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ABSOLUTE ALGEBRA
II–IDEALS AND SPECTRA

PAUL LESCOT

Abstract. We study natural notions of ideals and spectra for algebras of

characteristic one.

1. Introduction

Many different strands of thought converge in suggesting the existence of a “char-
acteristic 1 analogue”of the usual algebra of fields. Among these let us mention
tropical geometry ([2]), the geometry of algebraic groups([11]), their representa-
tions ([12]), and the Riemann hypothesis ([3],[4],[10]). Various such formalisms
have been propounded, among which the most notable are Deitmar’s theory of F1–
schemes ([6],[7]), Soulé’s theory of F1–objects([10]), and Zhu’s characteristic one
algebra ([13]).

In a previous work ([9]), we have developed Zhu’s theory, and made clear its
intimate connection with Deitmar’s. By B1 we shall denote (as in [9]) the set {0, 1}
equipped with the usual operations of addition and multiplication, except that
1 + 1 = 1. It is clear that this object satisfies all the axioms defining a field, except
for the existence of symmetric elements for addition. In Castella’s terminology ([1]),
this is the smallest characteristic 1 semifield .
B1–modules are defined in the obvious way, i.e. as commutative monoids with a

zero element equipped with an external B1–action satisfying the usual conditions.

Definition 1.1. ([9], Definition 2.3)A B1-module is a commutative monoid M with
zero element 0M equipped with an external B1-action (that is an application

(λ, x) 7→ λx

from B1 ×M to M), such that the following properties hold:

(1) ∀(λ, µ, x) ∈ B1 ×B1 ×M (λ+ µ)x = λx+ µx ,

(2) ∀(λ, x, y) ∈ B1 ×M ×M λ(x+ y) = λx+ λy ,

(3) ∀x ∈M 1x = x , and

(4) ∀x ∈M 0x = 0M .
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2 P. LESCOT

We then define B1–algebras in the natural way (slightly weaker than the one in
[9],Definition 4.1) :

Definition 1.2. By a (commutative, unitary)B1–algebra A we mean the data of a
B1–module A and of an associative and commutative multiplication on A that has
a neutral element 1A and is bilinear with respect to the operations of B1–module.

If 1A = 0A, then A has only one element ; in the other case, we may identify
B1 = {0, 1} and the subalgebra {0A, 1A} of A, and it turns out that A is a B1–
algebra in the sense of [9], Definition 4.1.

Conversely, any B1–algebra in the sense of [9], Definition 4.1 is a B1–algebra in
the sense of the present paper.

Except when otherwise precised, we shall keep in force the definitions and nota-
tions of [9]. In particular, for E a set, Pf (E) will denote the set of its finite subsets,
and

jE : E → Pf (E)
x 7→ {x}

the canonical injection.
In (commutative) ring theory, there is a bijection between congruences (in the

sense of universal algebra) on a ring and ideals of the ring (cf. e.g.the proof of
Corollary 2, p.68, in [8]). In the category of B1–algebras, that correspondence
breaks down. Thus we first consider ideals (§2), then congruences (§3) and we
obtain a bijection between saturated ideals and excellent congruences. In §4 we
discuss the connection between this theory and Deitmar’s ideas ([6], [7]), in the line
of [9], §5.

Castella([1],[2]) has developed a different theory that works more generally over
an arbitrary characteristic 1 semifield (not necessarily B1), and has some points of
contact with ours. His notion of idéal fermé ([2], p.5) corresponds to our notion
of saturated ideal . Nevertheless, his definition of quotient by an ideal is entirely
different.

In a subsequent paper we shall investigate tensor products of B1–algebras. Hope-
fully all these constructions will some day fit together within Connes and Consani’s
theory of hyperrings ([3],[4],[5]).
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2. Ideals

Let A denote a B1–algebra.

Definition 2.1. A subset I of A is termed an ideal of A if
• I is a B1–submodule of A, i.e.

0 ∈ I ,

∀(x, y) ∈ I2 x+ y ∈ I , and
• ∀x ∈ I ∀a ∈ A ax ∈ I .

{0} and A are both ideals of A; by a proper ideal of A we mean an ideal different
from A itself. We shall denote by Id(A) the set of all ideals of A, and by Max(A)
the set of all maximal (proper) ideals of A.

Definition 2.2. An ideal I of A is prime if I 6= A and,

∀(x, y) ∈ A2 [xy ∈ I =⇒ x ∈ I or y ∈ I] .

We shall denote by Pr(A) the set of prime ideals of A.

Proposition 2.3.
Max(A) ⊆ Pr(A) .

Proof. The familiar ring–theoretic argument applies here : let I ∈ Max(A), let us
assume xy ∈ I and x /∈ I, and define

J = I +Ax

= def.{i+ ax|i ∈ I, a ∈ A} .
Then one checks easily that J is an ideal of A, that I ⊆ J , and that I 6= J (as
x = 0 + 1.x ∈ J , and x /∈ I); therefore, J = A. In particular, 1 ∈ J ; therefore one
may find i ∈ I and a ∈ A such that 1 = i+ ax. But then one has

y = 1.y
= (i+ ax)y
= iy + a(xy)
= yi+ a(xy) ∈ I ,

as i ∈ I and xy ∈ I. �

As for ordinary rings, the reciprocal inclusion need not hold : e.g., for A = B1[x],
I = {0} is a prime ideal that is not maximal, as I ( xA ( A.

Theorem 2.4. For S a subset of A, let

W (S) := {P ∈ Pr(A)|S ⊆ P} .
Then the (W (S))S⊆A are the closed sets for a (Zariski) topology on Pr(A).

Proof. The proof follows the usual lines, as

W (∅) = Pr(A) ,

W (A) = ∅ ,⋂
i∈I

W (Si) = W (
⋃
i∈I

Si) ,
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and
W (S) ∪W (T ) = W (ST ) ,

where
ST := {xy|x ∈ S, y ∈ T} .

�
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3. Congruences

For the convenience of the reader, we shall repeat some of the definitions from
[9],§4, with a slight change : we now allow the “trivial”congruence, i.e. the con-
gruence such that 0 ' 1.

Definition 3.1. We call congruence on the B1–algebra A an equivalence relation
∼ on A such that

∀(a, b, a
′
, b

′
) ∈ A4 a ∼ b and a′ ∼ b′ =⇒ a+ a′ ∼ b+ b′ and aa′ ∼ bb′ .

In our theory, congruences play the same role as equivalences modulo an ideal
in commutative algebra ; in particular, for each congruence ∼ on A, the quotient
set A/∼ possesses a canonical structure of (possibly trivial) B1–algebra.

Definition 3.2. On the set of congruences on the B1–algebra A let us define an
order ≥ by :

∼1≥∼2 ⇐⇒ ∀(a, b) ∈ A2 a ∼2 b =⇒ a ∼1 b .

The trivial congruence C0(A) = A×A is the greatest element for that order, and
the equality relation =A on A the smallest. It is easy to see that, if ∼1≥∼2, then
there is a canonical surjective morphism

A/∼2 � A/∼1 .

Definition 3.3. We shall denote by MaxSpec(A) the set of all maximal nontrivial
congruences on A.

When A is the free B1–algebra on n generators, MaxSpec(A) consists of 2n

elements, and has been described in [9], Theorems 4.7 and 4.8. It is an easy conse-
quence of Zorn’s Lemma that any nontrivial congruence is contained in a maximal
one.

Definition 3.4. A congruence ∼ on A is said to be prime if ∼6= C0(A) and

ab ∼ 0 =⇒ a ∼ 0 or b ∼ 0 ;

we shall denote the set of prime congruences on A by Spec(A).

One has

Theorem 3.5.
MaxSpec(A) ⊆ Spec(A) .

Proof. We shall repeat an argument already used at the beginning of the proof of
Theorem 4.8 in [9]. Let ∼∈Maxspec(A), and let (u, v) ∈ A2 be such that uv ∼ 0,
and u � 0.

Define the relation Ru on A by :

xRu y ≡ ∃(a, b) ∈ A2 x+ ua ∼ y + ub .

It is very easy to see that Ru is compatible with addition and multiplication,
and that x ∼ y implies xRu y. Furthermore 0Ru u, and 0 � u, therefore

∼6= Ru .

It follows that Ru is a congruence, and that Ru >∼, whence Ru = C0(A). In
particular 0 Ru 1, therefore one may find (a, b) ∈ A2 such that :

0 + ua = 1 + ub ,
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i.e.
ua = 1 + ub .

But then

(uv)a = v(ua) = v(1 + ub) = v + uvb

and from uv ∼ 0 follows :

0 = 0a ∼ (uv)a = v + uvb ∼ v + 0b = v ,

that is v ∼ 0. Therefore ∼ is prime. �

Definition 3.6. For R a congruence, let us set

I(R) := {x ∈ A|x R 0} ;

obviously, I(R) is an ideal of A.

Conversely, we have

Theorem 3.7. Let J be an ideal of A, then there is a unique smallest congruence
(denoted by RJ) such that

(∀x ∈ J) x RJ 0 .
One has

∀(x, y) ∈ A2 x RJ y ⇐⇒ (∃z ∈ J) x+ z = y + z .

Furthermore J := I(RJ) is an ideal of A (in fact

J = {x ∈ A| (∃z ∈ J) x+ z = z})

and the mapping J 7→ J is a closure operator (i.e. J ⊆ J and J = J) on Id(A).

Proof. Let us define a relation RJ on A by

∀(x, y) ∈ A2 x RJ y ≡ (∃z ∈ J) x+ z = y + z .(3.1)

Then from aRJb and a
′RJb

′
follows the existence of (c, c

′
) ∈ J2 with

a+ c = b+ c

and a
′
+ c

′
= b

′
+ c

′
. Then c+ c

′ ∈ J and

(a+ a
′
) + (c+ c

′
) = (a+ c) + (a

′
+ c

′
)

= (b+ c) + (b
′
+ c

′
)

= (b+ b
′
) + (c+ c

′
) ,

whence a+ a
′RJb+ b

′
.

Let now x = a
′
c+ bc

′ ∈ J ; then

aa
′
+ x = aa

′
+ a

′
c+ bc

′

= a
′
(a+ c) + bc

′

= a
′
(b+ c) + bc

′

= b(a
′
+ c

′
) + a

′
c

= b(b
′
+ c

′
) + a

′
c

= bb
′
+ x ,

whence aa
′RJbb

′
. We have shown RJ to be a congruence on A. Obviously, for

x ∈ J , one has x+ x = x = 0 + x, whence x RJ 0.
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Let now R be a congruence on A such that

∀x ∈ J x R 0 ,

and let (x, y) ∈ A2 with x RJ y ; then there is z ∈ J such that x+ z = y + z. But
then z RJ 0, whence

x = x+ 0 R x+ z = y + z R y + 0 = y ,

whence xRy, and RJ ⊆ R.
Now, let J =def I(RJ) ; as seen above, J is an ideal of A, and J ⊆ J by definition

of RJ . The description of J follows from (3.1). Furthermore, by definition of J ,
RJ is a congruence on A such that

∀x ∈ J x RJ 0 ,

whence RJ ≤ RJ and

J = I(RJ)

⊆ I(RJ)

= J

⊆ J , and

J = J.

�

An ideal J of A will be termed saturated if J = J .
Congruences of the type RJ(for J an ideal of A) will be termed excellent. It

follows from the next Theorem that R is excellent if and only if R = RI(R).

Theorem 3.8. For an arbitrary congruence R, RI(R) is the largest excellent con-
gruence that is ≤ R. Consequently, for J ∈ Id(A), one has J = J if and only if
there exists a congruence R on A such that I(R) = J ; if this is the case, then RJ

is the smallest such congruence.

Proof. By definition, RI(R) is excellent ; if x RI(R) y, there is z ∈ I(R) with

x+ z = y + z.

But then z R 0 and

x = x+ 0 R x+ z = y + z R y + 0 = y ,

whence xRy, and RI(R) ≤ R.
If RJ ≤ R, then

J ⊆ I(RJ) ⊆ I(R) ,

whence J ⊆ I(R) and RJ ≤ RI(R) : the first assertion follows.
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Let us assume J = I(R) for some R ; then

J ⊆ J

= I(RJ)
= I(RI(R))
⊆ I(R) (as RI(R) ≤ R)
= J ,

whence J = J .
Conversely, if J = J then I(RJ) = J = J , and from I(R) = J follows RJ =

RI(R) ≤ R. �

Remark 3.9. • RJ is prime if and only if J is prime.
• RJ is maximal if and only if J is maximal among proper saturated ideals.

Let us note that the last condition does not imply the maximality of J : for
example, let A = B1[x] and J = xA ; then RJ is a maximal congruence on A (see
[9], Theorem 4.7), but J = J is not a maximal ideal in A, as J ( xA+(1+x)A ( A.

Definition 3.10. The ideal I is absolutely prime if I 6= A and

ab RI ac =⇒ (a ∈ I) or b RI c .

Theorem 3.11. An absolutely prime saturated ideal is prime.

Proof. Let I be absolutely prime and saturated, and let us assume ab ∈ I; then
ab RI 0 = a.0, whence, by hypothesis, a ∈ I = I or b RI 0 ; but, in the second
case, b ∈ I = I : I is prime. �

Remark 3.12. Clearly, if I is absolutely prime, then I either equals A or is prime.

Theorem 3.13. A maximal ideal is prime and absolutely prime.

Proof. Let I be maximal ; then I is prime according to Proposition 2.3.
Let us assume

ab RI ac and (a /∈ I);
then there is a x ∈ I such that

ab+ x = ac+ x .

As a /∈ I, I 6= A, whence, due to the maximality of I, I = I : I is saturated.
Let now

J := {y ∈ A|(∃z ∈ I)yb+ z = yc+ z};
then J is an ideal of A : it is clear that it is a submonoid, and from y ∈ J and
y

′ ∈ A follow yb+ z = yc+ z for some z ∈ I, whence :

(y
′
y)b+ y

′
z = y

′
(yb+ z) = y

′
(yc+ z) = (y

′
y)c+ y

′
z ,

therefore y
′
y ∈ J , as y

′
z ∈ I.

Furthermore, for i ∈ I, let z := ib+ ic ∈ I ; then

ib+ z = ib+ ib+ ic = ib+ ic = ic+ ib = ic+ ic+ ib = ic+ z

whence i ∈ J : I ⊆ J . As a ∈ J and a /∈ I, one has I 6= J , whence, from the
maximality of I, I = A. But then 1 ∈ I, i.e. there is z ∈ I such that b+ z = c+ z,
that is b RI c. �
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Remark 3.14. Here are some relevant examples :
• A = B1[x] and I = x2B1[x] : I is saturated, but is neither prime nor

absolutely prime.
• A = B1[x] and I = xA + (1 + x)A = {a =

∑+∞
n=0 anx

n|a0 = 0 or a1 = 1}.
As ab ∈ I implies a0b0 = 0 or a0b1 + a1b0 = 1, I is prime ; as I = A, it is
also absolutely prime ; but , for the same reason, it is not saturated.
• Let G =< τ >= Z2 denote a group of order 2, A = F(G), and I = {0};

then I is prime and saturated, but not absolutely prime, as, setting

u = jG(τ) ,

one has
(1 + u)u = u+ 1 = (1 + u)(1 + u)

but 1 + u /∈ I = {0} and u 6 RI1 + u.
• In A = B1[x], the ideal I = (1 + x2)A is absolutely prime (as I = A), but

not prime as (1 + x)(1 + x+ x2) = (1 + x)(1 + x2) ∈ I, but 1 + x /∈ I and
1 + x+ x2 /∈ I.

We shall denote by Prs(A) the set of saturated prime ideals of A, and by
Maxs(A) the set of saturated maximal ideals of A ; these sets are naturally equipped
with a topology induced by the topology on Pr(A) described in Theorem 2.4.

Proposition 3.15. For S ⊆ A, let

V (S) = {R ∈ Spec(A)|S ⊆ I(R)} .
Then the V (S)S⊆A are the closed sets for a topology on Spec(A) (the “Zariski
topology”on Spec(A)). If A is integral (in the sense that A 6= {0} and

ab = 0 =⇒ a = 0 or b = 0

in A), then =A∈ Spec(A) and {=A} = Spec(A).

Proof. The reasoning is the same as in the proof of Theorem 2.4, remarking that

V (∅) = Spec(A) ,

V (A) = ∅ ,

V (∪i∈ISi) =
⋂
i∈I

V (Si) ,

and
V (S) ∪ V (T ) = V (ST ) .

One may also remark that V (S) = I−1(W (S)), whence the topology in question is
the initial topology induced on Spec(A) by the mapping

I : Spec(A)→ Pr(A)

and the Zariski topology on Pr(A). The last assertion is easy to check. �
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4. Links with Deitmar’s theory.

Let D denote Deitmar’s category of F1–rings, i.e. the category of commutative
monoids.

For M ∈ D, let SpecD(M) denote the set of prime ideals in M (including ∅), and,
for P ∈ SpecD(M), let P̃ denote the ideal of F(M) = B1[M ] generated by jM (P).
For S ⊆ F(M), S0 will denote the set of m ∈M such that jM (m)(= {m} ∈ F(M):
cf. [9],Theorem 3.1) be a component of some s ∈ S, i.e.:

S0 = {m ∈M |(∃s ∈ S)jM (m) + s = s}.

Proposition 4.1. P̃ is a saturated prime ideal of F(M) and one has an isomor-
phism

F(M)
RP̃

' F(M \ P)

(note that, as P is a prime ideal of M , M\P is a monoid for the induced operation).

Proof. As P is an ideal of M , P̃ equals the B1–submodule of F(M) generated by
the (jM (p))p∈P ; in particular it is generated by a subset of the set of minimal (for
the order relation associated to the B1–module structure of F(M)—see [?],Theorem
2.5) elements of F(M), whence it is saturated. It is also clear that

F(M) = G⊕ P̃
where G denotes the (free) B1–submodule of F(M) generated by the

jM (x)x∈M\P ;

but the mapping

ϑ : M \ P → G

x 7→ jM (x)

turns G into the free B1–algebra on M \ P, whence

G ' F(M \ P) .

It now follows that, for (a, a
′
) ∈ G2 and (x, x

′
) ∈ P̃2, a+ x RP̃ a

′
+ x

′
if and only

if a = a
′
. Whence

F(M)
RP̃

' G ' F(M \ P) .

�

Theorem 4.2. The mapping
ψ : P 7→ P̃

defines a bijection between the set of prime ideals of M and the set of saturated
prime ideals of F(M). Consequently, the mapping

ϕM : SpecD(M)→ Spec(F(M))

P 7→ RP̃
defines a bijection between the set SpecD(M) and the set of excellent congruences
on Spec(F(M)) corresponding to saturated prime ideals. Its image is dense in
Spec(F(M)). Furthermore ϕM is an homeomorphism on its image.
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Proof. It follows from the proof of Proposition 4.1 that

P = {x ∈M |jM (x) ∈ P̃} ,
whence the injectivity of ψ. Let I denote a saturated prime ideal in F(M), and let
P := j−1

M (I) ; it is clear that P is a prime ideal in M . Let y ∈ I ; then, for each
x ∈ M such that jM (x) ≤ y, one has jM (x) + y = y, whence, as I is saturated,
jM (x) ∈ I and x ∈ P. As

y =
∑

x∈M ;jM (x)≤y

jM (x) ,

one has y ∈ V ectB1(jM (P)). Therefore I = V ectB1(jM (P)) = P̃, thus ψ is a
bijection, the inverse of which is given by (for I a saturated ideal of F(M))

ψ−1(I) = jM
−1(I) .

But ϕM = α ◦ ψ where

α : Ids(F(M))→ Spec(F(M))
I 7→ RI .

According to Theorems 3.7 and 3.8, α is an injection, whence ϕM = α ◦ ψ is a
bijection on its image α(ψ(SpecD(M))). That image contains the congruence

α(ψ(∅)) = α({0}) = R{0} ,
i.e. the congruence =F(M), the equality on F(M). But {=F(M)} is dense in
Spec(F(M)) (see Proposition 3.15), whence so is ϕM (SpecD(M)).

Let now F = V (S)(S ⊆ F(M)) ; then, for P a prime ideal of M ,

ϕM (P) ∈ V (S)⇐⇒ P̃ ∈ V (S)

⇐⇒ S ⊆ I(RP̃)

⇐⇒ S ⊆ P̃ = P̃
⇐⇒ S0 ⊆ P ,

whence
ϕ−1

M (V (S)) = VD(S0)
and the continuity of ϕM . Similarly, for N ⊆M , let

VD(N) = {P ∈ SpecD(M)|N ⊆ P}
be a closed subset of SpecD(M) in Deitmar’s sense ([6],p.89). Then it is clear from
the above considerations that

ϕM (VD(N)) = Im(ϕM ) ∩ V (jM (N))

whence ϕM is closed on its image, and the result. �

Example 4.3. If Cn is the free monoid on n ≥ 1 generators x1, ..., xn, then
SpecD(Cn) has 2n elements (the (PJ)J⊆{1,...,n} : PJ :=

⋃
j∈J xjCn), whence there

are exactly 2n excellent prime congruences on F(Cn).

Example 4.4. If G is a group, then {0} is the only saturated prime ideal in F(G).
In fact A and {0} are the only saturated ideals : this applies to the two examples
5.5 and 5.6 in [9].
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As seen in Theorems 3.8 and 4.2, saturated prime ideals play the crucial role in
the theory of B1–algebras of the form F(M) ; as a matter of mere curiosity, we
shall now determine all saturated absolutely prime ideals in such algebras.

Lemma 4.5. If F(M) is simplifiable (in the sense that ab = ac and a 6= 0 implies
b = c), then M is trivial (i.e. has only one element).

Proof. Let x ∈M , and y = jM (x) ; then, using the idempotence of +, we get

(1 + y)(1 + y + y2) = 1 + y + y2 + y3 = (1 + y)(1 + y2)

whence (as 1 + y 6= 0), 1 + y + y2 = 1 + y2. As F(M) is a free B1–module on
jM (M), it follows that y = 1 or y = y2 ; in the second case

(1 + y)(1 + y) = 1 + y + y2 = 1 + y = (1 + y).1

whence 1 + y = 1 and y = 1 (by the same argument). Therefore jM (x) = 1F(M)

for each x ∈M ; the injectivity of jM now yields x = 1M , whence M has only one
element. �

It follows from this Lemma that saturated absolutely prime ideals are quite rare
in B1–algebras of monoids ; in fact one has

Proposition 4.6. If I is a saturated absolutely prime ideal in F(M), then the only
invertible element of M is 1 and I = F(M \ {1}).

Remark 4.7. The converse is clear.

Proof. Let I be a saturated absolutely prime ideal in F(M); according to Theorem
4.2 there is a (unique) prime ideal P of M such that I = P̃. By definition of an

absolutely prime ideal,
F(M)
RP̃

=
F(M)
RI

is simplifiable ; but

F(M)
RP̃

' F(M \ P)

according to Proposition 4.1, hence F(M \P) is simplifiable. Now Lemma 4.5 yields
that M \ P = {1M}, i.e. P = M \ {1M} ; P being an ideal of M , no nonidentity
element of M is invertible. �

The following fact was also observed by Castella (see [2], p.3) :

Proposition 4.8. If K is a finite nontrivial B1–algebra embeddable in a B1–field,
then K = {1}.

Proof. Let K ⊆ L, L denoting a B1–field ; then L is simplifiable, hence so is K. In
particular, for each a ∈ K \ {0}, the mapping

ma : K → K

x 7→ ax
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is an injection, hence a bijection as K is finite. Let y =
∑

x∈K x ; as y = y + 1,
y 6= 0. But

ay =
∑
x∈K

ax

=
∑
x∈K

x

= y

= 1.y ,

whence a = 1 and
K = {0, 1} ' B1 .

�
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