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The structural λ-calculus

Inspired by a recent graphical formalism for λ-calculus based on Linear Logic technology, we introduce an untyped structural λ-calculus, called λj, which combines action at a distance with exponential rules decomposing the substitution by means of weakening, contraction and dereliction. Firstly, we prove fundamental properties such as confluence and preservation of β-strong normalisation. Secondly, we use λj to describe known notions of developments and superdevelopments, and introduce a more general one called XL-development. Then we show how to reformulate Regnier's σ-equivalence in λj so that it becomes a strong bisimulation. Finally, we prove that explicit composition or de-composition of substitutions can be added to λj while still preserving β-strong normalisation.

Introduction

Computer science has been greatly influenced by Linear Logic [START_REF] Girard | Linear logic[END_REF], especially because it provides a mechanism to explicitly control the use of resources by limiting the liberal use of the structural rules of weakening and contraction. Erasure and duplication are restricted to formulas marked with an exponential modality ?, and can only act on non-linear proofs marked with a bang modality !. Intuitionistic and Classical Logic can thus be encoded by a fragment containing such modalities, notably Multiplicative Exponential Linear Logic (MELL).

MELL proofs can be represented by sequent trees, but MELL Proof-Nets [START_REF] Girard | Linear logic[END_REF] provide a better-suited geometrical representation of proofs that eliminates irrelevant syntactical details. They have been extensively used to develop different encodings of intuitionistic logic/λ-calculus, giving rise to the geometry of interaction [START_REF] Girard | Geometry of interaction i: an interpretation of system f[END_REF].

Normalisation of proofs (i.e. cut elimination) in MELL Proof-Nets is performed using three groups of rules, multiplicative, exponential and commutative. Non-linear proofs are distinguished by surrounding boxes which are handled by exponential rules: erasure, duplication and linear use correspond respectively to a cut elimination step involving a box and either a weakening, a contraction or a dereliction. The commutative rule allows to compose non-linear resources.

Different cut elimination systems [START_REF] Di Cosmo | Proof nets and explicit substitutions[END_REF][START_REF] Kesner | Resource operators for lambda-calculus[END_REF][START_REF] Kesner | The theory of calculi with explicit substitutions revisited[END_REF], called explicit substitution (ES) calculi, were explained in terms of, or inspired by, the notion of reduction of MELL Proof-Nets. All of them use the idea that the content of a substitution/cut is a non-linear resource, i.e. a box that can be composed with another one by means of commutative rules. They also have in common an operational semantics defined in terms of a propagation system in which a substitution traverses a term to reach the variable occurrences.

A graph formalism for λ-terms inspired by Intuitionistic MELL has recently been proposed [START_REF] Accattoli | Jumping boxes. representing lambda-calculus boxes by jumps[END_REF]. It avoids boxes by representing them through additional edges called jumps, and has no commutative reduction rule. This paper studies the term formalism, called λj-calculus, resulting from the reading back of the graphs λj-dags (and their reductions) by means of their sequentialisation theorem [START_REF] Accattoli | Jumping boxes. representing lambda-calculus boxes by jumps[END_REF].

No rule of λj propagates cuts, as the constructors in a term interact at a distance, i.e. they work modulo positions of cuts. Action at a distance is not a complete novelty [START_REF] Milner | Local bigraphs and confluence: two conjectures[END_REF][START_REF] De Bruijn | Generalizing Automath by Means of a Lambda-Typed Lambda Calculus[END_REF][START_REF] Nederpelt | The fine-structure of lambda calculus[END_REF], but none of the previous approaches faithfully reflect resource control as suggested by Linear Logic. We propose to recognise such behaviour as a new paradigm, more primitive than ES, particularly because propagations can be added on top of action at a distance (as we shall show). Despite the absence of commutative rules in λj, cuts can be composed, but in a different (more natural) way.

Similarly to formalisms [START_REF] Kesner | The prismoid of resources[END_REF] inspired by Proof-Nets, cut elimination is defined in terms of the number of free occurrences of variables in a term, here called multiplicities. More precisely, the weakening-box rule (resp. dereliction-box and contraction-box) applies to terms that are of the form t[x/u] when |t| x = 0 (resp. |t| x = 1 and |t| x > 1). The computation is, however, performed without propagating [x/u], which we call a jump to stress that such action at a distance is really different from propagation in ES calculi. The rules of λj therefore combine action at a distance, due to the tight correspondance with a graphical formalism, with exponential rules, due to the strong affinity with Linear Logic. Because of the weakening and contraction rules we call our language the structural λcalculus.

Some calculi using either distance or multiplicities already exist, but without combining the two: only together those concepts unleash their full expressive power. Indeed, [START_REF] De Bruijn | Generalizing Automath by Means of a Lambda-Typed Lambda Calculus[END_REF][START_REF] Nederpelt | The fine-structure of lambda calculus[END_REF] use distance rules to refine β-reduction, but add ES to the syntax without distinguishing between dereliction and contraction. This causes the formalism to be less expressive than λj as discussed in Sections 4 and 6. Milner defines a λ-calculus with ES inspired by another graphical formalism, Bigraphs [START_REF] Milner | Local bigraphs and confluence: two conjectures[END_REF], where cuts also act at a distance. Again, he neither distinguishes between dereliction and contraction, nor does his β-rule exploit distance. The same goes for [START_REF] Severi | Pure type systems with definitions[END_REF][START_REF] Conchúir | Proving PSN by simulating non-local substitutions with local substitution[END_REF].

This paper studies the λj-calculus focusing on four different aspects:

-Basic properties: Section 2 presents the calculus while Section 3 shows full composition, simulation of one-step β-reduction, confluence, and preservation of β-strong normalisation (PSN). Particularly, we prove PSN using a modular technique [START_REF] Kesner | A theory of explicit substitutions with safe and full composition[END_REF], which results in an extremely short formal argument thanks to the absence of propagations. -Developments: The λj-calculus is a powerful, elegant and concise tool for studying β-reduction. As an example, in Section 4 we analyse the redex creation mechanism of λ-calculus, using normal forms of certain subsystems of λj to characterise the result of full developments [START_REF] Hindley | Reductions of residuals are finite[END_REF][START_REF] Vrijer | A direct proof of the finite developments theorem[END_REF] and full superdevelopments [START_REF] Klop | Combinatory reduction systems: introduction and survey[END_REF]. By adding more distance to the previous subsystems, we characterise the result of a new, more powerful notion of development, which we call XL-development.

-Operational equivalence: Section 5 studies an operational equivalence ≡ o which equates λj-terms behaving the same way but differing only in the positioning of their jumps. The relation ≡ o includes a reformulation of Regnier's σ-equivalence [START_REF] Regnier | Une équivalence sur les lambda-termes[END_REF], but also contains commutation for independent jumps. We show that ≡ o is a strong bisimulation on λj-terms. Interestingly, this result holds only because of distance. -(De)composition of jumps: In Section 6 we consider two further extensions of the system devised in Section 5, including, respectively, explicit composition and decomposition of jumps. We prove both new reduction relations to be confluent modulo ≡ o and to enjoy PSN. The two systems, reintroducing some propagation rules, bridge the gap with traditional ES calculi and implementations. The PSN proofs in this section are the more technically demanding proofs of this paper, and a non-trivial contribution to the theory of termination proofs of ES calculi.

The Calculus

The set T of terms is defined by the following grammar:

t ::= x (variable) | λx.t (abstraction) | t t (application) | t[x/t] (closure)
The object [x/t], which is not a term itself, is called a jump. A term without jumps is a λ-term. We use the notation v 1 n for a list of terms v

1 . . . v n , t v 1 n for (. . . (t v 1 ) . . . v n ) and t[x i /u i ] 1 n for t[x 1 /u 1 ] . . . [x n /u n ] (n ≥ 0).
Free and bound variables of t, respectively written fv(t) and bv(t), are defined as usual. The constructors λx.u and u[x/v] bind the free occurrences of x in u. The congruence generated by renaming of bound variables is called α-conversion. Thus for example (λy.x)[x/y] = α (λy

′ .x ′ )[x ′ /y].
The multiplicity of the variable x in the term t is defined as the number of free occurrences of x in t, written |t| x . We use |t| Γ for Σ x∈Γ |t| x . When |t| x = n ≥ 2, we write t [y]x for the non-deterministic replacement of i (1 ≤ i ≤ n -1) occurrences of x in t by a fresh variable y. Thus, (x z)[z/x] [y]x may denote either (y z)[z/x] or (x z)[z/y] but not (y z)[z/y].

A (meta-level) substitution is a finite function from variables to terms. We use var(σ) to denote the variables of the domain and the codomain of the substitution σ. We denote by id the empty substitution. Substitution is defined, as usual, modulo α-conversion so that the capture of variables is avoided. The application of a substitution σ to a term t is defined by induction on the structure of t as follows:

xσ := σ(x) if x ∈ dom(σ) yσ := y if x / ∈ dom(σ) (λy.u)σ := λy.uσ if y / ∈ var(σ) u 1 [y/u 2 ]σ := u 1 σ[y/u 2 σ] if y / ∈ var(σ) (u 1 u 2 )σ := (u 1 σ)(u 2 σ) Lemma 1.
Let t be a term such that |t| x = n. Then t{x/v} satisfies the following properties.

-

If n = 0, then t{x/v} = t. -If n > 1, then t{x/v} = t [y]x {x/v}{y/v}. -If n = 1, then • t = x implies x{x/v} = v, • t = λy.u & x = y & y / ∈ fv(v) implies t{x/v} = λy.u{x/v}, • t = u 1 u 2 & x ∈ fv(u 1 ) implies t{x/v} = u 1 {x/v}u 2 , • t = u 1 u 2 & x ∈ fv(u 2 ) implies t{x/v} = u 1 u 2 {x/v}, • t = u 1 [y/u 2 ] & x ∈ fv(u 1 ) implies t{x/v} = u 1 {x/v}[y/u 2 ], • t = u 1 [y/u 2 ] & x ∈ fv(u 2 ) implies t{x/v} = u 1 [y/u 2 {x/v}].
We use juxtaposition of substitutions to denote composition so that τ σ is the substitution given by x(τ σ) := (xτ )σ. Composition enjoys the following well-known property.

Lemma 2 (Composition). Let t, u, v be terms such that x / ∈ fv(v). Then t{x/u}{y/v} = t{y/v}{x/u{y/v}}.

Proof. By induction on t.

Besides α-conversion, we consider the following rewriting rules:

(dB) (λx.t)L u → t[x/u]L (w) t[x/u] → t if |t| x = 0 (d) t[x/u] → t{x/u} if |t| x = 1 (c) t[x/u] → t [y]x [x/u][y/u] if |t| x ≥ 2
where we use the (meta)notation L for a list [x i /u i ] 1 n with n ≥ 0. Note that dB reformulates the classical B-rule of ES calculi as a distance rule which skips the jumps affecting the abstraction of the redex. This same rule notably appears in weak ES calculi [START_REF] Lévy | Explicit substitutions and programming languages[END_REF] to avoid the the β-redexes that are hidden by blocked substitutions. Here, the dB-rule is the natural term counterpart of a graphical and local rule in proof-nets and λj-dags. Section 4 puts the expressiveness of this concept in evidence. The rules w, d and c are to be understood as the weakening, dereliction and contraction rules in λj-dags.

It is worth noting that λj allows to compose jumps, as for example reduction from t = y[x/zy][y/v] computes the (simultaneous) jumps in y[x/zv][y/v]. Usually, the so-called composition of the two jumps of t rather yields y[y/v][x/zy[y/v]]. We will study this more structural notion in Section 6.

The rewriting relation → λj (resp. → j ) is generated by all (resp. all expect dB) the previous rewriting rules modulo α-conversion. The j-rewriting rules are based on global side conditions, which may seem difficult to implement. However, if implementation is done via graphical formalisms (such as proof-nets, bigraphs, λj-dags), these conditions become local and completely harmless. Now consider any reduction relation R. A term t is said to be in R-normal form, written R-nf, if there is no u so that t → R u. We use R(t) to denote the unique R-nf of t, when it exists. A term t is R-strongly normalising or R-terminating, written t ∈ SN R , if there is no infinite R-reduction sequence starting at t, in which case η R (t) denotes the maximal length of a R-reduction sequence starting at t. The relation R is called complete if it is strongly normalising and confluent. For a sequence of R-strongly normalising terms t

1 n we write η R (t 1 n ) for Σ n i=1 η R (t i
). An inductive definition of SN R is usually given by:

t ∈ SN R iff ∀s (t → R s implies s ∈ SN R ) Define R-reduction of meta-level substitutions by γ → * R γ ′ iff dom(γ) = dom(γ ′ ) and ∀ x ∈ dom(γ) : γ(x) → * R γ ′ (x).
The following properties hold for all the reduction relations in this paper.

Lemma 3 (Stability of Reduction by Substitution).

-

If t → R t ′ , then tσ → R t ′ σ. So that tσ ∈ SN R implies t ′ σ ∈ SN R and η R (t ′ σ) < η R (tσ). -If γ → R γ ′ , then tγ → * R tγ ′ . So that tγ ∈ SN R implies tγ ′ ∈ SN R and η R (tγ ′ ) ≤ η R (tγ).

Main Properties

In this section we prove some sanity properties of the calculus: full composition, simulation of one-step β-reduction, confluence and PSN. Since the first three can easily be shown using standard rewriting technology, we concentrate on proving PSN, which usually is tricky, but turns out to be surprisingly simple in our case.

Lemma 4 (Full Composition (FC)). Let t, u ∈ T . Then t[x/u] → + j t{x/u}. Moreover, |t| x ≥ 1 implies t[x/u] → + d,c t{x/u}.
Proof. By induction on |t| x .

-

If |t| x = 0, then t[x/u] → w t = t{x/u}. -If |t| x = 1, then t[x/u] → d t{x/u}. -If |t| x ≥ 2, then t[x/u] → c t [y]x [y/u][x/u] → + j (i.h.) t [y]x {y/u}[x/u] → + j (i.h.) t [y]x {y/u}{x/u} = t{x/u} Corollary 1 (Simulation). Let t ∈ λ-term. If t → β t ′ , then t → + λj t ′ .
The following notion, which counts the maximal number of free occurrences of a variable x that may appear during a j-reduction sequence from a term t, will be useful for various proofs. The potential multiplicity of the variable x in the term t, written M x (t), is defined for α-equivalence classes as follows: if x / ∈ fv(t), then M x (t) := 0; otherwise:

M x (x) := 1 M x (λy.u) := M x (u) M x (u v) := M x (u) + M x (v) M x (u[y/v]) := M x (u) + max(1, M y (u)) • M x (v)
Potential multiplicities enjoy the following properties.

Lemma 5. Let t ∈ T . 1. If u ∈ T and y / ∈ fv(u), then M y (t) = M y (t{x/u}). 2. If |t| x ≥ 2, then M z (t) = M z (t [y]x ) and M x (t) = M x (t [y]x ) + M y (t [y]x ). 3. If t → j t ′ , then M y (t) ≥ M y (t ′ ).
Proof. By induction on t.

We consider multisets of integers. We use [ ] to denote the empty multiset, ⊔ to denote multiset union and n

• [a 1 , . . . , a n ] to denote [n • a 1 , . . . , n • a n ].
The j-measure of t ∈ T , written jm(t), is given by:

jm(x) := [ ] jm(λx.t) := jm(t) jm(tu) := jm(t) ⊔ jm(u) jm(t[x/u]) := [M x (t)] ⊔ jm(t) ⊔ max(1, M x (t)) • jm(u) Lemma 6. Let t ∈ T . Then, 1. jm(t) = jm(t [y]x ). 2. If u ∈ T , then jm(t) ⊔ jm(u) ≥ jm(t{x/u}).
Proof. By induction on t. The first property is straightforward so that we only show the second one.

-t = x. Then jm(x) ⊔ jm(u) = [ ] ⊔ jm(u) = jm(x{x/u}). -t = y = x. Then jm(y) ⊔ jm(u) = [ ] ⊔ jm(u) ≥ [ ] = jm(y{x/u}). -t = t 1 [y/t 2 ]. W.l.g we assume y / ∈ fv(u). Then, jm(t 1 [y/t 2 ]) ⊔ jm(u) = [M y (t 1 )] ⊔ jm(t 1 ) ⊔ max(1, M y (t 1 )) • jm(t 2 ) ⊔ jm(u) ≥ i.h. & L.5:1 [M y (t 1 {x/u})] ⊔ jm(t 1 {x/u}) ⊔ max(1, M y (t 1 {x/u})) • jm(t 2 {x/u}) = jm(t 1 {x/u}[y/t 2 {x/u}])
-All the other cases are straightforward.

Lemma 7. Let t ∈ T . 1. t 0 ≡ α t 1 implies jm(t 0 ) = jm(t 1 ). 2. t 0 → j t 1 implies jm(t 0 ) > jm(t 1 ).
Proof. By induction on the relations. The first point is straightforward, so that we only show the second one.

-t 0 = t[x/u] → w t = t 1 , with |t| x = 0. Then jm(t 0 ) = jm(t) ⊔ 1 • jm(u) ⊔ [0] > jm(t) = jm(t 1 ). -t 0 = t[x/u] → d t{x/u} = t 1 , with |t| x = 1. Then jm(t 0 ) = jm(t) ⊔ 1 • jm(u) ⊔ [1] > jm(t) ⊔ jm(u) ≥ L. 6:2 jm(t{x/u}) = jm(t 1 ). -t 0 = t[x/u] → c t [y]x [x/u][y/u] = t 1 , with |t| x ≥ 2 and y fresh. Then, jm(t 0 ) = jm(t) ⊔ max(1, M x (t)) • jm(u) ⊔ [M x (t)] = jm(t) ⊔ M x (t) • jm(u) ⊔ [M x (t)] = jm(t) ⊔ (M x (t [y]x ) + M y (t [y]x )) • jm(u) ⊔ [M x (t)] = L.6:1 jm(t [y]x ) ⊔ (M x (t [y]x ) + M y (t [y]x )) • jm(u) ⊔ [M x (t)] > jm(t [y]x ) ⊔ M x (t [y]x ) • jm(u) ⊔ [M x (t [y]x )] ⊔ M y (t [y]x ) • jm(u) ⊔ [M y (t [y]x )] = jm(t [y]x ) ⊔ M x (t [y]x ) • jm(u) ⊔ [M x (t [y]x )] ⊔ M y (t [y]x [x/u]) • jm(u) ⊔ [M y (t [y]x [x/u])] = jm(t [y]x [x/u]) ⊔ M y (t [y]x [x/u]) • jm(u) ⊔ [M y (t [y]x [x/u])] = jm(t 1 ) -t 0 = t[x/u] → t ′ [x/u] = t 1 , where t → t ′ . Then jm(t 0 ) = jm(t) ⊔ max(1, M x (t)) • jm(u) ⊔ [M x (t)] > i.h. jm(t ′ ) ⊔ max(1, M x (t)) • jm(u) ⊔ [M x (t)] ≥ L. 5:3 jm(t ′ ) ⊔ max(1, M x (t ′ )) • jm(u) ⊔ [M x (t ′ )] = jm(t 1 ) -t 0 = t[x/u] → t[x/u ′ ] = t 1 , where u → u ′ . Then jm(t 0 ) = jm(t) ⊔ max(1, M x (t)) • jm(u) ⊔ [M x (t)] > i.h. jm(t) ⊔ max(1, M x (t)) • jm(u ′ ) ⊔ [M x (t)] = jm(t 1 )
-All the other cases are straightforward Lemma 8. The j-reduction relation is complete.

Proof. Using the Modular Abstract Theorem 5.

Confluence of calculi with ES can be easily proved by using Tait and Martin

Löf's technique (see for example the case of λes [START_REF] Kesner | The theory of calculi with explicit substitutions revisited[END_REF]). This technique is based on the definition of a simultaneous reduction relation ⇛ λj which enjoys the diamond property.

The simultaneous reduction relation ⇛ λj is defined on terms in j-normal form as follows:

-x ⇛ λj x -If t ⇛ λj t ′ , then λx.t ⇛ λj λx.t ′ -If t ⇛ λj t ′ & u ⇛ λj u ′ , then t u ⇛ λj t ′ u ′ -If t ⇛ λj t ′ and u ⇛ λj u ′ , then (λx.t) u ⇛ λj j(t ′ [x/u ′ ]) Lemma 9. If t ⇛ λj t ′ , then t → * λj t ′ .
Proof. By induction on t ⇛ λj t ′ .

Lemma 10. If t → λj t ′ , then j(t) ⇛ λj j(t ′ ).

Proof. By induction on t → λj t ′ .

Lemma 11. The relation ⇛ λj enjoys the diamond property.

Proof. By induction on ⇛ λj and case analysis.

Theorem 1 (Confluence). For all t, u 1 , u 2 ∈ T , if t → * λj u i (i = 1, 2), then ∃v s.t. u i → * λj v (i = 1, 2).
Proof. Let t → * λj t i for i = 1, 2. Lemma 10 gives j(t) ⇛ * λj j(t i ) for i = 1, 2. Lemma 11 implies ⇛ λj is confluent so that ∃s such that j(t i ) ⇛ * λj s for i = 1, 2. We can then close the diagram with t i → * j j(t i ) → * λj s by Lemma 9.

Remark that confluence does not use termination of the j-(sub)calculus. To give a formal termination proof for it we introduce the following notions.

We now discuss PSN. A reduction system R is said to enjoy the PSN property w.r.t. another system S iff every term which is S-strongly normalising is also R-strongly normalising. Here PSN will mean PSN w.r.t. β-reduction.

The proof of PSN can be stated in terms of the IE property which relates termination of Implicit substitution to termination of Explicit substitution. A reduction system R enjoys the IE property iff for n ≥ 0 and for all t, u, v

1 n ∈ λ- terms: u ∈ SN R and t{x/u}v 1 n ∈ SN R imply t[x/u]v 1 n ∈ SN R .
Theorem 2 (IE implies PSN). A reduction relation R enjoys PSN if R verifies the IE-property and the following:

(F0) If t 1 n ∈ λ-terms in SN R , then xt 1 n ∈ SN R . (F1) If u ∈ λ-term in SN R , then λx.u ∈ SN R . (F2)
The only R-reducts of a λ-term (λx.u)vt Intuitively, the first two requirements (F0) and (F1) mean that head-normal forms are stable under R. The last requirement (F2) means that the head-redex can only be refined by R, but nothing else.

Proof. We show t ∈ SN R by induction on the definition of t ∈ SN β (as in [START_REF] Van Raamsdonk | Confluence and Normalization for Higher-Order Rewriting[END_REF]):

-If t = xt 1 n with t i ∈ SN β , then (i.h.) t i ∈ SN R and thus (F0) xt 1 n ∈ SN R . -If t = λx.u with u ∈ SN β , then (i.h.) u ∈ SN R and thus (F1) λx.u ∈ SN R . -If t = (λx.u)vt 1 n , with u{x/v}t 1 n ∈ SN β and v ∈ SN β , then (i.h.) both terms are in SN R , IE gives U = u[x/v]t 1 n ∈ SN R , so in particular u, v, t 1 n ∈ SN R . We show t ∈ SN R by induction on η R (u) + η R (v) + Σ i η R (t i ). For that, we show that every R-reduct of t is in SN R . Now, if t → R t ′ is an internal reduction, apply the i.h. Otherwise, F2 gives t → R u[x/v]t 1 . . . t n = U which is in SN R .
Theorem 3 (IE for λj). λj enjoys the IE property.

Proof. We show the following more general statement. For all terms t, u

1 m (m ≥ 1), v 1 n (n ≥ 0), if u 1 m ∈ SN λj & t{x i /u i } 1 m v 1 n ∈ SN λj , then t[x i /u i ] 1 m v 1 n ∈ SN λj
, where x i = x j for i, j = 1 . . . m and x i / ∈ fv(u j ) for i, j = 1 . . . m. The IE property then holds by taking m = 1.

Suppose

u 1 m ∈ SN λj & t{x i /u i } 1 m v 1 n ∈ SN λj . We show T = t[x i /u i ] 1 m v 1 n ∈ SN λj by induction on η λj (t{x i /u i } 1 m v 1 n ), o x 1 m (t), η λj (u 1 m ) where o xi (t) = 3 |t|x i and o x 1 m (t) = Σ i∈m o xi (t). To show T ∈ SN λj it is sufficient to show that every λj-reduct of T is in SN λj . Since m ≥ 1, then we can write [x i /u i ] 1 m = [x i /u i ] 1 j-1 [x j /u j ][x i /u i ] j+1 m .
-

T → λj t[x i /u i ] 1 j-1 [x j /u ′ j ][x i /u i ] j+1 m v 1 n = T ′ with u j → λj u ′ j . Then we have that η λj (t{x i /u i } 1 j-1 {x j /u ′ j }{x i /u i } j+1 m v 1 n ) ≤ η λj (t{x i /u i } 1 m v 1 n ) and o x 1 m (t) = o x 1 j-1 xjx j+1 m (t), and η λj (u 1 j-1 u ′ 1 u j+1 m ) < η λj (u 1 , u 2 m ). Since u 1 j-1 u ′ 1 u j+1 m ∈ SN λj and t{x i /u i } 1 j-1 {x j /u ′ j }{x i /u i } j+1 m v 1 n ∈ SN λj by Lemma 3, then we conclude by the i.h.. -T → λj t ′ [x i /u i ] 1 m v 1 n = T ′ with t → λj t ′ . Then we have that η λj (t ′ {x i /u i } 1 m v 1 n ) < η λj (t{x i /u i } 1 m v 1 n ).
We conclude by the i.h. since

t ′ {x i /u i } 1 m v 1 n ∈ SN λj by Lemma 3. -T → λj t[x i /u i ] 1 m v 1 . . . v ′ i . . . v n = T ′ with v i → λj v ′ i . We have that η λj (t{x i /u i } 1 m v 1 . . . v ′ i . . . v n ) < η λj (t{x i /u i } 1 m v 1 n ). We conclude by the i.h. since t{x i /u i } 1 m v 1 . . . v ′ i . . . v n ∈ SN λj . -T → w t[x i /u i ] 1 j-1 [x i /u i ] j+1 m v 1 n , with |t| xj = 0.We have that the measure η λj (t{x i /u i } 1 j-1 {x i /u i } j+1 m v 1 n ) is equal to η λj (t{x i /u i } 1 m v 1 n ), but o (t) de- creases since o x 1 j-1 x j+1 m (t) < o x 1 m (t)
. We can conclude by the i.h. since by

hypothesis t{x i /u i } 1 j-1 {x i /u i } j+1 m v 1 n = t{x i /u i } 1 m v 1 n ∈ SN λj . -T → d t[x i /u i ] 1 j-1 {x j /u j }[x i /u i ] j+1 m v 1 n with |t| xj = 1. Then we have that η λj (t{x i /u i } 1 j-1 {x j /u j }{x i /u i } j+1 m v 1 n ) = η λj (t{x i /u i } 1 m v 1 n ).
Also, the jumps are independent, so that

x 1 j-1 x j+1 m ∩fv(u j ) = ∅ implies o x 1 j-1 x j+1 m (t{x j /u j }) < o x 1 m (t). We conclude since t{x i /u i } 1 j-1 {x j /u j }{x i /u i } j+1 m v 1 n = t{x i /u i } 1 m v 1 n ∈ SN λj by hypothesis. -T → c t [y]x j [x i /u i ] 1 j-1 [x j /u j ][y/u j ][x i /u i ] j+1 m v 1 n with |t| xj ≥ 2 and y fresh. Then, η λj (t [y]x j {x i /u i } 1 j-1 {x j /u j }{y/u j }{x i /u i } j+1 m v 1 n ) = η λj (t{x i /u i } 1 m v 1 n )) and o x 1 j-1 xjyx j+1 m (t [y]x j ) < o x 1 m (t)
. In order to apply the i.h. to t [y]x j we need. • u 1 j-1 , u j , u j , u j+1 m ∈ SN λj . This holds by hypothesis.

• t [y]x 1 {x i /u i } 1 j-1 {x j /u j }{y/u j }{x i /u i } j+1 m v 1 n ∈ SN λj . This holds since the term is equal to t{x i /u i } 1 m v 1 n which is SN λj by hypothesis. -T = (λx.t ′ )[x i /u i ] 1 m v 1 v 2 n → dB t ′ [x/v 1 ][x i /u i ] 1 m v 2 n = T ′ . By hypothesis U = (λx.t ′ ){x i /u i } 1 m v 1 v 2 n ∈ SN λj .
Using full composition we obtain

U → dB t ′ {x i /u i } 1 m [x/v 1 ]v 2 n → + λj t ′ {x i /u i } 1 m {x/v 1 }v 2 n = t ′ {x/v 1 }{x i /u i } 1 m v 2 n = U ′
Thus η λj (U ′ ) < η λj (U ). To conclude T ′ ∈ SN λj by the i.h. we then need

• v 1 , u 1 m ∈ SN λj . But u 1 m ∈ SN λj holds by hypothesis and t{x i /u i } 1 m v 1 n ∈ SN λj implies v 1 ∈ SN λj . • U ′ = t ′ {x/v 1 }{x i /u i } 1 m v 2
n ∈ SN λj which holds since η λj (U ′ ) < η λj (U ). In contrast to known PSN proofs for calculi with ES and composition of substitutions [START_REF] David | A λ-calculus with explicit weakening and explicit substitution[END_REF][START_REF] Kesner | The theory of calculi with explicit substitutions revisited[END_REF][START_REF] Kesner | Resource operators for lambda-calculus[END_REF], we get a very concise and simple proof of the IE property, and thus of PSN, due to the fact that λj has no propagation rule. Indeed, since λj-reduction enjoys the IE-property and F0, F1 and F2 in Theorem 2 are straightforward for the λj-calculus, we get:

Corollary 2 (PSN for λj). Let t ∈ λ-term. If t ∈ SN β , then t ∈ SN λj .

Developments and All That

In λ-calculus creation of redexes can be classified in three types [START_REF] Lévy | Réductions correctes et optimales dans le lambda-calcul[END_REF]:

(Type 1) ((λx.λy.t) u) v → β (λy.t{x/u}) v. (Type 2) (λx.x) (λy.t) u → β (λy.t) u. (Type 3) (λx.C[x v]) (λy.u) → β C{x/λy.u}[(λy.u) v{x/λy.u}]
When λ-terms are considered as trees, the first and second type create a redex upward, while the third creates it downward, which is the dangerous kind of creation since it may lead to divergence.

According to the previous classification, different ways to compute a term can be defined. A reduction sequence starting at t is a development [START_REF] Hindley | Reductions of residuals are finite[END_REF] (resp. a full development) if only (resp. all the) residuals of redexes (resp. all the redexes) of t are contracted. A more liberal notion, called L-development here, and known as superdevelopment [START_REF] Klop | Combinatory reduction systems: introduction and survey[END_REF], allows to also reduce created redexes of type 1 and 2. A major result states that all developments (resp. L-developments) of a λ-term are finite, and that the results of all full developments (resp. full Ldevelopments) coincide.

Note that reductions of type 1 and 2 are acceptable because the created redex is hidden in the initial term, so that non-termination only happens when creating redexes of type 3. However, linear creations of type 3 -i.e. creations which do not involve duplications -are also safe, and infinite reductions only happen if redexes created after duplication are reduced -we call such cases non-linear creations of type 3. As an example, consider Ω = (λx.x x) (λx.x x) whose infinite reduction involves only non-linear creations of the third type. These observations suggest that banning the third type of creation is excessive: it is sufficient to avoid nonlinear ones. This extended form of L-development needs a language capable of distinguishing between the different linear/erasing/duplicating nature of redexes. This section extends the notion of L-development to that of XL-development, which also reduces linearly created redexes of type 3, and provides a finiteness result.

The following table summarises the behaviour of each computational notion studied in this section on the λ-term u 0 = (I I) ((λz.z y) I), where I = λx.x.

full development of u 0 = I (I y) full L-development of u 0 = I y full XL-development of u 0 = y (1)
The specification of all the reduction subsystems used in this section exploits the idea of multiplicity. Thus, the λj-calculus provides a uniform and expressive framework to reason about creation of redexes in λ-calculus.

A development (resp. full development) of a term t is a reduction sequence in which only (resp. all the) residuals of redex occurrences (resp. all the redex occurrences) that already exist in t are contracted. There are many proofs of finiteness of developments, like [START_REF] Schroer | The Church-Rosser Theorem[END_REF][START_REF] Vrijer | A direct proof of the finite developments theorem[END_REF][START_REF] Hindley | Reductions of residuals are finite[END_REF][START_REF] Van Raamsdonk | Confluence and Normalization for Higher-Order Rewriting[END_REF]. The result of a full development of a λ-term is unique and can simply be defined by induction on the structure of terms as follows:

x • := x (λx.t) • := λx.t • ((λx.t) u) • := t • {x/u • } (t u) • := t • u • if t = λ
Remark that t • = λ implies t = λ. This notion can be extended to jumps in two different ways. The first way inductive definition can be given by

x • := x (λy.t) • := λy.t • ((λx.t) u) • := t • [x/u • ] (t u) • := t • u • if t = λ (t[x/u]) • := t • {x/u • } For a λ-term t we have t • = t • ; in particular t • → + j t • .
The second way consists in taking the opposite view, with the purpose to simulate developments of λ-calculus. This can be obtained with a function •• which is exactly as • except for:

((λx.t) u) •• := t •• {x/u •• }
Developments are thus defined by induction on terms, but it is well-known that the function •• can also be defined in a more operational way. Let B be the rewriting rule (λx.t)u → B t[x/u], which is the restriction of our dB-rule to a proximity action. This relation is trivially complete so that we use B(t) for the (unique) B-nf of the term t. Corollary 3. Let t ∈ λ-term. Then t • = j(B(t)).

Proof. By induction on t.

-Case t = x. Then x • = x = x •• = j(B(x)). -Case t = λx.u. Then (λx.u) • = λx.u • = i.h. λx.u •• = λx.j(B(u)). -Case T = u v, where t = λ. We then have (u v) • = u • v • = i.h. u •• v •• = (u v) •• . Similarly as u v is not a redex j(B(u v)) = j(B(u)) j(B(v)
) and we conclude using the i.h.

-Case t = (λx.u)v. We have t • = u • {x/v • } = i.h. u •• {x/v •• } = ((λx.u)v) •• = t •• . Similarly u • {x/v • } = i.h. j(B(u)){x/j(B(v))} = j(B(u)[x/B(v)]) = j(B(u v)).
Developments can be extended to L-developments which also reduce created redexes of type 1 and 2 and are always finite. The result of a full Ldevelopment of a λ-term is unique and admits the following inductive definition [START_REF] Klop | Combinatory reduction systems: introduction and survey[END_REF]:

x •• := x (λx.t) •• := λx.t •• (t u) •• := t •• u •• if t •• = λ (t u) •• := t 1 {x/u •• } if t •• = λx.t 1 Remark that t •• = λ implies t = λ.
Let us recover t •• by means of our language λj. The key to operationally describe the first type of creation is the distance dB-rule, whose (unique) nf will be noted dB(t). Replacing our definition of development j(B(t)) with j(dB(t)) gives: dB(((λx.λy.

t)u)v) = dB((λy.t)[x/u] v) = dB(t[y/v][x/u]) = dB(t)[y/dB(v)][x/dB(u)]
Then, computing jumps, we get:j(dB(((λx.λy.t)u)v)):

j(dB(t)[y/dB(v)][x/dB(u)]) = j(dB(t)){x/j(dB(u))}{y/j(dB(v))} j(M ) = j(dB(t)){x/j(dB(u))}{y/j(dB(v))}
And we are done. Now, to specify L-developments within our language λj we also need to capture the second type of creation. We would therefore need to use dB ∪ d ∪ w instead of dB, but our (distance) d-rule turns out to be too powerful since created redexes of type 3 would also be captured as shown by the term (λx.x t)(λy.u), where x / ∈ fv(t). Thus, the reduction d is restricted to act only on variables, written md (for minimal dereliction), so that → md is the context closure of the rule x[x/u] → u. We then let A be the relation dB ∪ md ∪ w.

Lemma 12. The reduction relation → A is complete.

Proof. Termination of A is straightforward. Confluence follows from local confluence (straightforward by case-analysis) and Newman's Lemma. Interestingly, → A cannot be weakened to → dB∪md as illustrated by the term s = ((λx.((λy.x) t)) λz.z) u. Now, to prove that j(A(•)) is an L-development some technical lemmas are needed.

Lemma 13. A term in A-nf has either a V-Form x, an A-Form (u v)[x i /s i ] 1 n , or an L-Form (λx.v)[x i /s i ] 1 n , where u, v, s 1 n (n ≥ 0) are A-nfs, u is not an L-Form, and |M [x i /s i ] 1 j | xj+1 ≥ 1 for j = 1, . . . , n -1 and (M = u v or M = λx.v). Proof. By induction on t.
-If t is a variable or an abstraction λx.u, then we are done, since u is necessarily an A-nf. -If t is an application t 1 t 2 , then t 1 and t 2 are necessarily A-nfs. The subterm t 1 cannot have the shape (λy.t ′ 1 )[y i /v i ] 1 k otherwise t would be dB-reducible.

-If t is a closure, it has the general form u[x i /v i ] 1 n (n ≥ 1) where u, v 1 n are A-nfs. We reason by induction on n.

If n = 1, then |u| x1 ≥ 1 because t is in w-nf. Also, u = x 1 because t is in md-nf.
Thus, u is an application or an abstraction. As before, if u is an application t 1 t 2 the subterm t 1 cannot have the shape (λy.t

′ 1 )[y i /v i ] 1 k otherwise t would be dB-reducible. If n > 1, then U = u[x i /v i ] 1
n-1 already verifies the statement by the i.h. We still need to show that |U | xn ≥ 1, which is straightforward since |U | xn = 0 would imply that the term is not in w-nf.

Lemma 14. If j(A(T )) = λx.t then A(T ) is an L-Form .
Proof. By Lemma 13 A(T ) is a V-Form, an A-Form, or an L-Form. In the two first cases j(A(T )) cannot be a λ-abstraction, so that we trivially conclude.

Lemma 15. Let t = (λx.v)[x i /v i ] 1
n (n ≥ 0) and u be A-nfs. Then the sequence tu → + A A(tu) can be decomposed into tu

→ dB v[x/u][x i /v i ] 1 n → * md∪w A(tu).
Proof. By Lemma 12 every term tu has a unique A-nf

s.t. tu → * A A(tu). Then, if tu → * A t ′ for some t ′ in A-nf, then t ′ is necessarily A(tu). Thus, since tu → dB v[x/u][x i /v i ] 1
n = s, it is sufficient to show that s can be (md ∪ w)-reduced to a A-nf. We proceed by cases.

-If x / ∈ fv(v), then s → w v[x i /v i ] 1 n . We show that v[x i /v i ] 1 n → * md∪w v ′ , for some v ′ in A-nf. We proceed by induction on n. If n = 0, then v → * md v, which is a A-nf. If n > 0, then by the i.h. v[x i /v i ] 1 n → * md∪w v ′ [x n /v n ], with v ′ in A-nf. If x n / ∈ fv(v ′ ), then v ′ [x n /v n ] → w v ′ and we are done. If x n = v ′ , then v ′ [x n /v n ] → md v n
and we are also done. If x n ∈ fv(v ′ ) and x n = v ′ , then v ′ [x n /v n ] is in A-nf and we are done.

-If x ∈ fv(v) and x = v, then x 1 / ∈ fv(λx.v) so that t is w-reducible which leads to a contradiction with the hypothesis.

-If x ∈ fv(v) and x = v, then s is in A-nf. Corollary 4. Let t be a λ-term. Then t •• = j(A(t)).

Proof. By induction on t.

-Case t = x. Then x •• = x = j(A(x)). -Case t = λx.u. Then (λx.u) •• = λx.u •• = i.h. λx.j(A(u)) = j(A(t)). -Case t = u v, where u •• = λ. By the i.h. u •• = j(A(u)), hence j(A(u)) = λ and A(u) = λ. We then have (u v) •• = u •• v •• = i.h. j(A(u)) j(A(v)) = j(A(u) A(v)) = j(A(u v)). -Case t = u v, where u •• = λx.u 1 = i.h. j(A(u)) and v •• = j(A(v)). By Lemma 14 A(u) is an L-Form (λx.u 2 )[x i /s i ] 1 n so that in particular u 1 = j(u 2 [x i /s i ] 1 n ). Hence A(u) A(v) → dB u 2 [x/A(v)][x i /s i ] 1 n = s. By Lemma 15 A(u) A(v) → dB s → * md∪w A(A(u) A(v)) = A(u v
) so that we get:

j(A(u v)) = j((md ∪ w)(s)) = j(s) = j(u 2 [x/A(v)][x i /s i ] 1 n ) = j(u 2 ){x/j(A(v))}{x i /j(s) i } 1 n = L. 2 j(u 2 ){x i /j(s) i } 1 n {x/j(A(v))} = j(u 2 [x i /s i ] 1 n ){x/j(A(v))} = i.h. u 1 {x/v •• } = (u v) ••
It is now natural to relax the previous relation A from dB ∪ md ∪ w to dB ∪ d ∪ w, in other words, to also allow unrestricted d-steps. Thus L-developments are extended to XL-developments, which also allow linear creations of type 3. Completeness of this extended notion is stated as follows:

Lemma 16. The reduction relation → dB∪d∪w is complete.

Proof. Since dB ∪ d ∪ w ⊆ j, which is terminating (Lemma 8), then dB ∪ d ∪ w is terminating as well. To show confluence it is sufficient to show local confluence, which is straightforward by case-analysis, then apply Newman's Lemma.

The result of a full XL-development of a λ-term t, noted t ••• , is defined by j((dB ∪ d ∪ w)(t)) where (dB ∪ d ∪ w)(t) denotes the (unique) (dB ∪ d ∪ w)-nf of t. This notion extends L-developments in a deterministic way, i.e. provides a complete reduction relation for λ-terms, more liberal than L-developments.

It is well known that every affine λ-term t (i.e. a term where no variable has more than one occurrence in t) is β-strongly normalising (the number of constructors strictly diminishes with each step). Moreover, β-reduction of affine terms can be performed in λj using only dB ∪ d ∪ w, i.e. β-nf(t) = (dB ∪ d ∪ w)(t). Thus: Corollary 5. Let t be an affine λ-term. Then t

••• = β-nf(t).
We hope that our extended notion of XL-development can be applied to obtain more expressive solutions for higher-order matching problems, which arise for example in higher-order logic programming, logical frameworks, program transformations, etc. Indeed, the approach of higher-order matching in untyped frameworks [START_REF] Faure | Matching modulo superdevelopments application to second-order matching[END_REF][START_REF] De Moor | Higher-order matching for program transformation[END_REF], which currently uses L-developments, may be improved using XL-developments, as suggested by example (1) at the beginning of this section.

Bisimilar Terms

The simplicity of the λj-calculus naturally suggests the study of some operational equivalence which should equate terms that differ only concerning the positioning of their jumps but behave identically. For instance, if y / ∈ fv(u), then λy.t[x/u] and (λy.t)[x/u] behave equivalently: there is a bijection between their redexes and their reducts, i.e. they are bisimilar. This idea is reminiscent of Regnier's equivalence on λ-terms [START_REF] Regnier | Lambda-calcul et réseaux[END_REF], here written σ R :

(λx.λy.t) u ≡ σ R 1 λy.((λx.t) u) if y / ∈ fv(u) (λx.t v) u ≡ σ R 2 (λx.t) u v if x / ∈ fv(v)
Reduction of the dB-redexes in the previous equations yields the following σ-equivalence notion, now on λj-terms:

(λy.t)[x/u] ≡ σ1 λy.t[x/u] if y / ∈ fv(u) (t v)[x/u] ≡ σ2 t[x/u] v if x / ∈ fv(v)
This is not very surprising since σ R -equivalence was introduced by noting that the two terms of each equation represent the same MELL proof-net modulo multiplicative redexes, which correspond exactly to the dB-redexes of the λj-calculus. Regnier proved that σ R -equivalent terms have the same maximal β-reduction length. However, this does not imply that σ R -equivalence is a strong bisimilarity on λ-terms. Indeed, take λ-terms t 0 = ((λx.λy.y) z) w ≡ σ R 1 (λy.((λx.y) z)) w = t 1 . Both share the same β-normal form w and η β (t 0 ) = η β (t 1 ). Nevertheless, t 0 has one redex, while t 1 has two redexes, and the redex of t 1 involving w has no corresponding redex in t 0 . They also differ in terms of creation of redexes: the result of the full development of t 0 has a created redex, while the result of the full development of t 1 is the normal form of the term. Our reformulation of σ R , however, equates two λj-terms t ′ 0 and t ′ 1 which are strongly bisimilar:

t 0 → dB t ′ 0 = (λy.y)[x/z] w ≡ σ1 (λy.y[z/x]) w = t ′ 1 dB ← t 1 (2) 
Actually, bisimulation holds also for permutation of independent jumps [START_REF] Kesner | The theory of calculi with explicit substitutions revisited[END_REF]:

t[x/u][y/v] ≡ CS t[y/v][x/u] if y / ∈ fv(u) & x / ∈ fv(v)
While CS should naturally remain an equivalence, σ has often been restricted to being considered a reduction relation [START_REF] Regnier | Une équivalence sur les lambda-termes[END_REF], for no good reason. Here, we add CS and σ to λj without any trouble, in particular without loosing the PSN property (Corollary 9 

-Let t 0 = t[x/u][y/v] ≡ CS t[y/v][x/u] = t 1 with y / ∈ fv(u) and x / ∈ fv(v) . If t 1 → λj s 1 because • t → λj t ′ then t 0 = t[x/u][y/v] → λj t ′ [x/u][y/v] = s 0 ≡ CS s 1 = t ′ [y/v][x/u].
• u → λj u ′ or v → λj v ′ then it is similar to the previous case.

•

t[y/v][x/u] → d t{y/v}[x/u] = s 1 then t 0 → d t[x/u]{y/v} = s 1 . • t[y/v][x/u] → c t [z]y [y/v][z/v][x/u] = s 1 then t 0 → c t [z]y [x/u][y/v][z/v] ≡ 2 CS s 1 . • t[y/v][x/u] → w t[x/u] = s 1 then t 0 → d t[x/u] = s 1 .
• The three cases where it is [x/u] which is reduced are similar to the last three cases. • The case t 0 = t v ≡ CS,σ1,σ2 t v ′ = t 1 → λj t v ′′ = s 1 is analogous to the previous one.

-Let t 0 = (λy.t)[x/u] ≡ σ1 λy.t[x/u] = t 1 with y / ∈ fv(u). If t 1 → λj s 1 because • t → λj t ′ then t 0 = (λy.t)[x/u] → λj (λy.t ′ )[x/u] = s 0 ≡ σ1 s 1 = λy.t ′ [x/u]. • u → λj u ′ then it is similar to the previous case. • λy.t[x/u] → d λy.t{x/u} = s 1 then t 0 → d (λy.t){x/u} = s 1 . • λy.t[x/u] → c λy.t [z]x [z/u][x/u] = s 1 then t 0 → c (λy.t [z]x )[z/u][x/u] ≡ 2 σ1 s 1 . • λy.t[x/u] → w λy.t = s 1 then t 0 → d λy.t = s 1 . -Let t 0 = (t v)[x/u] ≡ σ2 t[x/u] v = t 1 with x / ∈ fv(v). If t 1 → λj s 1 because • t → λj t ′ then t 0 = (t v)[x/u] → λj (t ′ v)[x/u] = s 0 ≡ σ2 s 1 = t ′ [x/u] v. • u → λj u ′ or v → λj v ′ then it is similar to the previous case. • t[x/u] v → d t{x/u} v = s 1 then t 0 → d (t v){x/u} = s 1 . • t[x/u] v → c t [z]x [z/u][x/u] v = s 1 then t 0 → d (t v) [z]x [z/u][x/u] = (t [z]x v)[z/u][x/u] ≡ 2 σ2 s 1 . • t[x/u] v → w t v = s 1 then t 0 → d t v = s 1 . • t 0 = ((λy.t ′ )L v)[x/u] and t 1 = (λy.t ′ )L[x/u] v → dB t ′ [y/v]L[x/u] = s 1 . Then, t 0 = ((λy.t ′ )L v)[x/u] → dB t ′ [y/v]L[x/u] =
= λx.t ′′′ is s.t. t 0 → λj s 0 ≡ * CS,σ1,σ2 s 1 . • If t 0 = t v ≡ CS,σ1,σ2 t ′ v = t 1 → λj t ′ v ′ = s 1 then t v → λj t v ′ ≡ CS,σ1,σ2 t ′ v ′ . So s 0 = t v ′ . • The case t 0 = t v ≡ CS,σ1,σ2 t v ′ = t 1 → λj t ′ v ′ = s 1 is analogous to the previous one. • If t 0 = t v ≡ CS,σ1,σ2 t ′ v = t 1 → λj t ′′ v = s 1 then t ≡ CS,
• If t 0 = (λy.t)L v ≡ CS,σ1,σ2 (λy.t ′ )L v = t 1 → dB t ′ [y/v]L then (λy.t)L v → dB t[y/v]L ≡ CS,σ1,σ2 t ′ [y/v]L. • The cases t 0 = (λy.t)L v ≡ CS,σ1,σ2 (λy.t)L ′ v = t 1 → dB t[y/v]L ′ and t 0 = (λy.t)L v ≡ CS,σ1,σ2 (λy.t)L v ′ = t 1 → dB t[y/v ′ ]L are analogous to the previous one. • t 0 = (λy.t)L v ≡ σ1 (λy.t[x/u])L ′ v = t 1 → dB t[x/u][y/v]L ′ , where L = [x/u]L ′ ; As y / ∈ fv(u) and x / ∈ fv(v) does not contain any variable bounded by L, then t 0 = (λy.t)L v → dB t[y/v]L = t[y/v][x/u]L ′ ≡ CS t[x/u][y/v]L ′ . • The case t 0 = (λy.t[x/u])L ′ v ≡ σ1 (λy.t)L v = t 1 → dB t[y/v]L ′ , where L = [x/u]L ′ is analogous to the previous one. • t 0 = (λy.t)L v ≡ σ2 ((λy.t)L ′ v)[x/u] = t 1 → dB t[y/v]L ′ [x/u] = t[y/v]L, where L = L ′ [x/u]; then, t 0 = (λy.t)L v → dB t[y/v]L = s 1 . • The case t 0 = ((λy.t)L v)[x/u] ≡ σ2 ((λy.t)L[x/u] v) = t 1 has been al- ready treated before. • If t 0 = t [x/u] ≡ CS,σ1,σ2 t ′ [x/u] = t 1 → λj t ′ [x/u ′ ] = s 1 then t [x/u] → λj t [x/u ′ ] ≡ CS,σ1,σ2 t ′ [x/u ′ ]. • The case t 0 = t [x/u] ≡ CS,σ1,σ2 t [x/u ′ ] = t 1 → λj t ′ [x/u ′ ] = s 1 is
analogous to the previous one. 

• If t 0 = t [x/u] ≡ CS,σ1,σ2 t ′ [x/u] = t 1 → λj t ′′ [x/u] =
= t ′′′ [x/u] is s.t. t 0 → λj s 0 ≡ * CS,σ1,σ2 s 1 . • The case t 0 = t [x/u] ≡ CS,σ1,σ2 t [x/u ′ ] = t 1 → λj t [x/u ′′ ] = s 1 is
analogous to the previous one.

• If t 0 = t [x/u] ≡ CS,σ1,σ2 t [x/u ′ ] = t 1 → w t then t 0 → w t = s 1 . • If t 0 = t [x/u] ≡ CS,σ1,σ2 t ′ [x/u] = t 1 → w t then t 0 → w t ≡ CS,σ1,σ2 t ′ = s 1 . • If t 0 = t [x/u] ≡ CS,σ1,σ2 t [x/u ′ ] = t 1 → c t [y]x [x/u ′ ][y/u ′ ] then t 0 → c t = t [y]x [x/u][y/u] ≡ 2 CS,σ1,σ2 t [y]x [x/u ′ ][y/u ′ ]. • If t 0 = t [x/u] ≡ CS,σ1,σ2 t ′ [x/u] = t 1 → c (t ′ ) [y]x [x/u][y/u]
observe that the equivalences does not change the number of occurrences and the renaming does not change the position of substitutions so that we can write

(t ′ ) [y]x = (t [y]x ) ′ and conclude with t 0 → c t = t [y]x [x/u][y/u] ≡ CS,σ1,σ2 (t [y]x ) ′ [x/u][y/u]. • If t 0 = t [x/u] ≡ CS,σ1,σ2 t [x/u ′ ] = t 1 → d t{x/u ′ }. Then, t [x/u] → d t{x/u} ≡ * CS,σ1,σ2 t{x/u ′ }
where the last equivalence is obtained by lemma 17:2. . Such bisimulation implies that two o-equivalent terms share the same maximal reduction length. Moreover, the strong bisimulation would not hold without distance rules. Indeed, the two σ 1 -equivalent terms t ′ 0 and t ′ 1 in (2) do not have the same B-redexes but the same dB-redexes.

• If t 0 = t [x/u] ≡ CS,σ1,σ2 t ′ [x/u] = t 1 → d t ′ {x/u}. Then, t [x/u] → d t{x/u} ≡ * CS,

(De)composing Substitutions

Explicit substitution (ES) calculi may or may not include rewriting rules to explicitly compose substitutions. One often adds them to recover confluence on terms with metavariables. However, naïve rules may break the PSN property, so that safe composition rules are needed to recover both PSN and confluence on terms with metavariables [START_REF] Kesner | The theory of calculi with explicit substitutions revisited[END_REF]. The λj-calculus is peculiar as it allows to compose substitutions, but only implicitly. Indeed, a term t The second aim of this section concerns explicit decomposition. Indeed, some calculi [START_REF] Ohta | A terminating and confluent linear lambda calculus[END_REF][START_REF] Maraist | Call-by-name, call-by-value, call-by-need and the linear lambda calculus[END_REF][START_REF] Schwichtenberg | Termination of permutative conversions in intuitionistic Gentzen calculi[END_REF][START_REF] Herbelin | An operational account of call-by-value minimal and classical lambda-calculus in "natural deduction" form[END_REF][START_REF] Hasegawa | Models of Sharing Graphs: A Categorical Semantics of let and letrec[END_REF] explicitly decompose substitutions, i.e. reduce t[x/u[y/v]] to t[x/u][y/v]. We show that even in such a case PSN and confluence still hold.

[x/u][y/v] s.t. y ∈ fv(u) & y ∈ fv(t)
Composition (boxing) and decomposition (unboxing) are dual systems:

The Boxing system b

The

Unboxing system u if x / ∈ fv(t) & x ∈ fv(v) : if x / ∈ fv(t) & x ∈ fv(v) : (t v)[x/u] → ab t v[x/u] t v[x/u] → au (t v)[x/u] t[y/v][x/u] → sb t[y/v[x/u]] t[y/v[x/u]] → su t[y/v][x/u]
The boxing system reflects the commutative box-box rule of Linear Logic, the unboxing system is obtained by reversing its rules. Moreover, we consider the system modulo the o-equivalence. Choosing a particular orientation for σ 1 and σ 2 leads to a full set of propagating rules, that is, something closer to traditional ES calculi. We prefer, however, to work modulo an equivalence to obtain a more general result. Remark that the constraint x / ∈ fv(t) for the unboxing rules does not limit their applicability, as it can always be satisfied through α-equivalence.

Digression. It is natural to wonder if one could also work modulo (de)composition, i.e. adding two more general axioms:

(t v)[x/u] ≡ σ3 t v[x/u] if x / ∈ fv(t) t[y/v][x/u] ≡ σ4 t[y/v[x/u]] if x / ∈ fv(t)
The answer is no, as these last two congruences break the PSN property, if naïvely added. i.e. t reduces to a term containing t. Now, take (λx.((λz.zz)y)) ((λz.zz)y) ∈ SN β which reduces to t, so that it is no longer strongly normalising in the λj-calculus extended by the five previous equations {CS, σ 1 , σ 2 , σ 3 , σ 4 }. Such a counter-example can be avoided imposing the constraint "x ∈ fv(v)" to σ 3 and σ 4 (note that such constraint is also found in the definition of the boxing system). Nevertheless, λj-reduction modulo the constrained equivalences {CS, σ 1 , σ 2 , σ 3 , σ 4 } is an incredibly subtle and complex relation. For instance, wsteps cannot be postponed, nor can the use of equivalences. Two natural canonical representations of the equivalence classes are obtained by pushing jumps towards the variables, or as far away from them as possible. None of them is stable by reduction, so working with equivalence classes is impossible. The PSN property for this calculus, if it holds, is very challenging.

One of the difficulties is that the equivalence {CS, σ 1 , σ 2 , σ 3 , σ 4 } is not a bisimulation: observe that the reducts (xx We have introduced the structural λj-calculus, a concise but expressive λ-calculus with jumps. No prior knowledge of Linear Logic is necessary to understand λj, despite their strong connection. We have established many different sanity properties for λj such as confluence and PSN. We have used λj as an operational framework to elaborate new characterisations of the well-known notions of full developments and L-developments, and to obtain the new, more powerful notion of XL-development. Finally, we have modularly added commutation of independent jumps, σ-equivalence and two kinds of propagations of jumps, while showing that PSN still holds.

As noted in Section 6, PSN for the λj-calculus plus the constrained equivalences {CS, σ 1 , σ 2 , σ 3 , σ 4 } is -at present -a challenging conjecture. Indeed, the merging of the two similar, yet different uses of {σ 3 , σ 4 } that we study in this paper presents several non-trivial difficulties. A further in-depth re-elaboration of the labelling technique would be necessary, perhaps even the use of a completely different technique dealing with reduction modulo a set of equations.

An interesting research direction is the study of linear head reduction [START_REF] Danos | Reversible, irreversible and optimal lambda-machines[END_REF] for λ-calculus -which is closely connected to game semantics and abstract machines -whose formulation is not a strategy in the usual sense. Indeed, jumps and distance permit to reformulate linear head reduction as a strategy of λj.

It would also be interesting to exploit distance and multiplicities in other frameworks for example when dealing with pattern matching, continuations or differential features.

1 n 1 n

 11 are u[x/v]t and those coming from internal reduction on u, v, t 1 n .

  reduces in various steps to t[x/u{y/v}][y/v], but not to the explicit composition t[x/u[y/v]][y/v]. One of the aims of this section is adding explicit composition to λj keeping PSN and confluence.

  For example: let u = (z z)[z/y], then t = u[x/u] = (z z)[z/y][x/u] ≡ σ4 (z z)[z/y[x/u]] → c (z 1 z 2 )[z 1 /y[x/u]][z 2 /y[x/u]] → + d y[x/u] (y[x/u]) ≡ σ2,σ3,α (y y)[x 1 /u][x/u] ≡ σ4 (y y)[x 1 /u[x/u]]

  1 )[x/y[y/z]][x 1 /y[y/z]] of t 2 = (xx)[x/y[y/z]] and (xx 1 )[x/y][x 1 /y][y/z] of t 3 = (xx)[x/y][y/z]are no longer equivalent. Nevertheless, t 2 and t 3 share the same normal form, and thus are still operationally equivalent, but in a weaker sense.

  ). The operational equivalence relation generated by o = {α, CS, σ 1 , σ 2 } realises a strong bisimulation, proved by induction on ≡ CS,σ1,σ2 and using the following preliminary lemma:Lemma 17. For all t, t ′ ∈ T and substitution γ1. If t ≡ o t ′ , then tγ ≡ o t ′ γ. 2. If γ ≡ o γ ′ , then tγ ≡ o tγ ′ . Proposition 1 (Strong Bisimulation). For all t, u, u ′ ∈ T s.t. t ≡ o u → λj u ′ ∃t ′ s.t. t → λj t ′ ≡ o u ′ .Proof. Here we consider ≡ CS,σ1,σ2 as an atomic step of equivalence and rephrase the statement as: for all t 0 , t 1 , s 1 ∈ T and n > 0 s.t. t 0 ≡ n CS,σ1,σ2 t 1 → λj s 1 there exists s 0 s.t. t 0 → λj s 0 ≡ * CS,σ1,σ2 s 1 . The proof is by induction on n. If n = 1 then we reason by induction on t 0 ≡ CS,σ1,σ2 t 1 , considered as an atomic step of equivalence:

  s 1 -The inductive cases:• If t 0 = λx.t ≡ CS,σ1,σ2 λx.t ′ = t 1 → λj λx.t ′′ = s 1 then t ≡ CS,σ1,σ2 t ′ → λj t ′′ and by the i.h. there exists t ′′′ s.t. t → λj t ′′′ ≡ * CS,σ1,σ2 t ′′ . Then, s 0

  σ1,σ2 t ′ → λj t ′′ and by the i.h. there exists t ′′′ s.t. t → λj t ′′′ ≡ * CS,σ1,σ2 t ′′ . Then, s 0 = t ′′′ v is s.t. t 0 → λj s 0 ≡ * CS,σ1,σ2 s 1 .

  s 1 then t ≡ CS,σ1,σ2 t ′ → λj t ′′ and by the i.h. there exists t ′′′ s.t. t → λj t ′′′ ≡ * CS,σ1,σ2 t ′′ . Then, s 0

  σ1,σ2 t ′ {x/u} where the last equivalence is obtained by lemma 17:1.

	If n > 1 then we have t 0 ≡ CS,σ1,σ2 t ′ 0 ≡ n-1 CS,σ1,σ2 t 1 → λj s 1 . By the i.h. there exists s ′ 0 s.t. t ′ 0 → λj s ′ 0 ≡ * CS,σ1,σ2 s 1 . Then, applying the i.h. once more to t 0 ≡ CS,σ1,σ2 t ′ 0 → λj s ′ 0 (where the equivalence step is atomic), we get s 0 s.t. t 0 → λj s 0 ≡ * CS,σ1,σ2 s ′ 0 ≡ * CS,σ1,σ2 s 1

From here on we use the letter p to denote a parameter which represents any of the propagation systems {b, u}. For every p ∈ {b, u} we consider its associated structural reduction system λj p /o, written λj b /o and λj u /o respectively, defined by the reduction relation dB ∪ j ∪ p modulo the equivalence relation o, a relation which is denoted by (dB ∪ j ∪ p)/o. Both structural systems have good properties.

Theorem 4 (Confluence Modulo). For all t 1 , t 2 ∈ T , if t 1 ≡ o t 2 and t i → * λjp/o u i (i = 1, 2), then ∃v i (i = 1, 2) s.t.

Proof. Straightforward, by interpreting t into j(t) and using Theorem 1.

To prove PSN for λj b /o and λj u /o it is sufficient, according to Theorem 2, to show the IE property. However, a simple inductive argument like the one used for λj-reduction relation does no longer work. Therefore we shall show the IE property by adapting the technique in [START_REF] Kesner | The theory of calculi with explicit substitutions revisited[END_REF]. This has proven a challenging venture, so that this section presents the perhaps most important technical achievement in this paper. We split the proof into the following steps:

1. Define a labelling to mark some λj p /o-strongly normalising terms used within jumps. In Sections 6.1 and 6.2 points 1 and 2 are developed, while Section 6.3 deals with points 3 and 4.

The Labelled Systems

Each labelled system is defined by a set of labelled terms together with a set of reduction rules and axioms.

Definition 1 (Labelled Terms). Let p ∈ {b, u}. The set T p of labelled pterms is generated using the following grammar:

Now consider the following reduction subsystems:

The Labelled Equations CS:

where L is a list of jumps, some of which, potentially all, may be labelled.

Note that dB-reduction on the set T just is a particular case of gdB-reduction on T p . The equivalence relation α (resp. o) is generated by axiom α (resp. {α, CS, σ}) on labelled terms. The equivalence relation O is generated by o ∪o.

The reduction relation J p (resp. J p /O) is generated by (gdB∪j∪j∪p∪p) (resp. gdB ∪ j ∪ j ∪ p ∪ p modulo O). The relation J p can be understood as the union of two disjoint reduction relations, respectively called forgettable and persistent. Forgettable reductions do not create persistent redexes, and they are strongly normalising (Lemmas 21 and 22). These two facts imply that termination of J p does not depend on its forgettable subsystem.

The forgettable reduction relation → Fp :

Action on labelled jumps: If t → j,p t ′ , then t → Fp t ′ . Action Inside labelled jump:

Closure by non-labelling contexts:

The persistent reduction relation → Pp :

Root non-labelling action: If t → gdB,j,p t ′ (where → denotes root reduction), then t → Pp t ′ . Closure by non-labelling contexts:

Well-Formed Labelled Terms

In order to prove that the λj p /o-calculus enjoys PSN, according to Theorem 2 it is sufficient to show the IE-property. The reasoning for that is splitted in two steps: we first show that u ∈ SN λjp/o and t{x/u}v

). The first implication is much more difficult to prove, particularly because termination of the forgettable subsystem F p , proved using a strictly decreasing measure on labelled terms, is required. This measure is based on the assumption that all terms inside labelled jumps are λj p /o-strongly normalising w.r.t. the environment in which they are evaluated. Moreover, this property of labelled jumps needs to be preserved by reduction and equivalence.

Unfortunately this is not enough, since labelled terms are not stable by reduction: the labelled term y[[y/x x]][x/λz.zz] reduces to y[[y/(λz.zz) λz.zz]] which has a non-strongly normalising term inside a labelled jump, and thus it is not a labelled term according to our definition. Similarly the term

] which has a labelled jump inside another labelled jump, and thus it is not a labelled term.

We thus need labelled terms to be stable by equivalence and reduction. This can be done by defining a predicate of well-formedness on labelled terms such that WF(t) and t → Jp t ′ imply WF(t ′ ). In order to formalize such a predicate we need some definitions. The notion of free variable contained in a labelled jump is particularly important.

The set of labelled free variables of t ∈ T p is given by:

Note that u ∈ T implies Lfv(u) = ∅. Also Lfv(t) ⊆ fv(t).

We now formalise the notion ensuring that a labelled jump is strongly normalising with respect to labelled substitutions coming from the context.

A labelled term t ∈ T p is SN-labelled for a (meta-level) substitution γ iff SNL p (t, γ) holds:

Thus for example

is not b-well-formed since y is not a labelled free variable of t 0 , whereas t 0 is u-well-formed since z ∈ SN λju/o . Also,

More precisely, x is a labelled free variable of y[[y/xx]] so that t 2 is not b-wellformed, and SNL u (t 2 , ∅) does not hold (since (λz.zz)(λz.zz) / ∈ SN λju/o ) hence t 2 is not u-well-formed.

In order to show that well-formed terms are stable by equivalence and reduction we need the following lemmas: Proof. By induction on the reduction relations.

-CS:

∈ fv(u) and x / ∈ fv(v). Then, SNL p (t 0 , γ) iff SNL p (t, γ) and SNL p (u, γ) and SNL p (v, γ) so that we conclude SNL p (t 1 , γ).

-

∈ fv(u) and x / ∈ fv(v). Then, SNL p (t 0 , γ) iff SNL p (t, {x/u}γ) and SNL p (v, γ) and uγ ∈ SN λjp/o . We also have SNL p (v, γ) = L. 19:2 SNL p (v, {x/u}γ). We thus conclude SNL p (t 1 , γ).

∈ fv(u) and x / ∈ fv(v). Observe that the hypothesis implies u{y/v}γ = uγ and v{x/u}γ = vγ and {x/u}{y/v}γ = {y/v}{x/u}γ. Then, SNL p (t 0 , γ) iff SNL p (t, {x/u}{y/v}γ) and uγ, vγ ∈ SN λjp/o . Thus we conclude also SNL p (t 1 , γ).

-

∈ fv(v) and x ∈ fv(t). Then, SNL p (t 0 , γ) iff SNL p (t, γ) and SNL p (v, γ) and SNL p (u, γ) so that au:

We can reason by induction on L.

If L is empty, then SNL p (t 0 , γ) iff SNL p (u, γ) and SNL p (t, γ), which implies SNL p (t 0 , γ).

and SNL p (t, {y/v}γ) and vγ ∈ SN λjp/o . Since y / ∈ fv(u), then Lemma 19:2 gives SNL p (u, {y/v}γ) so that we conclude SNL p (t 1 , γ). If L has more than one substitution, the proof is straightforward by the i.h.

-The inductive cases. We only show the interesting cases. Let

All the other cases are straightforward.

The given corollary is essential in developing the termination proofs for the forgettable relations F b /O and F u /O. More precisely, for each forgettable reduction F p /O, with p ∈ {b, u}, we define a measure on p-well-formed labelled terms which strictly decreases by F p /O-reduction. We relegate the proofs of both Lemmas to the Appendix.

From Implicit to Explicit through Labelled

To show our first point, namely, that u ∈ SN λjp/o and t{x/u}v

, we now consider the following projection function P( ) from labelled terms to terms, which also projects J p /O into the reduction λj p /o: 

The last point of our proof is to show that

n ∈ SN λjp/o by relating labelled terms and reductions to unlabelled terms and reductions. To do that, let us introduce an unlabelling function on labelled terms:

Proof. By induction on → λjp/o and case analysis. We only show the interesting cases of root equivalence/reduction. 1. The congruence ≡ o .

-

-All the other cases are straightforward. 2. The reduction relation → j .

-

We then let

), which implies in particular x / ∈ fv(w). This case is not then possible.

x / ∈ fv(w) as before. This case is not then possible. If t ∈ WF u , then → sb does not hold in the u-system. 4. The reduction relation → gdB .

Consider t = (λx.u)Lv. Let L be the list containing all the unlabelling substitutions of the list L. Then,

We then let t 1 = u[x/v]L so that U(t 1 ) = t ′ 1 and t → gdB t 1 . 5. All the other cases are straightforward.

Proof. We prove U(t) ∈ SN λjp/o by induction on η Jp/O (t). This is done by considering all the λj p /o-reducts of U(t) and using Lemma 25. Now let p ∈ {b, u} and consider t, u, v

From Corollaries 7 and 8 we get:

Lemma 27 (IE for λj p /o). For p ∈ {b, u}, λj p /o enjoys the IE property.

Theorem 2 thus allows us to conclude with the main result of this section: Corollary 9 (PSN for λj p /o). For p ∈ {b, u}, λj p /o enjoys PSN.

Appendix

Theorem 5 (Modular Abstract Strong Normalisation). Let A 1 and A 2 (resp. E) be two reduction (resp. equivalence) relations on s. Let A be a reduction relation on S and let consider a relation R ⊆ s × S. Suppose that forall u, v, U

The Forgettable System Terminates

The termination proofs for → Fb and → Fu are not really parametric in p, nonetheless they both make use of potential multiplicities, which are extended to labelled jumps by adding the following case to the notion given in Section 3.

We first prove that the equivalence O and the propagations p preserve potential multiplicities. Lemma 28. Let p ∈ {b, u}. Let t 0 ∈ T p . Then,

Proof. As M w (t) is defined in the same way for labelled and unlabelled substitutions it is sufficient to check just one of them. Moreover, we just show the property for two p-steps, the other cases being similar.

-The inductive cases are all straightforward.

To relate potential multiplicities and reductions we need two lemmas. The first is used for → c -steps and the second for → w,d -steps. Lemma 29. Let t ∈ T p s.t. |t| x ≥ 2. Let w = x, y and x = y. Then,

Proof. We first enrich the notation by writing t [x] k y if t [x]y renames k of occurrences of y as x. We also admit (only for this proof) that k = 0 causes the renaming to be the identity. The statement now becomes:

The proof now proceeds by induction on t.

-For t = z the statement is trivial.

then it is identical to the previous case.

Lemma 30. Let t ∈ T p and u ∈ T . Then,

Proof. The first statement follows from a straightforward induction on t. The second point follows by showing that M w (t[[x/u]]) = M w (t{x/u}) if |t| x = 1. We show this property by induction on t.

-

The next lemmas show that potential multiplicities are not increased by → jsteps.

Proof. By induction on → j .

-

The only interesting case is when x ∈ fv(t) and x / ∈ fv(t ′ ). Then

The cases for t 0 = t[x/u] is similar to the previous one when t 0 → j t 1 because t → j t ′ . Suppose instead that t

The other cases are straightforward.

∈ u by hypothesis so that also w / ∈ fv(u ′ ). Then, we get M w (u) = M w (u ′ ) = 0 and

The inductive cases are all straightforward, using the i.h. Potential multiplicities can be altered only by w, w and gdB-steps. In the first two cases they can decrease, in the last one they can be both increased or decreased. Consider

Termination of → Fb

We now consider multisets of pairs of integers. We use n• x, y to denote the pair x, n•y . The operation n• x, y is extended to multisets in the following way: if M is a multiset of pairs of integers then n • M is the multiset [n • x, y | x, y ∈ M ]. Moreover, to improve readability, we write M ⊔ x, y rather than M ⊔ [ x, y ].

The boxing measure of t ∈ WF b is a multiset of pairs of integers, written dep(t), and given by:

Proof. By induction on t.

-t = y = x. Then, dep(y) = [ ] = dep(y{x/u}).

-t = t 1 [y/t 2 ]. W.l.g. we assume y = x and y / ∈ fv(u). Then,

]. W.l.g. we assume y = x and y / ∈ fv(u). By hypothesis we have x /

∈ fv(t 2 ). Then

-All the other cases are straightforward by the i.h.

Proof. By induction on t.

The next lemma give the exact relation between the boxing measure, the reductions and the equivalences.

Proof. By induction on the relations. We only show the the interesting cases.

where t → j,p,Fp:i t ′ . Since t 0 ∈ WF Fp:i , then the hypothesis gives x / ∈ Lfv(t). Lemmas 28, 31 and 32 then gives Proof. Using the Modular Abstract Theorem 5, where A 1 is {ab, sb}, A 2 is {j, Fp : i}, E is O, A is the relation > on N and R is given by t R T iff dep(t) = T . Properties P0, P1 and P2 of the Theorem 5 are guaranteed by Lemma 35, Property P3 (termination of A 1 /O) is straightforward.

Termination of → Fu

To prove termination in the → Fu case one hopes that the reasoning done for the → Fb case may be somehow re-used. However, reduction inside labelled jumps and reduction out of labelled jumps are independent in Fb but not in Fu. Consider the rule su 2 , the source of all complications:

The status of the jump [x/u] is changed by this rule, so that the possible j-reductions involving [x/u] from t 0 become labelled j-reductions from t 1 . Thus, inside and out of labelled reductions are no longer independent and need to be treated together. As in the Fb case, one observes that length of reductions inside labelled jumps decrease. Thus for example we have η(v[x/u]) > η(u), η(v) in the previous rule su 2 . This needs also to be combined with the multiplicity of the jump in order to handle the duplicating rule. However, the situation is not so simple: the d-rule, whose target can now be a variable inside a labelled jump, introduces a (new) problematic case. Let us see an example:

In general η(uv) is not smaller than η(uy), and can be even greater. Hence, the natural idea is to compose labelled jumps before the computation of its measure. Thus, coming back to the previous example, the weight of the lefthand side term is determined by η(uy{x/v}) and η(v), while the weight of the right-hand side term is only given by η(v).

Therefore, we define a measure which composes labelled jumps to compute η, it is defined using an environment which stores the composition of all the labelled jumps appearing in the context.

The unboxing measure of t ∈ WF u , is given by D(t, id), where for any meta-level substitution γ, D(t, γ) is defined as follows:

Note that u ∈ T implies D(u, γ) = [ ]. Some preliminaries are needed in order to relate the measure, the equivalence and the reductions. Proof. By induction on t.

All the other cases are straightforward. - 

Proof. By induction on the relations.

1. The equivalence O.

-CS:

∈ fv(u) and x / ∈ fv(v). As in the previous case we have y /

∈ fv(u) and x / ∈ fv(v). Observe that the hypotesis imply u({y/v}γ) = uγ and v({x/u}γ) = vγ. Then,

2. The reductions au and su 1 .

au:

3. The reductions j and su 2 .

w:

and y fresh. Then, Step (1) holds since η(v[x/u]γ) > η(v{x/u}γ) and η(v[x/u]γ) > η(uγ). Now, for the inductive cases the only interesting case is when t 0 = t[[x/u]] ≡ (resp. →) t ′ [[x/u]] = t 1 , where t ≡ (resp. →) t ′ . If t ≡ (resp. → au,su 1 ) t ′ , we have D(t 0 , γ) = D(t, {x/u}γ) ⊔ η(uγ), M x (t) = i.h. D(t ′ , {x/u}γ) ⊔ η(uγ), M x (t) = L. 28 D(t ′ , {x/u}γ) ⊔ η(uγ), M x (t ′ ) = D(t 1 , γ) If t → j,su 2 t ′ , we have D(t 0 , γ) = D(t, {x/u}γ) ⊔ η(uγ), M x (t) > i.h. D(t ′ , {x/u}γ) ⊔ η(uγ), M x (t) ≥ L. 37 D(t ′ , {x/u}γ) ⊔ η(uγ), M x (t ′ ) = D(t 1 , γ)

All the other cases are straightforward.

The next and last lemma proves that the measure with store decreases by → gdB -steps. The second point of the lemma is technical, used to prove the first one.

Lemma 38. Let t 0 ∈ WF u s.t. t 0 → Fp:i t 1 . Then 1. D(t 0 , γ) > D(t 1 , γ). 2. D(t 0 , ρ ∪ {x/uγ}) > η(uγ), K ∀K and ∀x s.t. M x (t 0 ) < M x (t 1 ).

Proof. By induction on t 0 . Let us note γ ′ = ρ ∪ {x/uγ}.

-t 0 = z is not possible.

-t 0 = v 0 v 1 . Suppose t 0 = v 0 v 1 → Fp:i v ′ 0 v 1 = t 1 , where v 0 → Fp:i v ′ 0 . (the case t = v 0 v 1 → Fp:i v 0 v ′ 1 = t ′ , where v 1 → Fp:i v ′ 1 being similar). 1. We have

2. We have D(t 0 , γ ′ ) = D(v 0 , γ ′ ) ⊔ D(v 1 , γ ′ ). Also M x (t 0 ) < M x (t 1 ) implies in particular M x (v 0 ) < M x (v ′ 0 ). The i.h. then states that D(v 0 , γ ′ ) verifies the property, and so does also D(t 0 , γ ′ ).

, where v 0 → Fp:i v ′ 0 .. 1. We have

As for the preceding case. The case t 0 = v 0 [y/v 1 ] → Fp:i v 0 [y/v ′ 1 ] = t 1 , where v 1 → Fp:i v ′ 1 is similar.

2. Let M x (t 0 ) < M x (t 1 ). Then necessarily 0 = M x (v 1 ) < M x (v ′ 1 ). We have D(v 0 [[y/v 1 ]], γ ′ ) = D(v 0 , {y/v 1 }γ ′ ) ⊔ η(v 1 γ ′ ), M y (v 0 ) . Since x ∈ fv(v 1 ), then v 1 γ ′ contains uγ and thus η(v 1 γ ′ ) ≥ η(uγ). Moreover, v 1 is λj u /o-reducible so that η(v 1 γ ′ ) ≥ η(uγ) + 1 and thus η(v 1 γ ′ ) > η(uγ). We thus conclude. Suppose