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Abstract. This paper is devoted to the study a nonlinear heat equation associ-

ated with Dirichlet-Robin conditions. At first, we use the Faedo – Galerkin and the

compactness method to prove existence and uniqueness results . Next, we consider the

properties of solutions. We obtain that if the initial condition is bounded then so is the

solution and we also get asymptotic behavior of solutions as t→ +∞. Finally, we give

numerical results.
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1 Introduction

In this paper, we consider the following nonlinear heat equation

ut − ∂
∂x

[µ (x, t) ux] + f(u) = f1(x, t), 0 < x < 1, 0 < t < T, (1.1)

associated with conditions

ux(0, t) = h0u(0, t) + g0(t), − ux(1, t) = h1u(1, t) + g1(t), (1.2)
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and initial condition
u(x, 0) = u0(x), (1.3)

where u0, µ, f, f1, g0, g1 are given functions satisfying conditions, which will be specified
later, and h0, h1 ≥ 0 are given constants, with h0 + h1 > 0.

The conditions (1.2) are commonly known as Dirichlet – Robin conditions. They
connect Dirichlet and Neumann conditions. Theses conditions arise from the effect of
excess inert electrolytes in an electrochemical system through perturbation analysis
([2], [6], [7], [8]).

The governing equations (1.2) are the equation usually used in a diffusion, con-
vection, migration transport system with electrochemical reactions occurring at the
boundary electrodes and submitted to non linear constraints.

In electrochemistry, the oxidation-reduction reactions producing the current is mod-
eled by a non linear elliptic boundary value problem, linearization of which gives the
Dirichlet – Robin conditions ([3]). Theses conditions also appear in the response of an
electrochemical thin film, such as separation in a micro – battery. His analyze is made
by solving the Poisson – Nernst – Planck equation subject to boundary conditions
appropriate (Dirichlet – Robin conditions) for an electrolytic cell ([4]).

The paper consists of six sections. In Section 2, we present some preliminaries.
Using the Faedo – Galerkin method and the compactness method, in Section 3, we
establish the existence of a unique weak solution of the problem (1.1) – (1.3) on (0, T ),
for every T > 0. In section 4, we prove that if the initial condition is bounded, then so
is the solution. In section 5, we study asymptotic behavior of the solution as t→ +∞.
In section 6 we give numerical results.

2 Preliminaries

Put Ω = (0, 1), QT = Ω × (0, T ). We will omit the definitions of the usual
function spaces and denote them by the notations Lp = Lp(Ω), Hm = Hm (Ω) . Let
〈·, ·〉 be either the scalar product in L2 or the dual pairing of a continuous linear
functional and an element of a function space. The notation || · || stands for the norm
in L2 and we denote by || · ||X the norm in the Banach space X. We call X ′ the dual
space of X. We denote Lp(0, T ;X), 1 ≤ p ≤ ∞ the Banach space of real functions
u : (0, T ) → X measurable, such that ||u||Lp(0,T ;X) < +∞, with

||u||Lp(0,T ;X) =





(∫ T

0
||u(t)||pXdt

)1/p

, if 1 ≤ p <∞,

ess sup
0<t<T

||u(t)||X, if p = ∞.

Let u(t), u′(t) = ut(t) =
·
u(t), ux(t) = ▽u(t), uxx(t) = ∆u(t), denote u(x, t),

∂u
∂t
(x, t), ∂u

∂x
(x, t), ∂2u

∂x2 (x, t), respectively.

On H1 we shall use the following norms ‖v‖H1 =
(
‖v‖2 + ‖vx‖2

)1/2
, ‖v‖i =

(
v2(i) + ‖vx‖2

)1/2
, i = 0, 1.
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Let µ ∈ C0
(
QT

)
, with µ(x, t) ≥ µ0 > 0, for all (x, t) ∈ QT , and the constants

h0, h1 ≥ 0, with h0 + h1 > 0, we consider a familly of symmetric bilinear forms
{a(t; ·, ·)}0≤t≤T on H1 ×H1 as follows

a(t; u, v) =
∫ 1

0
µ(x, t)ux(x)vx(x)dx+ h0µ (0, t)u(0)v(0) + h1µ (1, t)u(1)v(1)

= 〈µ(t)ux, vx〉+ h0µ (0, t)u(0)v(0) + h1µ (1, t)u(1)v(1), for all u, v ∈ H1, 0 ≤ t ≤ T.
(2.1)

Then we have the following lemmas.
Lemma 2.1. The imbedding H1 →֒ C0([0, 1]) is compact and






‖v‖C0(Ω) ≤
√
2 ‖v‖H1 , for all v ∈ H1,

‖v‖C0(Ω) ≤
√
2 ‖v‖i , for all v ∈ H1, i = 0, 1.

(2.2)

Lemma 2.2. Let µ ∈ C0
(
QT

)
, with µ(x, t) ≥ µ0 > 0, for all (x, t) ∈ QT , and the

constants h0, h1 ≥ 0, with h0 + h1 > 0. Then, the symmetric bilinear form a(t; ·, ·) is
continuous on H1 ×H1 and coercive on H1, i.e.,

(i) |a(t; u, v)| ≤ aT ‖u‖H1 ‖v‖H1 ,

(ii) a(t; v, v) ≥ a0 ‖v‖2H1 ,
(2.3)

for all u, v ∈ H1, 0 ≤ t ≤ T, where aT = (1 + 2h0 + 2h1) sup
(x,t)∈QT

µ(x, t), and

a0 = a0(µ0, h0, h1) =





µ0min{h0, 12}, h0 > 0, h1 ≥ 0,

µ0min{h1, 12}, h1 > 0, h0 ≥ 0.
(2.4)

The proofs of these lemmas are straightforward. We shall omit the details.
Remark 2.1. It follows from (2.2) that on H1, v 7−→ ‖v‖H1 and v 7−→ ‖v‖i are

two equivalent norms satisfying

1√
3
‖v‖H1 ≤ ‖v‖i ≤

√
3 ‖v‖H1 , for all v ∈ H1, i = 0, 1. (2.5)
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3 The existence and uniqueness theorem

We make the following assumptions:

(H1) h0 ≥ 0 and h1 ≥ 0, with h0 + h1 > 0,

(H2) u0 ∈ L2,

(H3) g0, g1 ∈ W 1,1(0, T ),

(H4) µ ∈ C1([0, 1]× [0, T ]), µ(x, t) ≥ µ0 > 0, ∀(x, t) ∈ [0, 1]× [0, T ],

(H5) f1 ∈ L1(0, T ;L2),

(H6) f ∈ C0(R) satisfies the condition, there exist positive constants C1, C
′
1, C2 and p > 1,

(i) uf(u) ≥ C1 |u|p − C ′
1,

(2i) |f(u)| ≤ C2(1 + |u|p−1), for all u ∈ R.

The weak formulation of the initial boundary valued (1.1) – (1.3) can then be given
in the following manner: Find u(t) defined in the open set (0, T ) such that u(t) satisfies
the following variational problem

d
dt
〈u(t), v〉+ a(t, u(t), v) + 〈f(u), v〉 = 〈f1(t), v〉 − µ (0, t) g0(t)v(0)− µ (1, t) g1(t)v(1),

(3.1)
∀v ∈ H1, and the initial condition

u(0) = u0. (3.2)

We then have the following theorem.
Theorem 3.1. Let T > 0 and (H1)−(H6) hold. Then, there exists a weak solution

u of problem (1.1) – (1.3) such that





u ∈ L2(0, T ;H1) ∩ L∞(0, T ;L2),

tu ∈ L∞(0, T ;H1), tut ∈ L2(0, T ;L2).
(3.3)

Furthermore, if f satisfies the following condition, in addition,

(H7) (y − z) (f(y)− f(z)) ≥ −δ |y − z|2 , for all y, z ∈ R, with δ > 0,

then the solution is unique.
Proof. The proof consists of several steps.
Step 1: The Faedo – Galerkin approximation (introduced by Lions [5]).
Let {wj} be a denumerable base of H1. We find the approximate solution of the

problem (1.1) – (1.3) in the form

um(t) =
∑m

j=1 cmj(t)wj, (3.4)
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where the coefficients cmj satisfy the system of linear differential equations






〈u′m(t), wj〉+ a(t; um(t), wj) + 〈f(um(t)), wj〉

= 〈f1(t), wj〉 − µ (0, t) g0(t)wj(0)− µ (1, t) g1(t)wj(1), 1 ≤ j ≤ m,

um(0) = u0m,
(3.5)

where
u0m =

∑m
j=1 αmjwj → u0 strongly in L2. (3.6)

It is clear that for each m there exists a solution um(t) in form (3.4) which satisfies
(3.5) and (3.6) almost everywhere on 0 ≤ t ≤ Tm for some Tm, 0 < Tm ≤ T. The
following estimates allow one to take Tm = T for all m.

Step 2. A priori estimates.
a) The first estimate. Multiplying the jth equation of (3.5) by cmj(t) and summing

up with respect to j, afterwards, integrating by parts with respect to the time variable
from 0 to t, we get after some rearrangements

‖um(t)‖2 + 2
∫ t

0
a(s; um(s), um(s))ds+ 2

∫ t

0
〈f(um(s)), um(s)〉ds

= ‖u0m‖2 + 2
∫ t

0
〈f1(s), um(s)〉ds

−2
∫ t

0
µ (0, s) g0(s)um(0, s)ds− 2

∫ t

0
µ (1, s) g1(s)um(1, s)ds.

(3.7)

By u0m → u0 strongly in L2, we have

‖u0m‖2 ≤ C0, for all m, (3.8)

where C0 always indicates a bound depending on u0.
By the assumptions (H6, (i)), and using the inequalities (2.2), (2.3), and with β > 0,

we estimate without difficulty the following terms in (3.7) as follows

2
∫ t

0
a(s; um(s), um(s))ds ≥ 2a0

∫ t

0
‖um(s)‖2H1 ds, (3.9)

2
∫ t

0
〈f(um(s)), um(s)〉ds ≥ 2C1

∫ t

0
‖um(s)‖pLp ds− 2TC ′

1, (3.10)

2
∫ t

0
〈f1(s), um(s)〉ds ≤ ‖f1‖L1(0,T ;L2) +

∫ t

0
‖f1(s)‖ ‖um(s)‖2 ds, (3.11)

−2
∫ t

0
µ (0, s) g0(s)um(0, s)ds ≤ 2

√
2 ‖µ‖L∞(QT ) ‖g0‖L∞

∫ t

0
‖um(s)‖H1 ds

≤ 2
β
T ‖µ‖2L∞(QT ) ‖g0‖

2
L∞ + β

∫ t

0
‖um(s)‖2H1 ds,

(3.12)

−2
∫ t

0
µ (1, s) g1(s)um(1, s)ds ≤ 2

√
2 ‖µ‖L∞(QT ) ‖g1‖L∞

∫ t

0
‖um(s)‖H1 ds

≤ 2
β
T ‖µ‖2L∞(QT ) ‖g1‖

2
L∞ + β

∫ t

0
‖um(s)‖2H1 ds,

(3.13)
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for all β > 0. Hence, it follows from (3.7) – (3.13) that

‖um(t)‖2 + 2(a0 − β)
∫ t

0
‖um(s)‖2H1 ds+ 2C1

∫ t

0
‖um(s)‖pLp ds

≤ C0 + 2TC ′
1 + ‖f1‖L1(0,T ;L2) +

∫ t

0
‖f1(s)‖ ‖um(s)‖2 ds

+ 2
β
T ‖µ‖2L∞(QT )

(
‖g0‖2L∞ + ‖g1‖2L∞

)
.

(3.14)

Choosing β = 1
2
a0, we deduce from (3.14), that

Sm(t) ≤ C
(1)
T +

∫ t

0
C

(2)
T (s)Sm(s)ds, (3.15)

where




Sm(t) = ‖um(t)‖2 + a0
∫ t

0
‖um(s)‖2H1 ds+ 2C1

∫ t

0
‖um(s)‖pLp ds,

C
(1)
T = C0 + 2TC ′

1 + ‖f1‖L1(0,T ;L2) +
4
a0
T ‖µ‖2L∞(QT )

(
‖g0‖2L∞ + ‖g1‖2L∞

)
,

C
(2)
T (s) = ‖f1(s)‖ , C(2)

T ∈ L1(0, T ).

(3.16)

By the Gronwall’s lemma, we obtain from (3.15), that

Sm(t) ≤ C
(1)
T exp

(∫ t

0
C

(2)
T (s)ds

)
≤ CT , (3.17)

for all m ∈ N, for all t, 0 ≤ t ≤ Tm ≤ T, i.e., Tm = T, where CT always indicates a
bound depending on T.

b) The second estimate. Multiplying the jth equation of the system (3.5) by t2c′mj(t)
and summing up with respect to j, we have

‖tu′m(t)‖2 + t2a(t; um(t), u
′
m(t)) + 〈tf(um(t)), tu′m(t)〉

= 〈tf1(t), tu′m(t)〉 − t2µ (0, t) g0(t)u
′
m(0, t)− t2µ (1, t) g1(t)u

′
m(1, t).

(3.18)
First, we need the following lemmas.
Lemma 3.2.

(i) ∂a
∂t
(t; u, v) = 〈µ′ (·, t) ux, vx〉+ h0µ

′ (0, t)u(0)v(0) + h1µ
′ (1, t)u(1)v(1), for all u, v ∈ H1,

(ii)
∣∣∂a
∂t
(t; u, v)

∣∣ ≤ ãT ‖u‖H1 ‖v‖H1 , for all u, v ∈ H1,

(iii) d
dt
a(t; um(t), um(t)) = 2a(t; um(t), u

′
m(t)) +

∂a
∂t
(t; um(t), um(t)),

(3.19)
where ãT = (1 + 2h0 + 2h1) sup

(x,t)∈[0,1]×[0,T ]

µ′ (x, t) .

Lemma 3.3. Put λ0 =
(

C′

1

C1

)1/p

, m0 =
∫ λ0

−λ0
|f(y)| dy, and f(z) =

∫ z

0
f(y)dy,

z ∈ R.
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Then we have

−m0 ≤ f(z) ≤ C2(|z| + 1
p
|z|p), ∀z ∈ R. (3.20)

The proofs of these lemmas are straightforward. We shall omit the details.�
By (3.19)3, we rewrite (3.18) as follows

2 ‖tu′m(t)‖2 + d
dt
a(t; tum(t), tum(t)) + 2〈tf(um(t)), tu′m(t)〉

= 2ta(t; um(t), um(t)) +
∂a
∂t
(t; tum(t), tum(t)) + 2〈tf1(t), tu′m(t)〉

−2t2µ (0, t) g0(t)u
′
m(0, t)− 2t2µ (1, t) g1(t)u

′
m(1, t).

(3.21)

Integrating (3.21), we get

2
∫ t

0
‖su′m(s)‖2 ds+ a(t; tum(t), tum(t)) + 2

∫ t

0
〈sf(um(s)), su′m(s)〉ds

= 2
∫ t

0
sa(s; um(s), um(s))ds+

∫ t

0
∂a
∂t
(s; sum(s), sum(s))ds+ 2

∫ t

0
〈sf1(s), su′m(s)〉ds

−2
∫ t

0
s2µ (0, s) g0(s)u

′
m(0, s)ds− 2

∫ t

0
s2µ (1, s) g1(s)u

′
m(1, s)ds.

(3.22)
We shall estimate the terms of (3.22) as follows.

a(t; tum(t), tum(t)) ≥ a0 ‖tum(t)‖2H1 , (3.23)

2
∫ t

0
〈sf(um(s)), su′m(s)〉ds = 2

∫ t

0
s2ds d

ds

∫ 1

0
dx

∫ um(x,s)

0
f(y)dy

= 2
∫ t

0
s2ds d

ds

∫ 1

0
f(um(x, s))dx

= 2
∫ t

0

[
d
ds

(
s2

∫ 1

0
f(um(x, s))dx

)
− 2s

∫ 1

0
f(um(x, s))dx

]
ds

= 2t2
∫ 1

0
f(um(x, t))dx− 4

∫ t

0
sds

∫ 1

0
f(um(x, s))dx

≥ −2T 2m0 − 4C2

∫ t

0
s
[
‖um(s)‖L1 + 1

p
‖um(s)‖pLp

]
ds

≥ −2T 2m0 − 4TC2

[
T ‖um‖L∞(0,T ;L2) +

1
p

1
2C1

Sm(t)
]
≥ −CT ,

(3.24)

2
∫ t

0
sa(s; um(s), um(s))ds ≤ 2TaT

∫ t

0
‖um(s)‖2H1 ds ≤ 2TaT

1
a0
Sm(t) ≤ CT , (3.25)

∫ t

0
∂a
∂t
(s; sum(s), sum(s))ds ≤ ãT

∫ t

0
‖sum(s)‖2H1 ds ≤ T 2ãT

∫ t

0
‖um(s)‖2H1 ds

≤ T 2ãT
1
a0
Sm(t) ≤ CT ,

(3.26)
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2
∫ t

0
〈sf1(s), su′m(s)〉ds ≤ 2

∫ t

0
‖sf1(s)‖ ‖su′m(s)‖ ds ≤

∫ t

0
‖sf1(s)‖2 ds+

∫ t

0
‖su′m(s)‖2 ds

≤ T 2
∫ T

0
‖f1(s)‖2 ds+

∫ t

0
‖su′m(s)‖2 ds

≤ CT +
∫ t

0
‖su′m(s)‖2 ds.

(3.27)
By using integration by parts, it follows that

∣∣∣−2
∫ t

0
s2µ (0, s) g0(s)u

′
m(0, s)ds

∣∣∣

=
∣∣∣−2t2µ (0, t) g0(t)um(0, t) + 2

∫ t

0
[s2µ (0, s) g0(s)]

′
um(0, s)ds

∣∣∣

≤ 2
√
2t2 ‖µ‖L∞(QT ) ‖g0‖L∞ ‖um(t)‖H1 + 2

√
2
∫ t

0

∣∣[s2µ (0, s) g0(s)]′
∣∣ ‖um(s)‖H1 ds

≤ 2
β
T 2 ‖µ‖2L∞(QT ) ‖g0‖

2
L∞ + β ‖tum(t)‖2H1 + 2

√
2
∫ t

0

∣∣[s2µ (0, s) g0(s)]′
∣∣ ‖um(s)‖H1 ds

≤ 1
β
CT + β ‖tum(t)‖2H1 + 2

√
2
∫ t

0

∣∣[s2µ (0, s) g0(s)]′
∣∣ ‖um(s)‖H1 ds.

(3.28)
On the other hand
∣∣[s2µ (0, s) g0(s)]′

∣∣ = |2sµ (0, s) g0(s) + s2 [µ′ (0, s) g0(s) + µ (0, s) g′0(s)]|

≤ 2s ‖µ‖L∞(QT ) ‖g0‖L∞ + s2 ‖µ‖C1(QT ) [‖g0‖L∞ + |g′0(s)|]

≤ s ‖µ‖C1(QT ) [(2 + T ) ‖g0‖L∞ + T |g′0(s)|] ≤ sCTψ0(s),

(3.29)

where

CT = ‖µ‖C1(QT ) [(2 + T ) ‖g0‖L∞ + T ] , ψ0(s) = 1 + |g′0(s)| , ψ0 ∈ L1(0, T ). (3.30)

Hence, we deduce from (3.28), (3.29), that

∣∣∣−2
∫ t

0
s2µ (0, s) g0(s)u

′
m(0, s)ds

∣∣∣ ≤ 1
β
CT + β ‖tum(t)‖2H1 + 2

√
2CT

∫ t

0
ψ0(s) ‖sum(s)‖H1 ds

≤ 1
β
CT + β ‖tum(t)‖2H1 + 2C2

T

∫ T

0
ψ0(s)ds+

∫ t

0
ψ0(s) ‖sum(s)‖2H1 ds

≤ (1 + 1
β
)CT + β ‖tum(t)‖2H1 +

∫ t

0
ψ0(s) ‖sum(s)‖2H1 ds,

(3.31)
for all β > 0.

Similarly

−2
∫ t

0
s2µ (1, s) g1(s)u

′
m(1, s)ds ≤ (1 + 1

β
)CT + β ‖tum(t)‖2H1 +

∫ t

0
ψ1(s) ‖sum(s)‖2H1 ds,

(3.32)
for all β > 0, where

CT = ‖µ‖C1(QT ) [(2 + T ) ‖g1‖L∞ + T ] , ψ1(s) = 1 + |g′1(s)| , ψ1 ∈ L1(0, T ). (3.33)
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It follows from (3.22) – (3.27), (3.31) and (3.32), that

∫ t

0
‖su′m(s)‖2 ds+ a0 ‖tum(t)‖2H1

≤ (6 + 2
β
)CT + 2β ‖tum(t)‖2H1 +

∫ t

0
ψ0(s) ‖sum(s)‖2H1 ds

+
∫ t

0
ψ1(s) ‖sum(s)‖2H1 ds.

(3.34)

Choosing 2β = 1
2
a0, we deduce from (3.34), that

Xm(t) ≤ C
(1)

T +
∫ t

0
C

(2)

T (s)Xm(s)ds, (3.35)

where 



Xm(t) = ‖tum(t)‖2H1 +
∫ t

0
‖su′m(s)‖2 ds,

C
(1)

T =
(
1 + 2

a0

)
(6 + 8

a0
)CT ,

C
(2)

T (s) =
(
1 + 2

a0

)
(ψ0(s) + ψ1(s)) , C

(2)

T ∈ L1(0, T ).

(3.36)

By the Gronwall’s lemma, we obtain from (3.35), that

‖tum(t)‖2H1 +
∫ t

0
‖su′m(s)‖2 ds ≤ C

(1)

T exp
(∫ T

0
C

(2)

T (s)ds
)
≤ CT , (3.37)

for all m ∈ N, for all t ∈ [0, T ], ∀T > 0, where CT always indicates a bound depending
on T.

Step 3. The limiting process.
By (3.16), (3.17) and (3.37) we deduce that, there exists a subsequence of {um},

still denoted by {um} such that





um → u in L∞(0, T ;L2) weak*,

um → u in L2(0, T ;H1) weak,

tum → tu in L∞(0, T ;H1) weak*,

(tum)
′ → (tu)′ in L2(QT ) weak,

um → u in Lp(QT ) weak.

(3.38)

Using a compactness lemma ([5], Lions, p. 57) applied to (3.38)3,4, we can extract
from the sequence {um} a subsequence still denotes by {um}, such that

tum → tu strongly in L2(QT ). (3.39)

By the Riesz- Fischer theorem, we can extract from {um} a subsequence still de-
noted by {um}, such that

um(x, t) → u(x, t) a.e. (x, t) in QT = (0, 1)× (0, T ). (3.40)
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Because f is continuous, then

f(um(x, t)) → f(u(x, t)) a.e. (x, t) in QT = (0, 1)× (0, T ). (3.41)

On the other hand, by (H6, ii), it follows from (3.16), (3.17) that

‖f(um)‖Lp′(QT ) ≤ CT , (3.42)

where CT is a constant independent of m.
We shall now require the following lemma, the proof of which can be found in [5].
Lemma 3.4. Let Q be a bounded open set of R

N and Gm, G ∈ Lq(Q), 1 < q <∞,
such that,

‖Gm‖Lq(Q) ≤ C, where C is a constant independent of m,

and

Gm → G a.e. (x, t) in Q.

Then

Gm → G in Lq(Q) weakly.�

Applying Lemma 3.4 with N = 2, q = p′, Gm = f(um), G = f(u), we deduce from
(3.41), (3.42), that

f(um) → f(u) in Lp′(QT ) weakly. (3.43)

Passing to the limit in (3.5) by (3.6), (3.38), (3.43), we have satisfying the equation






d
dt
〈u(t), v〉+ a(t, u(t), v) + 〈f(u), v〉

= 〈f1(t), v〉 − µ (0, t) g0(t)v(0)− µ (1, t) g1(t)v(1), ∀v ∈ H1,

u(0) = u0.

(3.44)

Step 4. Uniqueness of the solutions.
First, we shall need the following Lemma.

Lemma 3.5. Let u be the weak solution of the following problem





ut − ∂
∂x

[µ (x, t) ux] = f̃(x, t), 0 < x < 1, 0 < t < T,

ux(0, t)− h0u(0, t) = ux(1, t) + h1u(1, t) = 0,

u(x, 0) = 0,

u ∈ L2(0, T ;H1) ∩ L∞(0, T ;L2) ∩ Lp(QT ),

tu ∈ L∞(0, T ;H1), tut ∈ L2(QT ).

(3.45)

Then

‖u(t)‖2 + 2
∫ t

0
a(s, u(s), u(s))ds = 2

∫ t

0
〈f̃(s), u(s)〉ds. (3.46)

The lemma 3.5 is a slight improvement of a lemma used in [1] ( see also Lions’s
book [5]).�
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Now, we will prove the uniqueness of the solutions. Assume now that (H7) is
satisfied.

Let u1 and u2 be two weak solutions of (1.1) – (1.3). Then u = u1 − u2 is a weak
solution of the following problem (3.45) with the right hand side function replaced by

f̃(x, t) = −f(u1) + f(u2). Using Lemma 3.5 we have equality

‖u(t)‖2 + 2
∫ t

0
a(s, u(s), u(s))ds = −2

∫ t

0
〈f(u1)− f(u2), u(s)〉ds. (3.47)

Using the monotonicity of f(y) + δy, we obtain

∫ t

0
〈f(u1)− f(u2), u(s)〉ds ≥ −δ

∫ t

0
‖u(s)‖2 ds. (3.48)

It follows from (3.47), (3.48) that

‖u(t)‖2 + 2a0
∫ t

0
‖u(s)‖2H1 ds ≤ 2δ

∫ t

0
‖u(s)‖2 ds. (3.49)

By the Gronwall’s Lemma that u = 0.
Therefore, Theorem 3.1 is proved.�

4 The boundedness of the solution

We now turn to the boundness of the solutions. For this purpose, we shall
make of the following assumptions

(H ′
1) h0 > 0 and h1 > 0,

(H ′
2) u0 ∈ L∞,

(H ′
5) f1 ∈ L2(QT ), f1(x, t) ≤ 0, a.e. (x, t) ∈ QT ,

(H ′
6) f ∈ C0(R) satisfies the assumptions (H6) , (H7) , and

uf(u) ≥ 0, ∀u ∈ R, |u| ≥ ‖u0‖L∞ .

We then have the following theorem.
Theorem 4.1. Let (H ′

1), (H
′
2), (H3), (H4), (H

′
5), (H

′
6) hold. Then the unique weak

solution of the initial and boundary value problem (1.1) – (1.3), as given by theorem

3.1, belongs to L∞(QT ).
Furthermore, we have also

‖u‖L∞(QT ) ≤ max
{
‖u0‖L∞ , 1

h0
‖g0‖L∞(0,T ) ,

1
h1

‖g1‖L∞(0,T )

}
.� (4.1)

Remark 4.1. Assumption (H ′
2) is both physically and mathematically natural in

the study of partial differential equation of the kind of (1.1) – (1.3), by means of the
maximum principle.

Proof of Theorem 4.1. First, let us assume that

u0(x) ≤ M, a.e., x ∈ Ω, and max
{

1
h0

‖g0‖L∞(0,T ) ,
1
h1

‖g1‖L∞(0,T )

}
≤M. (4.2)

11



Then z = u−M satisfies the initial and boundary value





zt − ∂
∂x

[µ (x, t) zx] + f(z +M) = f1(x, t), 0 < x < 1, 0 < t < T,

zx(0, t) = h0 [z(0, t) +M ] + g0(t), − zx(1, t) = h1 [z(1, t) +M ] + g1(t),

z(x, 0) = u0(x)−M.

(4.3)

Multiplying equation (4.3)1 by v, for v ∈ H1 integrating by parts with respect
to variable x and taking into account boundary condition (4.3)2, one has after some
rearrangements
∫ 1

0
ztvdx+

∫ 1

0
µ (x, t) zxvxdx+ µ (0, t) [h0(z(0, t) +M) + g0(t) ] v(0)

+µ (1, t) [h1(z(1, t) +M) + g1(t) ] v(1)

+
∫ 1

0
f(z +M)vdx =

∫ 1

0
f1(x, t)vdx, for all v ∈ H1.

(4.4)
Noticing from assumption (H ′

1) we deduce that the solution of the initial and bound-
ary value problem (1.1) – (1.3) belongs to L2(0, T ;H1)∩L∞(0, T ;L2)∩Lp(QT ), so that
we are allowed to take v = z+ = 1

2
(|z|+ z) in (4.4). Thus, it follows that

∫ 1

0
ztz

+dx+
∫ 1

0
µ (x, t) zxz

+
x dx+ µ (0, t) [h0(z(0, t) +M) + g0(t) ] z

+(0, t)

+µ (1, t) [h1(z(1, t) +M) + g1(t) ] z
+(1, t)

+
∫ 1

0
f(z +M)z+dx =

∫ 1

0
f1(x, t)z

+dx.

(4.5)

Hence

1
2

d
dt
‖z+(t)‖2 + a(t, z+(t), z+(t)) +

∫ 1

0
f(z+ +M)z+dx =

∫ 1

0
f1(x, t)z

+dx

−µ (0, t) (h0M + g0(t)) z
+(0, t)− µ (1, t) (h1M + g1(t)) z

+(1, t) ≤ 0.
(4.6)

since

M ≥ max{ 1
h0

‖g0‖L∞ , 1
h1

‖g1‖L∞} and

∫ 1

0
ztz

+dx =
∫ 1

0, z>0
(z+)t z

+dx = 1
2

d
dt

∫ 1

0, z>0
|z+|2 dx = 1

2
d
dt

∫ 1

0
|z+|2 dx = 1

2
d
dt
‖z+(t)‖2 .

(4.7)
and on the domain z > 0 we have z+ = z and zx = (z+)x.

On the other hand, by the assumption (H ′
2) and the inequality (2.3), we obtain

a(t, z+(t), z+(t)) ≥ a0 ‖z+(t)‖2H1 . (4.8)

Using the monotonicity of f(z) + δz and (H7) we obtain
∫ 1

0
f(z+ +M)z+dx =

∫ 1

0
[f(z+ +M)− f(M)] z+dx+

∫ 1

0
f(M)z+dx

≥ −δ
∫ 1

0
|z+|2 dx+

∫ 1

0
f(M)z+dx ≥ −δ

∫ 1

0
|z+|2 dx = −δ ‖z+(t)‖2 .

(4.9)
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Hence, it follows from (4.6), (4.8), (4.9) that

1
2

d
dt
‖z+(t)‖2 + a0 ‖z+(t)‖2H1 ≤ δ ‖z+(t)‖2 . (4.10)

Integrating (4.10), we get

‖z+(t)‖2 ≤ ‖z+(0)‖2 + 2δ
∫ t

0
‖z+(s)‖2 ds. (4.11)

Since z+(0) = (u(x, 0)−M)+ = (u0(x)−M)+ = 0, hence, using Gronwall’s Lemma,
we obtain ‖z+(t)‖2 = 0. Thus z+ = 0 and u(x, t) ≤M, for a.e. (x, t) ∈ QT .

The case −M ≤ u0(x), a.e., x ∈ Ω, andM ≥ max
{

1
h0

‖g0‖L∞(0,T ) ,
1
h1

‖g1‖L∞(0,T )

}

can be dealt with, in the same manner as above, by considering z = u + M and
z− = 1

2
(|z| − z), we also obtain z− = 0 and hence u(x, t) ≥ −M, for a.e. (x, t) ∈ QT .

From all above, one obtains |u(x, t)| ≤M, a.e. (x, t) ∈ QT , i.e.,

‖u‖L∞(QT ) ≤M, (4.12)

for all M ≥ max
{
‖u0‖L∞ ,

1
h0

‖g0‖L∞(0,T ) ,
1
h1

‖g1‖L∞(0,T )

}
.

This implies (4.1). Theorem 4.1 is proved.�

5 Asymptotic behavior of the solution as t→ +∞.

In this part, let T > 0, (H1)− (H7) hold. Then, there exists a unique solution u of
problem (1.1) – (1.3) such that





u ∈ L2(0, T ;H1) ∩ L∞(0, T ;L2) ∩ Lp(QT ),

tu ∈ L∞(0, T ;H1), tu′ ∈ L2(QT ).

We shall study asymptotic behavior of the solution u(t) as t→ +∞.
Wemake the following supplementary assumptions on the functions µ (x, t) , f1 (x, t) ,

g1(t), g2(t).

(H ′′
3 ) g0, g1 ∈ W 1,1(R+),

(H ′′
4 ) µ ∈ C1([0, 1]× R+), µ(x, t) ≥ µ0 > 0, ∀(x, t) ∈ [0, 1]× R+,

(H ′′
5 ) f1 ∈ L∞(0,∞;L2),

(H ′′
6 ) There exist the positive constants C1, γ1, g0∞, g1∞ and the functions

µ∞ ∈ C1([0, 1]), f1∞ ∈ L2, such that

(i) |g0(t)− g0∞| ≤ C1e
−γ1t, ∀t ≥ 0,

(ii) |g1(t)− g1∞| ≤ C1e
−γ1t, ∀t ≥ 0,

(iii) ‖µ (t)− µ∞‖L∞ ≤ C1e
−γ1t, ∀t ≥ 0, µ∞(x) ≥ µ0 > 0, ∀x ∈ [0, 1],

(iv) ‖f1(t)− f1∞‖ ≤ C1e
−γ1t, ∀t ≥ 0.
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First, we consider the following stationary problem




− ∂

∂x
[µ∞ (x) ux] + f(u) = f1∞(x), 0 < x < 1,

ux(0) = h0u(0) + g0∞, − ux(1) = h1u(1) + g1∞.
(5.1)

The weak solution of problem (5.1) is obtained from the following variational prob-
lem.

Find u∞ ∈ H1 such that

a∞(u∞, v) + 〈f(u∞), v〉 = 〈f1∞, v〉 − µ∞(0)g0∞v(0)− µ∞(1)g1∞v(1), (5.2)

for all v ∈ H1, where

a∞(u, v) =
∫ 1

0
µ∞(x)ux(x)vx(x)dx+ h0µ∞(0)u(0)v(0) + h1µ∞(1)u(1)v(1)

= 〈µ∞ux, vx〉+ h0µ∞(0)u(0)v(0) + h1µ∞(1)u(1)v(1), for all u, v ∈ H1.
(5.3)

We then have the following theorem.
Theorem 5.1. Let (H6) , (H

′′
3 ) − (H ′′

6 ) hold. Then there exists a solution u∞ of

the variational problem (5.2) such that u∞ ∈ H1.
Furthermore, if f satisfies the following condition, in addition,

(H ′′
7 ) f(u) + δu is nondecreasing with respect to variable u, with 0 < δ < a0.

Then the solution is unique.
Proof. Denote by {wj}, j = 1, 2, ...an orthonormal basis in the separable Hilbert

space H1. Put

ym =
m∑
j=1

dmjwj , (5.4)

where dmj satisfy the following nonlinear equation system:

a∞(ym, wj) + 〈f(ym), wj〉 = 〈f1∞, wj〉 − µ∞(0)g0∞wj(0)− µ∞(1)g1∞wj(1), 1 ≤ j ≤ m.
(5.5)

By the Brouwer’s lemma (see Lions [5], Lemma 4.3, p. 53), it follows from the
hypotheses (H6) , (H

′′
3 )− (H ′′

6 ) that system (5.4), (5.5) has a solution ym.
Multiplying the jth equation of system (5.5) by dmj , then summing up with respect

to j, we have

a∞(ym, ym) + 〈f(ym), ym〉 = 〈f1∞, ym〉 − µ∞(0)g0∞ym(0)− µ∞(1)g1∞ym(1). (5.6)

By using the inequality (2.3) and by the hypotheses (H6) , (H
′′
3 )− (H ′′

6 ) , we obtain

a0 ‖ym‖2H1 + C1 ‖ym‖pLp ≤ C ′
1 +

[
‖f1∞‖+

√
2 (|µ∞(0)g0∞|+ |µ∞(1)g1∞|)

]
‖ym‖H1 .

(5.7)
Hence, we deduce from (5.7) that





‖ym‖H1 ≤ C,

‖ym‖Lp ≤ C,
(5.8)
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C is a constant independent of m.
By means of (5.8) and Lemma 2.1, the sequence {ym} has a subsequence still

denoted by {ym} such that




ym → u∞ in H1 weakly,

ym → u∞ in L2 strongly and a.e. in Ω,

ym → u∞ in Lp weakly.

(5.9)

On the other hand, by (5.9)2 and (H6) , we have

f(ym) → f(u∞) a.e. in Ω. (5.10)

We also deduce from the hypothesis (H6) and from (5.8)2 that

∫ 1

0
|f(ym(x))|p

′

dx ≤ 2p
′−1Cp′

2 [1 +
∫ 1

0
|ym(x)|p dx] ≤ C, (5.11)

where C is a constant independent of m.
Applying Lemma 3.4 with N = 1, q = p′, Gm = f(ym), G = f(u∞), we deduce

from (5.10), (5.11) that

f(ym) → f(u∞) in Lp′ weakly. (5.12)

Passing to the limit in Eq. (5.5), we find without difficulty from (5.9), (5.12) that
u∞ satisfies the equation

a∞(u∞, wj) + 〈f(u∞), wj〉 = 〈f1∞, wj〉 − µ∞(0)g0∞wj(0)− µ∞(1)g1∞wj(1). (5.13)

Equation (5.13) holds for every j = 1, 2, ..., i.e., (5.2) holds.
The solution of the problem (5.2) is unique; that can be showed using the same

arguments as in the proof of Theorem 3.1.�
Now we consider asymptotic behavior of the solution u(t) as t→ +∞.
We then have the following theorem.
Theorem 5.2. Let (H1) , (H2) , (H6) , (H

′′
3 )− (H ′′

6 ) , (H
′′
7 ) hold. Then we have

‖u(t)− u∞‖2 ≤
(
‖u0 − u∞‖2 + 4C

ε(γ1−γ)

)
e−2γt, ∀t ≥ 0, (5.14)

where

0 < γ < min{γ1, a0 − δ − 4ε}, 0 < 4ε < a0 − δ,

C > 0 is a a constant independing of t.
Proof. Put Zm(t) = um(t)− ym. Let us subtract (3.5)1 with (5.5) to obtain




〈Z ′
m(t), wj〉+ a(t; um(t), wj)− a∞(ym, wj) + 〈f(um(t))− f(ym), wj〉

= 〈f1(t)− f1∞, wj〉 − [µ (0, t) g0(t)− µ∞(0)g0∞ ]wj(0)

− [µ (1, t) g1(t)− µ∞(1)g1∞ ]wj(1), 1 ≤ j ≤ m,

Zm(0) = u0m − ym.

(5.15)
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By multiplying (5.15)1 by cmj(t)− dmj and summing up in j, we obtain

1
2

d
dt
‖Zm(t)‖2 + a(t;Zm(t), Zm(t)) + a(t; ym, Zm(t))− a∞(ym, Zm(t))

+〈f(um(t))− f(ym), Zm(t)〉

= 〈f1(t)− f1∞, Zm(t)〉 − [µ (0, t) g0(t)− µ∞(0)g0∞ ]Zm(0, t)

− [µ (1, t) g1(t)− µ∞(1)g1∞ ]Zm(1, t).

(5.16)

By the assumptions (H ′′
3 )− (H ′′

6 ) , (H
′′
7 ) , and using the inequalities (2.2), (2.3), and

with ε > 0, we estimate without difficulty the following terms in (5.16) as follows

a(t;Zm(t), Zm(t)) ≥ a0 ‖Zm(t)‖2H1 ; (5.17)

〈f(um(t))− f(ym), Zm(t)〉 ≥ −δ ‖Zm(t)‖2 ≥ −δ ‖Zm(t)‖2H1 ; (5.18)

a(t; ym, Zm(t))− a∞(ym, Zm(t)) = 〈(µ(t)− µ∞) ymx, Zmx(t)〉

+h0 (µ (0, t)− µ∞(0)) ym(0)Zm(0, t)

+h1 (µ (1, t)− µ∞(1)) ym(1)Zm(1, t);

(5.19)

Note that ‖ym‖H1 ≤ C, we obtain from (5.19) that

|a(t; ym, Zm(t))− a∞(ym, Zm(t))| ≤ ‖µ (t)− µ∞‖L∞ ‖ymx‖ ‖Zmx(t)‖

+2h0 ‖µ (t)− µ∞‖L∞ ‖ym‖H1 ‖Zm(t)‖H1

+2h1 ‖µ (t)− µ∞‖L∞ ‖ym‖H1 ‖Zm(t)‖H1

≤ (1 + 2h0 + 2h1)C1e
−γ1tC ‖Zm(t)‖H1 ≤ ε ‖Zm(t)‖2H1 + 1

ε
Ce−2γ1t;

(5.20)

|〈f1(t)− f1∞, Zm(t)〉| ≤ ‖f1(t)− f1∞‖ ‖Zm(t)‖

≤ C1e
−γ1t ‖Zm(t)‖H1 ≤ ε ‖Zm(t)‖2H1 + 1

ε
Ce−2γ1t;

(5.21)

− [µ (0, t) g0(t)− µ∞(0)g0∞ ]Zm(0, t)

= − [(µ (0, t)− µ∞(0)) g0(t) + µ∞(0) (g0(t)− g0∞) ]Zm(0, t)

≤
√
2 ‖Zm(t)‖H1

[
‖µ (t)− µ∞‖L∞ ‖g0‖L∞(R+) + µ∞(0) |g0(t)− g0∞|

]

≤
√
2 ‖Zm(t)‖H1

[
‖g0‖L∞(R+) + µ∞(0)

]
C1e

−γ1t ≤ ε ‖Zm(t)‖2H1 + 1
ε
Ce−2γ1t.

(5.22)
Similarly

− [µ (1, t) g1(t)− µ∞(1)g1∞ ]Zm(1, t) ≤ ε ‖Zm(t)‖2H1 + 1
ε
Ce−2γ1t. (5.23)
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It follows from (5.16) – (5.18), (5.20) – (5.23) and (2.3), that

d
dt
‖Zm(t)‖2 + 2 (a0 − δ − 4ε) ‖Zm(t)‖2H1 ≤ 8

ε
Ce−2γ1t. (5.24)

Choose ε > 0 and γ > 0 such that a0 − δ − 4ε > 0 and γ < min{γ1, a0 − δ − 4ε},
then we have from (5.24) that

d
dt
‖Zm(t)‖2 + 2γ ‖Zm(t)‖2 ≤ 8

ε
Ce−2γ1t. (5.25)

Hence, we obtain from (5.25) that

‖Zm(t)‖2 ≤
[
‖Zm(0)‖2 + 4C

ε(γ1−γ)

]
e−2γt. (5.26)

Letting m→ +∞ in (5.26) we obtain

‖u(t)− u∞‖2 ≤ lim inf
m→+∞

‖um(t)− ym‖2 ≤
(
‖u0 − u∞‖2 + 4C

ε(γ1−γ)

)
e−2γt, for all t ≥ 0.

(5.27)
This completes the proof of Theorem 5.2.�

6 Numerical results

First, we present some results of numerical comparison of the approximated
representation of the solution of a nonlinear problem of the type (1.1) – (1.3) and the
corresponding exact solution of this problem.

Let the problem




ut − uxx + f(u) = f1(x, t), 0 < x < 1, t > 0,

ux(0, t) = 2u(0, t) + g0(t), − ux(1, t) = u(1, t) + g1(t),

u(x, 0) = ũ0(x),

(6.1)

where 



f1(x, t) = −ex(1 + 2e−t) + (1 + e−t)p−1e(p−1)x,

f(u) = |u|p−2 u, p = 5
2
,

g0(t) = −1− e−t, g1(t) = −2e(1 + e−t),

ũ0(x) = 2ex.

(6.2)

The exact solution of the problem (6.1), (6.2) is u(x, t) = (1 + e−t)ex.
To solve numerically the problem (6.1), (6.2), we consider the nonlinear differential

system for the unknowns uk(t) = u(xk, t), xk = kh, h = 1/N.




duk

dt
(t) = 1

h2uk−1 − 2
h2uk +

1
h2uk+1 − f(uk) + f1(xk, t),

u0 =
1

1+2h
(u1 − hg0(t)) , uN = 1

1+h
(uN−1 − hg1(t)) ,

uk(0) = ũ0(xk), k = 1, 2, ..., N − 1.
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or




du1

dt
(t) = −1

h2

(
1+4h
1+2h

)
u1 +

1
h2u2 − f(u1)− 1

h(1+2h)
g0(t) + f1(x1, t),

duk

dt
(t) = 1

h2uk−1 − 2
h2uk +

1
h2uk+1 − f(uk) + f1(xk, t), k = 2, N − 2,

duN−1

dt
(t) = 1

h2uN−2 − 1
h2

(
1+2h
1+h

)
uN−1 − f(uN−1)− 1

h(1+h)
g1(t) + f1(xN−1, t),

uk(0) = ũ0(xk), k = 1, N − 1.
(6.3)

To solve the nonlinear differential (6.3) at the time t, we use the following linear
recursive scheme generated by the nonlinear term f(uk) :






du
(n)
1

dt
(t) = −1

h2

(
1+4h
1+2h

)
u
(n)
1 + 1

h2u
(n)
2 − f(u

(n−1)
1 )− 1

h(1+2h)
g0(t) + f1(x1, t),

du
(n)
k

dt
(t) = 1

h2u
(n)
k−1 − 2

h2u
(n)
k + 1

h2u
(n)
k+1 − f(u

(n−1)
k ) + f1(xk, t), k = 2, N − 2,

du
(n)
N−1

dt
(t) = 1

h2u
(n)
N−2 − 1

h2

(
1+2h
1+h

)
u
(n)
N−1 − f(u

(n−1)
N−1 )− 1

h(1+h)
g1(t) + f1(xN−1, t),

u
(n)
k (0) = ũ0(xk), k = 1, N − 1.

(6.4)
The linear differential system (6.4) is solved by searching the associated eigenvalues

and eigenfunctions. With a spatial step h = 1
5
on the interval [0, 1] and for t ∈ [0, 3],

we have drawn the corresponding approximate surface solution (x, t) −→ u(x, t) in
figure 1, obtained by successive re-initializations in t with a time step ∆t = 1

50
. For

comparison in figure 2, we have also drawn the exact surface solution (x, t) −→ u(x, t).
Note that, the approximate solution u(x, t) decreases exponentially to u∞(x) as

t tends to infinity, u∞ being the unique solution of the corresponding steady state
problem 




−uxx + |u|
1
2 u = −ex + e

3
2
x, 0 < x < 1,

ux(0) = 2u(0)− 1, −ux(1) = u(1)− 2e.
(6.5)
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