2P

PX (I) � cM;P > 0 : (13)

Set, for I 2 P,
'I =

�
PX (I)

��1=2
1I .

Then the family ('I)I2�M is an orthonormal basis in L2
�
PX
�
and we have,

for all � = (�I)I2P 2 R
D;

X
I2P

�I'I


1

� c�1M;P

p
D j�j1 : (14)

By Lemma 2, we deduce that if the partition P satis�es the assumption of lower regularity given in (13)
then inequality (9) is satis�ed for M , with p = 1 and rM = c�1M;P > 0. Moreover, notice that for all

(i; j) 2 f1; :::; Dg2,
Card (�i;j) = �i;j

and in this case (Aslb) is straightforwardly satis�ed.

4.3.2 Piecewise polynomials

Assume that X = [0; 1] is the unit interval, P is a �nite partition of X made of intervals and let

M = Span
�
pI;j : x 2 X 7! xj1I ; (I; j) 2 P�f0; :::; rg

	
be the linear model of piecewise polynomials on X , of degrees not larger than r. Notice that the linear
dimension of M is (r + 1) jPj.
The following lemma states the existence, under suitable assumptions, of a localized orthonormal basis in
(M; k�k2).

Lemma 3 Let Leb denotes the Lebesgue measure on [0; 1]. Let assume that X = [0; 1] and that PX has a
density f with respect to Leb satisfying, for a positive constant cmin,

f (x) � cmin > 0; x 2 [0; 1] :

Consider a linear model M of piecewise polynomials on [0; 1] with degree r or smaller, de�ned on a �nite
partition P made of intervals. Then there exists an orthonormal basis

�
'I;j ; I 2 P; j 2 f0; :::; rg

	
of (M; k�k2)

such that,
for all j 2 f0; :::; rg 'I;j is supported by the element I of P,

and a constant Lr;cmin depending only on r; cmin exists, satisfying for all I 2 P;

max
j2f0;:::;rg

'I;j1 � Lr;cmin
1p

Leb (I)
. (15)
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As a consequence, if it holds q
jPj inf

I2P
Leb (I) � cM;Leb (16)

a constant Lr;cmin;cM;Leb
depending only on r; cmin and cM;Leb exists, such that for all � =

�
�I;j

�
I2P;j2f0;:::;rg 2

RD, 
X
I;j

�I;j'I;j


1

� Lr;cmin;cM;Leb

p
D j�j1 , (17)

where D = (r + 1) jPj is the dimension of M .

Lemma 3 states that if X = [0; 1] is the unit interval and PX has a density with respect to the Lebesgue
measure Leb on X uniformly bounded away form zero, then there exists an orthonormal basis in (M; k�k2) of
piecewise polynomials, where the sup-norm of its elements are suitably controlled by (15). Moreover, if we
assume the lower regularity of the partition with respect to Leb then the orthonormal basis is localized, where
the constant of localization in (17) depend on the maximal degree r. We notice that in the case of piecewise
constant functions, we do not need to assume the existence of a density for PX or to restrict ourselves to the
unit interval. Moreover, Lemma 3 proves that under suitable assumptions, the property of strongly localised
basis is recovered, exactly by the same argument than for histogram models.

4.3.3 Haar expansions

Let X = [0; 1]. We consider now some Haar expansions on X , which are special cases of wavelet expansions
with compact supports. We believe that the following results, validating assumptions (Alb) and (Asq) for
Haar expansions, can be generalized to some wavelet expansions with compact support, and this work is still
in progress.
We set for every integers i; j; l � 0, satisfying i � j and 1 � l � 2i,

� (j) =
�
(j; k) ; 1 � k � 2j

	
, (18)

� (j; i; l) =
�
(j; k) ; 2j�i (l � 1) + 1 � k � 2j�il

	
. (19)

Moreover, we set

� (�1) = f�1g and �m =
m[

j=�1
� (j) .

Notice that for every integers i; j � 0 such that i � j,
�
� (j; i; l) ; 1 � l � 2i

	
is a partition of � (j), which

means that

� (j) =

2i[
l=1

� (j; i; l) and for all 1 � l; h � 2i, � (j; i; l) \ � (j; i; h) = ; .

Let � = 1[0;1], � = 1[0;1=2] � 1(1=2;1] and for every integers j � 0, 1 � k � 2j ,

�j;k : x 2 [0; 1] 7! 2j=2�
�
2jx� k + 1

�
.

Set ��1 = � and let m 2 N. We consider the model

M = Span f�� ; � 2 �mg . (20)

Notice that the linear dimension D of M satis�es D = 2m+1. The following lemma gives an explicit localized
orthonormal basis of (M; k�k2).

Lemma 4 Let m 2 N. Assume that X = [0; 1] and let M be the model of dimension D given by (20). Set for
every integers j � 0, 1 � k � 2j,

pj;k;� = PX
��
2�j (k � 1) ; 2�j (k � 1=2)

��
; pj;k;+ = PX

��
2�j

�
k � 1

2

�
; 2�jk

��

7



'j;k : x 2 [0; 1] 7!
1q

p2j;k;+pj;k;� + p
2
j;k;�pj;k;+

�
pj;k;+1[2�j(k�1);2�j(k�1=2)] � pj;k;�1(2�j(k� 1

2 );2�jk]

�
. (21)

Moreover we set '�1 = �. Assume that PX has a density f with respect to Leb on [0; 1] and that there exist
cmax; cmin > 0 such that for all x 2 [0; 1],

f (x) � cmin > 0 .

Then f'� ; � 2 �mg is a localized orthonormal basis of (M; k�k2) and it holds for every integers j � 0,
1 � k � 2j, 'j;k1 �

r
2

cmin
2j=2 . (22)

Moreover, for all � = (�0; ��)�2�m 2 R
D, it holds X
�2�m

��'�


1

� Lcmin
p
D j�j1 (23)

and
max
�2�m

X
�2�m

q'� � '� � Lcmin
p
D . (24)

By Lemma 4, we see that if PX has a density which is uniformly bounded away from zero on Z, then the
model M given by (20) admits a localized orthonormal basis for the L2 (P )-norm which satis�ed (Aslb).

5 Proofs

5.1 Proof of Lemma 4

Proof of Lemma 4. Inequality (22) and the fact that f'� ; � 2 �mg is an orthonormal basis of (M; k�k2)
are straightforward and we skip their proof. Moreover, for all � = (��)�2�m 2 R

D, since D = 2m+1 we have, X
�2�m

��'�


1

�
����1��+ mX

j=0


2jX
k=1

�j;k'j;k


1

�
����1��+r 2

cmin

mX
j=0

2j=2 sup
k2f1;:::;2jg

���j;k��
�

�
1 +

r
2

cmin

2(m+1)=2 � 1p
2� 1

�
j�j1

<

�
1 +

�
1 +

p
2
�r 2

cmin

�p
D j�j1 .

Hence, Lcmin = 1 +
�
1 +

p
2
�q

2
cmin

is convenient in (23). Let now (j; k) 2
mS
j=0

� (j) be �xed. Notice that for

any 0 � i < j the exists a unique l(j;k) 2
�
1; :::; 2i

	
such that

Support
�
'i;l(j;k)

�\
Support

�
'j;k

�
6= ; .

Hence, for any (j; k) 2
mS
j=0

� (j), we have

X
�2�m

q'j;k � '�1
=

q'j;k � '�11 +
X
0�i<j

r'j;k � 'i;l(j;k)1 +
mX
i=j

X
l2�(i;j;k)

q'j;k � 'i;l1 , (25)

8



where the � (i; j; k) are de�ned in (19). From (25) and (22), we thus deduce thatX
�2�m

q'j;k � '�1
�

q'j;k1
0@1 + X

0�i<j

r'i;l(j;k)1 +
mX
i=j

X
l2�(i;j;k)

q'i;l1
1A

�
�
2j+1

cmin

�1=40@1 + X
0�i<j

�
2i+1

cmin

�1=4
+

mX
i=j

2i�j
�
2i+1

cmin

�1=41A
�

r
2

cmin
2j=4

�
2j=4p
2� 1

+

�
�

5.2 Proof of Theorem 1

Before stating the proof of Theorem 1, we need two preliminary lemmas.

Lemma 5 Let � > 0. Consider a �nite-dimensional linear model M of linear dimension D and assume that
('k)

D
k=1 is a localized orthonormal basis of (M; k�k2) with index of localization rM > 0. More explicitly, we

thus assume that for all � = (�k)
D
k=1 2 RD,

DX
k=1

�k'k


1

� rM
p
D j�j1 .

If (Ab) holds for some positive constant A+,

D � A+
n

(lnn)
2 ,

then there exists a positive constant L(2)� such that for all n � n0 (A+; rM ), we have

P

 
max

k2f1;:::;Dg2
j(Pn � P ) ('k � 'l)j � L(2)� min fk'kk1 ; k'lk1g

r
lnn

n

!
� n�� . (26)

Proof of Lemma 5. For any (k; l) 2 f1; :::; Dg2, we have

E
h
('k � 'l)

2
i
� min

n
k'kk

2
1 ; k'lk

2
1

o
and

k'k � 'lk1 � min fk'kk1 ; k'lk1g �max fk'kk1 ; k'lk1g
� min fk'kk1 ; k'lk1g � rM

p
D

Hence, we apply Bernstein�s inequality (see Proposition 2.9 in [11]) and we get,

P

 
j(Pn � P ) ('k � 'l)j � min fk'kk1 ; k'lk1g

r
2 lnn

n
+
rM
p
D lnn

3n

!
� 2n� . (27)

Since, for all n � n0 (A+; rM ),

rM
p
D lnn

n
� rM

r
A+ lnn

n
(lnn)

�1=2 �

s
2 lnn

n
,

9



we get from (27) that for all n � n0 (A+; rM ),

P

 
max

(k;l)2f1;:::;Dg2
j(Pn � P ) ('k � 'l)j � 2min fk'kk1 ; k'lk1g

r
 lnn

n

!

�
X

(k;l)2f1;:::;Dg2
P

 
j(Pn � P ) ('k � 'l)j � 2min fk'kk1 ; k'lk1g

r
 lnn

n

!

�
X

(k;l)2f1;:::;Dg2
P

 
j(Pn � P ) ('k � 'l)j � min fk'kk1 ; k'lk1g

r
2 lnn

n
+
rM
p
D lnn

3n

!
� 2D2n� � n�+2 . (28)

We deduce from (28) that (26) holds with L(2)� = 2
p
 > 0. �

Lemma 6 Let � > 0. Consider a �nite-dimensional linear model M of linear dimension D and assume that
('k)

D
k=1 is a localized orthonormal basis of (M; k�k2) with index of localization rM > 0. More explicitly, we

thus assume that for all � = (�k)
D
k=1 2 RD,

DX
k=1

�k'k


1

� rM
p
D j�j1 . (29)

If (Ab) holds and for some positive constant A+,

D � A+
n

(lnn)
2 ,

then there exists a positive constant L(1)A1;rM ;�
such that for all n � n0 (A+), we have

P

 
max

k2f1;:::;Dg

��(Pn � P ) � 1;M � 'k
��� � L

(1)
A1;rM ;�

r
lnn

n

!
� n�� . (30)

Proof of Lemma 6. Let � > 0. By Bernstein�s inequality, we get by straightforward computations that
there exists LA1;rM ;� > 0 such that, for all k 2 f1; :::; Dg,

P

 ��(Pn � P ) � 1;M � 'k
��� � L

(1)
A1;rM ;�

r
lnn

n

!
� n�� .

Now the result follows from a simple union bound with � = �+ 1. �

Proof of Theorem 1. Let C > 0. Recall that in (4) and (5) we set,

F1C := fs 2M ; ks� sMk1 � Cg

and
F1>C := fs 2M ; ks� sMk1 > Cg =MnF1C .

Take a localized orthonormal basis ('k)
D
k=1 of (M; k�k2) satisfying (Aslb). By Lemma 6 we get that there

exists L(1)A1;rM ;�
> 0 such that, by setting


1 =

(
max

k2f1;:::;Dg

��(Pn � P ) � 1;M � 'k
��� � L

(1)
A1;rM ;�

r
lnn

n

)
,

10



we have for all n � n0 (A+), P (
1) � 1� n��. Moreover, we set


2 =

p\
i;j=1

8<:maxk2�i

8<: sup
(�l)l2�j;k

;
P

l2�j;k
�2l�1

������(Pn � P )
0@'k � X

l2�j;k

�l'l

1A������
9=; � L(2)�

r
min fAi ; Ajg lnn

n

9=; ,

where L(2)� is de�ned in Lemma 5. By Lemma 5, we have that for all n � n0 (A+; rM ), P (
2) � 1� n�� and
so, for all n � n0 (A+; rM ),

P
�

1
\

2

�
� 1� 2n�� : (31)

We thus have for all n � n0 (A+; rM ),

P (ksn � sMk1 > C)

� P
�
inf

s2F1
>C

Pn (Ks�KsM ) � inf
s2F1

C

Pn (Ks�KsM )
�

= P

 
sup

s2F1
>C

Pn (KsM �Ks) � sup
s2F1

C

Pn (KsM �Ks)
!

� P

 (
sup

s2F1
>C

Pn (KsM �Ks) � sup
s2F1

C=2

Pn (KsM �Ks)
)\


1
\

2

!
+ 2n�� . (32)

Now, for any s 2M such that

s� sM =

DX
k=1

�k'k, � = (�k)
D
k=1 2 R

D,

we have

Pn (KsM �Ks)

= (Pn � P )
�
 1;M � (sM � s)

�
� (Pn � P )

�
(s� sM )2

�
� P (Ks�KsM )

=
DX
k=1

�k (Pn � P )
�
 1;M � 'k

�
�

DX
k;l=1

�k�l (Pn � P ) ('k � 'l)�
DX
k=1

�2k .

We set for any (k; l) 2 f1; :::; Dg2,

R
(1)
n;k = (Pn � P )

�
 1;M � 'k

�
and R

(2)
n;k;l = (Pn � P ) ('k � 'l) .

Moreover, we set a function hn, de�ned as follows,

hn : � = (�k)
D
k=1 7�!

DX
k=1

�kR
(1)
k �

DX
k;l=1

�k�lR
(2)
k;l �

DX
k=1

�2k .

We thus have for any s 2M such that s� sM =
PD

k=1 �k'k, � = (�k)
D
k=1 2 RD,

Pn (KsM �Ks) = hn (�) . (33)

In addition we set for any � = (�k)
D
k=1 2 RD,

j�jM;1 =

pX
i=1

p
Aimax

k2�i
j�kj . (34)

It is straightforward to see that j�jM;1 is a norm on RD. We also set for a real D �D matrix B, its operator
norm kAkM associated to the norm j�jM;1 on the D-dimensional vectors. More explicitely, we set for any
A 2 RD�D,

kBkM := sup
�2RD; � 6=0

jB�jM;1
j�jM;1

.

11



We have, for any A = (Ak;l)k;l=1::D 2 RD�D,

kBkM = sup
�2RD; j�jM;1=1

(
pX
i=1

p
Aimax

k2�i

(
DX
l=1

Bk;l�l

))

= sup
�2RD; j�jM;1=1

8<:
pX
i=1

p
Aimax

k2�i

8<:
pX
j=1

X
l2�j

Bk;l�l

9=;
9=;

= sup
�2RD; j�jM;1=1

8<:
pX
i=1

p
Aimax

k2�i

8<:
pX
j=1

p
Aj max

l2�j
j�lj

0@qA�1j X
l2�j

jBk;lj

1A9=;
9=;

=

pX
i=1

p
Aimax

k2�i

8<: max
j2f1;:::;pg

8<:qA�1j X
l2�j

jBk;lj

9=;
9=; . (35)

Notice that by inequality (9) of (Aslb), it holds

F1>C �
(
s 2M ; s� sM =

DX
k=1

�k'k & j�jM;1 � C

)
(36)

and

F1C=2 �
(
s 2M ; s� sM =

DX
k=1

�k'k & j�jM;1 � C=2

)
. (37)

Hence, from (32), (33) (36) and (37) we deduce that if we �nd on 
1
T

2 a value of C such that

sup
�2RD; j�jM;1�C

hn (�) < sup
�2RD; j�jM;1�C=2

hn (�) , (38)

then inequality (12) follows and Theorem 1 is proved. Taking the partial derivatives of hn with respect to the
coordinates of its arguments, it then holds for any (k; l) 2 f1; :::; Dg2 and � = (�i)

D
i=1 2 RD,

@hn
@�k

(�) = R
(1)
n;k � 2

DX
i=1

�iR
(2)
n;k;i � 2�k (39)

We look now at the set of solutions � of the following system,

@hn
@�k

(�) = 0 , 8k 2 f1; :::; Dg . (40)

We de�ne the D �D matrix R(2)n to be

R(2)n :=
�
R
(2)
n;k;l

�
k;l=1::D

and by (39), the system given in (40) can be written

2
�
ID +R

(2)
n

�
� = R(1)n , (S)

where R(1)n is a D-dimensional vector de�ned by

R(1)n =
�
R
(1)
n;k

�
k=1::D

.
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Let us give an upper bound of the norm
R(2)n 

M
, in order to show that the matrix ID +R

(2)
n is nonsingular.

On 
2 we have

R(2)n 
M

=

pX
i=1

p
Aimax

k2�i

8<: max
j2f1;:::;pg

8<:qA�1j X
l2�j

���R(2)n;k;l���
9=;
9=;

=

pX
i=1

p
Aimax

k2�i

8<: max
j2f1;:::;pg

8<:qA�1j X
l2�j;k

���R(2)n;k;l���
9=;
9=;

�
pX
i=1

p
Aimax

k2�i

�
max

j2f1;:::;pg

�q
A�1j j�j;kjmax

l2�j
j(Pn � P ) ('k � 'l)j

��

� AcL
(2)
�

r
lnn

n

pX
i=1

max
k2�i

(
max

j2f1;:::;pg

(s
Ai
Aj

�
Aj
Ai
_ 1
�q

min fAi ; Ajg
))

(41)

We deduce from (8) and (41) that on 
2,R(2)n 
M
� LAc;� � p

r
Ap lnn

n
. (42)

Hence, from (42) and the fact that p2Ap � A+
n

(lnn)2
, we get that for all n � n0 (A+; Ac; rM ; �), it holds on


2, R(2)n 
M
� 1

2
,

the matrix
�
Id +R

(2)
n

�
is nonsingular, of inverse

�
Id +R

(2)
n

��1
=
P+1

u=0

�
�R(2)n

�u
, and so the system (S)

admits a unique solution �(n), given by

�(n) =
1

2

�
Id +R

(2)
n

��1
R(1)n .

Now, on 
1 we have by (8),���R(1)n ���
M;1

�
 

pX
i=1

p
Ai

!
max

k2f1;:::;Dg

��(Pn � P ) � 1;M � 'k
��� � rML

(1)
A1;rM ;�

r
D lnn

n
(43)

and we deduce that for all n � n0 (A+; Ac; rM ; �), it holds on 
2
T

1,����(n)���

M;1
� 1

2

�Id +R(2)n ��1
M

���R(1)n ���
M;1

� rML
(1)
A1;rM ;�

r
D lnn

n
. (44)

Moreover, by the formula (33) we have

hn (�) = Pn (KsM )� Pn

 
Y �

DX
k=1

�k'k

!2

and we thus see that hn is concave. Hence, for all n � n0 (A+; Ac; rM ; �), we get that on 
2, �
(n) is the unique

maximum of hn and on 
2
T

1, by (44), concavity of hn and unicity of �

(n), we get

hn

�
�(n)

�
= sup

�2RD; j�jM;1�C=2
hn (�) > sup

�2RD; j�jM;1�C
hn (�) ,

which concludes the proof. �
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