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Abstract. We examine thermodynamic formalism for a class of renormalizable dynam-
ical systems which in the symbolic space is generated by the Thue-Morse substitution,
and in complex dynamics by the Feigenbaum-Coullet-Tresser map. The basic question
answered is whether fixed points V of a renormalization operator R acting on the space
of potentials are such that the pressure function γ 7→ P(−γV ) exhibits phase transitions.
This extends the work by Baraviera, Leplaideur and Lopes on the Manneville-Pomeau
map, where such phase transitions were indeed detected. In this paper, however, the
attractor of renormalization is a Cantor set (rather than a single fixed point), which
admits various classes of fixed points of R, some of which do and some of which do not
exhibit phase transitions. In particular, we show it is possible to reach, as a ground state,
a quasi-crystal before temperature zero by freezing a dynamical system.

1. Introduction

1.1. Background. Phase transitions are a central theme in statistical mechanics and
probability theory. In the physics/probability approach the dynamics is not very relevant
and just emerges as a by-product of the invariance by translation. The main difficulty is
the geometry of the Zd lattice. Considering an interacting particle systems such as the
Ising model (see e.g. [13, 15]), it is possible to find a measure (called Gibbs measure) that
maximizes the probability of obtaining a configuration with minimal free energy associated
to a Hamiltonian. This is done considering a finite box and fixing the conditions on its
boundary. Then letting the size of the box tend to infinity, the sequence of Gibbs measures
have a set of accumulation points. If this set varies non-continuously with respect to
the parameters (including the temperature), then the system is said to exhibit a phase
transition.

In contrast, the time evolution of the system is the central theme in dynamics systems.
The theory of thermodynamic formalism has been imported into hyperbolic dynamics in
the 70’s, essentially by Sinai, Ruelle and Bowen. Gradually, authors started to extend
this theory to the non-uniformly hyperbolic case, sometimes applying inducing techniques
that are also important in this paper. Initially, phase transitions have been less central in
dynamical systems, but the development of the theory of ergodic optimization since the
2000’s has naturally led mathematicians to introduce (or rather rediscover) the notion of
ground states. The question of phase transitions arises naturally in this context.
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Note that vocabulary used in statistical mechanics is sometimes quite different from that
used in dynamical system. What in statistical mechanics vocabulary is called a “freez-
ing” transition, such as occur in Fisher-Felderhof models (see e.g. [12]), corresponds in
the mathematical vocabulary to the Manneville-Pomeau map or the shift with Hofbauer
potential (see e.g. [28] or [26, Exercise 5.8 on page 98] and also [14]).

Renormalization is an over-arching theme in physics and dynamics, including thermody-
namic formalism, see [7] for modern results in the direction. The system that we study in
this paper is related to cascade of doubling period phenomenon and the infinitely renor-
malizable maps à la Feigenbaum-Coullet-Tresser, which is on the boundary of chaos (see
e.g. [27]). Instead of the freezing transitions, the system has its equilibrium state (at
phase transition) supported on a Cantor set rather than in a fixed point or a periodic
orbit. Stated in physics terminology, we prove that it is possible to reach a quasi-crystal
as a ground state before temperature zero by freezing a dynamical system (see Theorems
4 and 5). This issue is related to a question due to van Enter (see [9]). The original
question was for Z2-actions, but we hope that ideas here may be exported to this more
complicated case.

Returning to the mathematical motivation, the present paper takes the work of [2] a
step further. We investigate the connections between phase transition in the full 2-shift,
renormalization for potentials, renormalization for maps (in complex dynamics) and sub-
stitutions in the full 2-shift. Here the attractor of renormalization is a Cantor set, rather
than a single point, and its thermodynamic properties turn out to be strikingly different.

We recall that Bowen’s work [4] on thermodynamic formalism showed that every subshift of
finite type with Hölder continuous potential φ admits a unique equilibrium state (which is
a Gibbs measure). Moreover, the pressure function γ 7→ P(−γφ) is real analytic and there
are no phase transitions. This is also known as the Griffiths-Ruelle theorem. Hofbauer [17]
was the first (in the dynamical systems world) to find continuous non-Hölder potentials
for the full two-shift (Σ, σ) allowing a phase transition at some t = t0.

A geometric interpretation of Hofbauer’s example leads naturally to the Manneville-
Pomeau map fMP : [0, 1]→ [0, 1] defined as

fMP(x) =

{
x

1−x if x ∈ [0, 1
2 ],

2x− 1 if x ∈ (1
2 , 1],

with a neutral fixed point at 0. This map admits a local renormalization ψ(x) = x
2 which

satisfies

(1) f2
MP ◦ ψ(x) = ψ ◦ fMP(x) for all x ∈ [0,

1

2
].

If we differentiate Equation (1), take logarithms and subtract logψ′ ≡ log 1
2 from both

sides of the equality, we find

(2) log |f ′MP| = log |f ′MP| ◦ fMP ◦ ψ(x) + log |f ′MP| ◦ ψ(x).
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Passing to the shift-space again (via the itinerary map for the standard partition {[0, 1
2 ], (1

2 , 1]}),
we are naturally led to renormalization in the shift. Of prime importance are the solutions
of the equation

(3) σ2 ◦H = H ◦ σ,
which replaces the renormalization scaling ψ in (1). Equation (2) leads to an operator R
defined by

R(V ) = V ◦ σ ◦H + V ◦H.
In [2], the authors investigated the case of the substitution

HMP :

{
0→ 00,
1→ 01,

which has a unique fixed point 0∞, corresponding to the neutral fixed point 0 of fMP. In
[2], the map HMP was not presented as a substitution but we emphasize here (and it is
an improvement because it allows more general studies) that it indeed is; more generally,
any constant-length k substitution solves Equation (3) (with σk instead of σ2). It is also
shown in [2] that the operator R fixes the Hofbauer potential

V (x) := log
n+ 1

n
if x ∈ [0n1] \ [0n+11], n > 0.

Moreover, the lift of log f ′MP belongs to the stable set of the Hofbauer potential. This
fact is somewhat mysterious because the substitution HMP is not the lift of the scaling
function ψ : x 7→ x/2.

In this paper we focus on the Thue-Morse substitution; see (4) for the definition. It is
one of the simplest substitutions satisfying the renormalization equality (3) and contrary
to HMP, the attractor for the Thue-Morse substitution, say K, is not a periodic orbit but
a Cantor set. Yet similarly to the Manneville-Pomeau fixed point, σ : K → K has zero
entropy and is uniquely ergodic. This is one way to define quasi-crystal in ergodic theory.

The thermodynamic formalism for the Thue-Morse substitution is much more complicated,
and more interesting, than for the Manneville-Pomeau substitution. This is because Can-
tor structure of the attractor admits a more intricate recursion behavior of nearby points
(although it has zero entropy) characterized by what we call “accidents” in Section 2.3,
which are responsible for the lack of phase transitions for the “good” fixed point for R,
This allows much more chaotic shadowing than when the attractor of the substitution is a
periodic orbit. We want to emphasize here that our results are extendible to more general
substitutions, but to get the main ideas across, we focus on the Thue-Morse shift in this
paper.

1.2. Statements of results. The Thue-Morse substitution

(4) H := HTM :

{
0→ 01
1→ 10

has two fixed points

ρ1 = 1001 0110 1001 0110 01 . . . and ρ0 = 0110 1001 0110 1001 10 . . .
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Let K = ∪nσn(ρ0) = ∪nσn(ρ1) be the corresponding subshift of the full shift (Σ, σ) on
two symbols. The renormalization equation (3) holds in Σ: H ◦σ = σ2 ◦H, and we define
the renormalization operator acting on functions V : Σ→ R as

(RV )(x) = V ◦ σ ◦H(x) + V ◦H(x).

We consider the usual metric on Σ: d(x, y) = 1
2n if n = min{i > 1 : xi 6= yi}. This distance

is sometimes graphically represented as follows:

x0 = y0

�
�

@
@

n− 1

xn−1 = yn−1

y

x

Figure 1. The sequence x and y coincide for digits 0 up to n− 1 and then split.

Note that d(Hnx,Hny) = d(x, y)2n : if x and y coincide for m digits, then Hn(x) and
Hn(y) coincide for 2nm digits.

The first two results deal with the continuous fixed points for the renormalization operator
R. The main issue is to determine fixed points and their weak stable leaf, namely the
potentials attracted by the considered fixed point by iterations of R.

The second series of results deals with the thermodynamical formalism; we study if some
class of potentials related to weak stable leaf of the fixed points, exhibit a phase transition.
In particular, Theorem 5 is related to a question of Van Enter et al. (see e.g. [9, 10]) asking
whether it is possible to reach a quasi-crystal by freezing a system before zero temperature.

The last result (Theorem 6) returns to the geometrical dynamics and shows the main
difference between the Thue-More case and the Manneville-Pomeau case. Due to the
Cantor structure of the attractor of the substitution, there exist non-continuous but locally
constant (on K up to a finite number of points) fixed points for R. As the Hofbauer
potential represents the logarithm of the derivative of an affine approximation of the
Manneville-Pomeau map, one of these potentials, Vu, represents the logarithm of the
derivative of an affine approximation to the Feigenbaum-Coullet-Tresser map ffeig : C→
C. The main difference with the Manneville-Pomeau case is that here, Vu has no phase
transition whereas − log |f ′feig| has.

1.2.1. Results on continuous fixed points for R. Define the one-parameter family of po-
tentials

(5) Uc =

 c on [01],
−c on [10],

0 on [00] ∪ [11].

It is easy to verify that Uc is a fixed point of R. Given a fixed function V : Σ → R, the
variation on k-cylinders Vark(V ) is defined as

Vark(V ) := max{|V (x)− V (y)|, xj = yj for j = 0, . . . , k − 1}.
The condition

∑∞
k=1 Vark(W ) <∞ holds if e.g. W is Hölder continuous.
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Theorem 1. If W is a continuous fixed point of R on K such that
∞∑
k=1

Vark(W ) <∞,

then W = Uc for c = W (ρ0).

As for the Hofbauer case, we produce a non-negative continuous fixed point for R with a
well-defined weak stable set1

Theorem 2. There exists a unique function Ṽ , such that Ṽ = limm→∞
1
m

∑n−1
k=0 RkV

for every continuous V satisfying V (x) = 1
n + o( 1

n) if d(x,K) = 2−n. Moreover Ṽ is

R-invariant, continuous and positive except on K: 1
2n 6 Ṽ (x) 6 1

n−1 if d(x,K) = 2−n.

1.2.2. Results on Thermodynamic Formalism. We refer to Bowen’s book [5] for the back-
ground on thermodynamic formalism, equilibrium states and Gibbs measures in Σ. How-
ever, in contrast to Bowen’s book, our potentials are not Hölder-continuous.

For a given potential W : Σ→ R, the pressure of W is defined by

P(W ) := sup{hµ(σ) +

∫
W dµ},

where hµ(σ) is the Kolmogorov entropy of the invariant probability measure µ. The
supremum is a maximum in Σ whenever W is continuous. Any measure realizing this
maximum is called an equilibrium state. We want to study the regularity of the function
γ 7→ P(−γW ). For simplicity, this function will also be denoted by P(γ). If P(γ) fails
to be analytic, we speak of a phase transition. We are in particular interested in the
special phase transition as γ → ∞: easy and classical computations show that P(γ) has
an asymptote of the form −aγ + b as γ → ∞. By an ultimate phase transition we mean
that P(γ) reaches its asymptote at some γ′. In this case, there cannot be another phase
transition for larger γ, hence ultimate. Then, by a convexity argument, P(γ) = −aγ + b
for any γ > γ′. One of the main motivations for studying ultimate phase transitions is
that the quantity a satisfies

a = inf

{∫
W dµ, µ is a shift-invariant probability measure

}
.

An example of an ultimate phase transition for rational maps can be found in [22]. The
Manneville-Pomeau map is another classical example.

Theorem 3 (No phase transition). Let a > 1 and V : Σ → R be a continuous function
satisfying V (x) = 1

na + o( 1
na ) if d(x,K) = 2−n. Then, for every γ > 0, there exists a

unique equilibrium state associated to −γV and it gives positive mass to every open set.
The pressure function γ 7→ P(γ) is analytic and positive on [0,∞), although it converges
to zero as γ →∞.

Theorem 4 (Phase transition). Let a ∈ (0, 1) and V : Σ → R be a continuous function
satisfying V (x) = 1

na + o( 1
na ) if d(x,K) = 2−n. Then there exists γ1 such that for every

γ > γ1 the unique equilibrium state for −γV is the unique invariant measure µK supported
on K. For γ < γ1, there exists a unique equilibrium state associated to −γV and it gives

1In [2] it was proven that Rn(V ) converges to the fixed point Ṽ ; here we only get convergence in the
Cesaro sense.
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positive mass to every open set in Σ. The pressure function γ 7→ P(γ) is positive and
analytic on [0, γ1).

These results show that case a = 1 (i.e., the Hofbauer potential) is the border between the
regimes with and without phase transition. Whether there is a phase transition for the
case a = 1 (i.e., the fixed point Ṽ ) or in other words the analog of the Hofbauer potential,
discussed in [2], is much more subtle. We intend to come back to this question in a later
paper.

The full shift (Σ, σ) can be interpreted geometrically by a degree 2 covering of the circle.
The Manneville-Pomeau map can be viewed this way; it is expanding except for a single
(one-sided) indifferent fixed point. When dealing with the Thue-Morse shift, it is natural
to look for a circle covering with an indifferent Cantor set.

Theorem 5. There exist C1 maps fa : [0, 1] 	, semi-conjugate to the full 2-shift and

expanding everywhere except on a Cantor set K̃, such that K̃ is conjugate to K in Σ and
if a ∈ (0, 1), then −γ log f ′a has an ultimate phase transition.

Another geometric realization of the Thue-Morse shift and the prototype of renormaliz-
ability in one-dimensional dynamics is the Feigenbaum map. This quadratic interval map
fq-feig has zero entropy, but when complexified it has entropy log 2. Moreover, it is conju-
gate to another analytic degree 2 covering map on C, which we call ffeig, that is fixed by
the Feigenbaum renormalization operator

Rfeigf = Ψ−1 ◦ f2 ◦Ψ

where Ψ is linear f -dependent holomorphic contraction. Arguments from complex dynam-
ics give that P(−γ log |f ′feig|) = 0 for all γ > 2, see Proposition 23. Because htop(ffeig) =
log 2 on its Julia set, the potential −γ1 log |f ′feig| has a phase transition for some γ1 ∈ (0, 2].
When lifted to symbolic space, − log |f ′feig| produces an unbounded potential Vfeig which is
fixed by R. We can find a potential Vu, which is constant on

(σ ◦H)k(Σ) \ (σ ◦H)k+1(Σ)

for each k such that ‖Vfeig − Vu‖∞ < ∞ and analyze the thermodynamic properties of
Vu. Although P(−γ1Vfeig) = 0 for some γ1 6 2, it is surprising to see that the poten-
tial Vu exhibits no phase transition. We emphasize here an important difference with
the Manneville-Pomeau case, where both the potential −γ log |f ′MP | and its countably

piecewise version, the Hofbauer potential, which is constant on cylinder sets (HMP )k(Σ) \
(HMP )k+1(Σ) = [02k+11], undergo a phase transition.

Theorem 6 (No phase transition for unbounded fixed point Vu). The unbounded potential
Vu given by

Vu(x) = α(k − 1) for x ∈ (σ ◦H)k(Σ) \ (σ ◦H)k+1(Σ)

is a fixed point of R for any α ∈ R. If α < 0, then for every γ > 0, there exists a unique
equilibrium state for −γVu. It gives positive mass to any open set in Σ. The pressure
function γ 7→ P(−γVu) is analytic and positive for all γ ∈ [0,∞).

The exact definition of the equilibrium state for this unbounded potential can be found in
Subsection 3.5.
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1.3. Outline of the paper. In Section 2 we prove Theorems 1 and 2. In the first
subsection we recall some and prove other results on the Thue-Morse substitution and its
associated attractor K.

In Section 3 we study the thermodynamic formalism and prove Theorems 4, 5 and 6.
This section uses extensively the theory of local thermodynamic formalism defined in [19]
and developed in further works of the author. Finally, in the Appendix, we explain the
relation between the Thue-Morse shift and the Feigenbaum map, and state and prove
Proposition 23.

2. Renormalization in the Thue-Morse shift-space

2.1. General results on the Thue-Morse shift-space. Let σ : Σ→ Σ be the full shift
on Σ = {0, 1}N. If x = x0x1x2x4 · · · ∈ Σ, let [x0 . . . xn−1] denote the n-cylinder containing
x, and let x̄i = 1− xi be our notation for the opposite symbol.

Recall that ρ0 and ρ1 are the fixed points of the Thue–More substitution, and that K =
orbσ(ρ0) = orbσ(ρ1) is a uniquely ergodic and zero-entropy subshift. We denote by µK its
invariant measure.

We give here some properties for the Thue-Morse sequence that can be found in [3, 6, 8, 21].

(1) Left-special words (i.e., words w such that both 0w and 1w appear in K) are
prefixes of Hk(010) or of Hk(101) for some k > 0.

(2) Right-special words (i.e., words w such that both w0 and w0 appear in K) are
suffixes of Hk(010) or of Hk(101) for some k > 0.

(3) Bispecial words (i.e., words w such that both left and right-special) are precisely
the words τk := Hk(0), τ̄k := Hk(1), τkτ̄kτk = Hk(010) and τ̄kτkτ̄k = Hk(101) for
k > 0. There are four ways in which a word w can be extended to awb, i.e., with
a symbol both to the right and left. It is worth noting that for w = τk or τ̄k, all
four ways indeed occur in K, while for w = τkτ̄kτk or τ̄kτkτ̄k only two extensions
occur.

(4) The Thue-Morse sequence has low word-complexity:

p(n) =

{
3 · 2m + 4r if 0 6 r < 2m−1,

4 · 2m + 2r if 2m−1 6 r < 2m,

where n = 2m+ r + 1.
(5) The Thue-Morse shift is almost square-free in the sense that if w = w1 . . . wn is

some word, then ww can appear in K, but not www1. The nature of the Thue-
Morse substitution is such that ρ0 and ρ1 are concatenations of the words τk and
τ̄k. Appearances of τk and τ̄k can overlap, but not for too long compared to their
lengths, as made clear in Corollary 4

The next lemma shows that almost-invertibility of σ on K implies some shadowing close
to K.

Lemma 1. For x ∈ Σ with d(x,K) < 2−5, let y, y′ ∈ K be the closest points in K to x and
σ(x) respectively. If y′ 6= σ(y), then y′ starts as τk, τ̄k, τkτ̄kτk or τ̄kτkτ̄k for some k > 3.
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Proof. As y′ 6= σ(y), there is another z ∈ K such that σ(z) = y′ and z0 6= y0 = x0. Let
d be maximal such that y1 . . . yd−1 = z1 . . . zd−1, so yd 6= zd. This means that the word
y1 . . . yd−1 is bi-special, and according to property (3) has to coincide with τk, τ̄k, τkτ̄kτk
or τ̄kτkτ̄k for some k > 3. �

Due to the Cantor structure of K, the distance of an orbit to K is not a monotone function
in the time. This is the main problem we will have to deal with.

Definition 2. Let x ∈ Σ be such that d(σ(x),K) < 2d(x,K). Then we say that we have
an accident at σ(x). By extension, if d(σk+1(x),K) = 2d(σk(x),K) for every k < n − 1,
but d(σn(x),K) < 2d(σn−1(x),K), then we say that we have an accident at time n.

Proposition 3. Assume that − log2 d(x,K) = d and that b 6 d is the first accident for
the piece of orbit x, . . . , σd(x), then

• xbxb+1 . . . xd−1 is a bispecial word for K;

• d− b = 3ε · 2k for some k and ε ∈ {0, 1};
• x0 . . . xd−1 is neither right-special nor left-special;

• b >
{

2k if d− b = 2k,

2k+1 if d− b = 3 · 2k.

Proof. Let y and y′ ∈ K be such that x and y coincide for d digits and σb(x) and y′

coincide for at least d− b digits. Then

xbxb+1 . . . xd−1 = ybyb+1 . . . yd−1 = y′0y
′
1 . . . y

′
d−b−1

is a right-special because it can be continued both as y′ and y. The word xbxb+1 . . . xd−1 is
also a left-special, because otherwise, by Lemma 1, only one preimage of y′ by σ would be in
K and this would coincide with the word yb−1yb . . . yd−b−1. Then b−1 rather than b would
be the first accident. By property (3) above, d− b = 3ε2k. On the other hand, x0 . . . xd−1

cannot be right-special, because otherwise there would be a point x̃ = x0 . . . xd−1x̄d · · · ∈ K
with d(x, x̃) < 2−d. If x0 . . . xd−1 is left-special, then

To finish the proof of the proposition we need to check that the next accident cannot
happen too early. Assume that x0 . . . xd−2 start as ρ0 = r0r1r3 . . . (the argument for ρ1 is
the same). Let π(n) = #{0 6 i < n : ri = 1}−#{0 6 i < n : ri = 0} count the surplus of
1’s within the first n entries of ρ1. Clearly π(n) = 0 for even n and π(n) = ±1 otherwise.
Assume the word τk starts in ρ0 at some digit m < 2k. If π(m) = 1, then π(m + 3) = 2
while if π(m) = −1, then π(m + 7) = −2. A similar argument works if τ̄k stars at digit
m. This shows that if τk or τ̄k can only start in ρ0 at even digits. This means that we can
take the inverse H−1 and find that τk−1 (or τ̄k) start at digit m/2 < 2k−2 in ρ0. Repeating
this argument, we arrive at τ3 or τ̄3 starting before digit 8 = 24−1 of ρ0, which is definitely
false, as we can see by inspecting ρ0 = 0110 1001 1001 0110 . . . . Note also that the bound
2k is sharp, because τ̄k starts in ρ0 at entry 2k.

Finally, we need to answer the same question for bispecial words τkτ̄kτk = τk+1τk and
τ̄kτkτ̄k = τ̄k+1τ̄k. The previous argument shows that neither can start before digit 2k+1,
and also this bound is sharp, because τ̄kτkτ̄k starts in ρ0 at entry 2k+1. �

Corollary 4. Occurrences of τk and τ̄k cannot overlap for more than 2k−1 digits.
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Proof. We consider the prefix τk of ρ0 only, as the other case is symmetric. If the overlap
was more than 2k−1 digits, then τk−1 or τ̄k−1 would appear in ρ0 before digit 2k−1, which
contradicts part (3) of Proposition 3 �

Lemma 5. For each k > 1, the Thue-Morse substitution H satisfies K =
⊔2k−1
j=0 σj ◦

Hk(K), where t indicates disjoint union, so σi ◦Hk(K) ∩ σj ◦Hk(K) = ∅ for all 0 6 i <
j < 2k.

Proof. Take x ∈ K, so there is a sequence (nk)k∈N such that x = limk σ
nk(ρ0). If this

sequence contains infinitely many even integers, then x = limk σ
2mk(ρ0) = limk σ

2mk ◦
H(ρ0) = limkH ◦ σmk(ρ0) ∈ H(K). Otherwise, (nk)k∈N contains infinitely many odd
integers and x = limk σ

1+2mk(ρ0) = limk σ◦σ2mk ◦H(ρ0) = limk σ◦H◦σmk(ρ0) ∈ σ◦H(K).
Therefore K ⊂ H(K) ∪ σ ◦H(K).

Now if x = H(a) = σ ◦H(b) ∈ K, then

x = a0ā0a1ā1a2ā2 . . . = b̄0b1b̄1b2b̄2 . . . ,

so b̄0 = a0 6= ā0 = b1 6= b̄1 = a1 6= ā1 = b2 6= b2 = a2. Therefore x = 101010 . . . or
010101 . . . , but neither belongs to K.

Now for the induction step, assume K =
⊔2k−1
j=0 σj ◦Hk(K). Then since H is one-to-one,

K =
2k−1⊔
j=0

σj ◦Hk(H(K) t σ ◦H(K))

=

2k−1⊔
j=0

σj ◦Hk+1(K)

⊔2k−1⊔
j=0

σj ◦Hk ◦ σ ◦H(K))


=

2k−1⊔
j=0

σj ◦Hk+1(H(K)

⊔2k−1⊔
j=0

σj+2k ◦Hk+1(K))


=

2k+1−1⊔
j=0

σj ◦Hk+1(K).

�

Lemma 6. Let x be in the cylinder [ab] with a, b ∈ {0, 1}. Then the accumulation point
of (σ ◦ H)k(x) are 0ρb and 1ρb. More precisely, the (σ ◦ H)2k(x) converges to aρb and
(σ ◦H)2k+1(x) converges to āρb.

Proof. By definition of H we get H(x) = aāH(b) . . . Hence σ ◦ H(x) = āH(b) . . . By
induction we get

(σ ◦H)2k(x) = aH2k(b) . . . and (σ ◦H)2k+1(x) = āH2k+1(b).

Therefore Hn(b) converges to ρb, for b = 0, 1. �
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2.2. Continuous fixed points of R on K: Proof of Theorem 1. We recall that we
have R(V ) = V ◦ σ ◦H + V ◦H. Therefore

R2V = R(V ◦ σ ◦H + V ◦H)

= V ◦ σ ◦H ◦ σ ◦H + V ◦ σ ◦H2 + V ◦H ◦ σ ◦H + V ◦H2

= V ◦ σ3 ◦H2 + V ◦ σ2 ◦H2 + V ◦ σ ◦H2 + V ◦H2,

and in general

RnV = S2nV ◦Hn where (SkV )(x) =
k−1∑
i=0

V ◦ σi(x)

is the k-th ergodic sum.

Lemma 7. If V ∈ L1(µK) is a fixed point of R, then
∫
K V dµK = 0.

Proof. For any typical (w.r.t. Birkhoff’s Ergodic Theorem) y ∈ K we get

V (y) = (RnV )(y) =

2n−1∑
j=0

V ◦ σj ◦Hn(y).

Hence

1

2n
V (y) =

1

2n

2n−1∑
j=0

V ◦ σj ◦Hn(y).

The left hand side tend to 0 as n→∞ and the right hand side tends to
∫
K V dµK. �

Lemma 8. Let W be any continuous fixed point for R (on K). Then, for j = 0, 1,

W (01ρj) +W (10ρj) = 0 and W (1ρj) = W (10ρj) +W (0ρj).

Proof. Using the equality W (x) = (RW )(x) = W ◦H(x) +W ◦ σ ◦H(x) we immediately
get:

W ◦ (σ ◦H)n(x) = W ◦H ◦ (σ ◦H)n(x) +W ◦ (σ ◦H)n+1(x).

Using Lemma 6 on this new equality, we obtain

W (iρj) = W (īiρj) +W (̄iρj),

for i, j ∈ {0, 1}. This gives the second equality of the lemma (for i = 1). The symmetric
formula is obtained from the case i = 0, and then adding both formulas yields W (01ρj) +
W (10ρj) = 0. �

Remark 1. Lemma 8 still holds if the potential is only continuous at points of the form
iρj and īiρj with i, j ∈ {0, 1}. �

Recall the one-parameter family of potentials Uc from (5). They are fixed points of R,
not just on K, but globally on Σ. Let i : Σ → Σ be the involution changing digits 0 to 1
and vice versa. Clearly Uc = −Uc ◦ i. We can now prove Theorem 1.

Proof of Theorem 1. Let W be a potential on K, that is fixed by R. We assume that the
variations are summable:

∑∞
k=1 Vark(W ) <∞.
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We show that W is constant on 2-cylinders. Let x = x0x1 . . . and y = y0y1 . . . be in the
same 2-cylinder (namely x0 = y0 and x1 = y1). Then, for every n, Hn(x) and Hn(y)
coincide for (at least) 2n+1 digits. Therefore

|W (x)−W (y)| = |(RnW )(x)− (RnW )(y)|
= |(S2nW )(Hn(x))− (S2nW )(Hn(y))|

6
2n+1∑

k=2n+1

Vark(W ).

Convergence of the series
∑

k Vark(W ) implies that
∑2n+1

k=2n+1 Vark(W ) → 0 as n → ∞.
This yields that W is constant on 2-cylinders.

Lemma 8 shows that W |[01] = −W |[10]. Again, the second equality in that lemma used
for both ρ0 and ρ1 shows that W |[00] = W |[11] = 0. Therefore W = Uc with c = W (ρ0),
and the proof is finished. �

2.3. Global fixed points for R: Proof of Theorem 2. To give an idea why Theorem 2
holds, observe that the property V (x) = 1

n + o( 1
n) if d(x,K) = 2−n (so V vanishes on K

but is positive elsewhere) is in spirit preserved under iterations of R, provided the shift σ
doubles the distance from K. Let D denote the class of potentials satisfying this property.
Choose x such that d(x,K) = 2−m. Taking the limit of Riemann sums, and since R
preserves the class of non-negative functions, we obtain

0 6 (RnV )(x) =
2n−1∑
j=0

1

2nm− j +
2n−1∑
j=0

o(
1

2nm− j )

→n→∞ (1 + o(1))

∫ 1

0

1

m− t dt

= (1 + o(1)) log
m

m− 1
=

1

m
+ o(

1

m
).

However, it may happen that d(σ(y),K) < 2d(y,K) for some y = σj ◦ Hn(x), in which
case we speak of an accident (see Definition 2). The proof of the proposition includes an
argument that accidents happen only infrequently, and far apart from each other.

Remark 2. We emphasize an important bi-product of the previous computation. If V
is of the form V (x) = o( 1

m) when d(x,K) = 2−m, then Rn(V ) converges to 0. See also
Proposition 9. �

Proof of Theorem 2. The proof has three steps. In the first step we prove that the class
D is invariant under R. In the second step we show that Rn(V0), with V0 defined by
V0(x) = 1

m if d(x,K) = 2−m, is positive (outside K) and bounded from above. In the last
step we deduce from the two first steps that there exists a unique fixed point and that it
is continuous and positive. We also briefly explain why it gives the result for any V ∈ D.

Step 1. We recall that R is defined by (RV )(x) := V ◦H(x) + V ◦ σ ◦H(x). As H and σ
are continuous, R(V ) is continuous if V is continuous. Let x ∈ Σ, then if xK ∈ K is such
that

(6) d(x,K) = d(x, xK) = 2−m, then d(H(x), H(xK)) = 2−2m.
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We claim that if m > 3, then d(H(x),K) = d(H(x), H(xK)). Let us assume by contradic-
tion that y ∈ K is such that d(H(x),K) = d(H(x), y) < d(H(x), H(xK)). By Lemma 5, y
belongs either to H(K) or to σ ◦H(K). In the first case, say H(z) = y, we get

d(H(x), H(z)) < d(H(x), H(xK)).

This would yield d(x, z) < d(x, xK) which contradicts the fact that d(x,K) = d(x, xK).

In the other case, say y = σ ◦H(z), m > 3 yields H(x) = a0ā0a1ā1a2ā2 . . . and σ ◦H(z) =
b̄0b1b̄1b2b̄2 . . .. As in the proof of Lemma 5 this would show that y must start with 010101
or 101010. However, both are forbidden in K and this produces a contradiction. This
finishes the proof of the claim.

Lemma 1 also shows that d(σ ◦H(x),K) = 2−(2m−1) = d(σ ◦H(x), σ ◦H(xK)). Therefore

(7) (RV )(x) = V ◦H(x) + V ◦ σ ◦H(x) =
1

2m
+

1

2m− 1
+ o(

1

m
) =

1

m
+ o(

1

m
).

Step 2. We establish upper and lower bounds for Rn(V0) where V0 is defined by V0(x) = 1
m

if d(x,K) = 2−m. Let x ∈ Σ be such that d(x,K) = 2−m, and pick xK ∈ K such that x and
xK coincide for exactlym initial digits. Due to the definition of K, m > 2 (for any x) but we
assume in the following that m > 3. By (6) we have d(Hnx,K) = d(Hnx,HnxK) = 2−2nm.
Assume that the first digit of x is 0. Then Hn(x) coincides with ρ0 at least for 2n digits.

Assume now that Hnx has an accident at the j-th shift, 1 6 j < 2n, so there is y ∈ K
such that d(σj ◦Hn(x), y) < 2d(σj ◦Hn(x), σj ◦Hn(xK)).

ρ0

Hnx
�
�

@
@

j�
�y

≈ 2n

Hnx

ρ0

�
�

@
@

2nm

Hnx
�
�

y

HnxK

Figure 2. Half of the sum RnV can easily be estimated.

The last point in Proposition 3 shows j > 2n−1. Therefore, using again that the sum
approximates the Riemann integral,

(RnV0)(x) >
1

2n

(2n/2)−1∑
j=0

1

m− j/2n →n→∞

∫ 1
2

0

1

m− x dx >
1

2m
.

The worst case scenario for the upper bound is when there is no accident, and then

(8) (RnV0)(x) =
2n−1∑
j=0

1

2nm− j →n→∞

∫ 1

0

1

m− x dx 6
1

m− 1

as required.

Remark 3. Note that the largest distance between K and points σk(Hn(x)) with k ∈
[[0, 2n − 1]] is smaller than 2−(2nm−2n+1) 6 2−2n. This largest distance thus tends to 0
super-exponentially fast as n→∞. �
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Step 3. We prove here equicontinuity for Rn(V0). Namely, there exists some positive κ,
such that for every n, for every x and y

|Rn(V0)(x)−Rn(V0)(y)| 6 κ

| log2 d(x, y)| ,

holds.

Assume that x and y ∈ Σ coincide for m digits. We consider two cases.

Case 1: d(x,K) = 2−m
′

=: d(x, z), with m′ < m (and z ∈ K).

�
�

@
@

2nm′

Hn(z)

�
�

@
@

2nm

Hn(x)

Hn(y)

If there are no accidents for σj ◦Hn(x) for j ∈ [[0, 2n[[, then for every j,

d(σj(Hn(x)),K) = d(σj(Hn(y)),K) = d(σj(Hn(x)), σj(Hn(z))),

and V0(σj(Hn(x))) = V0(σj(Hn(y))). This yields (RnV0)(x) = (RnV0)(y).

Case 2: If there is an accident, say at time j0, then two sub-cases can happen.

Subcase 2-1. The accident is due to a point z′ that separates before 2nm, see Figure 3.

�
�

@
@

j0 2nm′

Hn(z)

�
�

accident-j0

Hn(z)

�
�

@
@

2nm

Hn(x)

Hn(y)

Figure 3. Comparing sequence when the accident occurs before separation.

Again, we claim that V0(σj(Hn(x))) = V0(σj(Hn(y))) holds for j 6 j0 − 1, but also for
j > j0 but smaller than the (potential) second accident. Going further, we refer to cases
2-2 or 1.

Sub-case 2-2. The accident is due to a point much closer to Hn(x) than to Hn(y), see
Figure 4.

In that case we recall that the first accident cannot happen before 2n−1, hence j0 > 2n−1.
Again, for j 6 j0 − 1 we get V0(σj(Hn(x))) = V0(σj(Hn(y))). By definition of accident
we get

max
{
V0(σj+2n−1

(Hn(x))) , V0(σj+2n−1
(Hn(y)))

}
6

1

2nm− 2n−1 − j



14 HENK BRUIN AND RENAUD LEPLAIDEUR

�
�

@
@

j0 2nm′

Hn(z)Hn(z)

�
�

@
@

2nm

Hn(x)�
�

accident-j0

Hn(y)

Figure 4. Comparing sequence when the accident occurs after separation.

for j > j0. This yields

|(RnV0)(x)− (RnV0)(y)| 6
2n−1∑
k=j

2

2nm− 2n−1 − j =
1

2n

2n−1∑
k=j

2

m− 1
2 −

j
2n

.

This last sum is a Riemann sum and is thus (uniformly in n) comparable to the associated

integral
∫ 1

2
0

1
m− 1

2
−tdt 6

1
2(m−1) .

Step 4. Following Step 3, the family ( 1
n

∑n−1
k=0 Rk(V0))n is equicontinuous (and bounded),

hence there exists accumulation points. Let us prove that (
1

n

n−1∑
k=0

Rk(V0))n actually con-

verges.

Assume that Ṽ1 and Ṽ2 are two accumulation points. Note that both Ṽ1 and Ṽ2 are fixed
points for R. They are continuous functions and Steps 1 and 2 show that they satisfy

1

2m
6 Ṽi(x) 6

1

m
+ o(

1

m
),

if d(x,K) = 2−m. From this we get

Ṽ1(x)− Ṽ2(x) 6
1

2m
+ o(

1

m
) =

1

2
V0(x) + o(V0(x)),

and then for every n,

Ṽ1 − Ṽ2 =
1

n

n−1∑
k=0

Rk(Ṽ1)−Rk(Ṽ2) 6
1

2

1

n

n−1∑
k=0

Rk(V0) + o(Rk(V0)).

We recall from Remark 2 that o(Rk(V0)) goes to 0 as k → ∞. Taking the limit on the

right hand side along the subsequence which converges to Ṽ2 we get

Ṽ1 − Ṽ2 6
1

2
Ṽ2 + o(V0),

which is equivalent to 2
3 Ṽ1 6 Ṽ2+o(V0). Exchanging Ṽ1 and Ṽ2 we also get 2

3 Ṽ2 6 Ṽ1+o(V0).
These two inequalities yield

Ṽ1 − Ṽ2 6
1

3
V0 + o(V0) and Ṽ2 − Ṽ1 6

1

3
V0 + o(V0).

Again, applying Rk on these inequalities and the Cesaro mean, we get

Ṽ1 − Ṽ2 6
1

3
Ṽ2 + o(V0) and Ṽ2 − Ṽ1 6

1

3
Ṽ1 + o(V0).
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Iterating this process, we get that for every integer p,

p

p+ 1
Ṽ2 + o(V0) 6 Ṽ1 6

p+ 1

p
Ṽ2 + o(V0).

This proves Ṽ1 − Ṽ2 = o(V0), i.e., (Ṽ1 − Ṽ2)(x) → 0 faster than V0(x) as x → K (see

again Remark 2). But Ṽ1 − Ṽ2 is also fixed by R, so we can apply (8) with a factor

o(V0) in front. This shows that Ṽ1 = Ṽ2, and hence the convergence of the Cesaro mean

( 1
n

∑n−1
k=0 Rk(V0))n. This finishes the proof of Theorem 2. �

2.4. More results on fixed points of R. The same proof also proves a more general
result:

Proposition 9. Let a be a real positive number. Take V (x) = 1
na +o( 1

na ) if d(x,K) = 2−n.
Then, for a > 1, limn→∞RnV ≡ 0 and for a < 1, limn→∞RnV ≡ ∞.

Proof. Immediate, since the Riemann sum as in (8) has a factor 2n(1−a) in front of it. �

Consequently, any V satisfying V (x) = 1
n + o( 1

n) for d(x,K) = 2−n belongs to the weak

stable set V ∈ Ws(Ṽ ) of the fixed potential Ṽ from Theorem 2. However, Ws(Ṽ ) is in
fact much larger:

Proposition 10. If V (x) = 1
ng(x) for d(x,K) = 2−n and g : Σ → R a continuous

function, then 1
j

∑j−1
k=0Rk(V )→ Ṽ ·

∫
K g dµK.

Proof. Take ε > 0 arbitrary, and take r ∈ N so large that sup |g|2−r 6 ε and if d(x,K) =
d(x, xK) 6 2−r, then |g(x)− g(xK)| 6 ε. Next take k ∈ N so large that if k = r + s, then∣∣∣∣∣ 1

2s

2s−1∑
i=0

g(σi(y))−
∫
g dµK

∣∣∣∣∣ 6 ε.
uniformly over y ∈ K. Then we can estimate

(RkV )(x) =
2k−1∑
j=0

V ◦ σj ◦Hk(x)

6
1

2k

2k−1∑
j=0

1

m− j
2k

g ◦ σj ◦Hk(x)

=
1

2r

2r−1∑
t=0

1

2s

2s−1∑
i=0

1

m− 1
2k

(2st+ i)
g ◦ σ2st+i ◦Hk(x)

=
1

2r

2r−2∑
t=0

1

2s

2s−1∑
i=0

(
1

m− t
2r

+O(2−r)

)
·
∫
K

(g dµK +O(ε))

+
1

2r
1

2s

2s−1∑
j=0

1

m− 1
2k

(2k − 2s + j)
sup |g|

→
∫ 1

0

1

m− xdx ·
∫
K
g dµK +O(3ε).
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Since ε is arbitrary, we find lim supk(RkV )(x) 6 1
m ·
∫
K g dµK + o( 1

m). Similar to Step 2

in the proof of Theorem 2, we find lim supk(RkV )(x) > 1
2m ·

∫
K g dµK + o( 1

m). From this,
using the argument of Step 3 in the proof of Theorem 2, we conclude that for the Cesaro

means, limn
1
n

∑n−1
k=0(RkV )(x) = Ṽ (x) ·

∫
K g dµK. �

2.5. Unbounded fixed points of R. The application to Feigenbaum maps discussed in
the Appendix of this paper suggests the existence of unbounded fixed points Vu of R as
well. They can actually be constructed explicitly using the disjoint decomposition

Σ \ σ−1{ρ0, ρ1} = tk>0

(
(σ ◦H)k(Σ) \ (σ ◦H)k+1(Σ)

)
.

If we set

(9) Vu|H(Σ) = g and Vu(x) = Vu(y)− Vu ◦H(y) for x = σ ◦H(y),

then Vu is well-defined and RVu = Vu on Σ \ σ−1{ρ0, ρ1}. The simplest example is

(10) Vu|(σ◦H)k(Σ)\(σ◦Hk+1)(Σ) = (1− k)α,

and we will explore this further for phase transitions in Section 3.

For x ∈ Σ \ σ ◦H(Σ) and xk = (σ ◦H)k(x), we have

Vu(xk) = g(x)−
k∑
j=1

g ◦ σ2j−2 ◦Hj(x).

Now for x ∈ [1]

σ2j−2 ◦Hj(x)→
{
σ−2(ρ0) along odd j’s,
σ−2(ρ1) along even j’s,

and the reverse formula holds for x ∈ [0]. In either case, V (xk) ∼ k
2 [g◦σ−2(ρ0)+g◦σ−2(ρ1)].

Therefore, unless g ◦ σ−2(ρ0) + g ◦ σ−2(ρ1) = 0, the potential Vu is unbounded near
limk→∞(σ ◦H)k(x) = {σ−1(ρ0) , σ−1(ρ1)}, cf. Lemma 6.

Remark 4. A variation of this stems from the decomposition

Σ \ {ρ0, ρ1} = tk>0

(
Hk(Σ) \Hk+1(Σ)

)
.

In this case, if we define

V ′u|σ◦H(Σ) = g and V ′u(x) = V ′u(y)− V ′u ◦ σ(x) for x = H(y),

then V ′u = RV ′u on Σ \ {ρ0, ρ1}. �

3. Thermodynamic formalism

In this section we prove Theorems 4, 5 and 6. In the first subsection we define an induced
transfer operator as in [19] and use its properties. Then we prove both theorems.
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3.1. General results and a key proposition. Let V : Σ → R be some potential
function, and let J be any cylinder such that on it, the distance to K is constant, say
δJ . Consider the first return map T : J → J , say with return time τ(x) = min{n > 1 :

σn(x) ∈ J}, so T (x) = στ(x)(x). The sequence of successive return times is then denoted
by τk(x), k = 1, 2, . . . The transfer operator is defined as

(11) (Lz,γg)(x) =
∑

T (y)=x

eΦz,γ(y)g(y)

where Φz,γ(y) := −γ(SnV )(y) − nz if τ(y) = n. For a given test function g and a point
x ∈ J , (Lz,γg)(x) is thus a power series in e−z.

These operators extend the usual transfer operator. They were introduced in [19] and
allow us to define local equilibrium states, i.e., equilibrium states for the potentials of
the form Φz,γ and the dynamical system (J, T ). These local equilibrium states are later
denoted by νz,γ .

We emphasize that, using induction on J , these operators Lz,γ allow us to construct
equilibrium states for potentials which do not necessarily satisfy the Bowen condition
(such as e.g. the Hofbauer potential).

Nevertheless, we need the following local Bowen condition: there exists CV (possibly
depending on J) such that

(12) |(SnV )(x)− (SnV )(y)| 6 CV ,
whenever x, y ∈ J coincide for n := τk(x) = τk(y) indices. This holds, e.g. if V (x) depends
only on the distance between x and K.

Lemma 11. Let x ∈ J and let γ and z be such that (Lz,γ1IJ)(x) <∞. Then (Lz,γg)(y) <
∞ for every y ∈ J and for every continuous function g : J → R.

Proof. Note that for any x, y ∈ J , (Lz,γ1IJ)(x) ≈ e±CV (Lz,γ1IJ)(y). Indeed, if x′ and y′

are two preimages of x and y in J , with the same return time n and such that for every
k ∈ [[0, n]] σk(x′) and σk(y′) are in the same cylinder, then

|(SnV )(x′)− (SnV )(y′)| 6 CV .
Recall that J is compact, and that every continuous function g on J is bounded. Hence
convergence (i.e., as power series) of (Lz,γ1IJ)(x) ensures uniform convergence over y ∈ J
for any continuous g. This finishes the proof of the lemma. �

For fixed γ, there is a critical zc such that (Lz,γ1IJ)(x) converges for all z > zc and zc is
the smallest real number with this property. Lemma 11 shows that zc is independent of
x. The next result is straightforward.

Lemma 12. The spectral radius λz,γ, of Lz,γ is decreasing in both γ and z.

We are interested in the critical zc and the pressure P(γ), both as function of γ. Both
curves are decreasing (or at least non-increasing). If the curve γ 7→ zc(γ) avoids the
horizontal axis, then there is no phase transition:

Proposition 13. Let V be continuous and satisfying the local Bowen condition (12) for
every cylinder J disjoint and at constant distance from K. Then the following hold:
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1. For every γ > 0, the critical zc(γ) 6 P(γ).
2. Assume that the pressure P(γ) > −γ

∫
V dµK. Then there exists a unique equilib-

rium state for −γV and it gives a positive mass to every open set in Σ. Moreover
zc(γ) < P(γ) and P(γ) is analytic on the largest open interval where the assump-
tion holds.

3 If (Lz,γ1IJ)(ξ) diverges for every (or some) ξ and for z = zc(γ), then P(γ) > zc(γ)
and there is a unique equilibrium state for −γV .

Proof. There necessarily exists an equilibrium state for −γV . Indeed, the potential is
continuous and the metric entropy is upper semi-continuous. Therefore any accumulation
point as ε→ 0 of a family of measures νε satisfying

hνε(σ)− γ
∫
V dνε > P(γ)

is an equilibrium state.

The main argument in the study of local equilibrium states as in [19] is that z > zc(γ)
(to make the transfer operator “converges”) and that V satisfies the local Bowen property
(12). This property is used in several places and in particular, it yields for every x and y
in J and for every n:

e−γCV 6
(Lnzγ1IJ)(x)

(Lnzγ1IJ)(y)
6 eγCV .

To prove part 1., recall that

(Lz,γ1IJ)(x) :=
∞∑
n=1

 ∑
x′,T (x′)=x,τ(x)=n

e−γ(SnV )(x′)

 e−nz,

which yields that zc = lim supn
1
n log

(∑
x′,T (x′)=x,τ(x)=n e

−γ(SnV )(x′)
)

. To prove the in-

equality zc(γ) 6 P(γ), we copy the proof of Proposition 3.10 in [20]. Define the measure
ν̃ as follows: for x in J and for each T -preimage y of x there exists a unique τ(y)-periodic
point ξ(y) ∈ J , coinciding with y until τ(y). Next we define the measure ν̃n as the
probability measure proportional to∑

ξ(y),τ(y)=n

eΦP(γ),γ(ξ(y))

n−1∑
j=0

δσjξ(y)

 =
∑

ξ(y),τ(y)=n

e−γ(SnV )(ξ(y))−nP(γ)

n−1∑
j=0

δσjξ(y)

 .

The measure ν̃ is an accumulation point of (ν̃n)n∈N. It follows from the proof of [18,
Lemma 20.2.3, page 264] that

(13) zc(γ) 6 hν̃(σ)− γ
∫
V dν̃ 6 P(γ).

Remark 5. We emphasize that ν̃n(J) = 1
n for each n, which shows that ν̃(J) = 0. �

Now we prove part 2. Let µγ be an ergodic equilibrium state for −γV . The assumption
P(γ) > −γ

∫
V dµK means that the unique shift-invariant measure on K cannot be an

equilibrium state (since σ|K has zero entropy). Hence µγ gives positive mass to some
cylinder J in Kc. Thus the conditional measure

(14) νγ(·) := µγ(· ∩ J)/µγ(J).
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is T -invariant (using the above notations).

We now focus on the convergence (as power series) of (Lz,γ1IJ)(x) for any x ∈ J and
z = P(γ). The inequality zc(γ) 6 P(γ) does not ensure convergence of (Lz,γ1IJ)(x) for
z = P(γ). Again, we copy and adapt arguments from [20, Proposition 3.10] to get that
(Lz,γ1IJ)(x) converges and that the Φz,γ-pressure is non-positive for z = P(γ).

In the case z > P(γ), so z > zc(γ), we can apply the local thermodynamic formalism
for Φz,γ . Moreover z > zc(γ) means that ∂

∂z (Lz,γ1IJ)(x) converges. This implies by [19,
Proposition 6.8] that there exists a unique equilibrium state νz,γ on J for T and for the
potential Φz,γ , and that the expectation

∫
J τ dνz,γ < ∞. In other words, there exists a

shift-invariant probability measure µz,γ such that

µz,γ(J) > 0, and νz,γ(·) :=
µz,γ(· ∩ J)

µz,γ(J)
.

The equality hνz,γ (T ) +
∫

Φz,γ dνz,γ = log λz,γ (the spectral radius for Lz,γ) shows that

hµz,γ (σ)− γ
∫
V dµz,γ = z + µz,γ(J) log λz,γ .

As z > P(γ) we get λz,γ 6 1. Now the Bowen property of the potential shows that for
every x ∈ J and for every n > 1:

(Lnz,γ1IJ)(x) = eγCV λnz,γ .

The power series is decreasing in z, thus the monotone Lebesgue convergence theorem
shows that it converges for z = P(γ). For this value of the parameter z, the spectral
radius λP(γ),γ 6 1. Following [19], there exists a unique local equilibrium state, νP(γ),γ

with pressure log λP(γ),γ 6 1. This proves that the ΦP(γ),γ-pressure is non-positive.

Now, we prove that the Φz,γ-pressure is non-negative for z = P(γ). Indeed, by Abramov’s
formula

0 = hµγ (σ)− γ
∫
V dµγ − P(γ)

= µγ(J)

(
hνγ (T )− γ

∫
(Sτ(x)V )(x) dνγ(x)− P(γ)

∫
τ dνγ

)
,

which yields

hνγ (T )− γ
∫
Sτ(x)(V )(x)− P(γ)τ(x) dνγ(x) = 0.

Finally, as the ΦP(γ),γ-pressure is non-negative and non-positive, it is equal to 0. It also
has a unique equilibrium state which is a Gibbs measure (in J and for the first-return
map T ). As the conditional measure νγ has zero ΦP(γ),γ-pressure, it is the unique local
equilibrium state.

The local Gibbs property proves that νγ gives positive mass to every open set in J , and
the mixing property shows that the global shift-invariant measure µγ gives positive mass
to every open set in Σ. We can thus copy the argument to show it is uniquely determined
on each cylinder which does not intersect K (here we use the assumption that the potential
satisfies (12) for each cylinder J with empty intersection with K).
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It now remains to prove analyticity of the pressure. Equality (13) gives zc(γ) 6 hν̃(σ) −
γ
∫
V dν̃. Remark 5 states that ν̃(J) = 0, and uniqueness of the equilibrium state shows

that ν̃ cannot be this equilibrium state (otherwise we would have ν̃(J) > 0). Hence, zc(γ)
is strictly less than P(γ). Then, we use [16] to get analyticity in each variable z and γ,
and the analytic version of the implicit function theorem (see [25]) shows that P(γ) is
analytic.

The proof of part 3 is easier. The divergence of Lz,γ(1IJ)(ξ) for some ξ and z = zc(γ)
ensures the divergence for every ξ, and then Lemma 12 and the local Bowen condition
show that λz,γ goes to ∞ as z goes to zc(γ). This means that there exists a unique
Z > zc(γ) such that λZ,γ = 1. Using the work done in the proof of point 2, we let the
reader check that necessarily Z = P(γ) and the local equilibrium state produces a global
equilibrium state (see also [19]).

This finishes the proof of the proposition. �

Actually, Proposition 13 says a little bit more. If the second assumption is satisfied,
namely P(γ) > −

∫
V dµK, then the unique equilibrium state for V in Σ is the measure

obtained (using Equation (14)) from the unique equilibrium state νP(γ),γ for the dynamical
system (J, T ) and associated to the potential ΦP(γ),γ . Therefore, two special curves z as
function of γ appear, see Figure 5. The first is zc(γ), and the second is P(γ), defined by
the implicit equality

log λP(γ),γ = 0.

We claim that these curves are convex.

z = P(γ)

zc(γ)

γ

z

Figure 5. Two important values of z as function of γ.

3.2. Counting excursions close to K. Let x ∈ Σ and n ∈ N be such that for k ∈
[[0, n − 1]], d(σk(x),K) 6 2−5δJ . We divide the piece of orbit x, σ(x), . . . , σn−1(x) into
pieces between accidents. We take b0 = 0 by default, and let y0 ∈ K be the point closest
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to x. Inductively, set

b1 = min{j > 1 : d(σj(x),K) 6 d(σj(x), σj(y0))},
y1 ∈ K is point closest to σb1(x).

b2 = min{j > 1 : d(σj+b1(x),K) 6 d(σj+b1(x), σj(y1))},
y2 ∈ K is point closest to σb1+b2(x).

b3 = min{j > 1 : d(σj+b1+b2(x),K) 6 d(σj+b1+b2(x), σj(y2)},
y3 ∈ K is point closest to σb1+b2+b3(x)

...
...

...

and dj = − log2 d(σ
∑
i<j bi(x),K) = − log2 d(σ

∑
i<j bi(x), yj−1) expresses how close the

image of x is to K at the j − 1-st accident.

Following Proposition 3, dj−bj is of the form 3εj2kj , with εj ∈ {0, 1} and dj+1 > dj−bj by
definition of an accident. One problem we will have to deal with, is to count the possible
accidents during a very long piece of orbit: if we know dj − bj can we determine the
possible values of dj? As it is stated in Subsection 2.1, accidents occur at bispecial words
which have to be prefixes of τnτ̄nτn or τ̄nτnτ̄n, and are words of the form τk, τ̄k, τkτ̄kτk or
τ̄kτkτ̄k.

From now on, we pick some non-negative potential V and assume it satisfies hypotheses of
Proposition 13. Namely, our potentials are of the form V (x) = 1

na +o( 1
na ) if log2(d(x,K)) =

−n. They satisfy hypotheses of Proposition 13, and furthermore, the Birkhoff sums are
locally constant.

Moreover, for x and y in J coinciding until n = τ(x) = τ(y), the assumption d(K, J) =
δJ = d(x,K) = d(y,K) shows that for every j 6 n,

d(σj(x),K) = d(σj(y),K)

holds. Hence Φ.,γ satisfies the local Bowen property (12).

Let x be a point in J . We want to estimate (Lz,γ1IJ)(x). Let y be a preimage of x for T .

To estimate Φ(y), we decompose the orbit y, σ(y), . . . , στ(y)−1(y) where σj(y) is reasonably
far away from K (let cr > 0 be the length of such piece) and excursions close to K.

Definition 14. An excursions begins at ξ := σs(y) when ξ starts as ρ0 or ρ1 for at least
5− log2 δJ digits (i.e., d(ξ′, ρ0) and d(ξ′, ρ0) 6 δJ2−5) and ends at ξ′ := σt(y) where t > s
is the minimal integer such that d(ξ′,K) > δJ2−5.

If σi(y) is very close to K, then due to minimality of (K, σ) it takes a uniformly bounded
(from above) number of iterates for an excursion to begin.

Note that each cylinder for the return map T is characterized by a path

c0, b1,1, b1,2, . . . , b1,N1︸ ︷︷ ︸
first excursion

, c1, b2,1, . . . , b2,N1︸ ︷︷ ︸
second excursion

, c2, . . . , cM−1, bM,1, bM,2, . . . , bM,N1︸ ︷︷ ︸
M-th excursion

, cM .

Any piece of orbit between two excursions or before the first excursion or after the last
excursion is called a free path. Let sr and tr be the times where the r-th free path and
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r-th excursion begin. Since J is disjoint from K, each piece cr of free path takes at least
two iterates, so cr > 2 for 0 6 r 6M .

Due to the locally constant potential we are considering, (Lz,γ1IJ)(x) is independent of
the point x where it is evaluated. Hence, for the rest of the proofs in this section, unless
it is necessary, we shall just write Lz,γ1IJ . Our strategy is to glue on together paths in
functions of their free-paths and the numbers of accidents during an excursion. This form
clusters and the contribution of a cluster considering N accidents is of the form

(15) Ez,γ(1IJ) :=
∑
N>1

∑
allowed

(bj)Nj=1, (dj)Nj=1

exp

−γ N∑
j=1

SjV

 exp

− N∑
j=1

bjz

DN

︸ ︷︷ ︸
AN

,

where SjV is the Birkhoff sum of the potential after the jth accident but before the next

one and the quantity DN = eϕN−(dN−bN )z is the contribution of the last part of the orbit
after the N th accident. By definition of an accident, this contribution is larger than if

there would be no accident. Therefore for non-negative z, e−(dN−bN )z

(dN−bN )γ 6 DN 6 1. The

quantity AN is the sum of the contribution of the cluster with N accident.

Thus we have

(L0,γ1IJ)(x) =

∑
c0>5

∑
free

c0−paths

e−γ
∑c0−1
n=0 V (σn(y))−c0z

×
∑
M>0


 ∑

(cr)Mr=1

∑
free

cr−paths

e−γ
∑cr−1
n=0 V (σn+sr (y))−crz

× (Ez,γ(1IJ))M


 .(16)

3.3. The potential n−a: Proofs of Theorems 3 and 4 .

3.3.1. Proof of Theorem 3. Here we deal with the case a > 1 and V (x) = n−a if d(x,K) =
2−n.

Proof of Theorem 3. Since a > 1,

d∑
n=d−b+1

1

na
�
∫ d

d−b

1

xa
dx =

1

a− 1

(
1

(d− b)a−1
− 1

da−1

)
6

1

a− 1
<∞,

for all values of b < d. To find a lower bound for Ez,γ(1IJ) in (15), it suffices to take only

excursions with a single accident, and sum over all possible d1 with d1 − b1 = 2k. Then

Ez,γ(1IJ) >
∑
k

e−γ/(a−1) =∞,

regardless of the value of γ > 0.
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By Proposition 13 (part 1) we get P(γ) > zc(γ) > 0 = −γ
∫
V dµK. Then Proposition 13

(part 3) ensures that there is no phase transition and that γ 7→ P(γ) is positive and
analytic on [0,∞).

To finish the proof of Theorem 3, we need to compute limγ→∞ P(γ). Let µγ be the unique
equilibrium state for −γV . Then

P(γ)

γ
=
hµγ
γ
−
∫
V dµγ ,

which yields lim supγ→∞
P(γ)
γ 6 0, hence lim supγ→∞ P(γ) 6 0. On the other hand,

P(γ) > 0 = hµK −
∫
V dµK, hence lim infγ→∞ P(γ) > 0. �

3.3.2. Proof of Theorem 4 for a special case. Now take a ∈ (0, 1) and

V (x) = n−a if d(x,K) = 2−n,

so

Φz,γ(x) = −γSnV (x)− nz = −γ
n∑
k=1

k−a − nz.

The potential is locally constant on sufficiently small cylinder sets. It thus satisfies the
local Bowen condition (12) and the hypotheses of Proposition 13 hold.

Recall that
d∑

n=d−b+1

1

na
�
∫ d

d−b

1

xa
dx =

1

1− a
(
d1−a − (d− b)1−a) ,

and we shall replace the discrete sum by the integral. The error involved in this can be
incorporated in the changed coefficient (1± ε)γ.

Our goal is to prove that zc(γ) = 0 (for every γ) and that L0,γ(1IJ)(x)→ 0 as γ →∞ (for
any x ∈ J). This will prove that there is a phase transition.

Lemma 15. The series (Lz,γ1IJ)(ξ) diverges for z < 0.

Proof. We employ notations from (15) with our new V . In the full shift all orbits appear,
and we are counting here only orbits which have only one excursion close to K without
accident. For each j, we consider a piece of orbit of length 2k+1(1 + 2j), coinciding with a
piece of orbit within K, and then “going back” to J . The quantity Ez,γ(1IJ) is larger than
the contribution of these excursions, which is

Ak1(z) >
∞∑
j=1

e−
γ

1−a ((2k+1(1+2j))1−a−1)−2k+1(1+2j)z.

As a < 1, −2jz is eventually larger than (2k+1(1+2j))1−a for z < 0 and the series trivially
diverges. Then, Ez,γ(1IJ) diverges as well, and (16) shows that Lz,γ(1IJ) diverges for every
initial point x ∈ J . �

Let us now consider the case z = 0. As we are now looking for upper bounds, we can
consider the bj ’s and the dj ’s as independent and sum over all possibilities (and thus forget
the condition dj+1 > dj − bj). Note that we trivially have DN 6 1.
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For a piece of orbit of length d and with an accident at b, d− b = 2k, the possible values
of d’s are among 2k(1 + j

2), j > 1, and then b = 2k−1j. If d− b = 3 · 2k, then the possible

values of d’s are among 2k(1 + j
2) with j > 5 and then b = 2k( j2 − 2).

Let

B(z) :=
∞∑
k=4

∞∑
j=1

e
− γ

1−a

(
(2k(1+ j

2
))

1−a−2k(1−a)
)
−j2k−1z

.

and

C(z) :=

∞∑
k=4

∞∑
j=5

e
− γ

1−a

(
(2k(1+ j

2
))

1−a−31−a2k(1−a)
)
−2k−1(j−4)z

.

The quantity B(z) is an upper bound for the cluster with one excursion of the form
d − b = 2k, and C(z) is an upper bound for the cluster with one excursion of the form
d− b = 3 · 2k.

Then multiplying N copies to estimate from above the contribution of excursion with N
accidents we get

Ez,γ(1IJ) 6
∑
N

(B(z) + C(z))N .

Hence

(L0,γ1IJ)(x) 6

∑
c0>5

∑
free

c0−paths

e−γ
∑c0−1
n=0 V (σn(y))−c0z

×
∑
M>0


 ∑

(cr)Mr=1

∑
free

cr−paths

e−γ
∑cr−1
n=0 V (σn+sr (y))−crz

×
∑
N>1

(B(z) + C(z))N

M

 ,

where the sum over (cr)
M
r=1 is 1 by convention if M = 0. The first factor (the sum over

c0) indicates the first cluster of free paths, and c0 > 5 by our choice of the distance δJ .

Note that for the free pieces between excursions the orbit is relatively far from K, so there
is ε > 0 depending only on δJ such that

(17) −cr(γ + z) 6
cr−1∑
n=0

−γV (σn+sr(y))− crz 6 −cr(εγ + z).

An upper bound for Lz,γ(1IJ) is obtained by taking an upper bound for B and C and
majorizing the sum over the cr free paths by taking the sum over all the c and the upper
bound in (17).

Proof of Theorem 4. Lemma 15 shows that for every γ, zc(γ) > 0. Our goal is to prove
that B(0) + C(0) can be made as small as wanted by choosing γ sufficiently large. This
will imply that zc(γ) = 0 for sufficiently large γ and that the unique equilibrium state is
µK. We compute B(0) leaving the very similar computation for C(0) to the reader.
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Apply the inequality 1 +u > 1 + log(1 +u) for the value of u such that 1 +u = (1 + j
2)1−a,

to obtain (1 + j
2)1−a − 1 > log(1 + j

2)1−a, whence e(1+ j
2

)1−a−1 > (1 + j
2)1−a. Raising this

to the power − γ
1−a2k(1−a) and summing over j, we get

∞∑
j=1

e−
γ

1−a2k(1−a)((1+ j
2

)1−a−1) 6
∞∑
j=1

(1 +
j

2
)−γ2k(1−a)

6

(
2

3

)γ2k(1−a)

+

∫ ∞
1

dx

(1 + x
2 )−γ2k(1−a)

=

(
1 +

3

γ2k(1−a) − 1

)(
2

3

)γ2k(1−a)

.

Therefore

B(0) =

∞∑
k=4

∞∑
j=1

e
γ

1−a2k(1−a)(1−(1+ j
2

)1−a) 6
∞∑
k=4

(
1 +

3

γ2k(1−a) − 1

)(
2

3

)γ2k(1−a)

is clearly finite and tends to zero as γ →∞.

Now to estimate (Lz,γ1IJ)(x), we have to sum over the free periods as well and we have

(L0,γ1IJ)(x) 6

(∑
c>5

2ce−εγc

)
·
∑
M>0

(∑
c>1

2ce−cεγ(E0,γ1IJ)(ξ)

)M

6
32e−5εγ

1− 2e−εγ

∑
M>0

∑
c>1

2ce−cεγ
∑
N>1

(B(0) + C(0))N

M

.(18)

The term in the brackets still tends to zero as γ → ∞, and hence is less than 1 for
γ > γ0 and some sufficiently large γ0. The double sum converges for such γ, so the critical
zc(γ) 6 0 for γ > γ0.

Lemma 15 shows that zc(γ) is always non-negative. Therefore zc(γ) = 0 for every γ > γ0.
In fact, for γ sufficiently large (and hence e−5εγ is sufficiently small), the bound (18) is less
than one: for every x ∈ J , (L0,γ1IJ)(x) < 1. This means that log λ0,γ , i.e., the logarithm
of the spectral radius of Lz,γ , becomes zero at some value of γ, say γ2.

Lemma 12 says that the spectral radius decreases in z. On the other hand the pressure
P(γ) is non-negative because

∫
V dµK = 0. Moreover, the curve z = P(γ) is given by

the implicit equality λP(γ),γ = 1. Therefore, the curve γ 7→ P(γ) is below the curve
γ 7→ log λ0,γ . Thus it must intersect the horizontal axis at some γ1 ∈ [γ0, γ2] (see Figure 6).

For γ > γ1 convexity yields P(γ) = 0, hence the function is not analytic at γ1 and we
have an ultimate phase transition (for γ = γ1). Analyticity for γ < γ1 follows from
Proposition 13. �

3.3.3. Proof of Theorem 4 for the general case. Now we consider V such that

V (x) = n−a + o(n−a) if d(x,K) = 2−n.
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γ1

z

γ

zc(γ)

z = P(γ)

z = log λ0,γ

γ0 γ2

Figure 6. Phase transition at γ1

For every fixed ε0, there exists some N0 such that for every n > N0 and for x such that
d(x,K) = 2−n, ∣∣∣∣V (x)− 1

na

∣∣∣∣ 6 ε0

na
.

We can incorporate this perturbation in the free path, assuming that any path with length
less than N0 is a free path. Then all the above computations are valid provided we replace
γ by γ(1± ε0). This does not affect the results.

3.4. The proof of Theorem 5. As a direct application of Theorem 4, we can give a
version of the Manneville-Pomeau map with a neutral Cantor set instead of a neutral
fixed point.

Proof of Theorem 5. Pick a > 0, and consider V and γ1 as in Subsection 3.3 (only for
a < 1). For a > 1 we pick any positive γ1. Define the canonical projection Π : Σ→ [0, 1]
by the dyadic expansion:

Π(x0, x1, x2, . . .) =
∑
j

xj
2j+1

.

It maps K to a Cantor subset of [0, 1]. Only dyadic points in [0, 1] have two preimages
under Π, namely x1 . . . xn10∞ and x1 . . . xn01∞ have the same image.

Lemma 16. There exists a potential W : Σ→ R such that

W (x) =
1

na
+ o(

1

na
) if d(x,K) = 2−n,

and it is continuous at dyadic points:

W (x1 . . . xn10∞) = W (x1 . . . xn01∞),

and is positive everywhere except on K where it is zero.

Proof. Let us consider the multi-valued function V ◦Π−1 on the interval. It is uniquely de-
fined at each non-dyadic point. For a dyadic point, consider the two preimages x1 . . . xn10∞

and x1 . . . xn01∞ in Σ.
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Case 1. The word x1 . . . xn (which is K-admissible) has a single suffix in K, say 0. This
means that x1 . . . xn0 is an admissible word for K but not x1 . . . xn1. Let x− := x1 . . . xn01∞

and x+ := x1 . . . xn10∞. Then

(19) d(x+,K) = 2−n > d(x−,K) > 2−n−4,

where the last inequality comes from the fact that x1 . . . xn0111 is not admissible for K.

We modify the potential V on the right side hand of the dyadic point Π(x1 . . . xn10∞) as
indicated on Figure 7.

Π(x1 . . . xn01
∞) Π(x1 . . . xn10

∞)

modification

Figure 7. The modification for words with a single suffix

The inequalities of (19) yield

V (x−) =
1

(n+ k)a
=

1

na
− ak

na+1
+ o(

1

na+2
) = V (x+) + o(V (x+)),

where k is an integer in [1, 4]. As the modification is done “convexly”, the new potential
W satisfies for these modified points

W (x) =
1

na
+ o(

1

na
) if d(x,K) = 2−n.

Case 2. The word x1 . . . xn (which is K-admissible) has two suffixes in K. It may be that
x+ and x− are at the same distance to K (see Figure 8). Then we do not need to change
the potential around this dyadic point.

If V (x+) 6= V (x−), neither x1 . . . xn0111 nor x1 . . . xn1000 are admissible for K and we
modify the potential linearly in that region in the interval as Figure 9.

Again we have

V (x+) =
1

(n+ j)a
=

1

na
+ o(

1

na
) and V (x−) =

1

(n+ k)a
=

1

na
+ o(

1

na
),

where j and k are different integers in {1, 2, 3, 4}. Hence, for these points too, W satisfies

W (x) =
1

na
+ o(

1

na
) if d(x,K) = 2−n.
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no modification

Π(x1 . . . xn10
∞)Π(x1 . . . xn01

∞)

Figure 8. No modification with two different suffixes

Π(x1 . . . xn01
∞) Π(x1 . . . xn10

∞)

modification

Figure 9. modification with two different suffixes

Positivity of W away from K follows from the positivity of V and the way of modifying it
to get W . Clearly W vanishes on K. �

The case a < 1. Continuing the proof of Theorem 5, the eigen-measure νa in Σ is a fixed
point for the adjoint of the transfer operator for γ1 (the pressure vanishes at γ1) for the
potential W . As the potential W is continuous and the shift is Markov, such a measure
always exists. It is conformal in the sense that

(20) ν(σ(B)) =

∫
B
eP(γ1)+γ1W dνa =

∫
B
eγ1W dνa,

for any Borel set B on which σ is one-to-one. Since we have a phase transition at γ1,
P(γ1) = 0. Note also that W is positive everywhere except on K where it vanishes.

Now consider the measure Π∗(νa) and its distribution function

θa(x) := νa([0
∞,Π(x))) = νa([0

∞,Π(x)]),
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the last equality resulting from the fact that νa is non-atomic. We emphasize that Π maps
the lexicographic order in Σ to the usual order on the unit interval [0, 1]. This enables us
to define intervals in Σ, for which we will use the same notation [x, y].

Let us now compute the derivative of fa define by

fa := θa ◦Π ◦ σ ◦Π−1 ◦ θ−1
a

at some point x ∈ [0, 1]. For h very small we define y and yh in [0, 1] such that Π∗νa([0, y]) =
x and Π∗νa([0, yh]) = x + h. Also define y and yh such that Π(y) = y and Π(yh) = yh.
Then we get

fa(x+ h)− fa(x)

h
=

νa([σ(y), σ(yh)])

νa([y, yh])

=
νa(σ([y, yh]))

νa([y, yh])

=
1

νa([y, yh])

∫
[y,yh]

eγ1W dνa →h→0 eγ1W (y).

This computation is valid if Π−1(y) is uniquely determined (namely y is not dyadic). If
yh is dyadic for some h, then we choose for yh the one closest to y.

If y is dyadic, then the same can be done provided we change the preimage of y by Π
depending on whether we compute left or right derivative. Nevertheless, the potential W
is continuous at dyadic points, hence fa has left and right derivative at every dyadic points
and they are equal.

We finally get f ′a(x) = eγ1W◦Π
−1(x) (this make sense also for dyadic points) and then

log f ′a(x) = γ1W ◦Π−1(x). Therefore fa is C1 and as W is positive away from K and zero

on K, fa is expanding away from K̃ := θa ◦ Π(K) and is indifferent on K̃. For t ∈ [0,∞),
the lifted potential for −t log f ′a is −tγ1W ◦ Π−1, which has an ultimate phase transition
for t = 1 and a ∈ (0, 1). �

The case a > 1. Computations are similar to the case a < 1, except that we have to add
the pressure for γ1. The construction is the same, but the map fa satisfies :

f ′a(x) = eγ1W◦Π
−1(x)+P(γ1).

This extra term is just a constant and then, the thermodynamic formalism for −t log f ′a is
the same that the one for −tγ1W ◦Π−1.

3.5. Unbounded potentials: Proof of Theorem 6. We know from Subsection 2.5
that R fixes the potential Vu, defined in (9). In this section we set g ≡ α, which gives
Vu = α(k − 1) on (σ ◦ H)k(Σ) \ (σ ◦ H)k+1(Σ). For the thermodynamic properties of
this potential, the interesting case is α < 0 (see the Introduction before the statement of
Theorem 6 and the Appendix).

Lemma 17. Let α < 0. Then
∫
Vudµ >

∫
Σ VudµK = 0 for every shift-invariant measure

probability µ.



30 HENK BRUIN AND RENAUD LEPLAIDEUR

Proof. As in Lemma 6, the set (σ ◦H)k(Σ) = σ2k−1 ◦Hk([00] t [10] t [01] t [11]) consists
of four 2k + 1-cylinders containing the points 1ρ0, 0ρ0, 1ρ1 and 1ρ1 respectively, and
they are mapped into the two 2k-cylinders containing ρ0 and ρ1. In other words, (σ ◦
H)k(Σ) = σ−1◦Hk(Σ), and by Lemma 5, its next 2k shifts are pairwise disjoint. Therefore

µK((σ◦H)k(Σ)) = 2−k and µK((σ◦H)k(Σ)\(σ◦H)k+1(Σ)) = 2−(k+1). Since Vu = α(k−1)
on (σ ◦H)k(Σ) \ (σ ◦H)k+1(Σ) this gives∫

Vu dµK = α
∑
k>0

(k − 1)2−(k+1) = −α
2

+ α
∑
k>2

k2−(k+1) = 0.

Again, since σj((σ ◦ H)k(Σ) is disjoint from ((σ ◦ H)k(Σ)) for 0 < j < 2k, its µ-mass is
at most 2−k for any shift-invariant probability measure µ. Since Vu is decreasing in k (for
α < 0), we can minimize the integral

∫
Vu dµ by putting as much mass on (σ ◦ H)k(Σ)

as possible, for each k. But this means that the µ-mass of (σ ◦ H)k(Σ) \ (σ ◦ H)k+1(Σ)

becomes 2−(k+1) for each k, and hence µ = µK. �

Remark 6. As a by-product of our proof, µ
(
(σ ◦H)k(Σ)

)
6 2−k for any invariant prob-

ability µ and k > 2. �

For fixed α < 0, the integral
∫
Vu dµ is non-negative and we define for γ > 0

P(γ) := sup
µ σ−inv

{
hµ − γ

∫
Vu dµ

}
.

Proposition 18. For any γ > 0 there exists an equilibrium state for −γVu.

To prove this proposition, we need a result on the accumulation value lim infε→0

∫
Vudνε

if {νε}ε is a family of invariant probability measures.

Lemma 19. Let νε be a sequence of invariant probability measures converging to ν in the
weak topology as ε→ 0. Let us set ν := (1−β)µ+βµK, where µ is an invariant probability
measure satisfying µ(K) = 0 and β ∈ [0, 1]. Then,

lim inf
ε→0

∫
Vu dνε > (1− β)

∫
Vu dµ.

Proof of Lemma 19. Let us consider an η-neighborhood Oη of K consisting of finite union

of cylinders. Clearly (σ ◦H)j ⊂ Oη for j = j(η) > 2 sufficiently large (and j(η) → ∞ as
η → 0).

Let νε be an invariant probability measure. Following the same argument as in the proof
of Lemma 17 and in particular Remark 6, we claim that∫

1IOηVu dνε > −
α

2
νε (Oη \ (σ ◦H)(Σ)) + α

∑
k>j

k2−(k+1)

holds. Then we have∫
Vu dνε >

∫
1IΣ\OηVu dνε −

α

2
νε(Oη \ (σ ◦H)(Σ)) + α

∑
k>j

k2−(k+1)

>
∫

1IΣ\OηVu dνε + α
∑
k>j

k2−(k+1).(21)
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Note that 1IΣ\OηVu is a continuous function. Thus, limε→0

∫
1IΣ\OηVu dνε exists and is

equal to
∫

1IΣ\OηVu dν = (1 − β)
∫

1IΣ\OηVu dµ. As η → 0, this quantity decreases and

converges to (1 − β)
∫
Vu dµ (here we use µ(K) = 0). Therefore, passing to the limit in

(21) first in ε and then in η we get

lim inf
ε→0

∫
Vu dνε > (1− β)

∫
Vu dµ.

�

Proof of Proposition 18. We repeat the argument given in the proof of Proposition 13 and
adapt it as in [20]. Let νε be a probability measure such that

(22) hνε − γ
∫
Vu dνε > P(γ)− ε,

and let ν be any accumulation point of νε. As Vu is discontinuous we cannot directly pass
to the limit ε → 0 and claim that the integral of the limit measure is the limit of the
integrals. However, we claim that Vu is continuous everywhere but at the four points 0ρ0,
0ρ1, 1ρ0 and 1ρ1 (see and adapt the proof of Lemma 6). These points are in K and their
orbits are dense in K. We thus have to consider two cases.

• ν(K) = 0. Then a standard argument in measure theory says that we do not see
the discontinuity, and passing to the limit as ε→ 0 in (22),

P(γ) > hν − γ
∫
Vu dν > P(γ),

which means that ν is an equilibrium state.
• ν(K) > 0. In this case we can write ν = βµK + (1− β)µ, where µ is a σ-invariant

probability satisfying µ(K) = 0 and β belongs to (0, 1]. Therefore

hν = βhµK + (1− β)hµ = (1− β)hµ.

Lemma 19 yields

(23) lim inf
ε→0

∫
Vu dνε > (1− β)

∫
Vu dµ.

Hence, passing to the limit in Inequality (22), Inequality (23) shows that

P(γ) 6 (1− β)hµ − γ(1− β)

∫
Vu dµ.

This last inequality is impossible if β < 1, by definition of the pressure. This yields that
νε converges to µK, and hνε converges to 0. Then (23) shows that P(γ) 6 0.

On the other hand P(γ) > 0 because the pressure is larger than the free energy for µK,
which is zero. Therefore µK is an equilibrium state. �

In order to use Proposition 13 we need to check that Vu satisfies the hypotheses.

Lemma 20. For every cylinder J which does not intersect K, the potential Vu satisfies
the local Bowen property (12).
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Proof. Actually, Vu satisfies a stronger property: if x = x0x1 . . . and y = y0y1 . . . are in J
(a fixed cylinder with J ∩ K = ∅), if n is their first return time in J , and if xk = yk for
any 0 6 k < n, then (SnVu)(x) = (SnVu)(y).

Assume that J is a k-cylinder, and assume without loss of generality that n > k. The
coordinates xj and yj coincide for 0 6 j < n, but since J is a k-cylinder, we actually have

xj = yj for 0 6 j 6 n+ k − 1.

We recall that Vu is constant on sets of the form (σ ◦H)m(Σ) \ (σ ◦H)m+1(K). Therefore,
to compute Vu(z) for z ∈ Σ we have to know which set (σ ◦H)m(Σ) \ (σ ◦H)m+1(K) it
belongs to. Lemma 6 shows that z = z0, z1, . . . belongs to (σ ◦H)m(Σ) \ (σ ◦H)m+1(K) if
and only if z1 . . . z2m coincides with [ρ0]2m or [ρ1]2m and m is the largest integer with this
property.

Let us now study Vu(σj(x)) (and Vu(σj(y))) for j between 0 and n − 1. We have to find
the largest integer m such that zj+1 . . . zj+1+2m coincides with [ρ0]2m or [ρ1]2m . As J does
not intersect K, the word xn, . . . , xn+k−1 (which is also the word yn, . . . , yn+k−1) is not
admissible for K. Therefore, the largest m such that zj+1 . . . zj+1+2m coincides with [ρ0]2m
or [ρ1]2m satisfies

2m 6 n− j + k − 1.

In other words, the integer m only depends on the digits where σj(x) and σj(y) coincide.
Therefore Vu(σj(x)) = Vu(σj(y)). �

Remark 7. An important consequence of Proposition 18 and Lemma 20 is that the con-
clusions of Proposition 13 hold. Although the potential Vu is not continuous (and in fact
undefined at σ−1({ρ0, ρ1})), it satisfies the local Bowen condition, so that the discontinuity
is “invisible” for the first return map to J . Proposition 18 then implies the existence of an
equilibrium state. Furthermore, the critical zc(γ) 6 P(γ). By a similar argument as used
in [20, Proposition 3.10] it can be checked that the conclusion of Lemma 19 holds despite
the discontinuity of Vu. �

Lemma 21. Take α < 0 and consider the potential Vu and some cylinder set J dis-
joint from K. The critical parameter for the convergence of (Lz,γ1IJ)(x) satisfies zc(γ) >
2−e

−γα+2+1 > 0 for every γ ∈ R and x ∈ J .

Proof. We now explore the thermodynamic formalism of the unbounded fixed point Vu of
R given by Equation 10. This potential is piecewise constant, and the value on cylinder
sets intersecting K can be pictured schematically (with α = −1) as follows:

ρ0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 · · ·
ρ1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 · · ·
Vu 1 0 1 −1 1 0 1 −2 1 0 1 −1 1 0 1 −3 · · ·

Here, the third line indicates the value of Vu at σn(ρj) for n = 0, 1, 2, 3, . . . and j = 0, 1.

A single ergodic sum of length b = 2k+1 − 2k−i(with α < 0 arbitrary again) for points x
in the same cylinder as ρ0 or ρ1 is

(SbVu)(x) =

2k+1−2k−i−1∑
j=0

Vu(σj(x)) = −α(1 + i).



RENORMALIZATION AND THERMODYNAMICS 33

Therefore, the contribution of a single excursionis

Φz,γ(ξ) =
N∑
j=1

bj−1∑
k=0

γα(1− ij)− bjz

where i = ij is such that bj = 2k+1 − 2k−i. The contribution to (Lz,γ1IJ)(x) of one cluster
of excursions then becomes Ez,γ(ξ) >

∑
N>1A

N , where (assuming that z > 0)

A =
∑

allowed
b>1

eγα(1+i)−bz =
∑
k>1

k−1∑
i=0

eγα(1+i)−(2k+1−2k−i)z

> eγα
∑
k>1

k−1∑
i=0

eiγα−2k+1z

= eγα
∑
k>1

1− eγαk
1− eγα e

−2k+1z > eγα
∑
k>1

e−2k+1z

Take an integer M > e−γα+2 and z = 2−(M+1). Then taking only the M first terms of the
above sum, we get the the entire sum is larger than

eγαMe−2M+1z > eγαe−γα+2e−1 = e > 1.

Therefore, A > 1 and
∑
AN diverges. Hence, the critical zc(γ) > 2−e

−γα+2+1 > 0 for all
γ > 0. �

Proof of Theorem 6. It is just a consequence of Proposition 13 that a phase transition can
only occur at the zero pressure. This never happens, hence the pressure is analytic on
[0,∞) and there is a unique equilibrium state for −γVu. �

Appendix: The Thue-Morse subshift and the Feigenbaum map

The logistic Feigenbaum map fq-feig : I → I is conjugate to unimodal interval map ffeig,
which solves a renormalization equation

(24) f2
feig ◦Ψ(x) = Ψ ◦ ffeig(x),

for all x ∈ I, where Ψ is an affine contraction depending on ffeig. Note that ffeig is not a
quadratic map, but it has a quadratic critical point c. See [11] and [23, Chapter VI] for
an extensive survey.

As a result of (24), ffeig is infinitely renormalizable of Feigenbaum type, i.e., there is a
nested sequence Mk of periodic cycles of 2k-periodic intervals such that each component
of Mk contains two components of Mk+1. The intersection A := ∩k>0Mk is a Cantor
attractor on which ffeig acts as a dyadic adding machine. The renormalization scaling
Ψ : Mk → M crit

k+1, where M crit
k is the component of Mk containing the critical point, and

on each M crit
k we have f2k+1

feig ◦Ψ = Ψ ◦ f2k
feig.

Furthermore, A coincides with the critical ω-limit set ω(c) and it attracts every point
in I except for countably many (pre-)periodic points of (eventual) period 2k for some
k > 0. Hence ffeig : I → I has zero entropy, and the only probability measures it preserves
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are Dirac measures on periodic orbits and a unique measure on A. This means that
ffeig : I → I is not very interesting from a thermodynamic point of view. However, we
can extend ffeig to a quadratic-like map on the complex domain, with a chaotic Julia set
J supporting topological entropy log 2, and its dynamics is a finite-to-one quotient of the
full two-shift (Σ, σ). Equation (24) still holds for the complexification ffeig : U0 → V0

(a quadratic-like map, to be precise), where Ψ is a linear holomorphic contraction, and
U0 b V0 are open domains in C such that U0 contains the unit interval. Renormalization in
the complex domain thus means that M crit

1 extends to a disks U1 b V1 and f2
feig : U1 → V1

is a two-fold branched cover with branch-point c. The little Julia set

J1 = {z ∈ U1 : f2n
feig(z) ∈ U1 for all n > 0}

is a homeomorphic copy under Ψ of the entire Julia set J , but it should be noted that
most points in U1 eventually leave U1 under iteration of f2

feig: U1 is not a periodic disk,

only the real trace M crit
1 = U1 ∩R is 2-periodic. The same structure is found at all scales:

M crit
k = Uk ∩ R, Uk b Vk and f2k

feig : Uk → Vk is a two-fold covering map with little Julia
set

Jk := {z ∈ U1 : f2kn
feig (z) ∈ U1 for all n > 0} = Ψ(Jk−1).

To explain the connection between ffeig : J → J and symbolic dynamics, we first observe
that the kneading sequence ρ (i.e., the itinerary of the critical value ffeig(c)) is the fixed
point of a substitution

Hfeig :

{
0→ 11,
1→ 10.

Let Σfeig = orbσ(ρ) be the corresponding shift space. If we quotient over the equivalence
relation x ∼ y if x = y or x = w0ρ and y = w1ρ (or vice versa) for any finite and possibly
empty word w, then Σfeig ∼ is homeomorphic to A, and the itinerary map i : A → Σfeig/ ∼
conjugates ffeig to the shift σ.

To make the connection with the Thue-Morse shift, observe that the sliding block code
π : Σ→ Σ defined by

π(x)k =

{
1 if xk 6= xk+1,
0 if xk = xk+1,

is a continuous shift-commuting two-to-one covering map. The fact that it is two-to-one is
easily seen because if xk = 1− yk for all k, then π(x) = π(y). Surjectivity can also easily
be proved; once the first digit of π−1(z) is chosen, the following digits are all uniquely
determined. It also transforms the Thue-Morse substitution H into Hfeig in the sense that
Hfeig ◦ π = π ◦H. For the two Thue-Morse fixed points of H we obtain

π(ρ0) = π(ρ0) = ρ = 10111010101110111011101010111010 . . .

Figure 10 summarizes all this in a single commutative diagram.

The Cantor set K factorizes over Σfeig and hence over the Cantor attractor A. The interme-
diate space L factorizes over the real core [c2, c1] in the Julia set J and we can characterize
its symbolic dynamics by means of a particular order relation. Namely, itineraries i(z) of
z ∈ [c2, c1] are exactly those sequences that satisfy

σ(ρ) 6pl σ
n ◦ i(z) 6pl ρ for all n > 0.
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ρ0, ρ1 ∈ K ⊂ L ⊂ Σ - Σ
H Thue-Morse subst. H :

{
0→ 01
1→ 10

? ?

π π π(x)k =

{
1 if xk 6= xk+1

0 if xk = xk+1

ρ ∈ Σfeig ⊂ π(L) ⊂ Σ - Σ
Hfeig Feigenbaum subst. Hfeig :

{
0→ 11
1→ 10

? ?

∼ ∼ Equivalence relation w1ρ ∼ w0ρ

Σ/ ∼ - Σ/ ∼
Hfeig

6 6
i i

i is the itinerary map

ffeig(0) ∈ A ⊂ [c2, c1] ⊂ J - J1

Ψ Ψ : J → J1 is renormalization scaling

J1is the first little Julia set

Feigenbaum map ffeig on Julia set J

Figure 10. Commutative diagram linking the Thue-Morse substitution
shift to the Feigenbaum map. Further commutative relations:
π is continuous, two-to-one and σ ◦ π = π ◦ σ.
i : [c2, c1]→ π(L)/ ∼ is a homeomorphism and σ ◦ i = i ◦ ffeig.
σ2 ◦H = H ◦ σ, σ2 ◦Hfeig = Hfeig ◦ σ and f2

feig ◦ ψ = ψ ◦ ffeig.

Here 6pl is the parity-lexicographical order by which z <pl z
′ if and only if there is a prefix

w such that{
z = w0 . . . , z′ = w1 . . . and w contains an even number of 1s,

z = w1 . . . , z′ = w0 . . . and w contains an odd number of 1s.

On the level of itineraries, the substitution Hfeig plays the role of the conjugacy Ψ:

i ◦Ψ(x) = Hfeig ◦ i(x) for all x ∈ [c2, c1].

Also let 6l denote the usual lexicographical order.

Lemma 22. Let [0] and [1] denote the one-cylinders of Σ. The map π : ([0],6l)→ (Σ,6pl)
is order preserving and π : ([1],6l)→ (Σ,6pl) is order reversing.

Proof. First we consider [0] and let w = 0n, then w0 · · · <l w1 . . . and

(25) π(w0 . . . ) = 0n . . . 6pl 0n−11 · · · = π(w1 . . . ).

Now if we change the k-th digit in w (for k > 2), then still w0 <l w1 and both the k-th
and k− 1-st digit of π(w . . . ) change. This does not affect the parity of 1s in π(w) and so
(25) remains valid. Repeating this argument, we obtain that π is order-preserving for all
words w starting with 0.

Now for the cylinder [1] and w = 10n−1, we find w0 · · · <l w1 . . . and

π(w0 . . . ) = 10n−1 . . . >pl 10n−21 · · · = π(w1 . . . ).
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The same argument shows that π reverses order for all words w starting with 1. �

This lemma shows that π−1 ◦ i([c2, c1]) consists of the sequence s such that for all n,{
σ(ρ1) 6l σn(s) 6l ρ1 if σn(s) starts with 1,

ρ0 6l σn(s) 6l σ(ρ0) if σn(s) starts with 0.

However, the class of sequence carries no shift-invariant measures of positive entropy, and
the thermodynamic formalism reduces to finding measures that maximize the potential.
The measure supported furthest away from K is the Dirac measure on 01 (with π(01) = 1).

Instead, if we look at the entire Julia set J , the combination of π and the quotient map
do not decrease entropy, and the potential − log |f ′feig| has thermodynamic interest for the
complexified Feigenbaum map ffeig : J → J . Since Ψ is affine, differentiating (24) and
taking logarithms, we find that

Rfeig(log |f ′feig|) := log |f ′feig| ◦ ffeig ◦ ψ + log |f ′feig| ◦Ψ = log |f ′feig|,

so Vfeig := log |f ′feig| is a fixed point of the renormalization operator Rfeig mimicking R.

Furthermore, since Uk = Ψk−1(U1), its size is exponentially small in k and hence there is
some fixed α < 0 such that Vfeig ≈ α(k − 1) on Uk \ Uk+1. Since Uk \ Uk+1 corresponds
to the cylinder (σ ◦H)k−1 \ (σ ◦H)k, the potential Vu from Section 2.5 is comparable to
Vfeig. As shown in Section 3.5, Vu exhibits no phase transition.

The following proposition for complex analytic maps is stated in general terms, but proves
the phase transition of Feigenbaum maps in particular.

Proposition 23. Let f : C → C be an n-covering map without parabolic periodic points
such that the omega-limit set ω(Crit) of the critical set is nowhere dense in its Julia set
J , and such that there is some c ∈ Crit such that f : ω(c) → ω(c) has zero entropy and
Lyapunov exponent. Then for φ = log |f ′| and every γ > 2, P(−γφ) = 0.

Proof. As f has no parabolic points, λ0 := inf{|(fn)′(p)| : p ∈ J is an n-periodic point} >
1. Obviously, all the invariant measures µ supported on ω(c) have hµ− γ

∫
log |f ′|dµ = 0,

so P(−γφ) > 0.

To prove the other inequality, we fix γ > 2 and for some f -invariant measure µ, we choose a
neighborhood U intersecting J but bounded away from orb(Crit) such that µ(U) > 0. We

can choose diam(U) so small compared to the distance d(orb(Crit), U) that Kγ−1 < λγ−2
0

where K is the distortion constant in the Koebe Lemma, see [24, Theorem 1.3]. Since
K → 1 as κ := diam(U)/d(orb(Crit), U) → 0, we can satisfy the condition on K by
choosing U small enough.

Let F : ∪iUi → U be the first return map to U . Each branch F |Ui = f τi |Ui , with first return
time τi > 0 can be extended holomorphically to f τi : Vi → f τi(Ui) where f τi(Vi) contains
a disc around f τi(Ui) of diameter > d(orb(Crit), U) > diam(f τi(Ui))/κ. Hence the Koebe
Lemma implies that the distortion of f τi |Ui is bounded by K = K(κ). Furthermore, since
each Ui contains a τi-periodic point of multiplier > λ0, we have diam(Ui)/diam(U) 6
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K/λ0. Therefore, for any x ∈ U ,

L0,γ(1IJ)(x) =
∑

i,∃x′∈Ui F (x′)=x

|F ′(x′)|−γ

6
∑
i

K

(
diam(Ui)

diam(U)

)γ
6

∑
i

K
area(Ui)

area(U)

(
K

λ0

)γ−2

6 Kγ−1λ
−(γ−2)
0

∑
i

area(Ui)

area(U)
.

Since the regions Ui are pairwise disjoint, the sum in the final line 6 1, so our choice of
K gives that the above quantity is bounded by 1. Therefore the radius of convergence
λ0,γ 6 1. Taking the logarithm and using Abramov’s formula, we find that the pressure
P(−γφ) 6 0. �
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