The structural lambda-calculus
Beniamino Accattoli, Delia Kesner

To cite this version:
Beniamino Accattoli, Delia Kesner. The structural lambda-calculus. 2010. hal-00528228

HAL Id: hal-00528228
https://hal.science/hal-00528228
Preprint submitted on 21 Oct 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The structural λ-calculus

Beniamino Accattoli and Delia Kesner

PPS (CNRS and Université Paris Diderot)

June 2010

Abstract. Inspired by a recent graphical formalism for λ-calculus based on Linear Logic technology, we introduce an untyped structural λ-calculus, called λj, which combines action at a distance with exponential rules decomposing the substitution by means of weakening, contraction and dereliction. Firstly, we prove fundamental properties such as confluence and preservation of β-strong normalisation. Secondly, we use λj to describe known notions of developments and superdevelopments, and introduce a more general one called \mathcal{XL}-development. Then we show how to reformulate Regnier’s σ-equivalence in λj so that it becomes a strong bisimulation. Finally, we prove that explicit composition or de-composition of substitutions can be added to λj while still preserving β-strong normalisation.

1 Introduction

Computer science has been greatly influenced by Linear Logic [8], especially because it provides a mechanism to explicitly control the use of resources by limiting the liberal use of the structural rules of weakening and contraction. Erasure and duplication are restricted to formulas marked with an exponential modality \otimes, and can only act on non-linear proofs marked with a bang modality $!$. Intuitionistic and Classical Logic can thus be encoded by a fragment containing such modalities, notably Multiplicative Exponential Linear Logic (MELL).

MELL proofs can be represented by sequent trees, but MELL Proof-Nets [8] provide a better-suited geometrical representation of proofs that eliminates irrelevant syntactical details. They have been extensively used to develop different encodings of intuitionistic logic/λ-calculus, giving rise to the geometry of interaction [9].

Normalisation of proofs (i.e. cut elimination) in MELL Proof-Nets is performed using three groups of rules, multiplicative, exponential and commutative. Non-linear proofs are distinguished by surrounding boxes which are handled by exponential rules: erasure, duplication and linear use correspond respectively to a cut elimination step involving a box and either a weakening, a contraction or a dereliction. The commutative rule allows to compose non-linear resources.

Different cut elimination systems [6, 15, 13], called explicit substitution (ES) calculi, were explained in terms of, or inspired by, the notion of reduction of MELL Proof-Nets. All of them use the idea that the content of a substitution/cut is a non-linear resource, i.e. a box that can be composed with another one by means of commutative rules. They also have in common an operational semantics
defined in terms of a propagation system in which a substitution traverses a term to reach the variable occurrences.

A graph formalism for \(\lambda \)-terms inspired by Intuitionistic MELL has recently been proposed [1]. It avoids boxes by representing them through additional edges called jumps, and has no commutative reduction rule. This paper studies the term formalism, called \(\lambda j \)-calculus, resulting from the reading back of the graphs \(\lambda j \)-dags (and their reductions) by means of their sequentialisation theorem [1].

No rule of \(\lambda j \) propagates cuts, as the constructors in a term interact at a distance, i.e. they work modulo positions of cuts. Action at a distance is not a complete novelty [21, 4, 22], but none of the previous approaches faithfully reflect resource control as suggested by Linear Logic. We propose to recognise such behaviour as a new paradigm, more primitive than ES, particularly because propagations can be added on top of action at a distance (as we shall show). Despite the absence of commutative rules in \(\lambda j \), cuts can be composed, but in a different (more natural) way.

Similarly to formalisms [16] inspired by Proof-Nets, cut elimination is defined in terms of the number of free occurrences of variables in a term, here called multiplicities. More precisely, the weakening-box rule (resp. dereliction-box and contraction-box) applies to terms that are of the form \(t[x/u] \) when \(|t|_x = 0 \) (resp. \(|t|_x = 1 \) and \(|t|_x > 1 \)). The computation is, however, performed without propagating \([x/u] \), which we call a jump to stress that such action at a distance is really different from propagation in ES calculi. The rules of \(\lambda j \) therefore combine action at a distance, due to the tight correspondance with a graphical formalism, with exponential rules, due to the strong affinity with Linear Logic. Because of the weakening and contraction rules we call our language the structural \(\lambda \)-calculus.

Some calculi using either distance or multiplicities already exist, but without combining the two: only together those concepts unleash their full expressive power. Indeed, [4, 22] use distance rules to refine \(\beta \)-reduction, but add ES to the syntax without distinguishing between dereliction and contraction. This causes the formalism to be less expressive than \(\lambda j \) as discussed in Sections 4 and 6. Milner defines a \(\lambda \)-calculus with ES inspired by another graphical formalism, Bigraphs [21], where cuts also act at a distance. Again, he neither distinguishes between dereliction and contraction, nor does his \(\beta \)-rule exploit distance. The same goes for [29, 23].

This paper studies the \(\lambda j \)-calculus focusing on four different aspects:

- **Basic properties**: Section 2 presents the calculus while Section 3 shows full composition, simulation of one-step \(\beta \)-reduction, confluence, and preservation of \(\beta \)-strong normalisation (PSN). Particularly, we prove PSN using a modular technique [14], which results in an extremely short formal argument thanks to the absence of propagations.

- **Developments**: The \(\lambda j \)-calculus is a powerful, elegant and concise tool for studying \(\beta \)-reduction. As an example, in Section 4 we analyse the redex creation mechanism of \(\lambda \)-calculus, using normal forms of certain subsystems of \(\lambda j \) to characterise the result of full developments [12, 31] and full superdevelopments [17]. By adding more distance to the previous subsystems, we characterise the result of a new, more powerful notion of development, which we call XL-development.
The set \mathcal{T} of terms is defined by the following grammar:

$$t ::= x \text{ (variable)} \mid \lambda x.t \text{ (abstraction)} \mid t\ t \text{ (application)} \mid t[x/t] \text{ (closure)}$$

The object $[x/t]$, which is not a term itself, is called a jump. A term without jumps is a λ-term. We use the notation τ^n_α for a list of terms $v_1 \ldots v_n$, $t \tau^n_\alpha$ for $(\ldots (t\ v_1) \ldots v_n)$ and $t[x_1/u_1]_\alpha^n \ldots [x_n/u_n]_\alpha^n$ for $t[x_1/u_1] \ldots [x_n/u_n] (n \geq 0)$.

Free and bound variables of t, respectively written $fv(t)$ and $bv(t)$, are defined as usual. The constructors $\lambda x.u$ and $u[x/v]$ bind the free occurrences of x in u. The congruence generated by renaming of bound variables is called α-conversion. Thus for example $(\lambda y.x)[x/y] =_\alpha (\lambda y'.x')[x'/y]$. The multiplicity of the variable x in the term t is defined as the number of free occurrences of x in t, written $|t|_x$. We use $|t|_x$ for $\sum_{\gamma \in \Gamma} |t|_{x_\gamma}$. When $|t|_x = n \geq 2$, we write $t_{[y]_x}$ for the non-deterministic replacement of i (1 $\leq i \leq n - 1$) occurrences of x in t by a fresh variable y. Thus, $(x z)[z/x]_{y} \sigma$ may denote either $(y z)[z/x]_y$ or $(x z)[z/y]$ but not $(y z)[z/y]$.

A (meta-level) substitution is a finite function from variables to terms. We use $\text{var}(\sigma)$ to denote the variables of the domain and the codomain of the substitution σ. We denote by id the empty substitution. Substitution is defined, as usual, modulo α-conversion so that the capture of variables is avoided. The application of a substitution σ to a term t is defined by induction on the structure of t as follows:

$$\begin{align*}
x\sigma &::= \sigma(x) & \text{if } x \in \text{dom}(\sigma) \\
y\sigma &::= y & \text{if } x \notin \text{dom}(\sigma) \\
(\lambda y.u)\sigma &::= \lambda y.\sigma & \text{if } y \notin \text{var}(\sigma) \\
u_1[y/u_2]\sigma &::= u_1\sigma[y/u_2\sigma] & \text{if } y \notin \text{var}(\sigma) \\
(u_1 u_2)\sigma &::= (u_1\sigma)(u_2\sigma) & \text{if } y \notin \text{var}(\sigma)
\end{align*}$$

Lemma 1. Let t be a term such that $|t|_x = n$. Then $t[x/v]$ satisfies the following properties.

- **Operational equivalence**: Section 5 studies an operational equivalence \equiv_α which equates λ-terms behaving the same way but differing only in the positioning of their jumps. The relation \equiv_α includes a reformulation of Regnier’s σ-equivalence [26], but also contains commutation for independent jumps. We show that \equiv_α is a strong bisimulation on λ-terms. Interestingly, this result holds only because of distance.

- **(De)composition of jumps**: In Section 6 we consider two further extensions of the system devised in Section 5, including, respectively, explicit composition and decomposition of jumps. We prove both new reduction relations to be confluent modulo \equiv_α and to enjoy PSN. The two systems, reintroducing some propagation rules, bridge the gap with traditional ES calculi and implementations. The PSN proofs in this section are the more technically demanding proofs of this paper, and a non-trivial contribution to the theory of termination proofs of ES calculi.

2 The Calculus

The set \mathcal{T} of terms is defined by the following grammar:

$$t ::= x \text{ (variable)} \mid \lambda x.t \text{ (abstraction)} \mid t\ t \text{ (application)} \mid t[x/t] \text{ (closure)}$$

The object $[x/t]$, which is not a term itself, is called a jump. A term without jumps is a λ-term. We use the notation τ^n_α for a list of terms $v_1 \ldots v_n$, $t \tau^n_\alpha$ for $(\ldots (t\ v_1) \ldots v_n)$ and $t[x_1/u_1]_\alpha^n \ldots [x_n/u_n]_\alpha^n$ for $t[x_1/u_1] \ldots [x_n/u_n] (n \geq 0)$.

Free and bound variables of t, respectively written $fv(t)$ and $bv(t)$, are defined as usual. The constructors $\lambda x.u$ and $u[x/v]$ bind the free occurrences of x in u. The congruence generated by renaming of bound variables is called α-conversion. Thus for example $(\lambda y.x)[x/y] =_\alpha (\lambda y'.x')[x'/y]$. The multiplicity of the variable x in the term t is defined as the number of free occurrences of x in t, written $|t|_x$. We use $|t|_x$ for $\sum_{\gamma \in \Gamma} |t|_{x_\gamma}$. When $|t|_x = n \geq 2$, we write $t_{[y]_x}$ for the non-deterministic replacement of i (1 $\leq i \leq n - 1$) occurrences of x in t by a fresh variable y. Thus, $(x z)[z/x]_{y} \sigma$ may denote either $(y z)[z/x]_y$ or $(x z)[z/y]$ but not $(y z)[z/y]$.

A (meta-level) substitution is a finite function from variables to terms. We use $\text{var}(\sigma)$ to denote the variables of the domain and the codomain of the substitution σ. We denote by id the empty substitution. Substitution is defined, as usual, modulo α-conversion so that the capture of variables is avoided. The application of a substitution σ to a term t is defined by induction on the structure of t as follows:

$$\begin{align*}
x\sigma &::= \sigma(x) & \text{if } x \in \text{dom}(\sigma) \\
y\sigma &::= y & \text{if } x \notin \text{dom}(\sigma) \\
(\lambda y.u)\sigma &::= \lambda y.\sigma & \text{if } y \notin \text{var}(\sigma) \\
u_1[y/u_2]\sigma &::= u_1\sigma[y/u_2\sigma] & \text{if } y \notin \text{var}(\sigma) \\
(u_1 u_2)\sigma &::= (u_1\sigma)(u_2\sigma) & \text{if } y \notin \text{var}(\sigma)
\end{align*}$$

Lemma 1. Let t be a term such that $|t|_x = n$. Then $t[x/v]$ satisfies the following properties.
If \(n = 0 \), then \(t\{x/y\} = t \).

If \(n > 1 \), then \(t\{x/y\} = t\{y\}_{\tau\sigma} \{x/y\}\{y/v\}\).

If \(n = 1 \), then
- \(t = x \) implies \(x\{x/v\} = v \).
- \(t = \lambda y.u \& x \neq y \& y \not\in \text{fv}(v) \) implies \(t\{x/v\} = \lambda y.u\{x/v\} \).
- \(t = u_1 u_2 \& x \in \text{fv}(u_1) \) implies \(t\{x/v\} = u_1\{x/v\}u_2 \).
- \(t = u_1 u_2 \& x \in \text{fv}(u_2) \) implies \(t\{x/v\} = u_1u_2\{x/v\} \).
- \(t = u_1[y/u_2] \& x \in \text{fv}(u_1) \) implies \(t\{x/v\} = u_1\{x/v\}[y/u_2] \).
- \(t = u_1[y/u_2] \& x \in \text{fv}(u_2) \) implies \(t\{x/v\} = u_1[y/u_2]\{x/v\} \).

We use juxtaposition of substitutions to denote composition so that \(\tau\sigma \) is the substitution given by \(x(\tau\sigma) := (x\tau)\sigma \). Composition enjoys the following well-known property.

Lemma 2 (Composition). Let \(t, u, v \) be terms such that \(x \not\in \text{fv}(v) \). Then \(t\{x/u\}\{y/v\} = t\{y/v\}\{x/u\}\{y/v\} \).

Proof. By induction on \(t \).

Besides \(\alpha \)-conversion, we consider the following rewriting rules:

\[
\begin{align*}
(dB) & \quad (\lambda x.t)L u \to t\{x/u\}L \\
(w) & \quad t\{x/u\} \to t \quad \text{if } |t|_x = 0 \\
(d) & \quad t\{x/u\} \to t\{x/u\} \quad \text{if } |t|_x = 1 \\
(c) & \quad t\{x/u\} \to t\{u\}_{\tau\sigma}\{x/u\}[y/u] \quad \text{if } |t|_x \geq 2
\end{align*}
\]

where we use the (meta)notation \(L \) for a list \([x_i/u_i]_n^1 \) with \(n \geq 0 \).

Note that \(dB \) reformulates the classical \(B \)-rule of ES calculi as a *distance* rule which skips the jumps affecting the abstraction of the redex. This same rule notably appears in weak ES calculi [19] to avoid the the \(\beta \)-redexes that are hidden by blocked substitutions. Here, the \(dB \)-rule is the natural term counterpart of a graphical and *local* rule in proof-nets and \(\lambda j \)-dags. Section 4 puts the expressiveness of this concept in evidence. The rules \(w, d \) and \(c \) are to be understood as the weakening, dereliction and contraction rules in \(\lambda j \)-dags.

It is worth noting that \(\lambda j \) allows to compose jumps, as for example reduction from \(t = y[x/z]\{y/v\} \) computes the (simultaneous) jumps in \(y[x/z\{y/v\}] \). Usually, the so-called *composition* of the two jumps of \(t \) rather yields \(y\{y/v\}[x/z\{y/v\}] \). We will study this more structural notion in Section 6.

The *rewriting relation* \(\to_{\lambda j} \) (resp. \(\to_{j} \)) is generated by all (resp. all expect \(dB \)) the previous rewriting rules modulo \(\alpha \)-conversion. The \(j \)-rewriting rules are based on global side conditions, which may seem difficult to implement. However, if implementation is done via graphical formalisms (such as proof-nets, bigraphs, \(\lambda j \)-dags), these conditions become local and completely harmless.

Now consider any reduction relation \(\mathcal{R} \). A term \(t \) is said to be in *\(\mathcal{R} \)-normal form*, written \(\mathcal{R}\text{-nf} \), if there is no \(u \) so that \(t \to_{\mathcal{R}} u \). We use \(\mathcal{R}(t) \) to denote the unique \(\mathcal{R}\text{-nf} \) of \(t \), when it exists. A term \(t \) is *\(\mathcal{R} \)-strongly normalising* or *\(\mathcal{R} \)-terminating*, written \(t \in SN_{\mathcal{R}} \), if there is no infinite \(\mathcal{R} \)-reduction sequence starting at \(t \), in which case \(\eta_{\mathcal{R}}(t) \) denotes the maximal length of a \(\mathcal{R} \)-reduction sequence starting at \(t \). The relation \(\mathcal{R} \) is called *complete* if it is strongly normalising and confluent. For a sequence of \(\mathcal{R} \)-strongly normalising
Lemma 3 (Stability of Reduction by Substitution). Terms t^n_n are usually given by:

$$t \in SN_R \iff \forall s (t \rightarrow_R s \implies s \in SN_R)$$

Define \mathcal{R}-reduction of meta-level substitutions by $\gamma \rightarrow^* \gamma'$ if $\text{dom}(\gamma) = \text{dom}(\gamma')$ and $\forall x \in \text{dom}(\gamma) : \gamma(x) \rightarrow^* \gamma'(x)$.

The following properties hold for all the reduction relations in this paper.

Lemma 3 (Stability of Reduction by Substitution).

- If $t \rightarrow^* t'$, then $t\sigma \rightarrow^* t'\sigma$. So that $t\sigma \in SN_R$ implies $t'\sigma \in SN_R$ and $\eta_R(t\sigma) < \eta_R(t\sigma)$.
- If $\gamma \rightarrow^* \gamma'$, then $t\gamma \rightarrow^* t\gamma'$. So that $t\gamma \in SN_R$ implies $t\gamma' \in SN_R$ and $\eta_R(t\gamma') \leq \eta_R(t\gamma)$.

3 Main Properties

In this section we prove some sanity properties of the calculus: full composition, simulation of one-step β-reduction, confluence and PSN. Since the first three can easily be shown using standard rewriting technology, we concentrate on proving PSN, which usually is tricky, but turns out to be surprisingly simple in our case.

Lemma 4 (Full Composition (FC)). Let $t, u \in T$. Then $t[x/u] \rightarrow^* t\{x/u\}$. Moreover, $|t|_x \geq 1$ implies $t[x/u] \rightarrow^* t\{x/u\}$.

Proof. By induction on $|t|_x$.

- If $|t|_x = 0$, then $t[x/u] \rightarrow^* t = t\{x/u\}$.
- If $|t|_x = 1$, then $t[x/u] \rightarrow^* t\{x/u\}$.
- If $|t|_x \geq 2$, then

$$t[x/u] \rightarrow^* t[y/u][x/u] \rightarrow^* (i.h.) t[y/u][x/u] \rightarrow^* (i.h.) t[y/u]\{y/u\}\{x/u\} = t\{x/u\}$$

Corollary 1 (Simulation). Let $t \in \lambda$-term. If $t \rightarrow^* t'$, then $t \rightarrow^* \lambda^* t'$.

The following notion, which counts the maximal number of free occurrences of a variable x that may appear during a γ-reduction sequence from a term t, will be useful for various proofs. The potential multiplicity of the variable x in the term t, written $M_x(t)$, is defined for α-equivalence classes as follows: if $x \notin \mathcal{F}v(t)$, then $M_x(t) := 0$; otherwise:

$$M_x(x) := 1$$
$$M_x(\lambda y.u) := M_x(u)$$
$$M_x(u v) := M_x(u) + M_x(v)$$
$$M_x(u[y/v]) := M_x(u) + \max(1, M_y(u)) \cdot M_x(v)$$

Potential multiplicities enjoy the following properties.
Lemma 5. Let $t \in \mathcal{T}$.

1. If $u \in \mathcal{T}$ and $y \notin fv(u)$, then $\mathcal{M}_y(t) = \mathcal{M}_y(t[u/x])$.
2. If $|t|_x \geq 2$, then $\mu_x(t) = \mathcal{M}_x(t[y]_x)$ and $\mathcal{M}_x(t) = \mathcal{M}_x(t[y]_x) + \mathcal{M}_y(t[y]_x)$.
3. If $t \to t'$, then $\mathcal{M}_y(t) \geq \mathcal{M}_y(t')$.

Proof. By induction on t.

We consider multisets of integers. We use $\{ \} \equiv$ to denote the empty multiset, \sqcup to denote multiset union and $n \cdot [a_1, \ldots, a_n]$ to denote $[n \cdot a_1, \ldots, n \cdot a_n]$.

The j-measure of $t \in \mathcal{T}$, written $jm(t)$, is given by:

\[
\begin{align*}
jm(x) & := \{ \} \\
jm(\lambda x.t) & := jm(t) \\
jm(tu) & := jm(t) \sqcup jm(u) \\
jm(t[x/u]) & := [M_u(t)] \sqcup jm(t) \sqcup \max(1, \mathcal{M}_u(t)) \cdot jm(u)
\end{align*}
\]

Lemma 6. Let $t \in \mathcal{T}$. Then,

1. $jm(t) = jm(t[y]_x)$.
2. If $u \in \mathcal{T}$, then $jm(t) \sqcup jm(u) \geq jm(t[u/x])$.

Proof. By induction on t. The first property is straightforward so that we only show the second one.

- $t = x$. Then $jm(x) \sqcup jm(u) = \{ \} \sqcup jm(u) = jm(x[u/x])$.
- $t = y \neq x$. Then $jm(y) \sqcup jm(u) = \{ \} \sqcup jm(u) \geq \{ \} = jm(y[x/u])$.
- $t = t_1[y/t_2]$. W.l.o.g we assume $y \notin fv(u)$. Then,

\[
\begin{align*}
jm(t_1[y/t_2]) \sqcup jm(u) & \geq \text{i.h. & L.5:1} \\
[M_u(t_1)] \sqcup jm(t_1) \sqcup \max(1, \mathcal{M}_u(t_1)) \cdot jm(t_2) \sqcup jm(u) & = jm(t_1[y/t_2]) \sqcup jm(u) \\
\end{align*}
\]

- All the other cases are straightforward.

Lemma 7. Let $t \in \mathcal{T}$.

1. $t_0 \equiv_x t_1$ implies $jm(t_0) = jm(t_1)$.
2. $t_0 \to t_1$ implies $jm(t_0) > jm(t_1)$.

Proof. By induction on the relations. The first point is straightforward, so that we only show the second one.

- $t_0 = t[x/u] \to_u t = t_1$, with $|t|_x = 0$. Then $jm(t_0) = jm(t) \sqcup 1 \cdot jm(u) \sqcup [0] > jm(t) = jm(t_1)$.
- $t_0 = t[x/u] \to_d t[x/u] = t_1$, with $|t|_x = 1$. Then $jm(t_0) = jm(t) \sqcup 1 \cdot jm(u) \sqcup [1] > jm(t) \sqcup jm(u) \geq jm(t[x/u]) = jm(t_1)$.
\[t_0 = t[x/u] \rightarrow_\varepsilon t_{[y/u]} [x/u][y/u] = t_1, \text{ with } |t|_x \geq 2 \text{ and } y \text{ fresh. Then,} \]

\[
\begin{align*}
\text{jm}(t_0) &= \text{=} \\
\text{jm}(t) \sqcup \max(1, M_x(t)) \cdot \text{jm}(u) \sqcup [M_x(t)] &\geq L.6.1 \\
\text{jm}(t') \sqcup \max(1, M_x(t)) \cdot \text{jm}(u) \sqcup [M_x(t)] &\geq 5.3 \\
\text{jm}(t') \sqcup \max(1, M_x(t')) \cdot \text{jm}(u') \sqcup [M_x(t')] &\text{=} \\
\text{jm}(t) &\text{=}
\end{align*}
\]

- All the other cases are straightforward

Lemma 8. The \(j \)-reduction relation is complete.

Proof. Using the Modular Abstract Theorem 5.

Confluence of calculi with ES can be easily proved by using Tait and Martin L"of’s technique (see for example the case of \(\lambda e \)s [13]). This technique is based on the definition of a simultaneous reduction relation \(\Rightarrow_{\lambda j} \) which enjoys the diamond property.

The **simultaneous reduction relation** \(\Rightarrow_{\lambda j} \) is defined on terms in \(j \)-normal form as follows:

- \(x \Rightarrow_{\lambda j} x \)
- If \(t \Rightarrow_{\lambda j} t' \), then \(\lambda x.t \Rightarrow_{\lambda j} \lambda x.t' \)
- If \(t \Rightarrow_{\lambda j} t' \& u \Rightarrow_{\lambda j} u' \), then \(t \lor u \Rightarrow_{\lambda j} t' \lor u' \)
- If \(t \Rightarrow_{\lambda j} t' \& u \Rightarrow_{\lambda j} u' \), then \((\lambda x.t) u \Rightarrow_{\lambda j} j(t'[x/u']) \)

Lemma 9. If \(t \Rightarrow_{\lambda j} t' \), then \(t \rightarrow_{\lambda j} t' \).

Proof. By induction on \(t \Rightarrow_{\lambda j} t' \).

Lemma 10. If \(t \rightarrow_{\lambda j} t' \), then \(j(t) \Rightarrow_{\lambda j} j(t') \).
Proof. By induction on \(t \rightarrow_{\lambda_j} t' \).

Lemma 11. The relation \(\Rightarrow_{\lambda_j} \) enjoys the diamond property.

Proof. By induction on \(\Rightarrow_{\lambda_j} \) and case analysis.

Theorem 1 (Confluence). For all \(t, u_1, u_2 \in \mathcal{T} \), if \(t \rightarrow_{\lambda_j}^* u_i \) (\(i = 1, 2 \)), then \(\exists v \text{ s.t. } u_i \rightarrow_{\lambda_j}^* v \) (\(i = 1, 2 \)).

Proof. Let \(t \rightarrow_{\lambda_j}^* t_i \) for \(i = 1, 2 \). Lemma 10 gives \(j(t) \Rightarrow_{\lambda_j} j(t_i) \) for \(i = 1, 2 \). Lemma 11 implies \(\Rightarrow_{\lambda_j} \) is confluent so that \(\exists s \text{ such that } j(t_i) \Rightarrow_{\lambda_j}^* s \) for \(i = 1, 2 \). We can then close the diagram with \(t_i \rightarrow_{\lambda_j}^* j(t_i) \rightarrow_{\lambda_j}^* s \) by Lemma 9.

Remark that confluence does not use termination of the \(j \)-(sub)calculus. To give a formal termination proof for it we introduce the following notions.

We now discuss PSN. A reduction system \(R \) is said to enjoy the PSN property w.r.t. another system \(S \) if every term which is \(S \)-strongly normalising is also \(R \)-strongly normalising. Here PSN will mean PSN w.r.t. \(\beta \)-reduction.

The proof of PSN can be stated in terms of the IE property which relates termination of Implicit substitution to termination of Explicit substitution. A reduction system \(R \) enjoys the IE property if for \(n \geq 0 \) and for all \(t, u, v_n \in \lambda \)-terms: \(u \in SN_R \) and \(t[x/u]v_n \in SN_R \) imply \(t[x/u]v_n \in SN_R \).

Theorem 2 (IE implies PSN). A reduction relation \(R \) enjoys PSN if \(R \) verifies the IE-property and the following:

\[(F0) \text{ If } t_n^\gamma \in \lambda \text{-terms in } SN_R, \text{ then } x t_n^\gamma \in SN_R. \]

\[(F1) \text{ If } u \in \lambda \text{-term in } SN_R, \text{ then } \lambda x.u \in SN_R. \]

\[(F2) \text{ The only } R \text{-reducts of a } \lambda \text{-term } (\lambda x.u) v_n^\gamma \text{ are } u[x/v]v_n^\gamma \text{ and those coming from internal reduction on } u, v, v_n^\gamma. \]

Intuitively, the first two requirements (F0) and (F1) mean that head-normal forms are stable under \(R \). The last requirement (F2) means that the head-redex can only be refined by \(R \), but nothing else.

Proof. We show \(t \in SN_R \) by induction on the definition of \(t \in SN_\beta \) (as in [30]):

- If \(t = x t_n^\gamma \) with \(t_n \in SN_\beta \), then (i.h.) \(t_n \in SN_R \) and thus (F0) \(x t_n^\gamma \in SN_R \).
- If \(t = \lambda x.u \) with \(u \in SN_\beta \), then (i.h.) \(u \in SN_R \) and thus (F1) \(\lambda x.u \in SN_R \).
- If \(t = (\lambda x.u) v_n^\gamma \), with \(u[x/v]v_n^\gamma \in SN_\beta \) and \(v \in SN_\beta \), then (i.h.) both terms are in \(SN_R \). IE gives \(U = u[x/v]v_n^\gamma \in SN_R \), so in particular \(u, v, v_n^\gamma \in SN_\beta \).

We show \(t \in SN_R \) by induction on \(\eta_R(u) + \eta_R(v) + \Sigma_i \eta_R(t_i) \). For that, we show that every \(R \)-reduct of \(t \) is in \(SN_R \). Now, if \(t \rightarrow_R t' \) is an internal reduction, apply the i.h. Otherwise, (F2) gives \(t \rightarrow_R u[x/v]t_1 \ldots t_n = U \) which is in \(SN_R \).

Theorem 3 (IE for \(\lambda_j \)). \(\lambda_j \) enjoys the IE property.
Proof. We show the following more general statement. For all terms $t, \overline{\pi}_m^n (m \geq 1), \overline{\pi}_n^n (n \geq 0)$, if $\overline{\pi}_m^n \in SN_{\lambda_j}$ and $t \{x_i/u_i\}_m^n \in SN_{\lambda_j}$, then $t \{x_i/u_i\}_m^n \in SN_{\lambda_j}$, where $x_i \neq x_j$ for $i, j = 1 \ldots m$ and $x_i \not\in f v(u_j)$ for $i, j = 1 \ldots m$. The \textbf{IE} property then holds by taking $m = 1$.

Suppose $\overline{\pi}_m^n \in SN_{\lambda_j}$ and $t \{x_i/u_i\}_m^n \in SN_{\lambda_j}$. We show $T = t \{x_i/u_i\}_m^n \in SN_{\lambda_j}$ by induction on $(\lambda_j(t \{x_i/u_i\}_m^n), \omega_m(t), \eta_j(t \{x_i/u_i\}_m^n))$ where $\omega_m(t) = 3|t_i|$ and $\omega_m(t) = \sum_{i \in m} \omega_x(t_i)$.

To show $T \in SN_{\lambda_j}$ it is sufficient to show that every λ_j-reduct of T is in SN_{λ_j}. Since $m \geq 1$, then we can write $[x_i/u_i]_m^n = [x_i/u_i]_1 \{x_i/u_i\}_1 \{x_i/u_i\}_m^n$.

\[- T \rightarrow \lambda_j t \{x_i/u_i\}_1 \{x_i/u_i\}_1 t \{x_i/u_i\}_m^n = T' \] with $u_j \rightarrow \lambda_j u_j'$. Then we have that $\eta_j(t \{x_i/u_i\}_1 \{x_i/u_i\}_1 t \{x_i/u_i\}_m^n \in \eta_j(t \{x_i/u_i\}_1 \{x_i/u_i\}_m^n) \text{ and } \omega_m(t) = \omega_m(t) = \omega_m(t) = \omega_m(t) = \omega_m(t)$.

Since $\overline{\pi}_m^{1 \rightarrow 1} \overline{\pi}_m^{1 \rightarrow 1} \overline{\pi}_m^{1 \rightarrow 1} \in SN_{\lambda_j}$ and $t \{x_i/u_i\}_1 \{x_i/u_i\}_1 t \{x_i/u_i\}_m^n \in SN_{\lambda_j}$ by Lemma 3, then we conclude by the i.h.

\[- T \rightarrow \lambda_j t \{x_i/u_i\}_m^n \in T' \] with $t \rightarrow \lambda_j t$. Then we have that $\eta_j(t \{x_i/u_i\}_m^n \in \eta_j(t \{x_i/u_i\}_m^n)$. We conclude by the i.h. since

\[- t \{x_i/u_i\}_m^n \overline{\pi}_m^{1 \rightarrow 1} \in SN_{\lambda_j} \text{ by Lemma 3}.

\[- T \rightarrow \lambda_j t \{x_i/u_i\}_m^n \in T' \] with $v_i \rightarrow \lambda_j v_i'$. We have that $\eta_j(t \{x_i/u_i\}_m^n \in \eta_j(t \{x_i/u_i\}_m^n)$. We conclude by the i.h. since $t \{x_i/u_i\}_m^n v_i \ldots v_n \in SN_{\lambda_j}.$

\[- T \rightarrow \omega t \{x_i/u_i\}_m^n \in T' \] with $|t|_{x_i} = 0$. We have that the measure $\eta_j(t \{x_i/u_i\}_m^n \in \eta_j(t \{x_i/u_i\}_m^n), \text{ but } \omega_m(t) \text{ decrease since } \omega_m(t) \text{ decrease.}

Since $t \{x_i/u_i\}_m^n \in SN_{\lambda_j}.$

\[- T \rightarrow \omega t \{x_i/u_i\}_m^n \in T' \] with $|t|_{x_i} = 1$. Then we have that $\eta_j(t \{x_i/u_i\}_m^n \in \eta_j(t \{x_i/u_i\}_m^n)$. Also, the jumps are independent, so that $\overline{\pi}_m^{1 \rightarrow 1} \overline{\pi}_m^{1 \rightarrow 1} \cap f v(u_i) = 0 \implies \omega_m(t) < \omega_m(t)$.

We conclude since $t \{x_i/u_i\}_m^n \in SN_{\lambda_j}$ by hypothesis.

\[- T \rightarrow e t \{x_i/u_i\}_m^n \in T' \] with $|t|_{x_i} \geq 2$ and y fresh. Then

\[- \eta_j(t \{x_i/u_i\}_m^n \in \eta_j(t \{x_i/u_i\}_m^n) \text{ and } \omega_m(t) \text{ decrease since } \omega_m(t) \text{ decrease.}

In order to apply the i.h. to $t \{x_i/u_i\}_m^n$, we need

\[- \overline{\pi}_m^{1 \rightarrow 1}, u_j, \overline{\pi}_m^{1 \rightarrow 1} \in SN_{\lambda_j}. \text{ This holds by hypothesis.}

\[- t \{x_i/u_i\}_m^n \in SN_{\lambda_j}. \text{ This holds since the term is equal to } t \{x_i/u_i\}_m^n \overline{\pi}_m^{1 \rightarrow 1} \text{ which is } SN_{\lambda_j} \text{ by hypothesis.}

\[- T = \lambda x.t' \{x_i/u_i\}_m^n \overline{\pi}_m^{1 \rightarrow 1} \rightarrow \omega \lambda x.t' \{x_i/u_i\}_m^n \overline{\pi}_m^{1 \rightarrow 1} = T'. \text{ By hypothesis}

U = \lambda x.t' \{x_i/u_i\}_m^n \overline{\pi}_m^{1 \rightarrow 1} \in SN_{\lambda_j}. \text{ Using full composition we obtain}

\[U \rightarrow \omega \lambda x.t' \{x_i/u_i\}_m^n \overline{\pi}_m^{1 \rightarrow 1} \rightarrow \lambda x.t' \{x_i/u_i\}_m^n \overline{\pi}_m^{1 \rightarrow 1} = U'. \text{ Thus } \eta_j(U') < \eta_j(U). \text{ To conclude } T' \in SN_{\lambda_j} \text{ by the i.h. we then need} \]
• $v_1, \overline{m}_m \in SN_{\lambda_j}$. But $\overline{m}_m \in SN_{\lambda_j}$ holds by hypothesis and $t\{x_i/u_i\}_m \overline{n}_n \in SN_{\lambda_j}$ implies $v_1 \in SN_{\lambda_j}$.

• $U' = t'\{x/v_1\}\{x_i/u_i\}_m \overline{n}_n \in SN_{\lambda_j}$ implies $v_1 \in SN_{\lambda_j}$.

In contrast to known PSN proofs for calculi with ES and composition of substitutions [3, 13, 15], we get a very concise and simple proof of the IE property, and thus of PSN, due to the fact that λ_j has no propagation rule. Indeed, since λ_j-reduction enjoys the IE-property and F_0, F_1 and F_2 in Theorem 2 are straightforward for the λ_j-calculus, we get:

Corollary 2 (PSN for λ_j). Let $t \in \lambda$-term. If $t \in SN_{\beta}$, then $t \in SN_{\lambda_j}$.

4 Developments and All That

In λ-calculus creation of redexes can be classified in three types [18]:

- **(Type 1)** $(\lambda x.\lambda y.t)u \rightarrow_\beta (\lambda y.t\{x/u\})v$.
- **(Type 2)** $(\lambda x.x)(\lambda y.t)u \rightarrow_\beta (\lambda y.t)u$.
- **(Type 3)** $(\lambda x.C[x\ x]) (\lambda y.u) \rightarrow_\beta C[x/\lambda y.u][\lambda y.u\ v[x/\lambda y.u]]$

When λ-terms are considered as trees, the first and second type create a redex **upward**, while the third creates it **downward**, which is the dangerous kind of creation since it may lead to divergence.

According to the previous classification, different ways to compute a term can be defined. A reduction sequence starting at t is a development [12] (resp. a full development) if only (resp. all the) residuals of redexes (resp. all the redexes) of t are contracted. A more liberal notion, called L-development here, and known as superdevelopment [17], allows to also reduce created redexes of type 1 and 2. A major result states that all developments (resp. L-developments) of a λ-term are finite, and that the results of all full developments (resp. full L-developments) coincide.

Note that reductions of type 1 and 2 are acceptable because the created redex is hidden in the initial term, so that non-termination only happens when creating redexes of type 3. However, linear creations of type 3 - i.e. creations which do not involve duplications - are also safe, and infinite reductions only happen if redexes created after duplication are reduced - we call such cases non-linear creations of type 3. As an example, consider $\Omega = (\lambda x.x) (\lambda x.x)$ whose infinite reduction involves only non-linear creations of the third type. These observations suggest that banning the third type of creation is excessive: it is sufficient to avoid non-linear ones. This extended form of L-development needs a language capable of distinguishing between the different linear/erasing/duplicating nature of redexes. This section extends the notion of L-development to that of XL-development, which also reduces linearly created redexes of type 3, and provides a finiteness result.

The following table summarises the behaviour of each computational notion studied in this section on the λ-term $u_0 = (I\ I)\ ((\lambda z.\ y)\ I)$, where $I = \lambda x.x$.

<table>
<thead>
<tr>
<th>Computational Notion</th>
<th>$u_0 = (I\ I)\ ((\lambda z.\ y)\ I)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>full development</td>
<td>$I (I\ y)$</td>
</tr>
<tr>
<td>full L-development</td>
<td>$I\ y$</td>
</tr>
<tr>
<td>full XL-development</td>
<td>y</td>
</tr>
</tbody>
</table>
The specification of all the reduction subsystems used in this section exploits the idea of multiplicity. Thus, the λj-calculus provides a uniform and expressive framework to reason about creation of redexes in λ-calculus.

A development (resp. full development) of a term t is a reduction sequence in which only (resp. all the) residuals of redex occurrences (resp. all the redex occurrences) that already exist in t are contracted. There are many proofs of finiteness of developments, like [27, 31, 12, 30]. The result of a full development of a λ-term is unique and can simply be defined by induction on the structure of terms as follows:

\[
\begin{align*}
 x^\circ & := x \\
 (\lambda x. t)^\circ & := \lambda x. t^\circ \\
 (\{(\lambda x. t) u\})^\circ & := t^\circ \{x/u^\circ\} \\
 (t u)^\circ & := t^\circ u^\circ \quad \text{if } t \neq \lambda
\end{align*}
\]

Remark that \(t^\circ \neq \lambda \) implies \(t \neq \lambda \). This notion can be extended to jumps in two different ways. The first way inductive definition can be given by

\[
\begin{align*}
 x^* & := x \\
 (\lambda y. t)^* & := \lambda y. t^* \\
 (\{(\lambda x. t) u\})^* & := t^* \{x/u^*\} \\
 (t u)^* & := t^* u^* \quad \text{if } t \neq \lambda \\
 (t[x/u])^* & := t^* \{x/u^*\}
\end{align*}
\]

For a λ-term t we have \(t^\circ \neq t^* \); in particular \(t^* \rightarrow t^\circ \).

The second way consists in taking the opposite view, with the purpose to simulate developments of λ-calculus. This can be obtained with a function \(\bullet \bullet \) which is exactly as \(\bullet \) except for:

\[
(\{(\lambda x. t) u\})^\bullet \bullet := t^\bullet \{x/u^\bullet \bullet\}
\]

Developments are thus defined by induction on terms, but it is well-known that the function \(\bullet \bullet \) can also be defined in a more operational way. Let \(B \) be the rewriting rule \((\lambda x. t) u \rightarrow_B t[x/u] \), which is the restriction of our dB-rule to a proximity action. This relation is trivially complete so that we use \(B(t) \) for the (unique) B-nf of the term t.

Corollary 3. Let \(t \in \lambda \)-term. Then \(t^\circ = j(B(t)) \).

Proof. By induction on t.

- Case \(t = x \). Then \(x^\circ = x = x^\bullet = j(B(x)) \).
- Case \(t = \lambda x. u \). Then \((\lambda x. u)^\circ = \lambda x. u^\circ = i.h. \lambda x. u^\bullet = \lambda x. j(B(u)) \).
- Case \(t = u \cdot v \), where \(t \neq \lambda \). We then have \((u \cdot v)^\circ = u^\circ v^\circ = i.h. u^\bullet v^\bullet = (u \cdot v)^\bullet \bullet \). Similarly as \(u \cdot v \) is not a redex \(\lambda x. j(B(u) \cdot j(B(v))) \neq j(B(u)) \cdot j(B(v)) \) and we conclude using the i.h.
- Case \(t = (\lambda x. u) v \). We have \(t^\circ = u^\circ \{x/v^\circ\} = i.h. u^\bullet \{x/v^\bullet \bullet\} = ((\lambda x. u) v)^\bullet \bullet = t^\bullet \bullet \). Similarly \(u^\bullet \{x/v^\bullet \bullet\} = i.h. \lambda x. j(B(u) \{x/j(B(\bullet \bullet))\} = j(B(u) \{x/j(B(v))\} = j(B(u)) \{x/j(B(v))\} = j(B(u) \{x/j(B(v))\}) = j(B(u)v) \).
Developments can be extended to L-developments which also reduce created redexes of type 1 and 2 and are always finite. The result of a full L-development of a λ-term is unique and admits the following inductive definition [17]:

$$
\begin{align*}
 x^{\circ}\ &:= \ x \\
 (\lambda x. t)^{\circ}\ &:= \ \lambda x. t^{\circ} \\
 (t u)^{\circ}\ &:= \ t^{\circ} \cup t^{\circ} \text{ if } t^{\circ} \neq \lambda \\
 (t u)^{\circ}\ &:= \ t_1 \{x/u^{\circ}\} \text{ if } t^{\circ} = \lambda x. t_1
\end{align*}
$$

Remark that $t^{\circ} \neq \lambda$ implies $t \neq \lambda$.

Let us recover t° by means of our language λj. The key to operationally describe the first type of creation is the distance dB-rule, whose (unique) n will be noted $dB(t)$. Replacing our definition of development $j(B(t))$ with $j(dB(t))$ gives:

$$
\begin{align*}
 dB((\lambda y.t)[x/u] v) &= dB(t[y/v][x/u]) = dB(t)[y/dB(v)][x/dB(u)]
\end{align*}
$$

Then, computing jumps, we get:

$$
\begin{align*}
 j(dB((\lambda x. \lambda y.t) u)v) &= j(dB(t)[y/dB(v)][x/dB(u)]) = j(dB(t))[x/j(dB(u)) \{y/j(dB(v))\}]
\end{align*}
$$

And we are done. Now, to specify L-developments within our language λj we also need to capture the second type of creation. We would therefore need to use $dB \cup d \cup u$ instead of dB, but our (distance) d-rule turns out to be too powerful since created redexes of type 3 would also be captured as shown by the term $(\lambda x. x t)(\lambda y.u)$, where $x \notin f v(t)$. Thus, the reduction d is restricted to act only on variables, written md (for minimal dereliction), so that \rightarrow_{md} is the context closure of the rule $x[x/u] \rightarrow u$. We then let A be the relation $dB \cup md \cup u$.

Lemma 12. The reduction relation \rightarrow_A is complete.

Proof. Termination of A is straightforward. Confluence follows from local confluence (straightforward by case-analysis) and Newman’s Lemma.

Interestingly, \rightarrow_A cannot be weakened to $\rightarrow_{dB,md}$ as illustrated by the term $s = ((\lambda x.((\lambda y.x t)) \lambda z.z) u$. Now, to prove that $j(A(\cdot))$ is an L-development some technical lemmas are needed.

Lemma 13. A term in A-nf has either a V-Form x, an A-Form $(u v)[x_i/s_i]_n^1$, or an L-Form $(\lambda x.v)[x_i/s_i]_n^1$, where $u, v, \neg a_n (n \geq 0)$ are A-nfs, u is not an L-Form, and $|M[x_i/s_i]_n^1|_{x_j+1} \geq 1$ for $j = 1, \ldots, n-1$ and $(M = u v$ or $M = \lambda x.v)$.

Proof. By induction on t.

- If t is a variable or an abstraction $\lambda x.u$, then we are done, since u is necessarily an A-nf.
- If t is an application $t_1 t_2$, then t_1 and t_2 are necessarily A-nfs. The subterm t_1 cannot have the shape $(\lambda y.t_1)[y_i/v_i]_k^1$ otherwise t would be dB-reducible.
Lemma 15. If \(\lambda x. v \) is a \(K \)-term, then it is a \(K \)-term.

Proof. By Lemma 14, if \(\lambda x. v \) is a \(K \)-term, then it is a \(K \)-term. The case when \(x \) is free in \(\lambda x. v \) is handled by Lemma 14. The case when \(x \) is bound in \(\lambda x. v \) is handled by Lemma 14.

Lemma 15. If \(\lambda x. v \) is a \(K \)-term, then it is a \(K \)-term.

Proof. By Lemma 12, every term \(tu \) has a unique \(\eta \)-normal form \(\eta_{\eta} tu \). Thus, \(tu \to_{\eta} \eta_{\eta} tu \) if \(tu \to_{\eta} \eta_{\eta} tu \)

Corollary 4. Let \(t \) be a \(\lambda \)-term. Then \(t^{\infty} = \lambda (A(t)) \).

Proof. By induction on \(t \).

- Case \(t = x \). Then \(x^{\infty} = x = \lambda (A(x)) \).
- Case \(t = \lambda x. u \). Then \((\lambda x. u)^{\infty} = \lambda x. u^{\infty} =_{i.h.} \lambda x. \lambda (A(u)) = \lambda (A(t)) \).
- Case \(t = u v \), where \(u^{\infty} \neq \lambda \). By the i.h., \(u^{\infty} = \lambda (A(u)) \), hence \(\lambda (A(u)) \neq \lambda \) and \(\lambda (A(u)) \neq \lambda \). We then have \((u v)^{\infty} = u^{\infty} v^{\infty} =_{i.h.} \lambda (A(u)) \lambda (A(v)) = \lambda (A(u) v) \).
- Case \(t = u v \), where \(u^{\infty} = \lambda x. u_{1} =_{i.h.} \lambda (A(u)) \) and \(v^{\infty} = \lambda (A(v)) \). By Lemma 14, \(A(u) \) and \(A(v) \) are \(\lambda \)-terms. Hence \(\lambda (A(u)) \lambda (A(v)) = \lambda (A(u) v) \).

By Lemma 15, \(A(u) \lambda (A(v)) = \lambda (A(u) v) \) for all \(u \) and \(v \).
\[j(A(u \ v)) = \]
\[j((m \ d \cup w)(s)) = \]
\[j(s) = \]
\[j(u_2[x/A(v)])[x_i/s_i]_n^j = \]
\[j(u_2)[x/j(A(v))]{x_i/j(s_i)}_n^j = L. 2 \]
\[j(u_2)[x/j(s_i)]_n^j[x/j(A(v))j = \]
\[j(u_2)[x/s_i]_n^j(x/j(A(v))) = i.h. \]
\[u_1\{x/v^{oo}\} = (u \ v)^{oo} \]

It is now natural to relax the previous relation \(A \) from \(dB \cup md \cup w \) to \(dB \cup d \cup w \), in other words, to also allow unrestricted \(d \)-steps. Thus \(L \)-developments are extended to \(XL \)-developments, which also allow linear creations of type 3. Completeness of this extended notion is stated as follows:

Lemma 16. The reduction relation \(\rightarrow_{dB \cup d \cup w} \) is complete.

Proof. Since \(dB \cup d \cup w \subseteq \mathbb{J} \), which is terminating (Lemma 8), then \(dB \cup d \cup w \) is terminating as well. To show confluence it is sufficient to show local confluence, which is straightforward by case-analysis, then apply Newman’s Lemma.

The result of a full \(XL \)-development of a \(\lambda \)-term \(t \), noted \(t^{oo} \), is defined by \(j((dB \cup d \cup w)(t)) \) where \((dB \cup d \cup w)(t) \) denotes the (unique) \(dB \cup d \cup w \)-nf of \(t \). This notion extends L-developments in a deterministic way, i.e. provides a complete reduction relation for \(\lambda \)-terms, more liberal than L-developments.

It is well known that every affine \(\lambda \)-term \(t \) (i.e. a term where no variable has more than one occurrence in \(t \)) is \(\beta \)-strongly normalising (the number of constructors strictly diminishes with each step). Moreover, \(\beta \)-reduction of affine terms can be performed in \(\lambda j \) using only \(dB \cup d \cup w \), i.e. \(\beta \)-nf(\(t \)) = \((dB \cup d \cup w)(t) \). Thus:

Corollary 5. Let \(t \) be an affine \(\lambda \)-term. Then \(t^{oo} = \beta \)-nf(\(t \)).

We hope that our extended notion of XL-development can be applied to obtain more expressive solutions for higher-order matching problems, which arise for example in higher-order logic programming, logical frameworks, program transformations, etc. Indeed, the approach of higher-order matching in untyped frameworks \([7, 5]\), which currently uses L-developments, may be improved using XL-developments, as suggested by example (1) at the beginning of this section.

5 Bisimilar Terms

The simplicity of the \(\lambda j \)-calculus naturally suggests the study of some operational equivalence which should equate terms that differ only concerning the positioning of their jumps but behave identically. For instance, if \(y \notin fv(u) \), then \(\lambda y.t[x/u] \) and \((\lambda y.t)[x/u] \) behave equivalently: there is a bijection between their redexes and their reducts, i.e. they are bisimilar. This idea is reminiscent of Regnier’s equivalence on \(\lambda \)-terms \([25]\), here written \(\sigma^R \):

\[
(\lambda x.\lambda y.t) \ u \equiv_{\sigma^R} (\lambda y.((\lambda x.t) \ u)) \quad \text{if } y \notin fv(u) \\
(\lambda x.t \ v) \ u \equiv_{\sigma^R} (\lambda x.t) \ u \ v \quad \text{if } x \notin fv(v)
\]
Reduction of the dB-redexes in the previous equations yields the following \(\sigma \)-equivalence notion, now on \(\lambda j \)-terms:

\[
(\lambda y.t)[x/u] \equiv_{\sigma_1} \lambda y.t[x/u] \quad \text{if } y \notin \mathcal{fv}(u) \\
(t \cdot v)[x/u] \equiv_{\sigma_2} t[x/u] \quad \text{if } x \notin \mathcal{fv}(v)
\]

This is not very surprising since \(\sigma^R \)-equivalence was introduced by noting that the two terms of each equation represent the same MELL proof-net modulo multiplicative redexes, which correspond exactly to the dB-redexes of the \(\lambda j \)-calculus. Regnier proved that \(\sigma^R \)-equivalent terms have the same maximal \(\beta \)-reduction length. However, this does not imply that \(\sigma^R \)-equivalence is a strong bisimilarity on \(\lambda \)-terms. Indeed, take \(\lambda \)-terms \(t_0 = ((\lambda x.\lambda y. y) \cdot z) \cdot w \equiv_{\sigma^R_1} (\lambda y.((\lambda x. y) \cdot z)) \cdot w = t_1 \). Both share the same \(\beta \)-normal form \(w \) and \(\eta_\beta(t_0) = \eta_\beta(t_1) \). Nevertheless, \(t_0 \) has one redex, while \(t_1 \) has two redexes, and the redex of \(t_1 \) involving \(w \) has no corresponding redex in \(t_0 \). They also differ in terms of creation of redexes: the result of the full development of \(t_0 \) has a created redex, while the result of the full development of \(t_1 \) is the normal form of the term. Our reformulation of \(\sigma^R \), however, equates two \(\lambda j \)-terms \(t_0 \) and \(t_1 \) which are strongly bisimilar:

\[
t_0 \to dB t'_0 = (\lambda y. y)[x/z] \cdot w \equiv_{\sigma_1} (\lambda y. y)[z/x] \cdot w = t'_1 \quad \text{if } x \notin \mathcal{fv}(v) \quad \text{(2)}
\]

Actually, bisimulation holds also for permutation of independent jumps [13]:

\[
t[x/u][y/v] \equiv_{CS} t[y/v][x/u] \quad \text{if } y \notin \mathcal{fv}(u) \& x \notin \mathcal{fv}(v)
\]

While CS should naturally remain an equivalence, \(\sigma \) has often been restricted to being considered a reduction relation [26], for no good reason. Here, we add CS and \(\sigma \) to \(\lambda j \) without any trouble, in particular without losing the PSN property (Corollary 9). The operational equivalence relation generated by \(o = \{o, CS, \sigma_1, \sigma_2\} \) realises a strong bisimulation, proved by induction on \(\equiv_{CS, \sigma_1, \sigma_2} \) and using the following preliminary lemma:

Lemma 17. For all \(t, t' \in \mathcal{T} \) and substitution \(\gamma \)

1. If \(t \equiv_o t' \), then \(t\gamma \equiv_o t'\gamma \).
2. If \(\gamma \equiv \gamma' \), then \(t\gamma \equiv_o t'\gamma \).

Proposition 1 (Strong Bisimulation). For all \(t, u, u' \in \mathcal{T} \) s.t. \(t \equiv_o u \to_{\lambda j} u' \) \(\exists! t' \) s.t. \(t \to_{\lambda j} t' \equiv_o u' \).

Proof. Here we consider \(\equiv_{CS, \sigma_1, \sigma_2} \) as an atomic step of equivalence and rephrase the statement as: for all \(t_0, t_1, s_1 \in \mathcal{T} \) and \(n > 0 \) s.t. \(t_0 \equiv_{CS, \sigma_1, \sigma_2} t_1 \to_{\lambda j} s_1 \) there exists \(s_0 \) s.t. \(t_0 \to_{\lambda j} s_0 \equiv_{CS, \sigma_1, \sigma_2} s_1 \). The proof is by induction on \(n \). If \(n = 1 \) then we reason by induction on \(\equiv_{CS, \sigma_1, \sigma_2} t_1 \), considered as an atomic step of equivalence:

- Let \(t_0 = t[x/u][y/v] \equiv_{CS} t[y/v][x/u] = t_1 \) with \(y \notin \mathcal{fv}(u) \) and \(x \notin \mathcal{fv}(v) \). If \(t_1 \to_{\lambda j} s_1 \) because
 • \(t \to_{\lambda j} t' \) then \(t_0 \to_{\lambda j} t'[x/u][y/v] = s_0 \equiv_{CS} s_1 = t'[y/v][x/u] \).
 • \(u \to_{\lambda j} u' \) or \(v \to_{\lambda j} v' \) then it is similar to the previous case.
\[t[y/v][x/u] \rightarrow_\delta t[y/v][x/u] = s_1 \text{ then } t_0 \rightarrow_\delta t[x/u][y/v] = s_1. \]
\[t[y/v][x/u] \rightarrow_\varepsilon t[z_u][y/v][x/u] = s_1 \text{ then } t_0 \rightarrow_\varepsilon t[x/u][y/v][z/v] \equiv_{s_3} s_1. \]
\[t[y/v][x/u] \rightarrow_\varepsilon t[x/u] = s_1 \text{ then } t_0 \rightarrow_\varepsilon t[x/u] = s_1. \]

The three cases where it is \([x/u]\) which is reduced are similar to the last three cases.

- Let \(t_0 = (\lambda y.t)[x/u] \equiv_{s_4} \lambda y.t[x/u] = t_1 \) with \(y \notin \text{fv}(u) \). If \(t_1 \rightarrow_\lambda s_1 \) because
 \(t \rightarrow_\lambda t' \) then \(t_0 = (\lambda y.t)[x/u] \rightarrow_\lambda (\lambda y.t')[x/u] = s_0 \equiv_{s_1} s_1 = \lambda y.t'[x/u]. \)
 \(u \rightarrow_\lambda u' \) then it is similar to the previous case.
 \(\lambda y.t[x/u] \rightarrow_\varepsilon \lambda y.t[x/u] = s_1 \) then \(t_0 \rightarrow_\varepsilon (\lambda y.t)[x/u] = s_1. \)
 \(\lambda y.t[x/u] \rightarrow_\varepsilon \lambda y.t[z_u][x/u][x/u] = s_1 \) then \(t_0 \rightarrow_\varepsilon (\lambda y.t[z_u])[x/u] \equiv_{s_1} s_1. \)

- \(\lambda y.t[0][x/u] \rightarrow_\varepsilon \lambda y.t[0] = s_1 \) then \(t_0 \rightarrow_\varepsilon \lambda y.t = s_1. \)

- Let \(t_0 = (t v)[x/u] \equiv_{s_5} t[x/u] v = t_1 \) with \(x \notin \text{fv}(v) \). If \(t_1 \rightarrow_\lambda s_1 \) because
 \(t \rightarrow_\lambda t' \) then \(t_0 = (t v)[x/u] \rightarrow_\lambda (t' v)[x/u] = s_0 \equiv_{s_2} s_1 = t' [x/u] v. \)
 \(u \rightarrow_\lambda u' \) or \(v \rightarrow_\lambda v' \) then it is similar to the previous case.
 \(t[x/u] v \rightarrow_\varepsilon t[x/u] v = s_1 \) then \(t_0 \rightarrow_\varepsilon (t v)[x/u] = s_1. \)
 \(t[x/u] v \rightarrow_\varepsilon t[z_u][x/u][x/u] v = s_1 \) then \(t_0 \rightarrow_\varepsilon (t v)[z_u][x/u][x/u] = (t[z_u])[x/u][x/u] \equiv_{s_2} s_1. \)
 \(t[x/u] v \rightarrow_\varepsilon t[x/u] v = s_1 \) then \(t_0 \rightarrow_\varepsilon t v = s_1. \)
 \(t_0 = ((\lambda y.t)L v)[x/u] \) and \(t_1 = (\lambda y.t)L[x/u] v \rightarrow_\delta \lambda y.t'[y/v]L[x/u] = s_1. \)

Then, \(t_0 = ((\lambda y.t')L v)[x/u] \rightarrow_\delta \lambda y.t'[y/v]L[x/u] = s_1. \)

- The inductive cases:
 - If \(t_0 = \lambda y.t \equiv_{s_6} \lambda x.t' = t_1 \rightarrow_\lambda \lambda x.t'' = s_1 \) then \(t \equiv_{s_7} \lambda y.t' t' \rightarrow_\lambda \lambda y.t'' \) and by the i.h. there exists \(t'' \) s.t. \(t \rightarrow_\lambda t'' \equiv_{s_8} \lambda y.t'' \). Then, \(s_0 = \lambda x.t'' \) is s.t. \(t_0 \rightarrow_\lambda s_0 \equiv_{s_9} \lambda y.t'' s_1. \)
 \(t_0 = t \rightarrow_\lambda s_0 \equiv_{s_9} \lambda y.t'' s_1. \)
 \(t_0 = (\lambda y.t)[x/u] \rightarrow_\delta \lambda y.t'[y/v]L[x/u] = s_1. \)
 - If \(t_0 = (\lambda y.t)[x/u] \) then \(t_0 \rightarrow_\delta \lambda y.t'[y/v]L[x/u] = s_1. \)
 - \(t_0 = (\lambda y.t)[x/u] \rightarrow_\delta \lambda y.t'[y/v]L[x/u] = s_1. \)
 - \(t_0 = (\lambda y.t)[x/u] \rightarrow_\delta \lambda y.t'[y/v]L[x/u] = s_1. \)

Let \(t_0 = (\lambda y.t)[x/u] \equiv_{s_1} \lambda y.t[x/u] = t_1 \) with \(y \notin \text{fv}(u) \). If \(t_1 \rightarrow_\lambda s_1 \) because
 \(t \rightarrow_\lambda t' \) then \(t_0 = (\lambda y.t)[x/u] \rightarrow_\lambda (\lambda y.t')[x/u] = s_0 \equiv_{s_1} s_1 = \lambda y.t'[x/u]. \)
 \(u \rightarrow_\lambda u' \) then it is similar to the previous case.
 \(\lambda y.t[x/u] \rightarrow_\varepsilon \lambda y.t[x/u] = s_1 \) then \(t_0 \rightarrow_\varepsilon (\lambda y.t)[x/u] = s_1. \)
 \(\lambda y.t[x/u] \rightarrow_\varepsilon \lambda y.t[z_u][x/u][x/u] = s_1 \) then \(t_0 \rightarrow_\varepsilon (\lambda y.t[z_u])[x/u] \equiv_{s_1} s_1. \)
 \(\lambda y.t[0][x/u] \rightarrow_\varepsilon \lambda y.t[0] = s_1 \) then \(t_0 \rightarrow_\varepsilon \lambda y.t = s_1. \)

- Let \(t_0 = (t v)[x/u] \equiv_{s_5} t[x/u] v = t_1 \) with \(x \notin \text{fv}(v) \). If \(t_1 \rightarrow_\lambda s_1 \) because
 \(t \rightarrow_\lambda t' \) then \(t_0 = (t v)[x/u] \rightarrow_\lambda (t' v)[x/u] = s_0 \equiv_{s_2} s_1 = t' [x/u] v. \)
 \(u \rightarrow_\lambda u' \) or \(v \rightarrow_\lambda v' \) then it is similar to the previous case.
 \(t[x/u] v \rightarrow_\varepsilon t[x/u] v = s_1 \) then \(t_0 \rightarrow_\varepsilon (t v)[x/u] = s_1. \)
 \(t[x/u] v \rightarrow_\varepsilon t[z_u][x/u][x/u] v = s_1 \) then \(t_0 \rightarrow_\varepsilon (t v)[z_u][x/u][x/u] = (t[z_u])[x/u][x/u] \equiv_{s_2} s_1. \)
 \(t[x/u] v \rightarrow_\varepsilon t[x/u] v = s_1 \) then \(t_0 \rightarrow_\varepsilon t v = s_1. \)
 \(t_0 = (\lambda y.t)[x/u] v \rightarrow_\delta \lambda y.t'[y/v]L[x/u] = s_1. \)

Then, \(t_0 = ((\lambda y.t')L v)[x/u] \rightarrow_\delta \lambda y.t'[y/v]L[x/u] = s_1. \)

- The inductive cases:
 - If \(t_0 = \lambda x.t \equiv_{s_6} \lambda x.t' = t_1 \rightarrow_\lambda \lambda x.t'' = s_1 \) then \(t \equiv_{s_7} \lambda y.t' t' \rightarrow_\lambda \lambda y.t'' \) and by the i.h. there exists \(t'' \) s.t. \(t \rightarrow_\lambda t'' \equiv_{s_8} \lambda y.t'' \). Then, \(s_0 = \lambda x.t'' \) is s.t. \(t_0 \rightarrow_\lambda s_0 \equiv_{s_9} \lambda y.t'' s_1. \)
 \(t_0 = \lambda x.t \equiv_{s_6} \lambda x.t' = t_1 \rightarrow_\lambda \lambda x.t'' = s_1 \) then \(t \equiv_{s_7} \lambda y.t' t' \rightarrow_\lambda \lambda y.t'' \) and by the i.h. there exists \(t'' \) s.t. \(t \rightarrow_\lambda t'' \equiv_{s_8} \lambda y.t'' \). Then, \(s_0 = \lambda x.t'' \) is s.t. \(t_0 \rightarrow_\lambda s_0 \equiv_{s_9} \lambda y.t'' s_1. \)
 - The case \(t_0 = \lambda y.t \equiv_{s_1} \lambda x.t' = t_1 \rightarrow_\lambda \lambda y.t'[y/v]L[x/u] = s_1. \)
 - \(t_0 = (\lambda y.t)[x/u] \rightarrow_\delta \lambda y.t'[y/v]L[x/u] = s_1. \)

exists distance rules. Indeed, the two
mal reduction length. Moreover, the strong bisimulation would not h
hold without the previous one.

If \(t_0 = t [x/u] \equiv_{\text{CS},\sigma_1,\sigma_2} t' [x/u'] \), then \(t_0 \rightarrow_{\lambda} t' \) and by the i.h. there exists \(t''\) s.t. \(t \rightarrow_{\lambda} t'' \equiv_{\text{CS},\sigma_1,\sigma_2} t'' \). Then, \(s_0 \equiv [x/u] \) is s.t. \(t_0 \rightarrow_{\lambda} s_0 \equiv_{\text{CS},\sigma_1,\sigma_2} s_1 \).

The case \(t_0 = t [x/u] \equiv_{\text{CS},\sigma_1,\sigma_2} t [x/u'] \) is analogous to the previous one.

If \(t_0 \equiv_{\text{CS},\sigma_1,\sigma_2} t [x/u] \) then \(t_0 \rightarrow_{\lambda} s_1 \).

If \(t_0 = t [x/u] \equiv_{\text{CS},\sigma_1,\sigma_2} t' [x/u] \) then \(t_0 \rightarrow_{\lambda} s_1 \).

If \(t_0 = t [x/u] \equiv_{\text{CS},\sigma_1,\sigma_2} t' [x/u'] \) then \(t_0 \rightarrow_{\lambda} s_1 \).

If \(t_0 = t [x/u] \equiv_{\text{CS},\sigma_1,\sigma_2} t'' [x/u] \) then \(t_0 \rightarrow_{\lambda} s_1 \).

If \(t_0 = t [x/u] \equiv_{\text{CS},\sigma_1,\sigma_2} t' [x/u'] \) then \(t_0 \rightarrow_{\lambda} s_1 \).

If \(t_0 = t [x/u] \equiv_{\text{CS},\sigma_1,\sigma_2} t'' [x/u] \) then \(t_0 \rightarrow_{\lambda} s_1 \).

If \(n > 1 \) then we have \(t_0 \equiv_{\text{CS},\sigma_1,\sigma_2} t_0' \equiv_{\text{CS},\sigma_1,\sigma_2} t_1 \rightarrow_{\lambda} s_1 \). By the i.h. there exists \(s_0 \) s.t. \(t_0' \rightarrow_{\lambda} s_0 \equiv_{\text{CS},\sigma_1,\sigma_2} s_1 \). Then, applying the i.h. once more to \(t_0 \equiv_{\text{CS},\sigma_1,\sigma_2} t_0' \rightarrow_{\lambda} s_0 \) (where the equivalence step is atomic), we get \(s_0 \) s.t. \(t_0 \rightarrow_{\lambda} s_0 \equiv_{\text{CS},\sigma_1,\sigma_2} s_1 \).

Such bisimulation implies that two \(\alpha \)-equivalent terms share the same maximal reduction length. Moreover, the strong bisimulation would not hold without distance rules. Indeed, the two \(\sigma_1 \)-equivalent terms \(t'_0 \) and \(t'_1 \) in (2) do not have the same \(\mathbb{B} \)-redexes but the same \(\mathbb{D} \mathbb{B} \)-redexes.

6 (De)composing Substitutions

Explicit substitution (ES) calculi may or may not include rewriting rules to explicitly compose substitutions. One often adds them to recover confluence on terms with metavariables. However, naïve rules may break the PSN property, so that safe composition rules are needed to recover both PSN and confluence on terms with metavariables [13]. The \(\lambda_j \)-calculus is peculiar as it allows to compose substitutions, but only implicitly. Indeed, a term \(t[x/u][y/v] \) s.t. \(y \in \not\Delta \) reduces in various steps to \(t[x/u[y/v]] \), but not to the explicit composition \(t[x/u][y/v] \). One of the aims of this section is adding explicit composition to \(\lambda_j \) keeping PSN and confluence.
The second aim of this section concerns explicit decomposition. Indeed, some calculi \cite{24, 20, 28, 11, 10} explicitly decompose substitutions, i.e., reduce \(t[x/u][y/v] \) to \(t[x/u][y/v] \). We show that even in such a case PSN and confluence still hold.

Composition (boxing) and decomposition (unboxing) are dual systems:

The Boxing system b

- If \(x \notin f(t) \) & \(x \in f(v) \):
 - \((t v)[x/u] \rightarrow_{ab} t v[x/u] \)
 - \(t[y/v][x/u] \rightarrow_{ab} t[y/v][x/u] \)

The Unboxing system u

- If \(x \notin f(t) \) & \(x \in f(v) \):
 - \(t v[x/u] \rightarrow_{ab} (t v)[x/u] \)
 - \(t[y/v][x/u] \rightarrow_{ab} t[y/v][x/u] \)

The boxing system reflects the commutative box-box rule of Linear Logic, the unboxing system is obtained by reversing its rules. Moreover, we consider the system modulo the \(\alpha \)-equivalence. Choosing a particular orientation for \(\sigma_1 \) and \(\sigma_2 \) leads to a full set of propagating rules, that is, something closer to traditional ES calculi. We prefer, however, to work modulo an equivalence to obtain a more general result. Remark that the constraint \(x \notin f(t) \) for the unboxing rules does not limit their applicability, as it can always be satisfied through \(\alpha \)-equivalence.

Digression. It is natural to wonder if one could also work modulo (de)composition, i.e., adding two more general axioms:

\[
(t v)[x/u] \equiv_{\sigma_1} t v[x/u] \quad \text{if} \ x \notin f(t) \\
\epsilon \equiv_{\sigma_1} \text{if} \ x \notin f(t)
\]

The answer is no, as these last two congruences break the PSN property, if naively added. For example: let \(u = (z z)[z/y] \), then

\[
t = u[x/u] = (z z)[z/y][x/u] \equiv_{\sigma_1} (z z)[z/y][x/u] \rightarrow_c
\]

\[
(z_1 z_2)[z_1/y][z_2/y][x/u] \rightarrow_{\sigma_2} (y)[y/x][u/x] \equiv_{\sigma_1} \text{if} \ x \notin f(t)
\]

\[
(y)[y/x][u/x] \equiv_{\sigma_1} \text{if} \ x \notin f(t)
\]

i.e., \(t \) reduces to a term containing \(t \). Now, take \((\lambda x.(\lambda z.zz) y) ((\lambda z.zz) y) \in \mathcal{N}_3 \) which reduces to \(t \), so that it is no longer strongly normalising in the \(\lambda z \)-calculus extended by the five previous equations \(\mathcal{C}_1, \sigma_1, \sigma_2, \sigma_3, \sigma_4 \).

Such a counter-example can be avoided imposing the constraint \(x \notin f(v) \) to \(\sigma_3 \) and \(\sigma_4 \) (note that such constraint is also found in the definition of the boxing system). Nevertheless, \(\lambda z \)-reduction modulo the constrained equivalences \(\mathcal{C}_1, \sigma_1, \sigma_2, \sigma_3, \sigma_4 \) is an incredibly subtle and complex relation. For instance, \(\epsilon \)-steps cannot be postponed, nor can the use of equivalences. Two natural canonical representations of the equivalence classes are obtained by pushing jumps towards the variables, or as far away from them as possible. None of them is stable by reduction, so working with equivalence classes is impossible. The PSN property for this calculus, if it holds, is very challenging.

One of the difficulties is that the equivalence \(\mathcal{C}_1, \sigma_1, \sigma_2, \sigma_3, \sigma_4 \) is not a bisimulation: observe that the reducts \((x x_1)[x/y][y/z][x_1/y][y/z][x_1/y][y/z] \) of \(t_2 = (x x)[x/y][y/z] \) and \((x x_1)[x/y][x_1/y][y/z] \) of \(t_3 = (x x)[x/y][y/z] \) are no longer equivalent. Nevertheless, \(t_2 \) and \(t_3 \) share the same normal form, and thus are still operationally equivalent, but in a weaker sense.
From here on we use the letter p to denote a parameter which represents any of the propagation systems \{b, u\}. For every $p \in \{b, u\}$ we consider its associated structural reduction system λ_{jp}/o, written λ_{jb}/o and λ_{ju}/o respectively, defined by the reduction relation $dB \cup j \cup p$ modulo the equivalence relation o, a relation which is denoted by $(dB \cup j \cup p)/o$. Both structural systems have good properties.

Theorem 4 (Confluence Modulo). For all $t_1, t_2 \in T$, if $t_1 \equiv_o t_2$ and $t_i \rightarrow^*_{\lambda_{jp}/o} u_i (i = 1, 2)$, then $\exists v_i (i = 1, 2)$ s.t. $u_i \rightarrow^*_{\lambda_{jp}} v_i (i = 1, 2)$ and $v_1 \equiv_o v_2$.

Proof. Straightforward, by interpreting t into $j(t)$ and using Theorem 1.

To prove PSN for λ_{jb}/o and λ_{ju}/o it is sufficient, according to Theorem 2, to show the IE property. However, a simple inductive argument like the one used for λ_j-reduction relation does no longer work. Therefore we shall show the IE property by adapting the technique in [13]. This has proven a challenging venture, so that this section presents the perhaps most important technical achievement in this paper. We split the proof into the following steps:

1. Define a labelling to mark some λ_{jp}/o-strongly normalising terms used within jumps. Thus for example $t[x/u]$ means that $u \in T$ and $u \in SN_{\lambda_{jp}/o}$.
2. Enrich the original λ_{jp}/o-reduction system with a relation used only to propagate terminating labelled jumps. Let J_p/o be the resulting calculus.
3. Show that $u \in SN_{\lambda_{jp}/o}$ and $t[x/u]n \in SN_{\lambda_{jp}/o}$ imply $t[x/u]n_1 \in SN_{\lambda_{jp}/o}$.
4. Show that $t[x/u]n_1 \in SN_{\lambda_{jp}/o}$ implies $t[x/u]n_1 \in SN_{\lambda_{jp}/o}$.

In Sections 6.1 and 6.2 points 1 and 2 are developed, while Section 6.3 deals with points 3 and 4.

6.1 The Labelled Systems

Each labelled system is defined by a set of labelled terms together with a set of reduction rules and axioms.

Definition 1 (Labelled Terms). Let $p \in \{b, u\}$. The set T_p of labelled p-terms is generated using the following grammar:

$$t ::= x \mid tt \mid \lambda x.t \mid t[x/t] \mid t[x/u] (v \in T \cap SN_{\lambda_{jp}/o})$$
Now consider the following reduction subsystems:

The **Labelled Equations CS**:
\[
\begin{align*}
\text{if } y \notin \fv(u) & \text{ then } t[y/v][x/u] \equivCS t[x/u] & \\
\text{if } y \notin \fv(u) & \text{ then } t[y/v][x/u] \equivCS t[x/u]
\end{align*}
\]

The **Labelled Reductions**:
\[
\begin{align*}
\text{if } y \notin \fv(u) & \text{ then } t[y/v][x/u] \equivCS t[x/u] & \\
\\text{if } y \notin \fv(u) & \text{ then } t[y/v][x/u] \equivCS t[x/u]
\end{align*}
\]

The **Labelled Jumping** system j:
\[
\begin{align*}
t[x/u] & \xrightarrow{\Sigma} t & \text{if } |t|_x = 0 \\
t[x/u] & \xrightarrow{\Sigma} t[x/u] & \text{if } |t|_x = 1 \\
t[x/u] & \xrightarrow{\Sigma} t[y/v][x/u] & \text{if } |t|_x \geq 2
\end{align*}
\]

The **Labelled Boxing** system B:
\[
\begin{align*}
t[v][x/u] & \xrightarrow{\Sigma} t[x/u] & \text{if } x \notin \fv(t) \land x \notin \fv(v) \\
t[v][x/u] & \xrightarrow{\Sigma} t[y/v][x/u] & \text{if } x \notin \fv(t) \land x \notin \fv(v)
\end{align*}
\]

The **Labelled Unboxing** system U:
\[
\begin{align*}
t[v][x/u] & \xrightarrow{\Sigma} (tv)[x/u] & \text{if } x \notin \fv(v) \\
t[v][x/u] & \xrightarrow{\Sigma} t[y/v][x/u] & \text{if } x \notin \fv(v)
\end{align*}
\]

The **Generalised dB rule**:
\[
(\lambda x.t)[u] \xrightarrow{\text{gdB}} t[x/u].
\]

where L is a list of jumps, some of which, potentially all, may be labelled.

Note that dB-reduction on the set T just is a particular case of gdB-reduction on \(\tau_\beta\). The **equivalence relation \(\equiv_\Sigma\)** (resp. \(\equiv\)) is generated by axiom \(\alpha\) (resp. \(\alpha \cup \Sigma\)) on labelled terms. The **equivalence relation \(\equiv_0\)** is generated by \(\alpha \cup \Sigma\).

The reduction relation \(J_p\) (resp. \(J_p/0\)) is generated by \(\text{gdB} \cup \text{j} \cup 2 \cup \text{p} \cup \text{p} \) modulo 0. The relation \(J_p\) can be understood as the union of two disjoint reduction relations, respectively called forgettable and persistent. Forgettable reductions do not create persistent redexes, and they are strongly normalising (Lemmas 21 and 22). These two facts imply that termination of \(J_p\) does not depend on its forgettable subsystem.

The **forgettable** reduction relation \(\Rightarrow_{pp}\):

Action on labelled jumps: If \(t \Rightarrow_{\Sigma} t'\), then \(t \Rightarrow_{pp} t'\).

Action Inside labelled jumps: If \(v \Rightarrow_{\lambda \beta/v'}\), then \(u[v/x'] \Rightarrow_{pp} u[x/v']\).

Closure by non-labelling contexts: If \(t \Rightarrow_{pp} t'\), then \(tu \Rightarrow_{pp} t'u, ut \Rightarrow_{pp} t'u, \lambda x.t \Rightarrow_{pp} \lambda x.t', t[x/u] \Rightarrow_{pp} t'[x/u], u[x/t] \Rightarrow_{pp} u[x/t']\) and \(t[x/u] \Rightarrow_{pp} t'[x/u]\).

The **persistent** reduction relation \(\Rightarrow_{pp}\):

Root non-labelling action: If \(t \Rightarrow_{\text{gdB,j,p}} t'\) (where \(\Rightarrow\) denotes root reduction), then \(t \Rightarrow_{pp} t'\).

Closure by non-labelling contexts: If \(t \Rightarrow_{pp} t'\), then \(tu \Rightarrow_{pp} t'u, ut \Rightarrow_{pp} t'u, \lambda x.t \Rightarrow_{pp} \lambda x.t', t[x/u] \Rightarrow_{pp} t'[x/u], u[x/t] \Rightarrow_{pp} u[x/t']\) and \(t[x/u] \Rightarrow_{pp} t'[x/u]\).
6.2 Well-Formed Labelled Terms

In order to prove that the \(\lambda j_p/o \)-calculus enjoys PSN, according to Theorem 2 it is sufficient to show the IE-property. The reasoning for that is splitted in two steps: we first show that a \(u \in SN_{\lambda j_p/o} \) and \(t[x/u]n^! \in SN_{\lambda j_p/o} \) imply \(t[x/u]n^! \in SN_{\lambda j_p/o} \) (Corollary 7), thereafter we prove that \(t[x/u]n^! \in SN_{\lambda j_p/o} \) implies \(t[x/u]n^! \in SN_{\lambda j_p/o} \) (Corollary 8).

The first implication is much more difficult to prove, particularly because termination of the forgettable subsystem \(F_p \), proved using a strictly decreasing measure on labelled terms, is required. This measure is based on the assumption that all terms inside labelled jumps are \(\lambda j_p/o \)-strongly normalising w.r.t. the environment in which they are evaluated. Moreover, this property of labelled jumps needs to be preserved by reduction and equivalence.

Unfortunately this is not enough, since labelled terms are not stable by reduction: the labelled term \(y[y/x]x/\lambda z. z z \) reduces to \(y[y/(\lambda z. z z) \lambda z. z z] \) which has a non-strongly normalising term inside a labelled jump, and thus it is not a labelled term according to our definition. Similarly the term \(x[y/y][y/z][z/v] \) reduces to \(x[x/z][z/v] \) which has a labelled jump inside another labelled jump, and thus it is not a labelled term.

We thus need labelled terms to be stable by equivalence and reduction. This can be done by defining a predicate of well-formedness on labelled terms such that \(WF(t) \) and \(t \to \gamma \rightarrow t' \) imply \(WF(t') \). In order to formalize such a predicate we need some definitions. The notion of free variable contained in a labelled jump is particularly important.

The set of labelled free variables of \(t \in T_p \) is given by:

\[
\begin{align*}
\text{Lfv}(x) & := \emptyset \\
\text{Lfv}(ax. u) & := \text{Lfv}(u) \setminus \{x\} \\
\text{Lfv}(uv) & := \text{Lfv}(u) \cup \text{Lfv}(v) \\
\text{Lfv}(u[x/v]) & := (\text{Lfv}(u) \setminus \{x\}) \cup \text{Lfv}(v) \\
\text{Lfv}(u[x/v]) & := (\text{Lfv}(u) \setminus \{x\}) \cup \text{fv}(v)
\end{align*}
\]

Note that \(u \in T \) implies \(\text{Lfv}(u) = \emptyset \). Also \(\text{Lfv}(t) \subseteq \text{fv}(t) \).

We now formalise the notion ensuring that a labelled jump is strongly normalising with respect to labelled substitutions coming from the context.

A labelled term \(t \in T_p \) is **SN-labelled** for a (meta-level) substitution \(\gamma \) if \(\text{SN}_{\gamma}(t, \gamma) \) holds:

\[
\begin{align*}
\text{SN}_{\gamma}(x, \gamma) & := \text{true} \\
\text{SN}_{\gamma}(x.t, \gamma) & := \text{SN}_{\gamma}(t, \gamma) \\
\text{SN}_{\gamma}(tu, \gamma) & := \text{SN}_{\gamma}(t, \gamma) \& \text{SN}_{\gamma}(u, \gamma) \\
\text{SN}_{\gamma}(t[x/u], \gamma) & := \text{SN}_{\gamma}(t, \gamma) \& \text{SN}_{\gamma}(u, \gamma) \\
\text{SN}_{\gamma}(t[x/u], \gamma) & := \text{SN}_{\gamma}(t, \gamma) \& \text{SN}_{\gamma}(u, \gamma)
\end{align*}
\]

Finally, a p-labelled term \(t \) is **p-well-formed**, written \(t \in WF_p \), iff

1. \(\text{SN}_{\gamma}(t, \text{id}) \)
2. every subterm \(u[y/v] \) or \(\lambda y.u \) in \(t \) verifies \(y \notin \text{Lfv}(u) \)
3. \(p = b \) implies subterms \(u[y/v] \in t \) verify \(y \notin \text{Lfv}(u) \).
Thus for example $t_0 = (x x)[x/y][y/z]$ is not b-well-formed since y is not a labelled free variable of x_0, whereas t_0 is u-well-formed since $z \in SN_{\lambda_j/o}$. Also, $t_1 = y[y/x][x/\lambda z . z z]$ is b and u well-formed but $t_2 = y[y/x][x/\lambda z . z z]$ is not. More precisely, x is a labelled free variable of $y[y/x]$ so that t_2 is not b-well-formed, and $SN_\alpha (t_2, \emptyset)$ does not hold (since $(\lambda z . z z)(\lambda z . z z) \notin SN_{\lambda_j/o}$) hence t_2 is not u-well-formed.

In order to show that well-formed terms are stable by equivalence and reduction we need the following lemmas:

Lemma 18. Let $t \in WF_p$.

1. If $t_0 \equiv_0 t_1$, then $Lfv(t_0) = Lfv(t_1)$.
2. If $t_0 \to_{\beta p} t_1$, then $Lfv(t_0) \supseteq Lfv(t_1)$.

Proof. By induction on t.

Lemma 19. Let $t \in WF_p$.

1. If $SN_\alpha (t, \gamma)$ and $\gamma \rightarrow_{\lambda_j/o} \gamma'$, then $SN_\alpha (t, \gamma')$.
2. If $u \in T$, then $SN_\alpha (t[x/u], \gamma) = SN_\alpha (t, \{ x/u \} \gamma)$.

Proof.

1. By induction on t. Let $t = u[x/v]$. We have $SN_\alpha (u, \{ x/v \} \gamma)$ and $v \gamma \in SN_{\lambda_j/o}$. Since $v \gamma \rightarrow_{\lambda_j/o} v \gamma'$, then $v \gamma' \in SN_{\lambda_j/o}$. Also $(x/v) \gamma \rightarrow_{\lambda_j/o} (x/v) \gamma'$ so that $SN_\alpha (u, (x/v) \gamma')$ by the i.h. We thus conclude $SN_\alpha (t, \gamma')$.

All the other cases are straightforward.

2. By induction on t.

- $t = x$. Then $SN_\alpha (x[x/u], \gamma) = SN_\alpha (u, \gamma) = \text{true} = SN_\alpha (x, \{ x/u \} \gamma)$.
- $t = y \neq x$. Then $SN_\alpha (y[x/u], \gamma) = SN_\alpha (y, \gamma) = \text{true} = SN_\alpha (y, \{ x/u \} \gamma)$.
- $t = t_1[y/t_2]$. W.l.g. we can assume $y \notin fv(u)$ and $y \neq x$. Then,

\[
\begin{align*}
SN_\alpha (t_1[y/t_2], \gamma) &= \\
SN_\alpha (t_1[x/u], \gamma) &= \\
SN_\alpha (t_1[x/u], \gamma) \in SN_{\lambda_j/o} &\quad \text{if } t_2 \in \text{i.h.} \\
SN_\alpha (t_1[x/u], \gamma) \in SN_{\lambda_j/o} &= \\
SN_\alpha (t_1[y/t_2], \gamma) &= \\
\end{align*}
\]

- All the other cases are straightforward.

Lemma 20 (Stability of SNL). Let $SN_\alpha (t_0, \gamma)$. If $t_0 \equiv_0 t_1$ or $t_0 \to_{\beta p} t_1$, then $SN_\alpha (t_1, \gamma)$.

Proof. By induction on the reduction relations.

- CS: $t_0 = t[x/u][y/v] \equiv t[y/v][x/u] = t_1$ if $y \notin fv(u)$ and $x \notin fv(v)$.
 Then, $SN_\alpha (t_0, \gamma)$ iff $SN_\alpha (t, \gamma)$ and $SN_\alpha (u, \gamma)$ and $SN_\alpha (v, \gamma)$ so that we conclude $SN_\alpha (t_1, \gamma)$.

- CS: $t_0 = t[x/u][y/v] \equiv t[y/v][x/u] = t_1$ if $y \notin fv(u)$ and $x \notin fv(v)$.
 Then, $SN_\alpha (t_0, \gamma)$ iff $SN_\alpha (t, \gamma)$ and $SN_\alpha (v, \gamma)$ and $u \gamma \in SN_{\lambda_j/o}$. We also have $SN_\alpha (v, \gamma) = L_{19.2} SN_\alpha (v, \gamma)$. We thus conclude $SN_\alpha (t_1, \gamma)$.
\[\text{For } \alpha > -1 \text{, if } \alpha \neq 0 \text{, then } \alpha = \frac{1}{\alpha}. \]

\[\text{if } \alpha = 0 \text{, then } \alpha = \frac{1}{\alpha}. \]

\[\text{Observe that the hypothesis implies } u_y \gamma = \nu \gamma \text{ and } v \gamma \gamma = \nu \gamma \text{ and } \{x/u\} \gamma = \{y/v\} \gamma. \text{ Then, } \text{SN}_p(t_0, \gamma) \text{ and } \text{SN}_p(t_0, \gamma) \text{ so that } \text{SN}_p(t_1, \gamma) \text{ is immediate.} \]

\[\text{If } \alpha = 0 \text{, then } \alpha = \frac{1}{\alpha}. \]

\[\text{Then, } \text{SN}_p(t_0, \gamma) \text{ and } \text{SN}_p(t_0, \gamma) \text{ so that } \text{SN}_p(t_1, \gamma) \text{ is immediate.} \]

\[\text{Observe that the hypothesis implies } u_y \gamma = \nu \gamma \text{ and } v \gamma \gamma = \nu \gamma \text{ and } \{x/u\} \gamma = \{y/v\} \gamma. \text{ Then, } \text{SN}_p(t_0, \gamma) \text{ and } \text{SN}_p(t_0, \gamma) \text{ so that } \text{SN}_p(t_1, \gamma) \text{ is immediate.} \]

\[\text{If } \alpha = 0 \text{, then } \alpha = \frac{1}{\alpha}. \]

\[\text{Then, } \text{SN}_p(t_0, \gamma) \text{ and } \text{SN}_p(t_0, \gamma) \text{ so that } \text{SN}_p(t_1, \gamma) \text{ is immediate.} \]

\[\text{Observe that the hypothesis implies } u_y \gamma = \nu \gamma \text{ and } v \gamma \gamma = \nu \gamma \text{ and } \{x/u\} \gamma = \{y/v\} \gamma. \text{ Then, } \text{SN}_p(t_0, \gamma) \text{ and } \text{SN}_p(t_0, \gamma) \text{ so that } \text{SN}_p(t_1, \gamma) \text{ is immediate.} \]

\[\text{If } \alpha = 0 \text{, then } \alpha = \frac{1}{\alpha}. \]

\[\text{Then, } \text{SN}_p(t_0, \gamma) \text{ and } \text{SN}_p(t_0, \gamma) \text{ so that } \text{SN}_p(t_1, \gamma) \text{ is immediate.} \]

\[\text{Observe that the hypothesis implies } u_y \gamma = \nu \gamma \text{ and } v \gamma \gamma = \nu \gamma \text{ and } \{x/u\} \gamma = \{y/v\} \gamma. \text{ Then, } \text{SN}_p(t_0, \gamma) \text{ and } \text{SN}_p(t_0, \gamma) \text{ so that } \text{SN}_p(t_1, \gamma) \text{ is immediate.} \]

\[\text{If } \alpha = 0 \text{, then } \alpha = \frac{1}{\alpha}. \]

\[\text{Then, } \text{SN}_p(t_0, \gamma) \text{ and } \text{SN}_p(t_0, \gamma) \text{ so that } \text{SN}_p(t_1, \gamma) \text{ is immediate.} \]
Lemma 21. Let F strictly decreases by Lemma 22. \[\text{Corollary 6.}
\]

To show our first point, namely, that λp is terminating on labelled terms, we prove by induction on labelled terms. The case $t_0 = t_1$ uses Lemma 4.

6.3 From Implicit to Explicit through Labelled

To show our first point, namely, that $u \in SN_{\lambda p/o}$ and $t[x/u] \in SN_{\lambda p/o}$ imply $t[x/u] \in SN_{\lambda p/o}$, we consider the following projection function $P(_)$ from labelled terms to terms, which also projects $J_p/0$ into the reduction λ_p/o:

$$
P(x) := x
$$

$$
P(\lambda x.t) := \lambda x.P(t)
$$

$$
P(tu) := P(t)P(u)
$$

$$
P(t[x/u]) := P(t)[x/u]
$$

$$
P(t[x/u]) := P(t)[x/u]
$$

Note that $u \in T$ implies $P(u) = u$.

Lemma 23. Let $t_0 \in T_p$. Then,

1. $t_0 \equiv_0 t_1$ implies $P(t_0) \equiv_0 P(t_1)$.
2. $t_0 \rightarrow_{pr} t_1$ implies $P(t_0) \rightarrow_{\lambda p/o} P(t_1)$.
3. $t_0 \rightarrow_{pr} t_1$ implies $P(t_0) \rightarrow_{\lambda p/o} P(t_1)$.

Proof. By induction on labelled terms. The case $t_0 \rightarrow_{pr} t_1$ uses Lemma 4.

The given corollary is essential in developing the termination proofs for the forgettable relations $F_b/0$ and $F_u/0$. More precisely, for each forgettable relation $F_p/0$, with $p \in \{b, u\}$, we define a measure on p-well-formed labelled terms which strictly decreases by $F_p/0$-reduction.

Lemma 21. The relation \rightarrow_{pr} is terminating on b well-formed labelled terms.

Lemma 22. The relation \rightarrow_{pr} is terminating on u well-formed labelled terms.

We relegate the proofs of both Lemmas to the Appendix.
Lemma 24. Let \(t \in \text{WF}_p \). If \(P(t) \in SN_{\lambda_3/o} \), then \(t \in SN_{\lambda_3/o} \).

Proof. Since \(\rightarrow_{\lambda_3} \rightarrow_{F_p} \cup \rightarrow_{F_p} \), we show that \(t \in SN_{\lambda_3/o} \) by using Lemma 23 and termination of the forgettable relations (Lemmas 21 and 22).

Now let \(p \in \{ b, u \} \) and consider \(t, u, \pi_n \in T \) s.t. \(u \in SN_{\lambda_3/o} \). We immediately get \(t[x/u]\pi_n \in \text{WF}_p \). Using \(P(t[x/u]\pi_n) = t[x/u]\pi_n \) we thus conclude:

Corollary 7. Let \(t, u, \pi_n \in T \). If \(u \in SN_{\lambda_3/o} \) & \(t[x/u]\pi_n \in SN_{\lambda_3/o} \), then \(t[x/u]\pi_n \in SN_{\lambda_3/o} \).

The last point of our proof is to show that \(t[x/u]\pi_n \in SN_{\lambda_3/o} \) implies \(t[x/u]\pi_n \in SN_{\lambda_3/o} \) by relating labelled terms and reductions to unlabelled terms and reductions. To do that, let us introduce an unlabelling function on labelled terms:

\[
\begin{align*}
\text{U}(x) & := x \\
\text{U}(t) & := U(t)U(u) \\
\text{U}(\lambda x.t) & := \lambda x.U(t) \\
\text{U}(t[x/u]) & := U(t)[x/U(u)] \\
\text{U}(t[x/u]) & := U(t)[x/u]
\end{align*}
\]

Remark that \(u \in T \) implies \(U(u) = u \). Also, \(\text{fv}(t) = \text{fv}(U(t)) \) and \(U(t[x/u]) = U(t)[x/U(u)] \).

Lemma 25. If \(t \in \text{WF}_p \) and \(U(t) \rightarrow_{\lambda_3/o} u \), then \(\exists v \in \text{WF}_p \) s.t. \(t \rightarrow_{\lambda_3/o} v \) and \(U(v) = u \).

Proof. By induction on \(\rightarrow_{\lambda_3/o} \) and case analysis. We only show the interesting cases of root equivalence/reduction.

1. The congruence \(\equiv_o \).
 - \(t = u[x/v][y/w] \) with \(y \notin \text{fv}(v) \) & \(x \notin \text{fv}(w) \) and
 \[
 \begin{align*}
 U(u[x/v][y/w]) &= \\
 U(u[x/y][v/y][w/x]) &\equiv_{\text{CS}} \\
 U(u)[y/w][x/v][U(u)] &= U(u[y/w][x/v]) = t'
 \end{align*}
 \]
 - We then let \(t_1 = u[y/w][x/v] \) so that \(U(t_1) = t'_1 \) and \(t \equiv_{\text{CS}} t_1 \).
 - \(t = u[x/v][y/w] \) with \(y \notin \text{fv}(v) \) & \(x \notin \text{fv}(w) \) and
 \[
 \begin{align*}
 U(u[x/v][y/w]) &= \\
 U(u)[x/y][v/y][U(w)] &\equiv_{\text{CS}} \\
 U(u)[y/w][x/v] &= U(u[y/w][x/v]) = t'_1
 \end{align*}
 \]
 - We then let \(t_1 = u[y/w][x/v] \) so that \(U(t_1) = t'_1 \) and \(t \equiv_{\text{CS}} t_1 \).
 - \(t = u[x/v][y/w] \) with \(y \notin \text{fv}(v) \) & \(x \notin \text{fv}(w) \) and
 \[
 \begin{align*}
 U(u[x/v][y/w]) &= \\
 U(u)[x/y][y/w] &\equiv_{\text{CS}} \\
 U(u)[y/w][x/v] &= U(u[y/w][x/v]) = t'_1
 \end{align*}
 \]
 - We then let \(t_1 = u[y/w][x/v] \) so that \(U(t_1) = t'_1 \) and \(t \equiv_{\text{CS}} t_1 \).
- \(t = \lambda y. u[x/v] \) with \(y \notin \text{fv}(v) \) and

 \[
 \begin{align*}
 U(\lambda y. u[x/v]) &= \\
 \lambda y. U(u)[x/v] &\equiv_{\text{sl}} \\
 (\lambda y. U(u))[x/v] &= U((\lambda y. u)[x/v]) = t_1'
 \end{align*}
 \]

 We then let \(t_1 = (\lambda y. u)[x/v] \) so that \(U(t_1) = t_1' \) and \(t \equiv_{\text{sl}} t_1 \).

- \(t = u[x/v]w \) and

 \[
 \begin{align*}
 U(u[x/v]w) &= \\
 U(u)[x/v]U(w) &\equiv_{\text{sL}} \\
 (U(u)U(w))[x/v] &= U((uw)[x/v]) = t_1'
 \end{align*}
 \]

 We then let \(t_1 = (uw)[x/v] \) so that \(U(t_1) = t_1' \) and \(t \equiv_{\text{sL}} t_1 \).

- All the other cases are straightforward.

2. The reduction relation \(\rightarrow_j \).
- \(t = u[x/v] \) with \(|u|_x = 0 \) and

 \[
 \begin{align*}
 U(u[x/v]) &= \\
 U(u)[x/v] &\rightarrow_j U(u) = t_1'
 \end{align*}
 \]

 We then let \(t_1 = u \) so that \(U(t_1) = t_1' \) and \(t \rightarrow_j t_1 \).

- \(t = u[x/v] \) with \(|u|_x = 1 \) and

 \[
 \begin{align*}
 U(u[x/v]) &= \\
 U(u)[x/v] &\rightarrow_{\text{c}} U(u)[y/v] = U(u[x/v]) = t_1'
 \end{align*}
 \]

 We then let \(t_1 = u[x/v] \) so that \(U(t_1) = t_1' \) and \(t \rightarrow_{\text{c}} t_1 \).

- \(t = u[x/v] \) with \(|u|_x > 1 \) and

 \[
 \begin{align*}
 U(u[x/v]) &= \\
 U(u)[x/v] &\rightarrow_{\text{c}} U(u)[y/v] = U(u[x/v]) = t_1'
 \end{align*}
 \]

 We then let \(t_1 = u[y][x/v][y/v] \) so that \(U(t_1) = t_1' \) and \(t \rightarrow_{\text{c}} t_1 \).

3. The reduction relations \(\rightarrow_b \) and \(\rightarrow_u \).
- \(t = uw[x/v] \) with \(x \notin \text{fv}(u) \) & \(x \in \text{fv}(w) \) and

 \[
 \begin{align*}
 U(uw[x/v]) &= \\
 U(u)U(w)[x/v] &\rightarrow_{\text{aa}} \\
 (U(u)U(w))[x/v] &= U((uw)[x/v]) = t_1'
 \end{align*}
 \]

 We then let \(t_1 = (uw)[x/v] \) so that \(U(t_1) = t_1' \) and \(t \rightarrow_{\text{aa}} t_1 \).

- \(t = (uw)[x/v] \) with \(x \notin \text{fv}(u) \) & \(x \in \text{fv}(w) \) and

 \[
 \begin{align*}
 U((uw)[x/v]) &= \\
 (U(u)U(w))[x/v] &\rightarrow_{\text{ab}} \\
 U(u)U(w)[x/v] &= U((uw)x/v]) = t_1'
 \end{align*}
 \]

 We then let \(t_1 = uw[x/v] \) so that \(U(t_1) = t_1' \) and \(t \rightarrow_{\text{ab}} t_1 \).
- \(t = u[y/w][x/v] \) with \(x \notin \text{fv}(u) \) and \(x \in \text{fv}(w) \) and

\[
\begin{align*}
\text{U}(u[y/w][x/v]) &= \\
\text{U}(u[y/U(w)][x/v]) &\rightarrow_{su} \\
\text{U}(u)[y/U(w)[x/v]] &= \text{U}(u[y/w][x/v]) = t'_1
\end{align*}
\]

We then let \(t_1 = u[y/w][x/v] \) so that \(\text{U}(t_1) = t'_1 \) and \(t \rightarrow_{su} t_1 \).

- \(t = u[y/w][x/v] \) with \(x \notin \text{fv}(u) \) and \(x \in \text{fv}(w) \) and .

\[
\begin{align*}
\text{U}(u[y/w][x/v]) &= \\
\text{U}(u)[y/U(w)[x/v]] &\rightarrow_{su} \\
\text{U}(u)[y/w][x/v] &= \text{U}(u[y/w][x/v]) = t'_1
\end{align*}
\]

We then let \(t_1 = u[y/w][x/v] \) so that \(\text{U}(t_1) = t'_1 \) and \(t \rightarrow_{su} t_1 \).

\(t \in \text{WF}_p \), this case is not possible since \(w[x/v] \) is not a term.

- \(t = u[y/w][x/v] \) with \(x \notin \text{fv}(u) \) and \(x \in \text{fv}(w) \) and

\[
\begin{align*}
\text{U}(u[y/w][x/v]) &= \\
\text{U}(u)[y/U(w)[x/v]] &\rightarrow_{su} \\
\text{U}(u)[y/w][x/v] &= \text{U}(u[y/w][x/v]) = t'_1
\end{align*}
\]

We then let \(t_1 = u[y/w][x/v] \) so that \(\text{U}(t_1) = t'_1 \) and \(t \rightarrow_{su} t_1 \).

\(t = u[y/w][x/v] \) with \(x \notin \text{fv}(u) \) and \(x \in \text{fv}(w) \). But \(t \in \text{WF}_p \), so that \(x \notin \text{Lfv}(u[y/w]) \), which implies in particular \(x \notin \text{fv}(w) \). This case is not then possible.

- \(t = u[y/w][x/v] \) with \(x \notin \text{fv}(u) \) and \(x \in \text{fv}(w) \). If \(t \in \text{WF}_b \), then \(x \notin \text{fv}(w) \) as before. This case is not then possible.

If \(t \in \text{WF}_a \), then \(\rightarrow_{sb} \) does not hold in the \(u \)-system.

4. The reduction relation \(\rightarrow_{sb} \).

Consider \(t = (\lambda x.u)Lv \). Let \(L \) be the list containing all the unlabelling substitutions of the list \(L \). Then,

\[
\begin{align*}
\text{U}(t) &= (\lambda x.\text{U}(u))L\text{U}(v) \\
\text{U}(u)[x/U(v)]L &= \text{U}(u[x/v]L) = t'_1
\end{align*}
\]

We then let \(t_1 = u[x/v]L \), so that \(\text{U}(t_1) = t'_1 \) and \(t \rightarrow_{sb} t_1 \).

5. All the other cases are straightforward.

Lemma 26. Let \(t \in \text{WF}_p \). If \(t \in SN_{\lambda p/o} \), then \(\text{U}(t) \in SN_{\lambda p/o} \).

Proof. We prove \(\text{U}(t) \in SN_{\lambda p/o} \) by induction on \(\eta_{\lambda p/o}(t) \). This is done by considering all the \(\lambda p/o \)-reducts of \(\text{U}(t) \) and using Lemma 25.

Now let \(p \in \{ b, u \} \) and consider \(t, u, \pi_n \in \mathcal{T} \) s.t. \(u \in SN_{\lambda p/o} \). We immediately get \(t[x/u][\pi_n^1] \in \text{WF}_p \). Using \(U(t[x/u][\pi_n^1]) = t[x/u][\pi_n^1] \), we thus conclude:

Corollary 8. Let \(t, u, \pi_n \in \mathcal{T} \). If \(t[x/u][\pi_n^1] \in \text{WF}_p \cap SN_{\lambda p/o} \), then \(t[x/u][\pi_n^1] \in SN_{\lambda p/o} \).

From Corollaries 7 and 8 we get:

Lemma 27 (IE for \(\lambda p/o \)). For \(p \in \{ b, u \} \), \(\lambda p/o \) enjoys the IE property.

Theorem 2 thus allows us to conclude with the main result of this section:

Corollary 9 (PSN for \(\lambda p/o \)). For \(p \in \{ b, u \} \), \(\lambda p/o \) enjoys PSN.
7 Conclusions

We have introduced the structural λj-calculus, a concise but expressive λ-calculus with jumps. No prior knowledge of Linear Logic is necessary to understand λj, despite their strong connection. We have established many different sanity properties for λj such as confluence and PSN. We have used λj as an operational framework to elaborate new characterisations of the well-known notions of full developments and L-developments, and to obtain the new, more powerful notion of XL-development. Finally, we have modularly added commutation of independent jumps, σ-equivalence and two kinds of propagations of jumps, while showing that PSN still holds.

As noted in Section 6, PSN for the λj-calculus plus the constrained equivalences $\{CS, \sigma_1, \sigma_2, \sigma_3, \sigma_4\}$ is - at present - a challenging conjecture. Indeed, the merging of the two similar, yet different uses of $\{\sigma_3, \sigma_4\}$ that we study in this paper presents several non-trivial difficulties. A further in-depth re-elaboration of the labelling technique would be necessary, perhaps even the use of a completely different technique dealing with reduction modulo a set of equations. An interesting research direction is the study of linear head reduction [2] for λ-calculus - which is closely connected to game semantics and abstract machines - whose formulation is not a strategy in the usual sense. Indeed, jumps and distance permit to reformulate linear head reduction as a strategy of λj.

It would also be interesting to exploit distance and multiplicities in other frameworks for example when dealing with pattern matching, continuations or differential features.

References

8 Appendix

Theorem 5 (Modular Abstract Strong Normalisation). Let A_1 and A_2 (resp. E) be two reduction (resp. equivalence) relations on s. Let k be a reduction relation on S and let consider a relation $R \subseteq s \times S$. Suppose that for all u, v, U

(P0) $u \, R \, U \, \& \, u \, E \, v \, \exists V \, s.t. \, v \, R \, V \, \& \, U = V.$
(P1) $u \, R \, U \, \& \, u \, k_1 \, v \, \exists V \, s.t. \, v \, R \, V \, \& \, U \, k \, V.$
(P2) $u \, R \, U \, \& \, u \, k_2 \, v \, \exists V \, s.t. \, v \, R \, V \, \& \, U \, k^+ \, V.$
(P3) The relation k_1 modulo E is well-founded.

Then, $t \, R \, T \, \& \, T \, \in \, SN_k \, \text{ imply } \, t \, \in \, SN_{(k_1 \cup k_2)/E}.$
8.1 The Forgettable System Terminates

The termination proofs for \(\rightarrow_{FB} \) and \(\rightarrow_{FS} \) are not really parametric in \(p \), nonetheless they both make use of potential multiplicities, which are extended to labelled jumps by adding the following case to the notion given in Section 3.

\[
M_x(u[y/v]) := M_x(u) + \max(1, M_y(u)) \cdot M_x(v)
\]

We first prove that the equivalence \(\equiv_0 \) and the propagations \(p \) preserve potential multiplicities.

Lemma 28. Let \(p \in \{ b, u \} \). Let \(t_0 \in T_p \). Then,

- \(t_0 \equiv_0 t_1 \) implies \(M_w(t) = M_w(t') \).
- \(t_0 \rightarrow_p t_1 \) implies \(M_w(t) = M_w(t') \).

Proof. As \(M_w(t) \) is defined in the same way for labelled and unlabelled substitutions it is sufficient to check just one of them. Moreover, we just show the property for two \(p \)-steps, the other cases being similar.

- \(t[x/u][y/v] \equiv_0 t[y/v][x/u] \), with \(y \notin \text{fv}(u) \) & \(x \notin \text{fv}(v) \).

 Observe that \(M_w(t[x/u]) = M_w(t) \) if \(w \notin \text{fv}(u) \).

\[
\begin{align*}
M_w(t[x/u][y/v]) &= \equiv_0 M_w(t[y/v][x/u]) \\
M_w(t[x/u]) + \max(1, M_y(t[x/u])) \cdot M_w(v) &= \equiv_0 M_w(t[y/v]) \\
M_w(t[x/u]) + \max(1, M_y(t)) \cdot M_w(v) &= \equiv_0 M_w(t[y/v]) + \max(1, M_y(t)) \cdot M_w(v) \\
M_w(t) + \max(1, M_w(t)) \cdot M_w(u) + \max(1, M_y(t)) \cdot M_w(v) &= \equiv_0 M_w(t[y/v]) + \max(1, M_w(t[y/v])) \cdot M_w(u) + \max(1, M_y(t)) \cdot M_w(v) \\
M_w(t[y/v]) + \max(1, M_w(t[y/v])) \cdot M_w(u) &= \equiv_0 M_w(t[y/v][x/u]) \\
M_w(t[y/v][x/u]) &= \equiv_0 M_w((\lambda y.t)[x/u])
\end{align*}
\]

- \((\lambda y.t)[x/u] \equiv_0 \lambda y.t[x/u] \), with \(y \notin \text{fv}(u) \).

\[
\begin{align*}
M_w((\lambda y.t)[x/u]) &= \equiv_0 M_w(\lambda y.t) \\
M_w(\lambda y.t) + \max(1, M_x(\lambda y.t)) \cdot M_w(u) &= \equiv_0 M_w(\lambda y.t) \\
M_w(t[x/u]) &= \equiv_0 M_w(\lambda y.t[x/u]) \\
M_w((\lambda y.t)[x/u]) &= \equiv_0 M_w((\lambda y.t)[x/u])
\end{align*}
\]

- \((t v)[x/u] \equiv_0 t[x/u] v \), with \(x \notin \text{fv}(v) \).

\[
\begin{align*}
M_w((t v)[x/u]) &= \equiv_0 M_w(t v) \\
M_w(t v) + \max(1, M_v(t v)) \cdot M_w(u) &= \equiv_0 M_w(t v) + \max(1, M_v(t v)) \cdot M_w(u) \\
M_w(t[x/u]) + M_w(v) &= \equiv_0 M_w(t[x/u]) + M_w(v)
\end{align*}
\]
Lemma 29. Let \(t \in \mathbb{T}_p \) s.t. \(|t|_x \geq 2 \). Let \(w \neq x, y \) and \(x \neq y \). Then,

1. \(M_w(t) = M_x(t[y]_y) \)
2. \(M_y(t) = M_x(t[x]_y) + M_y(t[x]_x) \).

Proof. We first enrich the notation by writing \(t[x]_y \) if \(t[x]_y \) renames \(k \) of occurrences of \(y \) as \(x \). We also admit (only for this proof) that \(k = 0 \) causes the renaming to be the identity. The statement now becomes: \(M_y(t) = M_x(t[x]_y) + M_y(t[x]_y) \) for \(0 \leq k \leq |t|_y \). The proof now proceeds by induction on \(t \).

- For \(t = z \) the statement is trivial.
- If \(t = uv \) then there exist \(k_1, k_2 \) s.t. \(t[x]_y = u[x]_{k_1} v[x]_{k_2} \) and \(k_1, k_2 \geq 0 \), \(k_1 + k_2 = k \), \(k_1 \leq |u|_y \) and \(k_2 \leq |v|_y \). We get

\[
\begin{align*}
M_x(t[x]_y) + M_y(t[x]_y) &= \\
M_x(u[x]_{k_1} v[x]_{k_2}) + M_y(u[x]_{k_1} v[x]_{k_2}) &= \\
M_x(u[x]_{k_1}) + M_y(u[x]_{k_1}) + M_y(v[x]_{k_2}) &= \\
M_x(u[x]_{k_1}) + M_y(u[x]_{k_1}) + M_x(v[x]_{k_2}) + M_y(v[x]_{k_2}) &= i.h. \\
M_y(u) + M_y(v) &= M_y(u v)
\end{align*}
\]
Proof. Lemma 30.

t show this property by induction on second point follows by showing that

1. If $|t|_v = 0$, then $M_w(t[z/v]) = M_w(t)$.
2. If $|t|_v = 1$, then $M_w(t[z/v]) = M_w(t) + \max(1, M_z(t)) \cdot M_w(u)$

Proof. The first statement follows from a straightforward induction on t. The second point follows by showing that $M_w(t[x/u]) = M_w(t[x/u])$ if $|t|_x = 1$. We show this property by induction on t.

If $t = x$

$$M_w(x[x/u]) = M_w(x) + \max(1, M_z(x)) \cdot M_w(u) = M_w(x[x/u])$$

If $t = \lambda y.t'$

$$M_w((\lambda y.t')[x/u]) = L.28$$
$$M_w(\lambda y.t'[x/u]) =$$
$$M_w(t'[x/u]) = i.h.$$
$$M_w(t'[x/u]) = M_w((\lambda y.t')[x/u])$$

If $t = v \cdot s$ with $x \notin s$ and $x \in v$.

$$M_w((v \cdot s)[x/u]) = L.28$$
$$M_w((v[x/u]) \cdot s) =$$
$$M_w(v[x/u]) + M_w(s) = i.h.$$
$$M_w((v[x/u]) \cdot s) = M_w((v \cdot s)[x/u])$$

If $t = v \cdot s$ with $x \in s$ and $x \notin v$.

$$M_w((v \cdot s)[x/u]) = L.28$$
$$M_w(v \cdot s[x/u]) =$$
$$M_w(v) + M_w(s[x/u]) = i.h.$$
$$M_w(v) + M_w(s) = M_w(v \cdot s[x/u]) = M_w((v \cdot s)[x/u])$$
Proof. For the inductive cases, let $t_0 = t[x/u] = t_1$ where $t \rightarrow t'$. The only interesting case is when $x \in \text{fv}(t)$ and $x \notin \text{fv}(t')$. Then we have

$$M_w(t) + \max(1, M_x(t)) \cdot M_w(u) = L.28$$

Instead, if $x \in \text{fv}(s)$ we have

$$M_w(v[y/s][x/u]) = L.28$$

The next lemmas show that potential multiplicities are not increased by \rightarrow_r steps.

Lemma 31. Let $t_0 \in T_p$. Then, $t_0 \rightarrow_r t_1$ implies $M_w(t) \ge M_w(t')$.

Proof. By induction on \rightarrow_r.

- $t_0 = t[x/u] \rightarrow_r t = t_1$ with $|t|_x = 0$. Then, $M_w(t_0) = M_w(t) = M_w(t_1)$.
- $t_0 = t[x/u] \rightarrow_r t\{x/u\} = t_1$ with $|t|_x = 1$. W.l.o.g. $x \neq w$. Then

$$M_w(t_0) = M_w(t) + \max(1, M_x(t)) \cdot M_w(u) = L.30.2$$

- $t_0 = t[x/u] \rightarrow_r t[y/s][x/u][y/s] = t_1$ with $|t|_x > 1$. If $w \in \text{fv}(u)$, then

$$M_w(t_0) = M_w(t) + \max(1, M_x(t)) \cdot M_w(u) = L.29$$

For the inductive cases, let $t_0 = t[x/u] \rightarrow t'\{x/u\} = t_1$ where $t \rightarrow t'$. Then

$$M_w(t_0) = M_w(t) + \max(1, M_x(t)) \cdot M_w(u) \ge L.30.1$$

The only interesting case is when $x \in \text{fv}(t)$ and $x \notin \text{fv}(t')$. Then

$$M_w(t_0) = M_w(t) + \max(1, M_x(t)) \cdot M_w(u) \ge L.$$
The cases for $t_0 = t[x/u]$ is similar to the previous one when $t_0 \rightarrow t_1$ because $t \rightarrow t'$. Suppose instead that $t_0 = t[x/u] \rightarrow t[x/u'] = t_1$ where $u \rightarrow u'$. Then,

$$M_w(t_0) = M_w(t) + \max(1, M_w(t)) \cdot M_w(u) \geq \text{i.h.}$$

$$M_w(t_1) = M_w(t) + \max(1, M_w(t)) \cdot M_w(u')$$

The other cases are straightforward.

Lemma 32. Let $t_0 \in \mathbb{WF}_p$ s.t. $w \notin \text{fV}(t_0)$. If $t_0 \rightarrow_{fp} t_1$, then $M_w(t_0) = M_w(t_1)$.

Proof. By induction on $t_0 \rightarrow t_1$. If $t_0 = t[x/u] \rightarrow_{fp} t[x/u']$ then $w \notin u$ by hypothesis so that also $w \notin \text{fV}(u')$. Then, we get $M_w(u) = M_w(u') = 0$ and

$$M_w(t[x/u]) = M_w(t) + \max(1, M_w(t)) \cdot M_w(u) = M_w(t) + \max(1, M_w(t)) \cdot M_w(u') = M_w(t[x/u'])$$

The inductive cases are all straightforward, using the i.h.

Potential multiplicities can be altered only by w, y and gdB-steps. In the first two cases they can decrease, in the last one they can be both increased or decreased. Consider $t_0 = (\lambda y.x)z[w] \rightarrow_{\text{gdB}} x[y/z][w] = t_1$. Then $M_w(t_0) = 1$, while $M_w(t_1) = 0$. Instead for $t_2 = (\lambda y.y)z[w] \rightarrow_{\text{gdB}} y[y/z][w] = t_3$ we get $M_w(t_2) = 1$ and $M_w(t_3) = 2$.

Termination of \rightarrow_{fp}

We now consider multisets of pairs of integers. We use $n \cdot \langle x, y \rangle$ to denote the pair $\langle x, ny \rangle$. The operation $n \cdot \langle x, y \rangle$ is extended to multisets in the following way: if M is a multiset of pairs of integers then $n \cdot M$ is the multiset $\{n \cdot \langle x, y \rangle \mid \langle x, y \rangle \in M]\}$. Moreover, to improve readability, we write $M \sqcup \langle x, y \rangle$ rather than $M \sqcup \{\langle x, y \rangle\}$.

The **boxing measure** of $t \in \mathbb{WF}_p$ is a multiset of pairs of integers, written $\text{dep}(t)$, and given by:

$$\begin{align*}
\text{dep}(x) & := [] \\
\text{dep}(\lambda x.t) & := \text{dep}(t) \\
\text{dep}(tu) & := \text{dep}(t) \sqcup \text{dep}(u) \\
\text{dep}(t[x/u]) & := \text{dep}(t) \sqcup \max(1, M_w(t)) \cdot \text{dep}(u) \\
\text{dep}(t[x/u]) & := \text{dep}(t) \sqcup \langle \eta \lambda x/u \rangle, M_w(t) \rangle
\end{align*}$$

Remark that for every $u \in T$ we have $\text{dep}(u) = []$.

Lemma 33. Let $u \in T$, $t \in \mathbb{WF}_p$ and $x \notin \text{fV}(t)$. Then $\text{dep}(t) = \text{dep}(t[x/u])$.

Proof. By induction on t.

- $t = x$. Then, $\text{dep}(x) = [] = \text{dep}(u) = \text{dep}(x[u])$.

- \(t = y \neq x \). Then, \(\text{dep}(y) = \emptyset = \text{dep}(\{x/u\}) \).
- \(t = t_1[y/t_2] \). W.l.g. we assume \(y \neq x \) and \(y \notin \text{fv}(u) \). Then,
 \[
 \begin{align*}
 \text{dep}(t) &= \\
 \text{dep}(t_1) \cup \max(1, M_y(t_1)) \cdot \text{dep}(t_2) &= \text{i.h.} \\
 \text{dep}(t_1 \{x/u\}) \cup \max(1, M_y(t_1)) \cdot \text{dep}(t_2 \{x/u\}) &= \text{L. 30.1} \\
 \text{dep}(t_1 \{x/u\}) \cup \max(1, M_y(t_1 \{x/u\})) \cdot \text{dep}(t_2 \{x/u\}) &= \\
 \text{dep}(t \{x/u\}) &=
 \end{align*}
 \]
- \(t = t_1[y/t_2] \). W.l.g. we assume \(y \neq x \) and \(y \notin \text{fv}(u) \). By hypothesis we have \(x \notin \text{fv}(t_2) \). Then
 \[
 \begin{align*}
 \text{dep}(t) &= \\
 \text{dep}(t_1) \cup \langle \eta(t_2), M_y(t_1) \rangle &= \text{i.h.} \\
 \text{dep}(t_1 \{x/u\}) \cup \langle \eta(t_2), M_y(t_1 \{x/u\}) \rangle &= \text{L. 30.1} \\
 \text{dep}(t_1 \{x/u\}) \cup \langle \eta(t_2), M_y(t_1 \{x/u\}) \rangle &= \\
 \text{dep}(t \{x/u\}) &=
 \end{align*}
 \]
- All the other cases are straightforward by the i.h.

Lemma 34. If \(|t|_\omega \geq 2 \), then \(\text{dep}(t) = \text{dep}(t\{y/x\}) \).

Proof. By induction on \(t \).

The next lemma give the exact relation between the boxing measure, the reductions and the equivalences.

Lemma 35. Let \(t_0 \in \text{WF}_B \). Then,

1. If \(t_0 \equiv_{\text{sub}} t_1 \), then \(\text{dep}(t_0) = \text{dep}(t_1) \).
2. If \(t_0 \rightarrow_B t_1 \), then \(\text{dep}(t_0) = \text{dep}(t_1) \).
3. If \(t_0 \rightarrow_B t_1 \), then \(\text{dep}(t_0) > \text{dep}(t_1) \).
4. If \(t_0 \rightarrow_{\text{dep}} t_1 \), then \(\text{dep}(t_0) > \text{dep}(t_1) \).

Proof. By induction on the relations. We only show the interesting cases.

- \(t_0 = (tv)[x/u] \rightarrow_{\text{sub}} tv[x/u] = t_1 \) with \(x \notin \text{fv}(t) \) and \(x \in \text{fv}(v) \). Then
 \[
 \begin{align*}
 \text{dep}(tv[x/u]) &= \\
 \text{dep}(t) \cup \text{dep}(v) \cup \langle \eta(u), M_v(v) \rangle &= \\
 \text{dep}(t\{x/u\}) &=
 \end{align*}
 \]
- \(t_0 = t[y/v][x/u] \rightarrow_{\text{cap}} t[y/v][x/u] = t_1 \) with \(x \notin \text{fv}(t) \) and \(x \in \text{fv}(v) \). Then
 \[
 \begin{align*}
 \text{dep}(t[y/v][x/u]) &= \\
 \text{dep}(t) \cup \max(1, M_y(t)) \cdot \text{dep}(v) \cup \langle \eta(u), M_v(t[y/v]) \rangle &= \text{i.h.} \\
 \text{dep}(t) \cup \max(1, M_y(t)) \cdot \text{dep}(v) \cup \langle \eta(u), M_v(t[y/v]) \rangle &= \text{L. 22.1} \\
 \text{dep}(t) \cup \max(1, M_y(t)) \cdot \text{dep}(v[x/u]) &= \\
 \text{dep}(t[y/v][x/u]) &=
 \end{align*}
 \]
- \(t_0 = t[x/u] \rightarrow_{\mathcal{A}} t = t_1 \) with \(|t|_x = 0\). Then

\[
\begin{align*}
\text{dep}(t[x/u]) &= \\
\text{dep}(t) \cup \langle \eta(u), M_x(t) \rangle > \\
\text{dep}(t) &\quad (L. 29)
\end{align*}
\]

- \(t_0 = t[x/u] \rightarrow_{\mathcal{A}} t\{x/u\} = t_1 \) with \(|t|_x = 1\).

\[
\begin{align*}
\text{dep}(t[x/u]) &= \\
\text{dep}(t) \cup \langle \eta(u), M_x(t) \rangle > \\
\text{dep}(t) &\quad (L. 33)
\end{align*}
\]

- \(t_0 = t[x/u] \rightarrow_{\mathcal{A}} t[y/u][x/u][y/u] = t_1 \) with \(|t|_x > 1\).

\[
\begin{align*}
\text{dep}(t[x/u]) &= \\
\text{dep}(t) \cup \langle \eta(u), M_x(t) \rangle > \\
\text{dep}(t) &\quad (L. 29)
\end{align*}
\]

- \(t_0 = t[x/u] \rightarrow_{\mathcal{P}_b} t[x/u'] = t_1 \). We have \(\text{dep}(t_0) = \text{dep}(t) \cup \langle \eta(u), M_x(t) \rangle > \text{dep}(t) \cup \langle \eta(u'), M_x(t) \rangle \).

- \(t_0 = t[x/u] \rightarrow_{\mathcal{P}_b} t'[x/u] = t_1 \), where \(t \rightarrow_{\mathcal{P}_b} t' \). Since \(t_0 \in \mathbb{W}_{\mathcal{P}_b} \), then the hypothesis gives \(x \not\in Lfv(t) \). Lemmas 28, 31 and 32 then gives \(M_x(t) \geq M_x(t') \). Since \(\text{dep}(t_0) = \text{dep}(t) \cup \langle \eta(u), M_x(t) \rangle \) and \(\text{dep}(t_1) = \text{dep}(t') \cup \langle \eta(u), M_x(t') \rangle \), then the property holds by the i.h.

- All the other cases are straightforward.

Now, we conclude with the main statement.

Lemma 21. The relation \(\rightarrow_{\mathcal{P}_b} \) modulo 0 is terminating on b well-formed labelled terms.

Proof. Using the Modular Abstract Theorem 5, where \(\mathcal{A}_1 = \{ ab, sb \} \), \(\mathcal{A}_2 = \{ j, Fp : \mathcal{J} \} \), \(\mathcal{E} = 0 \), \(\mathcal{A} \) is the relation \(> \) on N and \(\mathcal{R} \) is given by \(t \mathcal{R} T \) iff \(\text{dep}(t) = T \). Properties \(\mathbf{P0}, \mathbf{P1} \) and \(\mathbf{P2} \) of the Theorem 5 are guaranteed by Lemma 35, Property \(\mathbf{P3} \) (termination of \(\mathcal{A}_1 / 0 \)) is straightforward.

Termination of \(\rightarrow_{\mathcal{P}_b} \)

To prove termination in the \(\rightarrow_{\mathcal{P}_b} \) case one hopes that the reasoning done for the \(\rightarrow_{\mathcal{F}_b} \) case may be somehow re-used. However, reduction inside labelled jumps and reduction out of labelled jumps are independent in \(\mathcal{F}_b \) but not in \(\mathcal{F}_u \). Consider the rule \([\mathcal{P}_b]_2\), the source of all complications:

\[
t_0 = t[y/v][x/u] \rightarrow_{\mathcal{P}_b} t[y/v][x/u] = t_1 \text{ if } x \in f(v)
\]

The status of the jump \([x/u]\) is changed by this rule, so that the possible \(j \)-reductions involving \([x/u]\) from \(t_0 \) become labelled \(j \)-reductions from \(t_1 \). Thus,
inside and out of labelled reductions are no longer independent and need to be treated together. As in the \(\text{Fb} \) case, one observes that length of reductions inside labelled jumps decrease. Thus for example we have \(\eta(v/x/u) > \eta(u) \), \(\eta(v) \) in the previous rule \(\text{su} \). This needs also to be combined with the multiplicity of the jump in order to handle the duplicating rule. However, the situation is not so simple: the \(\text{d} \)-rule, whose target can now be a variable inside a labelled jump, introduces a (new) problematic case. Let us see an example:

\[
\text{unboxing measure of } t \in \text{WF}_u, \text{ is given by } D(t, \text{id}), \text{ where for any meta-level substitution } \gamma, D(t, \gamma) \text{ is defined as follows:}
\]

\[
\begin{align*}
D(x, \gamma) &=: [] \\
D(%gamma, t, \gamma) &= D(t, \gamma) \\
D(tu, \gamma) &= D(t, \gamma) \sqcup D(u, \gamma) \\
D(t\{(y/u), \gamma\}) &= D(t, \gamma) \sqcup \max(1, \text{M}_y(t)) \cdot D(u, \gamma) \\
D(t\{y/u\}[y/v], \gamma) &= D(t, \gamma) \sqcup \eta\lambda_j\gamma(u\gamma) \cdot \text{M}_y(t)
\end{align*}
\]

Note that \(u \in \mathcal{T} \) implies \(D(u, \gamma) = [\] \). Some preliminaries are needed in order to relate the measure, the equivalence and the reductions.

Lemma 36. Let \(t \in \text{WF}_u \).

1. If \(\gamma \rightarrow_{\lambda_j} \gamma' \), then \(D(t, \gamma) \geq D(t, \gamma') \).
2. If \(u \in \mathcal{T} \), then \(D(t\{x/u\}, \gamma) = D(t, \{x/u\} \gamma) \).

Proof. By induction on \(t \).

1. Let \(t = u[x/v] \). Then

\[
\begin{align*}
D(u[x/v], \gamma) &= D(u, \gamma) \\
D(u, \{x/u\} \gamma) \sqcup \eta(v\gamma), \text{M}_x(u)) &\geq \text{i.h.} \\
D(u, \{x/u\} \gamma) \sqcup \eta(v\gamma), \text{M}_x(u)) &= D(u[x/v], \gamma)
\end{align*}
\]

All the other cases are straightforward.

2. \(t = x \). Then \(D(x[x/v], \gamma) = D(u, \gamma) = D(x, \{x/u\} \gamma) = [\] \). \(t = y \neq x \). Then \(D(y[x/u], \gamma) = D(y, \gamma) = D(y, \{x/u\} \gamma) = [\] \). \(t = t_1[t_2/y] \). W.l.o.g. we can assume \(y \notin \text{fv}(u) \) and \(y \neq x \). Then,

\[
\begin{align*}
D(t, \gamma) &\geq D(t_1[y/t_2], \gamma) \sqcup \eta(y\gamma), \text{M}_x(u)) \\
D(u, \{x/u\} \gamma) \sqcup \eta(y\gamma), \text{M}_x(u)) &\geq \text{i.h.}
\end{align*}
\]
Lemma 37. Let $t \in \mathbb{WF}_v$.

1. $t_0 \equiv_0 t_1$ implies $D(t_0, \gamma) = D(t_1, \gamma)$.
2. $t_0 \rightarrow_{\text{max} \cdot \text{sub}} t_1$ implies $D(t_0, \gamma) = D(t_1, \gamma)$.
3. $t_0 \rightarrow_{\text{L}30} t_1$ implies $D(t_0, \gamma) > D(t_1, \gamma)$.

Proof. By induction on the relations.

1. The equivalence \equiv_0.
 - CS: $t_0 = t[x/u][y/v] \equiv t[y/v][x/u] = t_1$ if $y \notin \mathcal{F}v(u)$ and $x \notin \mathcal{F}v(v)$.
 Observe that $y \notin \mathcal{F}v(u)$ implies $M_y(t[x/u]) = M_y(t) + \text{max}(1, M_x(t)) \cdot M_y(u) = M_y(t)$. Then,
 \[
 D(t_0(\gamma)) = D(t_0(\gamma)) \cup \text{max}(1, M_y(t[x/u])) \cdot D(v, \gamma) = \\
 D(t, \gamma) \cup \text{max}(1, M_y(t)) \cdot D(v, \gamma) = \\
 D(t, \gamma) \cup \text{max}(1, M_y(t)) \cdot D(u, \gamma) \cup \text{max}(1, M_y(t)) \cdot D(v, \gamma) = \\
 D(t[y/v], \gamma) \cup \text{max}(1, M_y(t[y/v])) \cdot D(u, \gamma) = \\
 D(t_1(\gamma))
 \]

 - CS: $t_0 = t[x/u][y/v] \equiv t[y/v][x/u] = t_1$ if $y \notin \mathcal{F}v(u)$ and $x \notin \mathcal{F}v(v)$.
 As in the previous case we have $y \notin \mathcal{F}v(u)$ implies $M_y(t[x/u]) = M_y(t) + \text{max}(1, M_x(t)) \cdot M_y(u) = M_y(t)$. Then,
 \[
 D(t_0(\gamma)) = D(t_0(\gamma)) \cup \text{max}(1, M_y(t[x/u])) \cdot D(v, \gamma) = \\
 D(t, \gamma) \cup \text{max}(1, M_y(t)) \cdot D(v, \gamma) = \\
 D(t, \gamma) \cup \text{max}(1, M_y(t)) \cdot D(v, \gamma) = \\
 D(t[y/v], \gamma) \cup \text{max}(1, M_y(t[y/v])) \cdot D(v, \gamma) = \\
 D(t_1(\gamma))
 \]
\(- \text{CS}_2: t_0 = \lambda y.t[x/u] \equiv t[y/v][x/u] = t_1 \text{ if } y \not\in fv(u) \text{ and } x \not\in fv(v).\)

Observe that the hypothesis imply \(u(\{y/v\} \gamma) = u \gamma\) and \(v(\{x/u\} \gamma) = v \gamma\). Then,

\[
\begin{align*}
D(t_0, \gamma) & = D(t, \lambda y.t) \\
D(t[x/u], \{y/v\} \gamma) & = D(t, x/u) \{y/v\} \gamma \\
D(t, \{x/u\} \gamma) & = D(t, x/u) \{x/u\} \gamma
\end{align*}
\]

\(- \sigma_1: t_0 = (\lambda y.t)[x/u] \equiv \lambda y.t[x/u] = t_1 \text{ if } y \not\in fv(u). \text{ Then,}\)

\[
\begin{align*}
D(t_0, \gamma) & = D(\lambda y.t, \gamma) \\
D(\lambda y.t, \{x/u\} \gamma) & = D(\lambda y.t, x/u) \{x/u\} \gamma \\
D(t, (x/u) \gamma) & = D(t, x/u) \{x/u\} \gamma
\end{align*}
\]

\(- \sigma_4: t_0 = (\lambda y.t)[x/u] \equiv \lambda y.t[x/u] = t_1 \text{ if } y \not\in fv(u). \text{ Then,}\)

\[
\begin{align*}
D(t_0, \gamma) & = D(t, \lambda y.t) \\
D(t, \{x/u\} \gamma) & = D(t, x/u) \{x/u\} \gamma \\
D(t_0, \gamma) & = D(t, \lambda y.t) \\
D(t_0, \gamma) & = D(t, \lambda y.t) \\
D(t_0, \gamma) & = D(t, \lambda y.t)
\end{align*}
\]

\(- \sigma_2: t_0 = (tv)[x/u] \equiv t[x/u]v = t_1 \text{ if } x \not\in fv(v). \text{ Then,}\)

\[
\begin{align*}
D(t_0, \gamma) & = D(t, tv) \\
D(t, tv) & = D(t, tv) \\
D(t, tv) & = D(t, tv) \\
D(t, tv) & = D(t, tv)
\end{align*}
\]

\(- \sigma_5: t_0 = t[x/u]v \equiv (tv)[x/u] = t_1 \text{ if } x \not\in fv(v). \text{ Then,}\)

\[
\begin{align*}
D(t_0, \gamma) & = D(t, tv) \\
D(t, tv) & = D(t, tv) \\
D(t, tv) & = D(t, tv) \\
D(t, tv) & = D(t, tv)
\end{align*}
\]
2. The reductions su and su_1.

- **su**: $t_0 = t[v[x/u]] \rightarrow (tv)[x/u] = t_1$, where $x \in \mathcal{F}(v)$ and $x \notin \mathcal{F}(t)$.

 Then

 \[
 \begin{align*}
 D(t_0, \gamma) & = \\
 D(t, \gamma) \cup D(v, \gamma) \cup \langle \eta(u\gamma), M_x(v) \rangle & = \\
 D(t, \gamma) \cup D(v, \gamma) \cup \langle \eta(u\gamma), M_x(tv) \rangle & = \\
 D(t_1, \gamma) & =
 \end{align*}
 \]

- **su_1**: $t_0 = t[y/v[x/u]] \rightarrow t[y/v][x/u] = t_1$, where $x \in \mathcal{F}(v)$ and $x \notin \mathcal{F}(t)$.

 Then

 \[
 \begin{align*}
 D(t_0, \gamma) & = \\
 D(t, \gamma) \cup \max(1, M_y(t)) \cdot D(v[x/u], \gamma) & = \\
 D(t, \gamma) \cup \max(1, M_y(t)) \cdot D(v, \{x/u\} \gamma) \cup \max(1, M_y(t)) \cdot \langle \eta(u\gamma), M_x(v) \rangle & = \\
 D(t, \gamma) \cup \max(1, M_y(t)) \cdot D(v, \{x/u\} \gamma) \cup \max(1, M_y(t)) \cdot \langle \eta(u\gamma), M_x(v) \rangle & = \\
 D(t, \gamma) \cup \max(1, M_y(t)) \cdot D(v, \{x/u\} \gamma) \cup \max(1, M_y(t)) \cdot \langle \eta(u\gamma), M_x(t[y/v]) \rangle & = \\
 D(t, \gamma) \cup \max(1, M_y(t)) \cdot D(v, \{x/u\} \gamma) \cup \max(1, M_y(t)) \cdot \langle \eta(u\gamma), M_x(t[y/v]) \rangle & = \\
 D(t_1, \gamma) & = L. \ 36
 \end{align*}
 \]

3. The reductions ϑ and su_2.

- **ϑ**: $t_0 = t[y/u] \rightarrow t = t_1$, with $|t|_y = 0$.

 Then

 \[
 \begin{align*}
 D(t_0, \gamma) & = \\
 D(t, \{x/u\} \gamma) \cup \langle \eta(u\gamma), M_x(t) \rangle & > \\
 D(t, \{x/u\} \gamma) & = L. \ 36.2 \ D(t, \gamma)
 \end{align*}
 \]

- **ξ**: $t_0 = t[x/u] \rightarrow t\{x/u\} = t_1$, with $|t|_x = 1$.

 Then

 \[
 \begin{align*}
 D(t, \{x/u\} \gamma) \cup \langle \eta(u\gamma), M_x(t) \rangle & > \\
 D(t, \{x/u\} \gamma) & = L. \ 36.2 \ D(t[x/u], \gamma)
 \end{align*}
 \]

- **ζ**: $t_0 = t[x/u] \rightarrow t[y/u][x/u] = t_1$, with $|t|_x \geq 2$ and y fresh. Then,

 \[
 \begin{align*}
 D(t_0, \gamma) & = \\
 D(t, \{x/u\} \gamma) \cup \langle \eta(u\gamma), M_x(t) \rangle & = L. \ 36.2 \\
 D(t[x/u], \gamma) \cup \langle \eta(u\gamma), M_x(t) \rangle & = L. \ 36.2 \\
 D(t[y/u], \{x/u\} \gamma) \cup \langle \eta(u\gamma), M_x(t) \rangle & > (1) \\
 D(t[y/u], \{y/u\}, \{x/u\} \gamma) \cup \langle \eta(u\gamma), M_x(t[y/u]) \rangle & > (1) \\
 D(t[y/u], \{y/u\}, \{x/u\} \gamma) \cup \langle \eta(u\gamma), M_x(t[y/u]) \rangle & = D(t_1, \gamma)
 \end{align*}
 \]

Remark that (1) holds since $M_x(t[y/u]), M_y(t[y/u]) > 0$ by hypothesis and $M_x(t[y/u]) + M_y(t[y/u]) = M_x(t)$.

Lemma 38. \(\mu_2 \): \(t_0 = t[y/v][x/u] \to t[y/v][x/u] = t_1 \), with \(x \in f(v) \) and \(x \notin f(v) \).

Then,

\[
\begin{align*}
D(t_0, \gamma) &= \\
D(t, \{ y/v[x/u] \} \gamma) \cup \langle \eta(v[x/u] \gamma), M_\gamma(t) \rangle &= (1) \\
D(t, \{ y/v[x/u] \} \gamma) \cup \langle \eta(v[x/u] \gamma), M_\gamma(t) \rangle \cup \langle \eta(u \gamma), M_\gamma(t[y/v]) \rangle &\supseteq L_{36.1} \\
D(t, \{ y/v[x/u] \} \gamma) \cup \langle \eta(v[x/u] \gamma), M_\gamma(t) \rangle \cup \langle \eta(u \gamma), M_\gamma(t[y/v]) \rangle &\supseteq L_{36.2} \\
D(t[t[y/v]], \{ x/u \} \gamma) \cup \langle \eta(u \gamma), M_\gamma(t[y/v]) \rangle &= D(t_1, \gamma)
\end{align*}
\]

Step (1) holds since \(\eta(v[x/u] \gamma) > \eta(v[x/u] \gamma) \) and \(\eta(v[x/u] \gamma) > \eta(u \gamma) \).

Now, for the inductive cases the only interesting case is when \(t_0 = t[y/v][x/u] \equiv (\text{resp. } \to) t'[x/u] = t_1 \), where \(t \equiv (\text{resp. } \to) t' \).

If \(t \equiv (\text{resp. } \to \mu_2) t' \), we have

\[
\begin{align*}
D(t_0, \gamma) &= \\
D(t, \{ x/u \} \gamma) \cup \langle \eta(u \gamma), M_\gamma(t) \rangle &= i.h. \\
D(t', \{ x/u \} \gamma) \cup \langle \eta(u \gamma), M_\gamma(t') \rangle &\supseteq L_{28} \\
D(t', \{ x/u \} \gamma) \cup \langle \eta(u \gamma), M_\gamma(t') \rangle &= D(t_1, \gamma)
\end{align*}
\]

If \(t \to_{\mu_2} t' \), we have

\[
\begin{align*}
D(t_0, \gamma) &= \\
D(t, \{ x/u \} \gamma) \cup \langle \eta(u \gamma), M_\gamma(t) \rangle &\supseteq i.h. \\
D(t', \{ x/u \} \gamma) \cup \langle \eta(u \gamma), M_\gamma(t') \rangle &\supseteq L_{37} \\
D(t', \{ x/u \} \gamma) \cup \langle \eta(u \gamma), M_\gamma(t') \rangle &= D(t_1, \gamma)
\end{align*}
\]

All the other cases are straightforward.

The next and last lemma proves that the measure with store decreases by \(\to_{\mu_2} \)-steps. The second point of the lemma is technical, used to prove the first one.

Lemma 38. Let \(t_0 \in W^F_a \) s.t. \(t_0 \to_{\mu_2} t_1 \). Then

1. \(D(t_0, \gamma) > D(t_1, \gamma) \).
2. \(D(t_0, \rho \cup \{ x/u \} \gamma) > \eta(u \gamma), K \) \(\forall K \) and \(\forall x \) s.t. \(M_\gamma(t_0) < M_\gamma(t_1) \).

Proof. By induction on \(t_0 \). Let us note \(\gamma' = \rho \cup \{ x/u \} \).

- \(t_0 = z \) is not possible.
- \(t_0 = v_0 \). Suppose \(t_0 = v_0 \to_{\mu_2} v_0' \) \(v_0' = t_1 \), where \(v_0 \to_{\mu_2} v_0' \). (the case \(t = v_0 \to_{\mu_2} v_0 \) \(v_0' = t' \), where \(v_0 \to_{\mu_2} v_0' \) being similar).

1. We have

\[
\begin{align*}
D(t_0, \gamma) &= D(v_0, \gamma) \cup D(v_1, \gamma) > i.h. \\
D(v_0', \gamma) \cup D(v_1, \gamma) &= D(t_1, \gamma)
\end{align*}
\]

2. We have \(D(t_0, \gamma') = D(v_0, \gamma') \cup D(v_1, \gamma') \). Also \(M_\gamma(t_0) < M_\gamma(t_1) \) implies in particular \(M_\gamma(v_0) < M_\gamma(v_0') \). The i.h. then states that \(D(v_0, \gamma') \) verifies the property, and so does also \(D(t_0, \gamma') \).

- \(t_0 = v_0[y/v_1] \). Suppose \(t_0 = v_0[y/v_1] \to_{\mu_2} v_0'[y/v_1] = t_1 \), where \(v_0 \to_{\mu_2} v_0' \).
1. We have
\[D(v_0[y/v_1], \gamma) = D(v_0, \gamma) \sqcup \max(1, M_y(v_0)) \cdot D(v_1, \gamma) >_{l.h.} \]
\[D(v_0[y/v_1], \gamma) = D(v_0[y/v_1], \gamma) = D(v_0[y/v_1], \gamma) = D(v_0[y/v_1], \gamma) \]

2. As for the preceding case.

The case \(t_0 = v_0[y/v_1] \to_{FP-1} v_0[y/v_1'] = t_1 \), where \(v_1 \to_{FP-1} v_1' \) is similar.

- \(t_0 = v_0[y/v_1] \)

Suppose \(t_0 = v_0[y/v_1] \to_{FP-1} v_0[y/v_1'] = t_1 \), where \(v_1 \to_{\lambda \eta / \alpha} v_1' \).

1. We have
\[D(v_0[y/v_1], \gamma) = D(v_0, \gamma) \sqcup \max(1, M_y(v_0)) \cdot D(v_1, \gamma) \geq L \cdot 36.1 \]
\[D(v_0, \gamma_0) \sqcup \max(1, M_y(v_0)) > D(v_0, \gamma_0) \sqcup \max(1, M_y(v_0)) = D(v_0[y/v_1], \gamma) \]

2. Let \(M_x(t_0) < M_x(t_1) \). Then necessarily \(0 \neq M_x(v_1) < M_x(v_1') \). We have
\[D(v_0[y/v_1], \gamma) = D(v_0, \gamma_0) \sqcup \max(1, M_y(v_0)) \cdot D(v_1, \gamma) > \]
\[D(v_0, \gamma_0) \sqcup \max(1, M_y(v_0)) > D(v_0, \gamma_0) \sqcup \max(1, M_y(v_0)) = D(v_0[y/v_1], \gamma) \]

Suppose \(t_0 = v_0[y/v_1] \to_{FP-1} v_0[y/v_1] = t_1 \), where \(v_0 \to_{FP-1} v_0' \).

1. We have
\[D(v_0[y/v_1], \gamma) = D(v_0, \gamma_0) \sqcup \max(1, M_y(v_0)) \cdot D(v_1, \gamma) = D(v_0[y/v_1], \gamma) = D(v_0[y/v_1], \gamma) \]
\[D(v_0, \gamma_0) \sqcup \max(1, M_y(v_0)) >_{l.h.} (1) D(v_0, \gamma_0) \]
\[D(v_0, \gamma_0) \sqcup \max(1, M_y(v_0)) >_{l.h.} (2) D(v_0, \gamma_0) \]
\[D(v_0, \gamma_0) \sqcup \max(1, M_y(v_0)) >_{l.h.} (2) D(v_0, \gamma_0) \]

If \(M_y(v_0) \geq M_y(v_0') \), then \(D(v_0, \gamma_0) \geq D(v_0, \gamma_0) \) and we conclude.

If \(M_y(v_0) < M_y(v_0') \), then \(D(v_0, \gamma_0) >_{l.h.} (2) D(v_0, \gamma_0) \) and we also conclude.

- All the other cases are straightforward.

Lemma 22. The relation \(\to_{FP} \) modulo 0 is terminating on well-formed labelled terms.

Proof. Using the Modular Abstract Theorem 5, where \(A_1 \) is \(\{ a, s, u \} \), \(A_2 \) is \(\{ \eta, s, u, Fp : i \} \), \(E \) is 0, \(A \) is the relation \(>_{n} \) on \(\mathbb{N} \) and \(R \) is given by \(t \not\in R T \) iff \(D(t, []) = 1 \). Properties P0, P1 and P2 of the Theorem 5 are guaranteed by Lemmas 37 and 38, Property P3 (termination of \(A_1/\alpha \)) is straightforward.