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This paper is devoted to the study a nonlinear heat equation associated with Dirichlet-Robin conditions. At first, we use the Faedo -Galerkin and the compactness method to prove existence and uniqueness results. Next, we consider the properties of solutions. We obtain that if the initial condition is bounded then so is the solution and we also get asymptotic behavior of solutions as t → +∞. Finally, we give numerical results.

Introduction

In this paper, we consider the following nonlinear heat equation

u t -∂ ∂x [µ (x, t) u x ] + f (u) = f 1 (x, t), 0 < x < 1, 0 < t < T, (1.1) 
associated with conditions u x (0, t) = h 0 u(0, t) + g 0 (t), -u x (1, t) = h 1 u(1, t) + g 1 (t), (1.2) and initial condition u(x, 0) = u 0 (x), (1.3) where u 0 , µ, f, f 1 , g 0 , g 1 are given functions satisfying conditions, which will be specified later, and h 0 , h 1 ≥ 0 are given constants, with h 0 + h 1 > 0.

The conditions (1.2) are commonly known as Dirichlet -Robin conditions. They connect Dirichlet and Neumann conditions. Theses conditions arise from the effect of excess inert electrolytes in an electrochemical system through perturbation analysis ( [START_REF] Bard | Electrochemical Methods[END_REF], [START_REF] Newman | Engineering design of electrochemical systems[END_REF], [7], [START_REF] Rousar | Electrochemical engineering[END_REF]).

The governing equations (1.2) are the equation usually used in a diffusion, convection, migration transport system with electrochemical reactions occurring at the boundary electrodes and submitted to non linear constraints.

In electrochemistry, the oxidation-reduction reactions producing the current is modeled by a non linear elliptic boundary value problem, linearization of which gives the Dirichlet -Robin conditions ( [START_REF] Bhat | Linearization of a nonlinear periodic boundary condition related to corrosion modeling[END_REF]). Theses conditions also appear in the response of an electrochemical thin film, such as separation in a micro -battery. His analyze is made by solving the Poisson -Nernst -Planck equation subject to boundary conditions appropriate (Dirichlet -Robin conditions) for an electrolytic cell ([4]).

The paper consists of six sections. In Section 2, we present some preliminaries. Using the Faedo -Galerkin method and the compactness method, in Section 3, we establish the existence of a unique weak solution of the problem (1.1) -(1.3) on (0, T ), for every T > 0. In section 4, we prove that if the initial condition is bounded, then so is the solution. In section 5, we study asymptotic behavior of the solution as t → +∞. In section 6 we give numerical results.

Preliminaries

Put Ω = (0, 1), Q T = Ω × (0, T ). We will omit the definitions of the usual function spaces and denote them by the notations L p = L p (Ω), H m = H m (Ω) . Let

•, • be either the scalar product in L 2 or the dual pairing of a continuous linear functional and an element of a function space. The notation || • || stands for the norm in L 2 and we denote by || • || X the norm in the Banach space X. We call X ′ the dual space of X. We denote L p (0, T ; X), 1 ≤ p ≤ ∞ the Banach space of real functions u : (0, T ) → X measurable, such that ||u|| L p (0,T ;X) < +∞, with

||u|| L p (0,T ;X) =        T 0 ||u(t)|| p X dt 1/p , if 1 ≤ p < ∞, ess sup 0<t<T ||u(t)|| X , if p = ∞. Let u(t), u ′ (t) = u t (t) = • u(t), u x (t) = ▽u(t), u xx (t) = ∆u(t), denote u(x, t), ∂u ∂t (x, t), ∂u ∂x (x, t), ∂ 2 u ∂x 2 (x, t), respectively. On H 1 we shall use the following norms v H 1 = v 2 + v x 2 1/2 , v i = v 2 (i) + v x 2 1/2 , i = 0, 1.
Let µ ∈ C 0 Q T , with µ(x, t) ≥ µ 0 > 0, for all (x, t) ∈ Q T , and the constants h 0 , h 1 ≥ 0, with h 0 + h 1 > 0, we consider a familly of symmetric bilinear forms {a(t; •, •)} 0≤t≤T on H 1 × H 1 as follows

a(t; u, v) = 1 0 µ(x, t)u x (x)v x (x)dx + h 0 µ (0, t) u(0)v(0) + h 1 µ (1, t) u(1)v(1) = µ(t)u x , v x + h 0 µ (0, t) u(0)v(0) + h 1 µ (1, t) u(1)v(1), for all u, v ∈ H 1 , 0 ≤ t ≤ T.
(2.1) Then we have the following lemmas. Lemma 2.1. The imbedding

H 1 ֒→ C 0 ([0, 1]) is compact and    v C 0 (Ω) ≤ √ 2 v H 1 , for all v ∈ H 1 , v C 0 (Ω) ≤ √ 2 v i , for all v ∈ H 1 , i = 0, 1. (2.2) Lemma 2.2. Let µ ∈ C 0 Q T , with µ(x, t) ≥ µ 0 > 0, for all (x, t) ∈ Q T , and the constants h 0 , h 1 ≥ 0, with h 0 + h 1 > 0. Then, the symmetric bilinear form a(t; •, •) is continuous on H 1 × H 1 and coercive on H 1 , i.e., (i) |a(t; u, v)| ≤ a T u H 1 v H 1 , (ii) a(t; v, v) ≥ a 0 v 2 H 1 , (2.3) 
for all u, v ∈ H 1 , 0 ≤ t ≤ T, where a T = (1 + 2h 0 + 2h 1 ) sup (x,t)∈Q T µ(x, t), and 
a 0 = a 0 (µ 0 , h 0 , h 1 ) =    µ 0 min{h 0 , 1 2 }, h 0 > 0, h 1 ≥ 0, µ 0 min{h 1 , 1 2 }, h 1 > 0, h 0 ≥ 0.
(2.4)

The proofs of these lemmas are straightforward. We shall omit the details. Remark 2.1.

It follows from (2.2) that on H 1 , v -→ v H 1 and v -→ v i are two equivalent norms satisfying 1 √ 3 v H 1 ≤ v i ≤ √ 3 v H 1 , for all v ∈ H 1 , i = 0, 1. (2.5)
3 The existence and uniqueness theorem

We make the following assumptions:

(H 1 ) h 0 ≥ 0 and h 1 ≥ 0, with

h 0 + h 1 > 0, (H 2 ) u 0 ∈ L 2 , (H 3 ) g 0 , g 1 ∈ W 1,1 (0, T ), (H 4 ) µ ∈ C 1 ([0, 1] × [0, T ]), µ(x, t) ≥ µ 0 > 0, ∀(x, t) ∈ [0, 1] × [0, T ], (H 5 ) f 1 ∈ L 1 (0, T ; L 2 ), (H 6 ) f ∈ C 0 (R) satisfies the condition, there exist positive constants C 1 , C ′ 1 , C 2 and p > 1, (i) uf (u) ≥ C 1 |u| p -C ′ 1 , (2i) |f (u)| ≤ C 2 (1 + |u| p-1
), for all u ∈ R.

The weak formulation of the initial boundary valued (1.1) -(1.3) can then be given in the following manner: Find u(t) defined in the open set (0, T ) such that u(t) satisfies the following variational problem 1), (3.1) ∀v ∈ H 1 , and the initial condition

d dt u(t), v + a(t, u(t), v) + f (u), v = f 1 (t), v -µ (0, t) g 0 (t)v(0) -µ (1, t) g 1 (t)v(
u(0) = u 0 . (3.2)
We then have the following theorem. Theorem 3.1. Let T > 0 and (H 1 )-(H 6 ) hold. Then, there exists a weak solution

u of problem (1.1) -(1.3) such that    u ∈ L 2 (0, T ; H 1 ) ∩ L ∞ (0, T ; L 2 ), tu ∈ L ∞ (0, T ; H 1 ), tu t ∈ L 2 (0, T ; L 2 ). (3.3) 
Furthermore, if f satisfies the following condition, in addition,

(H 7 ) (y -z) (f (y) -f (z)) ≥ -δ |y -z| 2 , for all y, z ∈ R, with δ > 0,
then the solution is unique.

Proof. The proof consists of several steps.

Step 1: The Faedo -Galerkin approximation (introduced by Lions [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites nonlinéaires[END_REF]). Let {w j } be a denumerable base of H 1 . We find the approximate solution of the problem (1.1) - (1.3) in the form

u m (t) = m j=1 c mj (t)w j , (3.4) 
where the coefficients c mj satisfy the system of linear differential equations

         u ′ m (t), w j + a(t; u m (t), w j ) + f (u m (t)), w j = f 1 (t), w j -µ (0, t) g 0 (t)w j (0) -µ (1, t) g 1 (t)w j (1), 1 ≤ j ≤ m, u m (0) = u 0m , (3.5) where u 0m = m j=1 α mj w j → u 0 strongly in L 2 . (3.6)
It is clear that for each m there exists a solution u m (t) in form (3.4) which satisfies (3.5) and (3.6) almost everywhere on 0 ≤ t ≤ T m for some T m , 0 < T m ≤ T. The following estimates allow one to take T m = T for all m.

Step 2. A priori estimates.

a) The first estimate. Multiplying the j th equation of (3.5) by c mj (t) and summing up with respect to j, afterwards, integrating by parts with respect to the time variable from 0 to t, we get after some rearrangements

u m (t) 2 + 2 t 0 a(s; u m (s), u m (s))ds + 2 t 0 f (u m (s)), u m (s) ds = u 0m 2 + 2 t 0 f 1 (s), u m (s) ds -2 t 0 µ (0, s) g 0 (s)u m (0, s)ds -2 t 0 µ (1, s) g 1 (s)u m (1, s)ds. (3.7) 
By u 0m → u 0 strongly in L 2 , we have

u 0m 2 ≤ C 0 , for all m, (3.8) 
where C 0 always indicates a bound depending on u 0 . By the assumptions (H 6 , (i)), and using the inequalities (2.2), (2.3), and with β > 0, we estimate without difficulty the following terms in (3.7) as follows

2 t 0 a(s; u m (s), u m (s))ds ≥ 2a 0 t 0 u m (s) 2 H 1 ds, (3.9) 2 t 0 f (u m (s)), u m (s) ds ≥ 2C 1 t 0 u m (s) p L p ds -2T C ′ 1 , (3.10) 2 t 0 f 1 (s), u m (s) ds ≤ f 1 L 1 (0,T ;L 2 ) + t 0 f 1 (s) u m (s) 2 ds, (3.11) -2 t 0 µ (0, s) g 0 (s)u m (0, s)ds ≤ 2 √ 2 µ L ∞ (Q T ) g 0 L ∞ t 0 u m (s) H 1 ds ≤ 2 β T µ 2 L ∞ (Q T ) g 0 2 L ∞ + β t 0 u m (s) 2 H 1 ds, (3.12) -2 t 0 µ (1, s) g 1 (s)u m (1, s)ds ≤ 2 √ 2 µ L ∞ (Q T ) g 1 L ∞ t 0 u m (s) H 1 ds ≤ 2 β T µ 2 L ∞ (Q T ) g 1 2 L ∞ + β t 0 u m (s) 2 H 1 ds, (3.13) 
for all β > 0. Hence, it follows from (3.7) -(3.13) that

u m (t) 2 + 2(a 0 -β) t 0 u m (s) 2 H 1 ds + 2C 1 t 0 u m (s) p L p ds ≤ C 0 + 2T C ′ 1 + f 1 L 1 (0,T ;L 2 ) + t 0 f 1 (s) u m (s) 2 ds + 2 β T µ 2 L ∞ (Q T ) g 0 2 L ∞ + g 1 2 L ∞ . (3.14) Choosing β = 1 2 a 0 , we deduce from (3.14), that S m (t) ≤ C (1) 
T + t 0 C (2) 
T (s)S m (s)ds, (3.15) 
where

           S m (t) = u m (t) 2 + a 0 t 0 u m (s) 2 H 1 ds + 2C 1 t 0 u m (s) p L p ds, C (1) 
T = C 0 + 2T C ′ 1 + f 1 L 1 (0,T ;L 2 ) + 4 a 0 T µ 2 L ∞ (Q T ) g 0 2 L ∞ + g 1 2 L ∞ , C (2) 
T (s) = f 1 (s) , C (2) 
T ∈ L 1 (0, T ).

(3.16)

By the Gronwall's lemma, we obtain from (3.15), that

S m (t) ≤ C (1) 
T exp t 0 C (2) 
T (s)ds ≤ C T , (3.17) 
for all m ∈ N, for all t, 0 ≤ t ≤ T m ≤ T, i.e., T m = T, where C T always indicates a bound depending on T.

b) The second estimate. Multiplying the j th equation of the system (3.5) by t 2 c ′ mj (t) and summing up with respect to j, we have

tu ′ m (t) 2 + t 2 a(t; u m (t), u ′ m (t)) + tf (u m (t)), tu ′ m (t) = tf 1 (t), tu ′ m (t) -t 2 µ (0, t) g 0 (t)u ′ m (0, t) -t 2 µ (1, t) g 1 (t)u ′ m (1, t).
(3.18) First, we need the following lemmas. Lemma 3.2.

(i) ∂a ∂t (t; u, v) = µ ′ (•, t) u x , v x + h 0 µ ′ (0, t) u(0)v(0) + h 1 µ ′ (1, t) u(1)v(1), for all u, v ∈ H 1 , (ii) ∂a ∂t (t; u, v) ≤ a T u H 1 v H 1 , for all u, v ∈ H 1 , (iii) d dt a(t; u m (t), u m (t)) = 2a(t; u m (t), u ′ m (t)) + ∂a ∂t (t; u m (t), u m (t)), (3.19) where a T = (1 + 2h 0 + 2h 1 ) sup (x,t)∈[0,1]×[0,T ] µ ′ (x, t) . Lemma 3.3. Put λ 0 = C ′ 1 C 1 1/p , m 0 = λ 0 -λ 0 |f (y)| dy, and f (z) = z 0 f (y)dy, z ∈ R.

Then we have

-m 0 ≤ f (z) ≤ C 2 (|z| + 1 p |z| p ), ∀z ∈ R. (3.20)
The proofs of these lemmas are straightforward. We shall omit the details. By (3.19) 3 , we rewrite (3.18) as follows

2 tu ′ m (t) 2 + d dt a(t; tu m (t), tu m (t)) + 2 tf (u m (t)), tu ′ m (t) = 2ta(t; u m (t), u m (t)) + ∂a ∂t (t; tu m (t), tu m (t)) + 2 tf 1 (t), tu ′ m (t) -2t 2 µ (0, t) g 0 (t)u ′ m (0, t) -2t 2 µ (1, t) g 1 (t)u ′ m (1, t).
(3.21)

Integrating (3.21), we get 2 t 0 su ′ m (s) 2 ds + a(t; tu m (t), tu m (t)) + 2 t 0 sf (u m (s)), su ′ m (s) ds = 2 t 0 sa(s; u m (s), u m (s))ds + t 0 ∂a ∂t (s; su m (s), su m (s))ds + 2 t 0 sf 1 (s), su ′ m (s) ds -2 t 0 s 2 µ (0, s) g 0 (s)u ′ m (0, s)ds -2 t 0 s 2 µ (1, s) g 1 (s)u ′ m (1, s)ds.
(3.22) We shall estimate the terms of (3.22) as follows. 

a(t; tu m (t), tu m (t)) ≥ a 0 tu m (t) 2 H 1 , (3.23) 
= 2 t 0 d ds s 2 1 0 f (u m (x, s))dx -2s 1 0 f (u m (x, s))dx ds = 2t 2 1 0 f (u m (x, t))dx -4 t 0 sds 1 0 f (u m (x, s))dx ≥ -2T 2 m 0 -4C 2 t 0 s u m (s) L 1 + 1 p u m (s) p L p ds ≥ -2T 2 m 0 -4T C 2 T u m L ∞ (0,T ;L 2 ) + 1 p 1 2C 1 S m (t) ≥ -C T , (3.24) 2 t 0 sa(s; u m (s), u m (s))ds ≤ 2T a T t 0 u m (s) 2 H 1 ds ≤ 2T a T 1 a 0 S m (t) ≤ C T , (3.25) t 0 ∂a ∂t (s; su m (s), su m (s))ds ≤ a T t 0 su m (s) 2 H 1 ds ≤ T 2 a T t 0 u m (s) 2 H 1 ds ≤ T 2 a T 1 a 0 S m (t) ≤ C T , (3.26) 2 t 0 sf 1 (s), su ′ m (s) ds ≤ 2 t 0 sf 1 (s) su ′ m (s) ds ≤ t 0 sf 1 (s) 2 ds + t 0 su ′ m (s) 2 ds ≤ T 2 T 0 f 1 (s) 2 ds + t 0 su ′ m (s) 2 ds ≤ C T + t 0 su ′ m (s) 2 ds.
(3.27) By using integration by parts, it follows that

-2 t 0 s 2 µ (0, s) g 0 (s)u ′ m (0, s)ds = -2t 2 µ (0, t) g 0 (t)u m (0, t) + 2 t 0 [s 2 µ (0, s) g 0 (s)] ′ u m (0, s)ds ≤ 2 √ 2t 2 µ L ∞ (Q T ) g 0 L ∞ u m (t) H 1 + 2 √ 2 t 0 [s 2 µ (0, s) g 0 (s)] ′ u m (s) H 1 ds ≤ 2 β T 2 µ 2 L ∞ (Q T ) g 0 2 L ∞ + β tu m (t) 2 H 1 + 2 √ 2 t 0 [s 2 µ (0, s) g 0 (s)] ′ u m (s) H 1 ds ≤ 1 β C T + β tu m (t) 2 H 1 + 2 √ 2 t 0 [s 2 µ (0, s) g 0 (s)] ′ u m (s) H 1 ds. (3.28) On the other hand [s 2 µ (0, s) g 0 (s)] ′ = |2sµ (0, s) g 0 (s) + s 2 [µ ′ (0, s) g 0 (s) + µ (0, s) g ′ 0 (s)]| ≤ 2s µ L ∞ (Q T ) g 0 L ∞ + s 2 µ C 1 (Q T ) [ g 0 L ∞ + |g ′ 0 (s)|] ≤ s µ C 1 (Q T ) [(2 + T ) g 0 L ∞ + T |g ′ 0 (s)|] ≤ sC T ψ 0 (s), (3.29) 
where

C T = µ C 1 (Q T ) [(2 + T ) g 0 L ∞ + T ] , ψ 0 (s) = 1 + |g ′ 0 (s)| , ψ 0 ∈ L 1 (0, T ). (3.30)
Hence, we deduce from (3.28), (3.29), that

-2 t 0 s 2 µ (0, s) g 0 (s)u ′ m (0, s)ds ≤ 1 β C T + β tu m (t) 2 H 1 + 2 √ 2C T t 0 ψ 0 (s) su m (s) H 1 ds ≤ 1 β C T + β tu m (t) 2 H 1 + 2C 2 T T 0 ψ 0 (s)ds + t 0 ψ 0 (s) su m (s) 2 H 1 ds ≤ (1 + 1 β )C T + β tu m (t) 2 H 1 + t 0 ψ 0 (s) su m (s) 2 H 1 ds, (3.31 
) for all β > 0.

Similarly

-2 t 0 s 2 µ (1, s) g 1 (s)u ′ m (1, s)ds ≤ (1 + 1 β )C T + β tu m (t) 2 H 1 + t 0 ψ 1 (s) su m (s) 2 H 1 ds, (3.32 
) for all β > 0, where 

C T = µ C 1 (Q T ) [(2 + T ) g 1 L ∞ + T ] , ψ 1 (s) = 1 + |g ′ 1 (s)| , ψ 1 ∈ L 1 (0, T ). ( 3 
X m (t) ≤ C (1) 
T + t 0 C (2) 
T (s)X m (s)ds, (

where

             X m (t) = tu m (t) 2 H 1 + t 0 su ′ m (s) 2 ds, C (1) 
T = 1 + 2 a 0 (6 + 8 a 0 )C T , C (2) 
T (s) = 1 + 2 a 0 (ψ 0 (s) + ψ 1 (s)) , C (2) 
T ∈ L 1 (0, T ).

(3.36)

By the Gronwall's lemma, we obtain from (3.35), that

tu m (t) 2 H 1 + t 0 su ′ m (s) 2 ds ≤ C (1) 
T exp

T 0 C (2) 
T (s)ds ≤ C T , (3.37) 
for all m ∈ N, for all t ∈ [0, T ], ∀T > 0, where C T always indicates a bound depending on T.

Step 3. The limiting process. By (3.16), (3.17) and (3.37) we deduce that, there exists a subsequence of {u m }, still denoted by {u m } such that 

                 u m → u in L ∞ (0, T ; L 2 ) weak*, u m → u in L 2 (0, T ; H 1 ) weak, tu m → tu in L ∞ (0, T ; H 1 ) weak*, (tu m ) ′ → (tu) ′ in L 2 (Q T ) weak, u m → u in L p (Q T ) weak. ( 3 
tu m → tu strongly in L 2 (Q T ).
(3.39)

By the Riesz-Fischer theorem, we can extract from {u m } a subsequence still denoted by {u m }, such that u m (x, t) → u(x, t) a.e. (x, t) in Q T = (0, 1) × (0, T ).

(3.40)

Because f is continuous, then

f (u m (x, t)) → f (u(x, t)) a.e. (x, t) in Q T = (0, 1) × (0, T ). (3.41)
On the other hand, by (H 6 , ii), it follows from (3.16), (3.17) that

f (u m ) L p ′ (Q T ) ≤ C T , (3.42) 
where C T is a constant independent of m.

We shall now require the following lemma, the proof of which can be found in [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites nonlinéaires[END_REF]. 

Lemma 3.4. Let Q be a bounded open set of R N and G m , G ∈ L q (Q), 1 < q < ∞, such that, G m L q (Q) ≤ C, where C is a constant independent of m, and G m → G a.e. (x, t) in Q. Then G m → G in L q (Q) weakly. Applying Lemma 3.4 with N = 2, q = p ′ , G m = f (u m ), G = f (u), we deduce from (3.41), (3.42), that f (u m ) → f (u) in L p ′ (Q T ) weakly. ( 3 
         d dt u(t), v + a(t, u(t), v) + f (u), v = f 1 (t), v -µ (0, t) g 0 (t)v(0) -µ (1, t) g 1 (t)v(1), ∀v ∈ H 1 , u(0) = u 0 .
(3.44)

Step 4. Uniqueness of the solutions. First, we shall need the following Lemma.

Lemma 3.5. Let u be the weak solution of the following problem

                 u t -∂ ∂x [µ (x, t) u x ] = f (x, t), 0 < x < 1, 0 < t < T, u x (0, t) -h 0 u(0, t) = u x (1, t) + h 1 u(1, t) = 0, u(x, 0) = 0, u ∈ L 2 (0, T ; H 1 ) ∩ L ∞ (0, T ; L 2 ) ∩ L p (Q T ), tu ∈ L ∞ (0, T ; H 1 ), tu t ∈ L 2 (Q T ). (3.45) Then u(t) 2 + 2 t 0 a(s, u(s), u(s))ds = 2 t 0 f (s), u(s) ds. (3.46)
The lemma 3.5 is a slight improvement of a lemma used in [START_REF] Alexandre | A mathematical model for the evaporation of a liquid fuel droplet inside an infinite vessel[END_REF] ( see also Lions's book [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites nonlinéaires[END_REF]). Now, we will prove the uniqueness of the solutions. Assume now that (H 7 ) is satisfied.

Let u 1 and u 2 be two weak solutions of (1.1) - (1.3). Then u = u 1 -u 2 is a weak solution of the following problem (3.45) with the right hand side function replaced by f (x, t) = -f (u 1 ) + f (u 2 ). Using Lemma 3.5 we have equality

u(t) 2 + 2 t 0 a(s, u(s), u(s))ds = -2 t 0 f (u 1 ) -f (u 2 ), u(s) ds.
(3.47)

Using the monotonicity of f (y) + δy, we obtain By the Gronwall's Lemma that u = 0. Therefore, Theorem 3.1 is proved.

t 0 f (u 1 ) -f (u 2 ), u(s) ds ≥ -δ t 0 u(s) 2 ds. ( 3 

The boundedness of the solution

We now turn to the boundness of the solutions. For this purpose, we shall make of the following assumptions

(H ′ 1 ) h 0 > 0 and h 1 > 0, (H ′ 2 ) u 0 ∈ L ∞ , (H ′ 5 ) f 1 ∈ L 2 (Q T ), f 1 (x, t) ≤ 0, a.e. (x, t) ∈ Q T , (H ′ 6 ) f ∈ C 0 (R) satisfies the assumptions (H 6 ) , (H 7 ) , and 
uf (u) ≥ 0, ∀u ∈ R, |u| ≥ u 0 L ∞ .
We then have the following theorem. Theorem 4.1. Let (H ′ 1 ), (H ′ 2 ), (H 3 ), (H 4 ), (H ′ 5 ), (H ′ 6 ) hold. Then the unique weak solution of the initial and boundary value problem (1.1) -(1.3), as given by theorem

3.1, belongs to L ∞ (Q T ).
Furthermore, we have also

u L ∞ (Q T ) ≤ max u 0 L ∞ , 1 h 0 g 0 L ∞ (0,T ) , 1 h 1 g 1 L ∞ (0,T ) . (4.1) 
Remark 4.1. Assumption (H ′ 2 ) is both physically and mathematically natural in the study of partial differential equation of the kind of (1.1) -(1.3), by means of the maximum principle.

Proof of Theorem 4.1. First, let us assume that u 0 (x) ≤ M, a.e., x ∈ Ω, and max

1 h 0 g 0 L ∞ (0,T ) , 1 h 1 g 1 L ∞ (0,T ) ≤ M. (4.2) 
Then z = u -M satisfies the initial and boundary value

         z t -∂ ∂x [µ (x, t) z x ] + f (z + M) = f 1 (x, t), 0 < x < 1, 0 < t < T, z x (0, t) = h 0 [z(0, t) + M] + g 0 (t), -z x (1, t) = h 1 [z(1, t) + M] + g 1 (t), z(x, 0) = u 0 (x) -M. (4.3) 
Multiplying equation (4.3) 1 by v, for v ∈ H 1 integrating by parts with respect to variable x and taking into account boundary condition (4.3) 2 , one has after some rearrangements

1 0 z t vdx + 1 0 µ (x, t) z x v x dx + µ (0, t) [h 0 (z(0, t) + M) + g 0 (t) ] v(0) +µ (1, t) [h 1 (z(1, t) + M) + g 1 (t) ] v(1)
+ 1 0 f (z + M)vdx = 1 0 f 1 (x, t)vdx, for all v ∈ H 1 .
(4.4) Noticing from assumption (H ′ 1 ) we deduce that the solution of the initial and boundary value problem (1.1) -(1.3) belongs to L 2 (0, T ; H 1 ) ∩L ∞ (0, T ; L 2 ) ∩L p (Q T ), so that we are allowed to take v = z + = 1 2 (|z| + z) in (4.4). Thus, it follows that

1 0 z t z + dx + 1 0 µ (x, t) z x z + x dx + µ (0, t) [h 0 (z(0, t) + M) + g 0 (t) ] z + (0, t) +µ (1, t) [h 1 (z(1, t) + M) + g 1 (t) ] z + (1, t) + 1 0 f (z + M)z + dx = 1 0 f 1 (x, t)z + dx. (4.5) 
Hence

1 2 d dt z + (t) 2 + a(t, z + (t), z + (t)) + 1 0 f (z + + M)z + dx = 1 0 f 1 (x, t)z + dx -µ (0, t) (h 0 M + g 0 (t)) z + (0, t) -µ (1, t) (h 1 M + g 1 (t)) z + (1, t) ≤ 0. (4.6) since M ≥ max{ 1 h 0 g 0 L ∞ , 1 h 1 g 1 L ∞ } and 1 0 z t z + dx = 1 0, z>0 (z + ) t z + dx = 1 2 d dt 1 0, z>0 |z + | 2 dx = 1 2 d dt 1 0 |z + | 2 dx = 1 2 d dt z + (t) 2 .
(4.7) and on the domain z > 0 we have z + = z and z x = (z + ) x .

On the other hand, by the assumption (H ′ 2 ) and the inequality (2.3), we obtain a(t, z

+ (t), z + (t)) ≥ a 0 z + (t) 2 H 1 . (4.8)
Using the monotonicity of f (z) + δz and (H 7 ) we obtain

1 0 f (z + + M)z + dx = 1 0 [f (z + + M) -f (M)] z + dx + 1 0 f (M)z + dx ≥ -δ 1 0 |z + | 2 dx + 1 0 f (M)z + dx ≥ -δ 1 0 |z + | 2 dx = -δ z + (t)
2 . (4.9) By multiplying (5.15) 1 by c mj (t) -d mj and summing up in j, we obtain

1 2 d dt Z m (t) 2 + a(t; Z m (t), Z m (t)) + a(t; y m , Z m (t)) -a ∞ (y m , Z m (t)) + f (u m (t)) -f (y m ), Z m (t) = f 1 (t) -f 1∞ , Z m (t) -[µ (0, t) g 0 (t) -µ ∞ (0)g 0∞ ] Z m (0, t) -[µ (1, t) g 1 (t) -µ ∞ (1)g 1∞ ] Z m (1, t).
(5.16) By the assumptions (H ′′ 3 ) -(H ′′ 6 ) , (H ′′ 7 ) , and using the inequalities (2.2), (2.3), and with ε > 0, we estimate without difficulty the following terms in (5.16) as follows

a(t; Z m (t), Z m (t)) ≥ a 0 Z m (t) 2 H 1 ;
(5.17)

f (u m (t)) -f (y m ), Z m (t) ≥ -δ Z m (t) 2 ≥ -δ Z m (t) 2 H 1 ;
(5.18) 

a(t; y m , Z m (t)) -a ∞ (y m , Z m (t)) = (µ(t) -µ ∞ ) y mx , Z mx (t) +h 0 (µ (0, t) -µ ∞ (0)) y m (0)Z m (0, t) +h 1 (µ (1, t) -µ ∞ (1)) y m (1)Z m (1,
(t)) -a ∞ (y m , Z m (t))| ≤ µ (t) -µ ∞ L ∞ y mx Z mx (t) +2h 0 µ (t) -µ ∞ L ∞ y m H 1 Z m (t) H 1 +2h 1 µ (t) -µ ∞ L ∞ y m H 1 Z m (t) H 1 ≤ (1 + 2h 0 + 2h 1 ) C 1 e -γ 1 t C Z m (t) H 1 ≤ ε Z m (t) 2 H 1 + 1 ε Ce -2γ 1 t ;
(5.20) 

| f 1 (t) -f 1∞ , Z m (t) | ≤ f 1 (t) -f 1∞ Z m (t) ≤ C 1 e -γ 1 t Z m (t) H 1 ≤ ε Z m (t) 2 H 1 + 1 ε Ce -2γ 1 t ; (5.21) -[µ (0, t) g 0 (t) -µ ∞ (0)g 0∞ ] Z m (0, t) = -[(µ (0, t) -µ ∞ (0)) g 0 (t) + µ ∞ (0) (g 0 (t) -g 0∞ ) ] Z m (0, t) ≤ √ 2 Z m (t) H 1 µ (t) -µ ∞ L ∞ g 0 L ∞ (R + ) + µ ∞ (0) |g 0 (t) -g 0∞ | ≤ √ 2 Z m (t) H 1 g 0 L ∞ (R + ) + µ ∞ (0) C 1 e -γ 1 t ≤ ε Z m (t) 2 H 1 + 1 ε Ce -2γ 1 t . (5.22) Similarly -[µ (1, t) g 1 (t) -µ ∞ (1)g 1∞ ] Z m (1, t) ≤ ε Z m (t) 2 H 1 + 1 ε Ce -2γ 1 t . ( 5 
Z m (t) 2 + 2 (a 0 -δ -4ε) Z m (t) 2 H 1 ≤ 8 ε Ce -2γ 1 t . (5.24)
Choose ε > 0 and γ > 0 such that a 0 -δ -4ε > 0 and γ < min{γ 1 , a 0 -δ -4ε}, then we have from (5.24) that

d dt Z m (t) 2 + 2γ Z m (t) 2 ≤ 8 ε Ce -2γ 1 t .
(5.25)

Hence, we obtain from (5.25) that

Z m (t) 2 ≤ Z m (0) 2 + 4C ε(γ 1 -γ) e -2γt .
(5.26)

Letting m → +∞ in (5.26) we obtain

u(t) -u ∞ 2 ≤ lim inf m→+∞ u m (t) -y m 2 ≤ u 0 -u ∞ 2 + 4C ε(γ 1 -γ) e -2γt
, for all t ≥ 0.

(5.27) This completes the proof of Theorem 5.2.

Numerical results

First, we present some results of numerical comparison of the approximated representation of the solution of a nonlinear problem of the type (1.1) -(1.3) and the corresponding exact solution of this problem.

Let the problem

         u t -u xx + f (u) = f 1 (x, t), 0 < x < 1, t > 0, u x (0, t) = 2u(0, t) + g 0 (t), -u x (1, t) = u(1, t) + g 1 (t), u(x, 0) = u 0 (x), (6.1) 
where

                 f 1 (x, t) = -e x (1 + 2e -t ) + (1 + e -t ) p-1 e (p-1)x , f (u) = |u| p-2 u, p = 5 2 , g 0 (t) = -1 -e -t , g 1 (t) = -2e(1 + e -t ), u 0 (x) = 2e x . (6.2)
The exact solution of the problem (6.1), (6.2) is u(x, t) = (1 + e -t )e x .

To solve numerically the problem (6.1), (6.2), we consider the nonlinear differential system for the unknowns u k

(t) = u(x k , t), x k = kh, h = 1/N.          du k dt (t) = 1 h 2 u k-1 -2 h 2 u k + 1 h 2 u k+1 -f (u k ) + f 1 (x k , t), u 0 = 1 1+2h (u 1 -hg 0 (t)) , u N = 1 1+h (u N -1 -hg 1 (t)) , u k (0) = u 0 (x k ), k = 1, 2, ..., N -1. or                    du 1 dt (t) = -1 h 2 1+4h 1+2h u 1 + 1 h 2 u 2 -f (u 1 ) -1 h(1+2h) g 0 (t) + f 1 (x 1 , t), du k dt (t) = 1 h 2 u k-1 -2 h 2 u k + 1 h 2 u k+1 -f (u k ) + f 1 (x k , t), k = 2, N -2, du N-1 dt (t) = 1 h 2 u N -2 -1 h 2 1+2h 1+h u N -1 -f (u N -1 ) -1 h(1+h) g 1 (t) + f 1 (x N -1 , t), u k (0) = u 0 (x k ), k = 1, N -1. (6.
3) To solve the nonlinear differential (6.3) at the time t, we use the following linear recursive scheme generated by the nonlinear term f (u k ) :

                       du (n) 1 dt (t) = -1 h 2 1+4h 1+2h u (n) 1 + 1 h 2 u (n) 2 -f (u (n-1) 1 
) -1 h(1+2h) g 0 (t) + f 1 (x 1 , t),

du (n) k dt (t) = 1 h 2 u (n) k-1 -2 h 2 u (n) k + 1 h 2 u (n) k+1 -f (u (n-1) k ) + f 1 (x k , t), k = 2, N -2, du (n) N-1 dt (t) = 1 h 2 u (n) N -2 -1 h 2 1+2h 1+h u (n) N -1 -f (u (n-1) N -1 ) -1 h(1+h) g 1 (t) + f 1 (x N -1 , t), u (n) 
k (0) = u 0 (x k ), k = 1, N -1. (6.4) The linear differential system (6.4) is solved by searching the associated eigenvalues and eigenfunctions. With a spatial step h = 1 5 on the interval [0, 1] and for t ∈ [0, 3], we have drawn the corresponding approximate surface solution (x, t) -→ u(x, t) in figure 1, obtained by successive re-initializations in t with a time step ∆t = 1 50 . For comparison in figure 2, we have also drawn the exact surface solution (x, t) -→ u(x, t).

Note that, the approximate solution u(x, t) decreases exponentially to u ∞ (x) as t tends to infinity, u ∞ being the unique solution of the corresponding steady state problem    -u xx + |u| 

2 t0 2 ts 2 ds d ds 1 0

 221 sf (u m (s)), su ′ m (s) ds = f (u m (x, s))dx

  .43) Passing to the limit in (3.5) by (3.6), (3.38), (3.43), we have satisfying the equation

1 2 u = -e x + e 3 2Figure 2 .

 132 Figure 1. Approximated solution

  , we can extract from the sequence {u m } a subsequence still denotes by {u m }, such that

	.38)
	Using a compactness lemma ([5], Lions, p. 57) applied to (3.38) 3,4

Hence, it follows from (4.6), (4.8), (4.9) that Since z + (0) = (u(x, 0)-M) + = (u 0 (x)-M) + = 0, hence, using Gronwall's Lemma, we obtain z + (t) 2 = 0. Thus z + = 0 and u(x, t) ≤ M, for a.e. (x, t) ∈ Q T .

The case -M ≤ u 0 (x), a.e., x ∈ Ω, and M ≥ max 1 h 0 g 0 L ∞ (0,T ) , 1 h 1 g 1 L ∞ (0,T ) can be dealt with, in the same manner as above, by considering z = u + M and z -= 1 2 (|z| -z), we also obtain z -= 0 and hence u(x, t) ≥ -M, for a.e. (x, t)

. This (4.1). Theorem 4.1 is proved.

5 Asymptotic behavior of the solution as t → +∞.

In this part, let T > 0, (H 1 ) -(H 7 ) hold. Then, there exists a unique solution

We shall study asymptotic behavior of the solution u(t) as t → +∞. We make the following supplementary assumptions on the functions µ (x, t) , f 1 (x, t) , g 1 (t), g 2 (t).

There exist the positive constants C 1 , γ 1 , g 0∞ , g 1∞ and the functions

First, we consider the following stationary problem

(5.1)

The weak solution of problem (5.1) is obtained from the following variational problem.

Find

for all v ∈ H 1 , where 1), for all u, v ∈ H 1 .

(5.3) We then have the following theorem. Theorem 5.1.

Furthermore, if f satisfies the following condition, in addition,

Then the solution is unique.

Proof. Denote by {w j }, j = 1, 2, ...an orthonormal basis in the separable Hilbert space H 1 . Put

where d mj satisfy the following nonlinear equation system:

(5.5) By the Brouwer's lemma (see Lions [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites nonlinéaires[END_REF], Lemma 4.3, p. 53), it follows from the hypotheses (H 6 ) , (H ′′ 3 ) -(H ′′ 6 ) that system (5.4), (5.5) has a solution y m . Multiplying the j th equation of system (5.5) by d mj , then summing up with respect to j, we have

By using the inequality (2.3) and by the hypotheses (H 6 ) , (H ′′ 3 ) -(H ′′ 6 ) , we obtain a 0 y m 2

(5.7) Hence, we deduce from (5.7) that   

C is a constant independent of m. By means of (5.8) and Lemma 2.1, the sequence {y m } has a subsequence still denoted by {y m } such that

strongly and a.e. in Ω,

(5.9)

On the other hand, by (5.9) 2 and (H 6 ) , we have

(5.10)

We also deduce from the hypothesis (H 6 ) and from (5.8) 2 that

where C is a constant independent of m. Applying Lemma 3.4 with N = 1, q = p ′ , G m = f (y m ), G = f (u ∞ ), we deduce from (5.10), (5.11) that

(5.12)

Passing to the limit in Eq. (5.5), we find without difficulty from (5.9), (5.12) that u ∞ satisfies the equation a ∞ (u ∞ , w j ) + f (u ∞ ), w j = f 1∞ , w j -µ ∞ (0)g 0∞ w j (0) -µ ∞ (1)g 1∞ w j (1). (5.13) Equation (5.13) holds for every j = 1, 2, ..., i.e., (5.2) holds. The solution of the problem (5.2) is unique; that can be showed using the same arguments as in the proof of Theorem 3.1. Now we consider asymptotic behavior of the solution u(t) as t → +∞. We then have the following theorem. Z ′ m (t), w j + a(t; u m (t), w j ) -a ∞ (y m , w j ) + f (u m (t)) -f (y m ), w j = f 1 (t) -f 1∞ , w j -[µ (0, t) g 0 (t) -µ ∞ (0)g 0∞ ] w j (0)

-[µ (1, t) g 1 (t) -µ ∞ (1)g 1∞ ] w j (1), 1 ≤ j ≤ m, Z m (0) = u 0m -y m .

(5.15)