
HAL Id: hal-00527869
https://hal.science/hal-00527869

Preprint submitted on 20 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

THE EXACT PACKING MEASURE OF LEVY TREES
Thomas Duquesne

To cite this version:

Thomas Duquesne. THE EXACT PACKING MEASURE OF LEVY TREES. 2010. �hal-00527869�

https://hal.science/hal-00527869
https://hal.archives-ouvertes.fr


THE EXACT PACKING MEASURE OF

LEVY TREES.

Thomas Duquesne ∗

October 20, 2010

Abstract

We study fine properties of Lévy trees that are random compact metric spaces
introduced by Le Gall and Le Jan in 1998 as the genealogy of continuous state
branching processes. Lévy trees are the scaling limits of Galton-Watson trees
and they generalize Aldous’s continuum random tree which corresponds to the
Brownian case. In this paper we prove that Lévy trees have always an exact
packing measure: We explicitely compute the packing gauge function and we
prove that the corresponding packing measure coincides with the mass measure
up to a multiplicative constant.

AMS 2000 subject classifications: Primary 60G57, 60J80. Secondary 28A78.
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1 Introduction

Lévy trees are random compact metric spaces introduced by Le Gall and Le Jan in
[31] as the genealogy of Continuous State Branching Processes (CSBP for short). The
class of Lévy trees comprehends Aldous’s continuum random tree which corresponds
to the Brownian case (see [3, 4]). Lévy trees are the scaling limits of Galton-Watson
trees (see [13] Chapter 2 and [10]). Various geometric and distributional properties of
Lévy trees have been studied in [14], in Weill [37] and in Abraham and Delmas [2].
An alternative construction of Lévy trees is discussed in [17]. Lévy trees have also
been studied in connection with fragmentation processes: see Miermont [33, 34], Haas
and Miermont [24], Goldschmidt and Haas [22] for the stable cases; see Abraham and
Delmas [1] for more general models.

Fractal properties of Lévy have been discussed in [14] and [15]: Hausdorff and
packing dimensions of Lévy trees are computed in [14] and the exact Hausdorff measure
of the continuum random tree is given in [15]. As shown in [12] (see also [15]), there
is no exact Hausdorff measure in the non-Brownian stable cases. The goal of this
paper is to prove that Lévy trees behave better with respect to packing measure.
More precisely, we prove that Lévy trees have always an exact packing measure: We
explicitely compute the packing gauge function and we prove that the corresponding
packing measure coincides with the mass measure up to a multiplicative constant.

Before stating the main results of the paper, let us recall basic facts on continuous
state branching processes (CSBP) and on Lévy trees. CSBPs are time- and space-
continuous analogues of Galton-Watson Markov chains. They have been introduced
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by Jirina [27] and Lamperti [29] as the [0,∞]-valued Feller processes that are absorbed
in states 0 and ∞ and whose kernel semi-group (pt(x, dy);x ∈ [0,∞], t ∈ [0,∞)) enjoys
the branching property: pt(x, ·) ∗ pt(x′, ·) = pt(x + x′, ·), for every x, x′ ∈ [0,∞] and
every t ∈ [0,∞) (here ∗ stands for the convolution product). Let Z = (Zt, t ≥ 0) be
a CSBP with initial state x ∈ (0,∞) that is defined on a probability space (Ω,F ,P).
We shall restrict our attention to CSBPs that get almost surely extinct in finite time.
Namely,

P(∃t ≥ 0 : Zt = 0) = 1 . (1)

Then, Silverstein [35] proves that the kernel semigroup of Z is characterised by a func-
tion ψ : [0,∞) → [0,∞) as follows: For any λ, s, t ≥ 0, one has E[exp(−λZt+s)|Zs] =
exp(−Zsu(t, λ)), where u(t, λ) is the unique nonnegative solution of ∂u(t, λ)/∂t =
−ψ(u(t, λ)) with u(0, λ) = λ. This equation can be rewritten in the following integral
form. ∫ λ

u(t,λ)

du

ψ(u)
= t , t, λ ≥ 0. (2)

The function ψ is called the branching mechanism of the CSBP. Under Assumption
(1), ψ is necessarily of the following Lévy-Khintchine form

ψ(λ) = αλ+ βλ2 +

∫

(0,∞)

(e−λr − 1 + λr)π(dr) , λ ≥ 0, (3)

where α ∈ [0,∞) is the drift coefficient, β ∈ [0,∞) is the Brownian coefficient and π
is the Lévy measure that satisfies

∫
(0,∞)(r∧ r2)π(dr) <∞. Moreover, ψ has to satisfy

the following condition: ∫ ∞ du

ψ(u)
<∞. (4)

More precisely, the set of branching mechanisms of CSBPs that satisfy (1) is exactly
the set of functions ψ of the form (3) that satisfy (4) (see Bingham [6] for more details
on CSBPs).

Let us introduce the formalism developed in [14] where Lévy trees are viewed as
random variables taking their values in the space of compact rooted R-trees. Infor-
mally, a R-tree is a metric space (T , d) such that for any two points σ and σ′ in T ,
there is a unique arc with endpoints σ and σ′ and this arc is isometric to a compact
interval of the real line. A rooted R-tree is a R-tree with a distinguished vertex ρ called
the root. We say that two rooted R-trees are equivalent if there is a root-preserving
isometry that maps one onto the other. Instead of considering all compact rooted R-
trees, we introduce the set T of equivalence classes of compact rooted R-trees. Evans,
Pitman and Winter [20] prove that T equipped with the Gromov-Hausdorff distance
[23] is a Polish space. As proved in [14], with any branching mechanism ψ of the form
(3) that satisfies (4), one can associate a sigma-finite measure Θψ on T that is called
the ”distribution” of the Lévy tree with branching mechanism ψ. Although Θψ is an
infinite measure, the following holds true: Set Γ(T ) = supσ∈T d(ρ, T ), that is the total
height of T ; Then, for any a ∈ (0,∞), one has

v(a) := Θψ(Γ(T ) > a) <∞ , (5)

where the function v : (0,∞) → (0,∞) is determined by
∫∞

v(a) ψ(u)
−1du = a.

Lévy trees enjoy the so-called branching property, that obviously holds true for
Galton-Watson trees: For every a > 0, under the probability measure Θψ( · |Γ(T ) > a)
and conditionally given the part of T below level a, the subtrees above level a are
distributed as the atoms of a Poisson point measure whose intensity is a random
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multiple of Θψ. The random factor is the total mass of the a-local time measure that
is defined below. Let us mention that Weill [37] shows that the branching property
characterizes Lévy trees.

Θψ is approximated by Galton-Watson trees as follows. Let (ξp)p≥0 be a sequence
of probability distributions on the set of nonnegative integers N. We first assume that∑

k∈N
kξp(k) ≤ 1, for any p and that the ξps are in the domain of attraction of an

infinitely divisible distribution with Laplace exponent ψ. More precisely, let Y be a
real valued random variable such that logE[exp(−λY )] = ψ(λ), for any λ ∈ [0,∞).
For any p, let (J (p)

k )k≥0 be an i.i.d. sequence of r.v. with law ξp. We assume there exists
an increasing sequence (bp)p≥0 of positive integers such that p

bp
(J (p)

1 + · · ·+ J (p)

bp
− bp)

converges in distribution to Y . For every p, denote by τ p a Galton-Watson tree with
offspring distribution ξp that can be viewed as a random rooted R-tree (τ p, dp, ρp) by
affecting unit length to each edge. Thus, (τ p, 1

p dp, ρp) is the tree τ p whose edges are
rescaled by a factor 1/p and we simply denote it by 1

p τ p. We furthermore assume

that for any a ∈ (0,∞), one has lim infpP(Γ(τ p) ≤ p a)bp/p > 0. Roughly speaking,
this assumption ensures that 1

pΓ(τ p) has a non trivial limit in law. Under these
assumptions, Theorem 4.1 [14] asserts that for any a ∈ (0,∞), the law of 1

p τ p under
P( · | 1

pΓ(τ p) > a) converge weakly on T to Θψ( · |Γ(T ) > a), when p goes to ∞.
There are two important kinds of measures on ψ-Lévy trees. For every a > 0, let

us set T (a) := {σ ∈ T : d(ρ, σ) = a} that is the a-level set of T . Then, we define a
measure ℓa on T (a) as follows: For every ε > 0, write Tε(a) for the finite subset of T (a)
consisting of those vertices which have descendants at level a + ε. Then, Θψ-a.e. for
every bounded continuous function f on T , we have

〈ℓa, f〉 = lim
ε↓0

1

v(ε)

∑

σ∈Tε(a)

f(σ), (6)

where v is defined by (5). The finite measure ℓa on T (a) is called the a-local time
measure of T . We refer to Section 4.2 [14] for the construction and the main properties
of local time measures. Theorem 4.3 [14] ensures that one can choose a modification
of (ℓa, a ≥ 0) such that a 7→ ℓa is Θψ-a.e. cadlag with respect to the weak topology on
finite measures on T . We also define the mass measure m on the tree T by

m =

∫ ∞

0

da ℓa . (7)

The topological support ofm is T and m is in some sense the most spread out measure
on T . Note that the definitions of the local time measures and of the mass measure
m only involve the metric properties of T .

Let us recall from [14] results concerning the Hausdorff and the packing dimensions
of ψ-Lévy trees: Let γ (resp. η) be the lower (resp. upper) exponent of ψ at infinity.
Namely, γ = sup{c ≥ 0 : lim∞ ψ(λ)λ−c = ∞} and η = inf{c ≥ 0 : lim∞ ψ(λ)λ−c =
0}. Since ψ is of the form (3), one clearly has 1 ≤ γ ≤ η ≤ 2. Theorem 5.5 [14] asserts
that if γ > 1, then Θψ-a.e. T has Hausdorff dimension η/(η−1) and packing dimension
γ/(γ− 1). In this paper we discuss finer results concerning the exact packing measure
of Lévy trees. Packing measures have been introduced by Taylor and Tricot in [36].
Though their construction is done in Euclidian spaces, it extends to metric spaces,
and more specifically to Lévy trees. More precisely, for any σ ∈ T and any r ∈ [0,∞),
we denote by B̄(σ, r) (resp. B(σ, r)) the closed (resp. open) ball of T with center σ
and radius r. Let A ⊂ T and ε ∈ (0,∞). A ε-packing of A is a countable collection
of pairwise disjoint closed balls B̄(xn, rn), n ≥ 0, such that xn ∈ A and rn ≤ ε. We
restrict our attention to packing measures associated with regular gauge functions in
the following sense: a function g : (0, r0) → (0,∞) is a regular gauge function if it is
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continuous, non decreasing, if lim0+ g = 0 and if the following holds true

∃C > 1 : g(2r) ≤ Cg(r) , r ∈ (0, r0/2). (8)

Such property shall be refered as to a C-doubling condition. The g-packing measure
on (T , d) is then defined as follows. For any ε ∈ (0,∞), we first set:

P
(ε)
g (A) = sup

{∑

n≥0

g(rn); (B̄(xn, rn))n≥0 is a ε-packing of A
}
. (9)

The g-packing pre-measure of A is then defined by

P
∗
g (A) = lim

ε↓0
P

(ε)
g (A) (10)

and we define the g-packing outer measure of A as

Pg(A) = inf
{∑

n≥0

P
∗
g (En); A ⊂

⋃

n≥0

En

}
. (11)

As in Euclidian spaces, Pg is a Borel regular metric outer measure (see Section 2.1
for more details). The original definition of packing measures [36] makes use, as
set function, of the diameter of open ball packing instead of the radius of closed ball
packing. As pointed out by H. Haase [25], diameter-type packing measures may be not
Borel regular: H. Joyce [28] provides an explicit example where this problem occurs.
In our setting, we don’t face such problem and our results hold true for diameter-type
and radius-type packing measures as well, thanks to specific properties of compact
real trees (see [12] for more details).

We state below that the ψ-Lévy tree T has an exact packing measure with respect
to a gauge function that is defined as follows: Denote by ψ′ the derivative of ψ and
note that ψ′(0) = α. We also denote by ψ−1 the reciprocal of ψ. Since ψ is of the
form (3) and since it satisfies (4), ψ′ and ψ−1 both tend to ∞ (see Section 2 for more
details). We then set ϕ = ψ′ ◦ ψ−1 and we denote by ϕ−1 its reciprocal function that
is defined from [α,∞) to [0,∞). We then define the ψ-gauge function g by

g(r) :=
log log 1

r

ϕ−1
(
1
r log log

1
r

) , r ∈ (0, r0) (12)

where r0 stands for min(α−1, e−e) (with the convention α−1 = ∞ if α = 0).

Theorem 1.1 Let ψ be a branching mechanism of the form (3). We assume that
the function g that is derived from ψ by (12) satisfies a doubling condition (8). Let
(T , d, ρ) be the ψ-Lévy tree under its excursion measure Θψ. Then, there exists a
constant cψ ∈ (0,∞), that only depends on ψ such that

Θψ − a.e. cψ Pg = m .

Although it is possible to define packing measures associated with gauge functions
that don’t satisfy a doubling condition (see Edgar [18]), it obviously leads to technical
complications. To assume that the gauge function g (given by (12)) satisfies a doubling
condition (8), is in some sense the minimal hypothesis on ψ that is required to stay
in the standard framework of packing measure theory. Let us briefly discuss this
assumption: Lemma 2.3 Section 2.3 asserts that g given by (12) satisfies a doubling
condition (8) iff δ > 1, where δ stands for the following exponent:

δ := sup{c ≥ 0 : ∃Q ∈ (0,∞) s.t. Q.ψ(u)u−c≤ ψ(v)v−c , 1 ≤ u ≤ v }. (13)

4



We obviously have 1 ≤ δ ≤ γ ≤ η ≤ 2, where γ and η are the lower and the upper
exponents of ψ at ∞. As already mentioned, if γ > 1, then the packing dimension of
T is Θψ-a.e. equal to γ/(γ− 1). So, γ > 1 may look as a more natural assumption for
Theorem 1.1 to be true. However Lemma 2.4 Section 2.3 shows that for any c ∈ (1, 2],
there exists a branching mechanism ψ that is of the form (3), that satisfies (4) and
such that γ = η = c but δ = 1. Thus, δ > 1 is a more restrictive assumption than
γ > 1. Let us first mention that δ > 1 implies (4), which is therefore not explicitly
assumed in Theorem 1.1. Let us also mention that if ψ is regularly varying at ∞, then
δ = γ = η.

One important argument of the proof of Theorem 1.1 is the following result that
gives the lower density of m for typical points.

Theorem 1.2 Let ψ be a branching mechanism of the form (3). We assume that
the function g that is derived from ψ by (12) satisfies a doubling condition (8). Let
(T , d, ρ) be the ψ-Lévy tree under its excursion measure Θψ. Then, there exists a
constant Cψ ∈ (0,∞), that only depends on ψ such that Θψ-a.e. for m-almost all σ,
one has

lim inf
r→0

m
(
B(σ, r)

)

g(r)
= Cψ .

Comment 1.1 (a) Let us consider the stable Lévy trees. Namely, the branching
mechanism ψ is of the form ψ(λ) = λγ , with γ ∈ (1, 2]. The packing gauge function
can be taken as g(r) = rγ/(γ−1)/(log log 1/r)1/(γ−1) and (8) is obviously satisfied. Let us
mention that γ-stables trees enjoy the following scaling property: For any C ∈ (0,∞),
the law of (T , Cd, ρ) under Θψ is C1/(γ−1)Θψ. The scaling property makes possible
to condition T to have total mass equal to 1 (if γ = 2, then Θψ( · |m(T ) = 1) is the
law of the continuum random tree). Easy arguments imply that Theorem 1.1 and
Theorem 1.2 hold true under Θψ( · |m(T ) = 1).

In the Brownian case γ = 2, the packing gauge function can be taken as g(r) =
r2/ log log 1/r. As shown in [15], there exists a constant c′ψ such that Θψ-a.e. c

′
ψHh =

m, where Hh stands for the h-Hausdorff measure with h(r) = r2 log log 1/r. Note
that g and h are resp. the packing and the Hausdorff gauge functions for Brownian
motion in dimensions d ≥ 3. Theorem 1.10 [12] asserts that non-Brownian γ-stable
Lévy trees (i.e. γ ∈ (1, 2)) have no exact Hausdorff measure with regularly varying
gauge function. Thus, Theorem 1.1 shows that Lévy trees behave better with respect
to packing measures than with respect to Hausdorff measures.

(b) Although Theorem 1.1 asserts that whole stable Lévy trees have an exact packing
measure, the level sets of stable Lévy trees have no exact packing measure, even in
the Brownian case, as shown by Theorem 1.1 [12].

(c) Since (T , d, ρ) is not Euclidian, the constant Cψ in Theorem 1.2 may be distinct
from the constant cψ in Theorem 1.1. This causes technicalities in the proof of Theorem
1.1. Let us mention that Cψ = γ − 1, when ψ(λ) = λγ , γ ∈ (1, 2].

(d) Let (Sr, r ≥ 0) be a subordinator with Laplace exponent ϕ = ψ′ ◦ ψ−1. If g
(given by (12)) satisfies a doubling condition (8), Fristedt and Pruitt in [21] prove
that there exists a constant Kϕ ∈ (0,∞) that only depends on ϕ and such that
lim inf0 Sr/g(r) = Kϕ a.s. Let us mention that we rely on this result for the proof of
the upper bound in Theorem 1.2. �

The paper is organised as follows. In Section 2.1 we recall basic properties of pack-
ing measures in metric spaces and a comparison result. In Section 2.2, we introduce
the height processes, the Lévy trees and a key decomposition of Lévy trees according
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to the ancestral line of a randomly chosen vertex. This decomposition plays an im-
portant role in the proof of Theorem 1.2. In Section 2.3, we prove Lemma 2.3 that
shows that the gauge function g satisfies a doubling condition iff the exponent δ given
by (13) is strictly larger that 1. In Section 2.4 we prove various estimates that are
used in the proof sections. Section 3 and 4 are devoted to the proof of resp.Theorem
1.2 and Theorem 1.1.

2 Notation, definitions and preliminary results.

2.1 Packing measures on metric spaces.

As already mentioned, we restrict our attention to continuous increasing gauge func-
tions that satisfy a doubling condition as defined by (8). Let (T , d) be an uncountable
complete and separable metric space. Let us fix a regular gauge function g. Recall
from (10) the definition of the g-packing pre-measure P∗

g . The g-packing pre-measure
is non decreasing with respect to inclusion, it is sub-additive and it is a metric set func-
tion. Namely, if A and B are non-empty subsets of T and if infσ∈A,σ′∈B d(σ, σ

′) > 0,
then P∗

g (A ∪ B) = P∗
g (A) + P∗

g (B). Moreover P∗
g has the following property. For

any A ⊂ T , denote by Ā the closure of A. Then, we have

P
∗
g (A) = P

∗
g (Ā) . (14)

Recall from (11) the definition of the g-packing outer measure Pg. As proved in
[18] Section 5, Pg is a metric Borel regular outer measure satisfying the following
properties.

• Pack(1) For any A ⊂ T , Pg(A) ≤ P∗
g (A).

• Pack(2) If A is Pg-measurable and such that 0 < Pg(A) < ∞, then for any
ε > 0, there exists a closed set F ⊂ A such that Pg(A) ≤ Pg(F ) + ε.

• Pack(3) Pg(A)= inf
{
supn≥0 P

∗
g (An); An⊂An+1 and

⋃
n≥0 An = A

}
, for any

A ⊂ T .

We shall also use the following comparison Lemma.

Lemma 2.1 (Taylor and Tricot [36] Theorem 5.4, Edgar [18] Theorem 5.9 ). Let g
be a regular gauge function that satisfies a C-doubling condition. Then, for any finite
Borel measure µ on T and for any Borel subset A of T , the following holds true.

(i) If lim infr→0
µ(B(σ,r))
g(r) ≤ 1 for any σ ∈ A, then Pg(A) ≥ C−2µ(A).

(ii) If lim infr→0
µ(B(σ,r))
g(r) ≥ 1 for any σ ∈ A, then Pg(A) ≤ µ(A).

2.2 Height processes and Lévy trees.

In this section we recall (mostly from [13] and [14]) various results concerning height
processes and Lévy trees for further use in Section 2.4, Section 3 and Section 4.

The height process. Recall that ψ stands for a branching mechanism of the form (3).
We always assume that ψ satisfies (4). It is convenient to work on the canonical space
D([0,∞),R) of cadlag paths equipped with Skorohod topology and the corresponding
Borel sigma-field. We denote by X = (Xt, t ≥ 0) the canonical process and by P

the distribution of the spectrally positive Lévy processes with Laplace exponent ψ.
Namely, E[exp(−λXt)] = exp(tψ(λ) ), λ, t ≥ 0. Note that the specific form of ψ
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implies that Xt is integrable and that E[Xt] = −αt. This easily entails that X does
not drift to ∞. Moreover (4) implies that either β > 0 or

∫
(0,1) rπ(dr) = ∞. It

entails that P-a.s.X has unbounded variation sample paths (see Bertoin [5] Chapter
VII Corollary 5 (iii)).

As shown by Le Gall and Le Jan [31] (see also [13] Chapter 1), there exists a
continuous process H = (Ht, t ≥ 0) such that for any t ∈ [0,∞), the following limit
holds true in P-probability

Ht := lim
ε→0

1

ε

∫ t

0

1{Ist<Xs<I
s
t+ε}

ds. (15)

Here Ist stands for infs≤r≤tXr. We shall use the notation It = I0t = inf0≤r≤tXr, for
the infimum of X . The process H = (Ht, t ≥ 0) is called the ψ-height process. As we
see below, H provides a way to explore the genealogy of CSBPs. We refer to Le Gall
and Le Jan [31] for an explanation of (15) in terms of discrete processes.

Excursions of the height process. When ψ is of the form ψ(λ) = βλ2, X is
distributed as a Brownian motion and (15) easily implies that H is proportional to
X − I, which is distributed as a reflected Brownian motion. In the general cases,
H is neither a Markov process nor a martingale. However it is possible to develop
an excursion theory for H as follows. Recall that (4) entails that X has unbounded
variation sample paths. Basic results on fluctuation theory (see Bertoin [5] Chapters
VI.1 and VII.1) entail that X − I is a strong Markov process in [0,∞) and that 0
is regular for (0,∞) and recurrent with respect to this Markov process. Moreover,
−I is a local time at 0 for X − I (see Bertoin [5] Theorem VII.1). We denote by
N the corresponding excursion measure of X − I above 0. We denote by (aj , bj),
j ∈ I, the excursion intervals of X − I above 0, and by Xj = X(aj+·)∧bj − Iaj , j ∈ I,
the corresponding excursions. Then,

∑
j∈I δ(−Iaj ,Xj) is a Poisson point measure on

[0,∞) × D([0,∞),R) with intensity dx ⊗ N(dX). First observe that under P, the
value of Ht only depends on the excursion of X − I straddling t. Next note that⋃
j∈I (aj , bj) = {t ≥ 0 : Ht > 0}. This allows to define the height process under N as

a certain measurable function H(X) of X . See [13] Chapter 1, for more details.

Notation 2.1 Let C0 be the space of the continuous functions from [0,∞) to R

equipped with the topology of the uniform convergence on every compact subsets of
[0,∞) that makes it a Polish space. We shall denote by C the set of functions h ∈ C0

with compact support. For any h ∈ C , we set ζ(h) = sup{t ∈ [0,∞) : h(t) 6= 0}, with
the convention sup ∅ = 0. If h ∈ C0\C , then ζ(h) = ∞. By convenience, we denote
by H = (Ht,≥ 0) the canonical process on C0 and we call ζ = ζ(H) the lifetime of
H . We slightly abuse notation by denoting by N(dH) the ”distribution” of the height
process H(X) associated with X under the excursion measure N(dX). �

Note that N -a.e. ζ < ∞, H0 = Hζ = 0 and Ht > 0 for any t ∈ (0, ζ). We now
recall the Poisson decomposition of the height process H(X) associated with X under
P. Recall that the intervals (aj , bj), j ∈ I, are the open connected components of the
set {t ≥ 0 : Ht > 0}. For any j ∈ I, we set Hj = H(aj+·)∧bj .Then, under P, the point
measure ∑

j∈I

δ(−Iaj ,Hj) (16)

is distributed as a Poisson point measure on [0,∞) × C0 with intensity dx ⊗N(dH).
Note that under N , X and H have the same lifetime and recall that basic results of
fluctuation theory entail

N
(
1− e−λζ

)
= ψ−1(λ) , λ ≥ 0. (17)
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Local times of the height process. We recall from [13] Chapter 1 Section 1.3 the
following result: There exists a jointly measurable process (Las , a, s ≥ 0) such that
P-a.s. for any a ≥ 0, s 7→ Las is continuous, non-decreasing and such that

∀ t, a ≥ 0, lim
ε→0

E

[
sup

0≤s≤t

∣∣∣∣
1

ε

∫ s

0

dr1{a<Hr≤a+ε} − Las

∣∣∣∣
]
= 0 . (18)

The process (Las , s ≥ 0) is called the a-local time of H . Recall that I stands for the
infinimum process of X . First, note that L0

t = −It, t ≥ 0. Next, observe that the
support of the random Stieltjes measure dLa· is contained in the closed set {t ≥ 0 : Ht =
a}. A general version of the Ray-Knight theorem for H asserts the following: For any
x ≥ 0, set Tx = inf{t ≥ 0 : Xt = −x}. Then, the process (LaTx ; a ≥ 0) is a distributed
as a CSBP with branching mechanism ψ and initial state x (see Le Gall and Le Jan
[31] Theorem 4.2 and [13] Theorem 1.4.1). The CSBP (LaTx ; a ≥ 0) admits a cadlag
modification that is denoted in the same way to simplify notation. An easy argument

deduced from the approximation (18) entails that
∫ a
0
LbTx db =

∫ Tx
0

1{Ht≤a}dt. This
remark combined with an elementary formula on CSBPs (whose proof can be found
in Le Gall [30]) entails that

E

[
exp

(
−µLaTx − λ

∫ Tx

0

1{Ht≤a}dt
)]

= exp
(
− xκa(λ, µ)

)
, a, λ, µ ≥ 0, (19)

where κa(λ, µ) is the unique solution of the following differential equation

κ0(λ, µ) = µ and
∂κa
∂a

(λ, µ) = λ− ψ
(
κa(λ, µ)

)
, a, λ, µ ≥ 0. (20)

It is possible to define the local times of H under the excursion measure N as
follows. For any b > 0, let us set v(b) = N(supt∈[0,ζ] Ht > b). Since H is continuous,
the Poisson decomposition (16) implies that v(b) < ∞, for any b > 0. It is moreover
clear that v is non-increasing and that lim∞ v = 0. Then, for every a ∈ (0,∞), we
define a continuous increasing process (Lat , t ∈ [0, ζ]), such that for every b ∈ (0,∞)
and for any t ≥ 0, one has

lim
ε→0

N
(
1{supH>b} sup

0≤s≤t∧ζ

∣∣∣
1

ε

∫ s

0

dr1{a−ε<Hr≤a} − Las

∣∣∣
)
= 0. (21)

We refer to [13] Section 1.3 for more details. The process (Lat , t ∈ [0, ζ]) is the a-
local time of the excursion of the height process. The Poisson decomposition (16) then
entails that

N
(
1− e−µL

a
ζ−λ

∫
a
0

1{Ht≤a}
dt
)
= κa(λ, µ) , a, λ, µ,≥ 0. (22)

By taking λ = 0 in the previous display, we get N(1 − exp(−µLaζ ) ) = u(a, µ), where
u is the solution of the integral equation (2). This easily entails

∀a ≥ 0 , N(Laζ ) = e−αa . (23)

Let us also recall from [13] the following formula

∀a > 0 , v(a) = N
(
supHt ≥ a

)
= N

(
Laζ 6= 0

)
and

∫ ∞

v(a)

du

ψ(u)
= a. (24)

Lévy trees. We first define R-trees (or real trees) that are metric spaces generalising
graph-trees.
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Definition 2.1 Let (T, δ) be a metric space. It is a real tree iff the following holds
true for any σ1, σ1 ∈ T .

(a) There is a unique isometry fσ1,σ2 from [0, δ(σ1, σ2)] into T such that fσ1,σ2(0) = σ1
and fσ1,σ2(δ(σ1, σ2)) = σ2. We denote by [[σ1, σ2]] the geodesic joining σ1 to σ2.
Namely, [[σ1, σ2]] := fσ1,σ2([0, δ(σ1, σ2)])

(b) If j is a continuous injective map from [0, 1] into T , such that j(0) = σ1 and
j(1) = σ2, then we have j([0, 1]) = [[σ1, σ2]].

A rooted R-tree is a R-tree (T, δ) with a distinguished point r called the root. �

Among metric spaces, R-trees are characterized by the so-called four points in-
equality: (T, δ) is a R-tree iff it is connected and for any σ1, σ2, σ3, σ4 ∈ T ,

δ(σ1, σ2) + δ(σ3, σ4) ≤
(
δ(σ1, σ3) + δ(σ2, σ4)

)
∨
(
δ(σ1, σ4) + δ(σ2, σ3)

)
. (25)

We refer to Evans [19] or to Dress, Moulton and Terhalle [8] for a detailed account on
this property. The set of all compact rooted R-trees can be equipped with the pointed
Gromov-Hausdorff distance that is defined as follows.

Definition 2.2 (a) Let (E,∆) be a metric space. For any x ∈ E and any subset
A ⊂ E, we set ∆(x,A) = infy∈A∆(x, y). Note that ∆(·, A) = ∆(·, Ā) and that ∆(·, A)
is 1-Lipschitz. For any ε > 0, we set A(ε) = {x ∈ E : ∆(x,A) ≤ ε} that is a closed
subset of E. Then for any compact sets K1, K2 of E, we set

∆H(K1,K2) = inf{ε ∈ (0,∞) : K1 ⊂ K
(ε)
2 and K2 ⊂ K

(ε)
1 } .

∆H is a distance on the compacts sets of E and we recall Blaschke’s Theorem that
asserts that the set of compact subsets of E equipped with ∆H is a compact metric
space when (E,∆) is compact.

(b) Let (T1, δ1, r1) and (T2, δ2, r1) be two compact pointed metric spaces. The pointed
Gromov-Hausdorff distance is then given by

dGH(T1, T2) = inf ∆H

(
j1(T1), j2(T2)

)
∨∆

(
j1(r1), j2(r2)

)
.

where the infimum is taken over all the (j1, j2, (E,∆)), where (E,∆) is a metric space
and where j1 : T1 → E and j2 : T2 → E are isometrical embeddings. �

Obviously dGH(T1, T2) only depends on the root-preserving isometry classes of T1 and
T2. In [23], Gromov proves that dGH is a metric on the set of the equivalence classes of
pointed compact metric spaces that makes it complete and separable. Let us denote by
T, the set of all equivalence classes of rooted compact real-trees. Evans, Pitman and
Winter [20] prove that T is dGH-closed. Therefore, (T, dGH) is a complete separable
metric space (see Theorem 2 [20]).

Let us briefly recall how R-trees can be obtained via continuous functions. Recall
from Notation 2.1 that C stands for the set of the continuous functions from [0,∞)
to R with compact support. Let h ∈ C . To avoid trivialities, we also assume that h is
not constant to zero. Then, for every s, t ≥ 0, we set

bh(s, t) = inf
r∈[s∧t,s∨t]

h(r) and dh(s, t) = h(s) + h(t)− 2bh(s, t). (26)

Clearly dh(s, t) = dh(t, s). It is easy to check that dh satisfies the four points inequality,
which implies that dh is a pseudo-metric. We then introduce the equivalence relation
s ∼h t iff dh(s, t) = 0 (or equivalently iff h(s) = h(t) = bh(s, t)) and we denote by
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Th the quotient set [0, ζ(h)]/ ∼h, where we recall that ζ(h) stands for the lifetime of
h. Standard arguments imply that dh induces a metric on Th that is also denoted by
dh to simplify notation. We denote by ph : [0, ζ(h)] → Th the canonical projection.
Since h is continuous, so is ph. This implies that (Th, dh) is a compact and connected
metric space that satisfies the four points inequality. It is therefore a compact R-tree.
We then define the root ρh of (Th, dh) by ρh = ph(0). We shall refer to the rooted
compact R-tree (Th, dh, ρh) as to the R-tree coded by h.

It shall be sometimes convenient to extend the canonical projection: we define
p̄h : [0,∞) → Th by setting p̄h(t) = ph(t ∧ ζ(h)), t ∈ [0,∞). We next introduce the
mass measure on Th: We denote by ℓ the Lebesgue measure on [0,∞) and we denote
by mh the measure on the Borel sets of (Th, dh) induced by the measure ℓ restricted
to [0, ζ(h)] via ph. Namely, for any Borel subset B of Th,

mh(B) = ℓ
(
p −1

h (B)
)
= ℓ
(
[0, ζ(h)] ∩ p̄ −1

h (B)
)
. (27)

We next define the ψ-Lévy tree as the tree coded by the ψ-height process (Ht, 0 ≤
t ≤ ζ) under the excursion measure N . To simplify notation, we set

(TH , dH , ρH ,mH) = (T , d, ρ,m) .

We also set p = pH : [0, ζ] → T . Note that ρ = p(0). Since Hζ = 0 and since Ht > 0,
for any t ∈ (0, ζ), ζ is the only time t distinct from 0 such that p(t) = ρ.

A point σ ∈ T is called a leaf if it is distinct from the root and if the open set
T \{σ} is connected. We denote by Lf(T ) the set of leaves of T . We also define the
skeleton of T by Sk(T ) = T \Lf (T ). One can show that

N -a.e. Sk(T ) = T , m is diffuse and m
(
Sk(T )

)
= 0. (28)

This easily implies the following characterisation of leaves in terms of the height pro-
cess: N -a.e. for any t ∈ (0, ζ),

p(t) ∈ Lf(T ) ⇐⇒ ∀ε > 0 , inf
s∈[t−ε,t]

Hs < Ht and inf
s∈[t,t+ε]

Hs < Ht . (29)

For any a ∈ (0,∞), the a-local time measure ℓa is the measure induced by dLa· via p.
Namely,

〈ℓa, f〉 =
∫ ζ

0

dLas f(p(s)) ,

for any positive measurable application f on T . Let us mention that the topological
support of ℓa is included in the a-level set T (a) = {σ ∈ T : d(ρ, σ) = a} and note that
the total mass 〈ℓa〉 of ℓa is equal to Laζ . Moreover, observe that T (a) is not empty iff
supH ≥ a. Then, (24) can be rewritten as follows.

∀ a > 0, v(a) = N
(
T (a) 6= ∅

)
= N (ℓa 6= 0) . (30)

As already mentioned, the a-local time measure ℓa can be defined in a purely metric
way by (6) and there exists a modification of a 7→ ℓa that is N -a.e. cadlag for the weak
topology on the space of finite measures on T .

For any h ∈ C , denote by T̄h the root-preserving isometry class of (Th, dh, ρh) that
belongs to T. Lemma 2.3 [14] asserts that h ∈ C 7→ T̄h ∈ T is Borel-measurable.
We then define Θψ as the ”distribution” of T̄ when T is under N . We have stated
the main results of the paper under Θψ because it is more natural and because Θψ
has an intrinsic characterization as shown by Weill [37]. However, each time we make
explicit computations with Lévy trees, we have to work with random isometry classes
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of compact R-trees, which causes technical problems (mostly measurability problems).
To avoid these unnecessary complications during the intermediate steps of the proofs,
we prefer to work with the specific compact rooted R-tree (T , d, ρ) coded by the ψ-height
process H under N rather than to directly work under Θψ.

The branching property. We now describe the distribution of the subtrees above
level b in the Lévy tree. More precisely, we consider the excursions above level b of the
height process H under N . Let us fix b ∈ (0,∞). We denote by (gbj , d

b
j), j ∈ Ib, the

connected components of the open set {t ≥ 0 : Ht > b}. For any j ∈ Ib, we denote by
Hb,j the corresponding excursion of H defined by Hb,j

s = H(gbj+s)∧d
b
j
− b, s ≥ 0. This

has to be interpreted in terms of the tree as follows. Recall that B̄(ρ, b) stands for the
closed ball in T with center ρ and radius b. Observe that the connected components
of the open set T \B̄(ρ, b) are the subtrees T b,o

j := p((gbj , d
b
j)), j ∈ Jb. The closure T b

j

of T b,o
j is simply {σbj} ∪ T b,o

j , where σbj = p(gbj) = p(dbj) is the points on the b-level set

T (b) at which T b,o
j is grafted. Observe that the rooted compact R-tree (T b

j , d, σ
b
j) is

isometric to the tree coded by Hb,j .
We then define H̃b

s = H(ζ ∧ τbs ), where s 7→ τbs is given by

∀s ≥ 0 , τbs = inf
{
t ≥ 0 :

∫ t

0

dr 1{Hr≤b} > s
}
,

with the usual convention inf ∅ = ∞. The process H̃b is the height process below b
and the rooted compact R-tree (B̄(ρ, b), d, ρ) is isometric to the tree coded by H̃b. We
denote by Gb the sigma-field generated by H̃b augmented by the N -negligible sets.We
see from (21) that Lbζ is measurable with respect to Gb. We next define the probability

measure Nb on C0 by
Nb = N( · | supH > b) (31)

and we introduce the following point measure on [0,∞)× C0:

Mb =
∑

j∈Ib

δ(
Lb
gb
j

, Hb,j
) (32)

The branching property at level b then asserts that under Nb, conditionally given Gb,
Mb is distributed as a Poisson point measure with intensity 1[0,Lbζ]

(x)dx⊗N(dH) (see

[13] Proposition 1.3.1). Let us mention that it is possible to rewrite intrinsically the
branching property under Θψ: see [14] Theorem 4.2, for more details. As already
mentioned Weill [37] shows that the branching property characterizes Lévy trees.

Spinal decomposition. Let us introduce an auxiliary probability space (Ω,F ,P)
that is rich enough to carry the various independent random variables we shall need.
Let Y = (Wt, Vt)t≥0 be a bivariate subordinator on (Ω,F ,P) with initial value Y0 =
(0, 0). Namely, Y is a cadlag process with independent and homogeneous nonnegative
increments. Its distribution is characterised by its Laplace exponent given by

−1

t
logE

[
exp(−λWt − µVt)

]
=
ψ∗(λ)− ψ∗(µ)

λ− µ
,

where ψ∗(λ) = ψ(λ) − αλ. If λ = µ, the right member has to be interpreted as the
derivative (ψ∗)′(λ). Denote by W and V the right-continuous inverses of W and V :

W (r) = inf{t ∈ [0,∞);Wt > r} and V (r) = inf{t ∈ [0,∞);Vt > r} .

Note that W and V are two subordinators with Laplace exponent ψ∗(λ)/λ. Since (4)
implies that β > 0 or

∫
(0,1)

rπ(dr) = ∞, P-a.s.W and V are increasing. Thus W and

V are P-a.s. continuous.
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Let (X (1)

t )t≥0 and (X (2)

t )t≥0 be two independent real valued Lévy processes defined
on (Ω,F ,P) whose common distribution is P. Thus, their initial value is 0, their
Laplace exponent is ψ. We moreover assume that (X(1), X(2)) is independent of Y .
We denote by H(1) and H(2) the height processes obtained respectively from X(1)

and from X(2). Thus, H(1) and H(2) are two independent ψ-height processes and
(H(1), H(2)) is independent from Y . From (H(1), H(2)) and Y , we derive two processes
as follows. For any t ∈ [0,∞), we set

H
∗(1)
t = H

(1)
t −W (−I(1)t ) and H

∗(2)
t = H

(2)
t − V (−I(2)t ) , (33)

where I(1)
t = infs∈[0,t] X

(1)
s and I(2)

t = infs∈[0,t] X
(2)
s . Observe that H∗(1) and H∗(2) are

continuous, possibly negative, that H
∗(1)
0 = H

∗(2)
0 = 0 and that

∀ t ∈ [0,∞) , inf
s∈[0,t]

H∗(1)
s = −W (−I(1)t ) and inf

s∈[0,t]
H∗(2)
s = −V (−I(2)t ) . (34)

Next, for any a ∈ [0,∞), we set

T (1)
a = inf{t ∈ [0,∞) ; H

∗(1)
t = −a} and T (2)

a = inf{t ∈ [0,∞) ; H
∗(2)
t = −a}.

Note that T (1)
a = inf{t ≥ 0 ; X (1)

t = −Wa} and T (2)
a = inf{t ≥ 0 ; X (2)

t = −Va}. We
next set

H(a,1) =
(
a+H∗(1)

t∧T
(1)
a

, t ≥ 0
)

and H(a,2) =
(
a+H∗(2)

t∧T
(2)
a

, t ≥ 0
)
. (35)

They are nonnegative continuous processes with compact support and with respective
lifetimes T (1)

a and T (2)
a Let us now consider the height process H = (Ht, t ≥ 0) under

N . For any t ≥ 0, we set

Ĥt := (H(t−s)+ , s ≥ 0) and Ȟt := (Ht+s, s ≥ 0) , (36)

where, ( ·)+ stands for the positive part function. Then, for any bounded measurable
function F : C0 × C0 → [0,∞), one has

N
(∫ ζ

0

F
(
Ĥt, Ȟt

)
dt
)
=

∫ ∞

0

e−αaE
[
F
(
H(a,1), H(a,2)

) ]
da . (37)

In the Brownian case, this decomposition is equivalent to Bismut decomposition. As
already mentioned, this decomposition is a consequence of Lemma 3.4 [14] (see also
[13] Chapter 1 or Lemma 3.2 [11], and see [16] for further applications).

We first use (37) to prove the following zero-one law that is needed in the proof
of Lemma 4.4 in Appendix A. For any η ∈ (0,∞), we define Rη : C0 → C0 by setting
RηH = (Hs∧η − Hη, s ≥ 0). Note that Rη is continuous. We next fix a sequence
ηn ∈ (0,∞), n ≥ 0, that decreases to 0. We also fix a sequence of Borel-measurable
functions Gn : C0 → [0,∞], n ≥ 0. We then set G(H) = lim infn→∞Gn(RηnH) ∈
[0,∞] that is measurable from C0 to [0,∞].

Lemma 2.2 There exists a constant C ∈ [0,∞] such that N
( ∫ ζ

0 1{G(Ȟt) 6=C}dt
)
=0.

Proof: (37) implies N
( ∫ ζ

0 1{G(Ȟt) 6=C}dt
)
=
∫∞

0 e−αaP(G(H(a,2)) 6= C)da, for any

C ∈ [0,∞]. For any η, a ∈ (0,∞), we set τ(η, a) = η ∧ T (2)
a . Then observe that

for any s ≥ 0, we have RηH
(a,2)(s) = H (2)

s∧τ(η,a)−H (2)

τ(η,a)−V (−I(2)

s∧τ(η,a) )+V (−I(2)

τ(η,a)).

Note that G(H(a,2)) is P-a.s. equal to a random variable that does not depend on a
and that is measurable with respect to the tail sigma-field at 0+ of the Feller process
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(X(1), X(2),W, V ). By Blumenthal’s zero-one law, there exists a constant C ∈ [0,∞]
such that for any a, P(G(H(a,2)) 6= C) = 0, which implies the desired result. �

We now recall from [14] a Poisson decomposition ofH that is a consequence of (37).
For any continuous function h ∈ C0, we define the point measure N (h) as follows. Set
h(t) = inf [0,t] h and denote by (gi, di), i ∈ I(h) the excursion intervals of h− h away
from 0 that are the connected components of the open set {t ≥ 0 : h(t) − h(t) > 0}.
For any i ∈ I(h), set hi(s) = ((h− h)((gi + s) ∧ di) , s ≥ 0) and define

N (h) =
∑

i∈I(h)

δ(
h(0)−h(gi) , hi

)

that is a point measure on [0,∞) × C0. Recall that H = (Ht)t≥0 stands for the
excursion of the height process H . For any t ∈ [0, ζ], we set

Nt = N (Ĥt) +N (Ȟt) :=
∑

j∈Jt

δ(rtj ,H• t,j) . (38)

Recall from (33) the definition of H∗(1) and H∗(2). Then, we also set,

N ∗ = N (H∗(1)) +N (H∗(2)) :=
∑

j∈I∗

δ(r∗j , H∗j) (39)

By definition of H(a,1) and H(a,2), it is easy to check that

N ∗
a := N (H(a,1)) +N (H(a,2)) :=

∑

j∈I∗

1[0,a](r
∗
j ) δ(r∗j , H∗j).

Then, (37) implies that

N
(∫ ζ

0

F
(
Nt

)
dt
)
=

∫ ∞

0

e−αaE [F (N ∗
a )] da . (40)

We shall refer to this identity as to the spinal decomposition of H at a random time
(see [14] Lemma 3.4). Let us briefly explain the distribution of N ∗ under P: Recall
that for any k ∈ {1, 2}, H(k) is the height process associated with X(k). We denote by
H(k),j , j ∈ Jk, the excursions of H(k) above 0, and we denote by (g(k, j), d(k, j)) the
corresponding excursion intervals. As a consequence of (34) and of the definition of
H∗(1), the atoms of N (H∗(1)) are the points (W (−I(1)

g(1,j) ) , H
(1),j), j ∈ J1. Similarly,

the atoms of N (H∗(2)) are the points (V (−I(2)

g(2,j) ) , H
(2),j), j ∈ J2. We then set

Ur =Wr+Vr, r ∈ [0,∞). Then U = (Ur)r≥0 is a subordinator with Laplace exponent
(ψ∗)′ and it is easy to check that dUr = dWr + dVr. Since the measure induced by the
Lebesgue measure on [0,∞) via W (resp. via V ) is the random Stieltjes measure dWr

(resp. dVr), (16) implies that for any measurable function Φ : [0,∞)× C0 → [0,∞],

E
[
exp

(
−〈N ∗,Φ〉

) ∣∣U
]
= exp

(
−
∫ ∞

0

dUrN
(
1− eΦ(r,H)

) )
. (41)

Thus, the law of N ∗ conditionally given U is that of a Poisson point measure with
intensity dUr ⊗N(dH).

Let us briefly interpret this decomposition in terms of the ψ-Lévy tree T coded
by H under N . Choose t ∈ (0, ζ) and set σ = p(t) ∈ T . Then the geodesic [[ρ, σ]]
is interpreted as the ancestral line of σ. Let us denote by T o

j , j ∈ J , the connected
components of the open set T \[[ρ, σ]] and denote by Tj the closure of T o

j . Then, there

exists a point σj ∈ [[ρ, σ]] such that Tj = {σj} ∪ T o
j . Recall that (rtj , H

• t,j), j ∈ Jt
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are the atoms of Nt as defined by (38). Then, for any j ∈ J , there exists a unique
j′ ∈ Jt such that d(σ, σj) = rtj′ and such that the rooted compact R-tree (Tj , d, σj) is
isometric to the tree coded by H• t,j′ .

We now apply (40) to compute the mass measure of balls whose center is chosen
according to the mass measure m. Let t ∈ (0, ζ). We first compute m(B̄(p(t), r)) in
terms of Nt as follows. Recall notation b(s, t) = min[s∧t,s∨t]H . By (29), N -a.e. for
all s, t ∈ (0, ζ) such that Hs = b(s, t) with s 6= t, we have p(s) ∈ Sk(T ). By (28),
N -a.e.m(Sk(T )) = 0. Consequently, N -a.e. for every r ∈ (0,∞) and every t ∈ (0, ζ),
we have

m
(
B̄(p(t), r)

)
=

∫ ζ

0

1{d(s,t)≤r}ds =

∫ ζ

0

1{0<Hs−b(s,t)≤r−Ht+b(s,t)}

=
∑

j∈Jt

1[0 , r](r
t
j)

∫ ζtj

0

1{H• t,j
s ≤r−rtj}

ds, (42)

where ζtj stands for the lifetime of the path H• t,j . For any a ∈ (0,∞) and for any
r ∈ [0,∞), we next set

M∗
r (a) =

∑

j∈I∗

1[0 , r∧a](r
∗
j )

∫ ζ∗j

0

1{H∗j
s ≤r−r∗j }

ds , (43)

where ζ∗j stands for the lifetime of the path H∗j. Then, (M∗
r (a), r ≥ 0) is a cadlag

increasing process defined on (Ω,F ,P). The spinal decomposition (40) entails the
following key formula that is used in the proof of Theorem 1.2: For any bounded
measurable F : D([0,∞),R) → [0,∞), we have

N

(∫

T

F
(
m
(
B̄(σ, r)

)
, r ≥ 0

)
m(dσ)

)
= N

(∫ ζ

0

F
(
m
(
B̄(p(t),r)

)
, r ≥ 0

)
dt

)

=

∫ ∞

0

e−αaE
[
F
(
M∗
r (a), r ≥ 0

)]
da . (44)

2.3 Exponents.

In this section we relate several power exponents associated with ψ to properties of
the gauge function g that is derived from ψ by (12). Let us start with some notation.
Let φ : [0,∞) → [0,∞) be a continuous increasing function. We agree on the following
conventions: sup ∅ = 0 and inf ∅ = ∞, and we define the following exponents that
compare φ with power functions at infinity.

(a) γφ := sup{c ≥ 0 : limλ→∞ φ(λ)λ−c = ∞} is the lower exponent of φ at ∞.

(b) ηφ := inf{c ≥ 0 : limλ→∞ φ(λ)λ−c = 0} is the upper exponent of φ at ∞.

(c) δφ := sup {c ≥ 0 : ∃C∈(0,∞) such that Cφ(µ)µ−c ≤ φ(λ)λ−c , 1 ≤ µ ≤ λ}.

Exponents for subordinators. Let us assume that φ is the Laplace exponent of a
subordinator with drift d and Lévy measure ν:

φ(λ) = dλ+

∫

(0,∞)

(1− e−λr) ν(dr) , λ ≥ 0.

Then, we have 0 ≤ δφ ≤ γφ ≤ ηφ ≤ 1. Recall that limλ→∞ φ(λ)/λ = d. If d > 0, then
δφ = γφ = ηφ = 1. If d = 0, the exponents can be expressed in terms of the Lévy
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measure as follows: For any x ∈ [0,∞), we set

Jφ(x) =

∫ x

0

ν
(
(u,∞)

)
du =

∫

(0,x]

r ν(dr) + xν
(
(x,∞)

)
. (45)

By standard results (see Bertoin [5] Chapter III), if d = 0, there exist two universal
constants k1, k2 ∈ (0,∞) such that

k1 λJφ(1/λ) ≤ φ(λ) ≤ k2 λJφ(1/λ) , λ > 0 . (46)

This easily implies that γφ = sup{c ≥ 0 : lim0+ x
c−1Jφ(x) = ∞}, that ηφ = inf{c ≥

0 : lim0+ x
c−1Jφ(x) = 0} and that

δφ = sup{c ≥ 0 : ∃C∈(0,∞) s.t. Cyc−1Jφ(y) ≤ xc−1Jφ(x), 0 < x ≤ y ≤ 1}. (47)

Exponents for ψ. Let ψ be of the form (3). Set ψ̃(λ) = ψ(λ)/λ. It is easy to show
that for any λ ∈ [0,∞),

ψ′(λ) = α+2βλ+

∫

(0,∞)

(1− eλr) rπ(dr) and ψ̃(λ) = α+βλ+

∫

(0,∞)

(1− eλr)π
(
[r,∞)

)
dr.

Thus, ψ′ and ψ̃ are Laplace exponents of subordinators. Recall that the reciprocal
ψ−1 of ψ is the Laplace exponent of a subordinator. Thus, ϕ = ψ′ ◦ ψ−1 is also the
Laplace exponent of a subordinator. Note that 1/ϕ is the derivative of ψ−1. Note

that ψ is convex and that ψ′, ψ̃, ψ−1 and ϕ are concave. In particular, this implies
ψ̃(2λ) ≤ 2ψ̃(λ) and the following

ψ(2λ) ≤ 4ψ(λ) , ψ̃(λ) ≤ ψ′(λ) ≤ 4ψ̃(λ) and
λ

ψ−1(λ)
≤ ϕ(λ) ≤ 4λ

ψ−1(λ)
. (48)

To simplify notation we set

γ := γψ , η := ηψ and δ := δψ .

We clearly have 1 ≤ δ ≤ γ ≤ η ≤ 2. In general, γ and η are distinct but they coincide if
ψ is regularly varying at ∞. As a direct consequence of (48) we have δψ̃ = δψ′ = δ−1,

γψ̃ = γψ′ = γ−1 and ηψ̃ = ηψ′ = η−1. Moreover, we get δϕ = (δ−1)/δ, γϕ = (γ−1)/γ

and ηϕ = (η − 1)/η.
Recall the definition of the gauge function g : (0, r0) → (0,∞) that is derived

from ψ by (12). The function g is clearly continuous. For any r ∈ (0, r0), we set
ar = ϕ−1(1r log log

1
r ). First, observe that ar increases to ∞ when r decreases to 0.

Next, recall that since ϕ is the Laplace exponent of a subordinator, λ 7→ ϕ(λ)/λ is
decreases. Thus, r ∈ (0, r0) 7→ g(r) = rϕ(ar)/ar is continuous, increasing and it goes
to 0 when r goes to 0. The following lemma relates the doubling condition (8) for g
to the exponent δ of ψ.

Lemma 2.3 Assume that ψ is of the form (3) and that it satisfies (4). Then, the
following assertions hold true.

(i) The gauge function g satisfies the doubling condition (8) iff δ > 1.

(ii) If ψ is regularly varying at ∞ with exponent c > 1, then δ = γ = η = c and g
satisfies the doubling condition (8).
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Proof: We first assume that δ > 1. Then, δϕ = (δ − 1)/δ ∈ (0, 1). Let c ∈ (0, δϕ).
There exists C ∈ (0,∞) such that Cϕ(a)a−c ≤ ϕ(b)b−c, for any 1 ≤ a ≤ b. If we take
a = ϕ−1(u) and b = ϕ−1(v), with ϕ(1) ≤ u ≤ v, then we get

u1/c

ϕ−1(u)
≤ C−1/c · v1/c

ϕ−1(v)
, ϕ(1) ≤ u ≤ v . (49)

Let r1 ∈ (0, r0) be such that ϕ(1) ≤ 1
2r log log

1
2r ≤ 1

r log log
1
r for any r ∈ (0, r1).

Apply (49) with u = 1
2r log log

1
2r and v = 1

r log log
1
r to get

g(2r) ≤
(
2

C

)1/c( log log 1
r

log log 1
2r

)1
c−1

g(r) , r ∈ (0, r1) ,

which easily entails the doubling property (8) for g since 1
c − 1 > 0.

Conversely, let us assume that g satisfies a doubling property: there exists C′ ∈
(1,∞) such that

log log 1
2r

ϕ−1
(

1
2r log log

1
2r

) ≤ C′ log log 1
r

ϕ−1
(
1
r log log

1
r

) , r ∈ (0, r0/2) .

The previous inequality, combined with an easy argument, implies there exists C > 1
and u0 > 0 such that ϕ−1(u) ≤ Cϕ−1(u/2), for any u ≥ u0. The previous inequality
entails that 2ϕ(v) ≤ ϕ(Cv) for any v ≥ v0 := max(1, ϕ−1(u0/2)). We next set
c = log(2)/ log(C) that is strictly positive since C > 1. For any λ ≥ v ≥ v0, we denote
by n(v, λ), the integer part of log(λ/v)/ log(C). Namely, Cn(v,λ)v ≤ λ < Cn(v,λ)+1v.
This implies

1

2
· λcv−c ϕ(v) ≤ 2n(v,λ)ϕ(v) ≤ ϕ(Cn(v,λ)v) ≤ ϕ(λ) ,

which implies δϕ > 0 and thus, (1− δϕ)
−1 = δ > 1. This completes the proof of (i).

The second point of the lemma is a direct consequence of a theorem due to Ma-
tuszwska [32] (see also Bingham, Goldies and Teugel [7] Chapter 1 Theorem 1.5.4 p 23)
that asserts the following: A nonnegative measurable function L is slowly varying at∞
iff for every c ∈ (0,∞) there exists a non-decreasing function f1 and a non-increasing
function f2 such that ucL(u) ∼∞ f1(u) and u

−cL(u) ∼∞ f2(u). �

To complete this section, we show that δψ > 1 is a more restrictive assumption
than γψ > 1 by providing examples of branching mechanisms ψ of the form (3), that
satisfy (4) and 1 = δψ < γψ .

Lemma 2.4 For any γ ∈ (1, 2], there exists a branching mechanism ψ of the form (3)
and such that ηψ = γψ = γ and δψ = 1.

Proof: For any n ≥ 3, we set θn = n logn and ∆n = θn+1 − θn. It is easy to prove
that ∆n = logn+1+O( 1

n ) ∼∞ logn. We first suppose that γ ∈ (1, 2). For any n ≥ 3,
we set rn = exp(−θn), an = r−γn and π(dr) =

∑
n≥3 anδrn(dr). It is easy to check that

π((1,∞)) = 0 and that
∫
(0,1)

r2π(dr) =
∑

n≥3 r2−γn is finite. We next define ψ by

ψ(λ) =

∫

(0,∞)

(e−λr − 1 + λr)π(dr) , λ ≥ 0, (50)

that is clearly a branching mechanism of the form (3). We first prove that ηψ = γψ = γ,
which is equivalent to ηψ′ = γψ′ = γ − 1. Let us first prove that γψ′ ≥ γ − 1. Note

that ψ′(λ) =
∑

n≥3 r
−(γ−1)
n (1− e−λrn) and observe that for any λ ≥ 1/r3, there exists
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nλ ≥ 3 such that r−1
nλ

≤ λ < r−1
nλ+1. This inequality easily entails nλ < logλ. For all

sufficiently large λ, we then get

ψ′(λ) ≥ r−(γ−1)
nλ (1 − e−λrnλ ) ≥ (1− e−1)e−(γ−1)∆nλλγ−1

≥ (1− e−1)λγ−1(logλ)−2(γ−1) ,

which entails that γψ′ ≥ γ − 1.
Let us prove now that ηψ′ ≤ γ−1. To that end, we introduce the following notation

Rn =
∑

m≥n

r2−γm and Sn =
∑

3≤m≤n

r−(γ−1)
m .

Elementary estimates entail that there exist two sequences (εn, n ≥ 0) and (ε′n, n ≥ 0),
both converging to 0, such that

Rn = r2−γn (1 + εn) and Sn = r−(γ−1)
n (1 + ε′n). (51)

Since r−1
nλ ≤ λ < r−1

nλ+1, we get

ψ′(λ) ≤
∑

3≤n≤nλ

r−(γ−1)
n +

∑

n≥nλ+1

r−(γ−1)
n λrn ≤ Snλ + λRnλ+1

≤ r−(γ−1)
nλ

(1 + ε′nλ+1) + λr2−γnλ+1(1 + εnλ+1)

≤ λγ−1(2 + ε′nλ + εnλ+1) ,

which shows that ηψ′ ≤ γ − 1. We thus have proved ηψ = γψ = γ.

Let us next prove that δψ = 1. We argue by contradiction and we suppose that
δψ > 1. Then, δψ′ = δψ − 1 > 0, and by (47), there exist c ∈ (0, δψ′) and C ∈ (0,∞)
such that

C yc−1Jψ′(y) ≤ xc−1Jψ′(x) , 0 < x ≤ y ≤ 1 . (52)

Recall (45) and observe that Jψ′(x) = Rn+1 + xSn, for any x ∈ [rn+1, rn). We set

xn = exp
(
−(2− γ) θn+1 −(γ − 1) θn

)
= r2−γn+1r

γ−1
n ∈ [ rn+1 , rn ) .

Observe that
Jψ′(xn) = r2−γn+1(2 + εn+1 + ε′n) ∼∞ 2e−(2−γ)θn+1 .

Note that Jψ′(rn) = Rn + rnSn−1. This entails

Jψ′(rn) = e−(2−γ)θn(1 + εn) + e−θne(γ−1)θn−1(1 + ε′n−1)

= e−(2−γ)θn
(
1 + εn + e−(γ−1)∆n−1(1 + ε′n−1)

)

∼∞ e−(2−γ)θn .

Thus, rc−1
n Jψ′(rn) ∼∞ e(γ−1−c)θn and

xc−1
n Jψ′(xn) ∼∞ 2e(1−c)(γ−1)θn−c(2−γ)θn+1 = e−c(2−γ)∆ne(γ−1−c)θn .

Recall that ∆n ∼∞ logn. Since 0 < xn < rn ≤ 1, (52) imply that

0 < C ≤ xc−1
n Jψ′(xn)

rc−1
n Jψ′(rn)

∼∞ e−c(2−γ)∆n −→
n→∞

0,

which is aburd. This completes the proof of the lemma when γ ∈ (1, 2).
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Let us consider the case γ = 2. For any n ≥ 2, we set rn = e−n
2

and π(dr) =∑
n≥2 r−2

n e−n log nδrn(dr). We define ψ by (50) that is easily shown to be a branching
mechanism of the form (3). We want to prove that γψ = 2, (which implies that ηψ = 2)
and that δψ = 1. Recall that it is equivalent to prove that γψ′ = 1 and δψ′ = 0. For any

λ > e4, there exists an integer nλ ≥ 2 such that en
2
λ ≤ λ < e(nλ+1)2 . Namely, nλ is the

integer part of
√
logλ. Observe that λrnλ+1 < 1 and use the inequality 1−e−x ≥ x/2,

x ∈ [0, 1], to get the following inequality that holds true for all sufficiently large λ:

ψ′(λ) ≥ r−1
nλ+1e

−(nλ+1) log(nλ+1)(1 − e−λrnλ+1) ≥ 1

2
λe−(nλ+1) log(nλ+1)

≥ λ exp(−2
√
logλ loglogλ),

which easily entails γψ′ ≥ 1, and thus γψ′ = ηψ′ = 1, since ψ′ is concave. We next set

Rn =
∑

m≥n

e−m logm ∼∞ e−n logn and Sn =
∑

2≤m≤n

em
2−m logm ∼∞ en

2−n logn.

Recall (45) and observe that Jψ′(x) = Rn+1 + xSn, for any x ∈ [rn+1, rn). Recall
notation ∆n = (n+ 1) log(n+ 1)− n logn ∼∞ logn. We next set xn := rne

−∆n that
belongs to the interval (rn+1, rn) for all sufficiently large integers n. It easy to check
that for any c ∈ (0, 1), one has

xc−1
n Jψ′(xn) ∼∞ 2e(1−c)n

2−n logn−c∆n and rc−1
n Jψ′(rn) ∼∞ e(1−c)n

2−n logn

Thus, for any c ∈ (0, 1), lim∞ xc−1
n Jψ′(xn)/r

c−1
n Jψ′(rn) = 0. This proves δψ′ = 0,

which completes the proof of the lemma. �

2.4 Estimates.

In this section we state the estimates used in the proofs of Theorems 1.1 and 1.2.
Throughout the section we assume that ψ is a branching mechanism of the form (3)
whose exponent δ defined by (13) is strictly larger than 1. Recall that ϕ = ψ′◦ψ−1 and
that ϕ−1 stands for its reciprocal. Recall from (24) the definition of the decreasing
function v : (0,∞) → (0,∞).

Lemma 2.5 There exist r1, C1 ∈ (0,∞), that only depend on ψ and that satisfy

∀r ∈ (0, r1) , v(r) < C1rϕ
−1(1/r) .

Proof: Since δ > 1, there exist c ∈ (1,∞) and C ∈ (0,∞) such that ψ(λ) ≤
Cψ(λu)u−c, for any u, λ ∈ [1,∞). Choose Q such that C.

∫∞

Q u−cdu ≤ 1/4. Thus,

ψ(λ)

λ

∫ ∞

λQ

du

ψ(u)
= ψ(λ)

∫ ∞

Q

du

ψ(λu)
≤ C.

∫ ∞

Q

u−cdu ≤ 1

4
.

Denote by v−1 the reciprocal of v and recall that v satisfies (24). Then, the previous
inequality entails that v−1(Qλ) ≤ λ/(4ψ(λ)) and (48) implies v−1(Qλ) ≤ 1/ψ′(λ).
Since v is decreasing we get v(1/ψ′(λ)) ≤ Qλ. Substitute λ with ψ−1(λ) to get

v
(
1/ϕ(λ)

)
≤ Qψ−1(λ) , λ ≥ ψ(1).

Next observe that ψ−1(λ) ≤ 4λ/ϕ(λ) by (48). Thus,

v
(
1/ϕ(λ)

)
≤ 4Qλ

ϕ(λ)
, λ ≥ ψ(1). (53)
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Set C1 = 4Q, r1 = ϕ(ψ(1)) = ψ′(1) and apply (53) with λ = ϕ−1(1/r) to get the
desired result. �

Recall from (19) the definition of κr(λ, µ) and recall that it satisfies the differential
equation (20). Recall from (43) the definition of M∗

r (a). Observe that if a ≥ r, then
M∗
r (a) =M∗

r (r). To simplify notation, we set

M∗
r :=M∗

r (r) and Lr(λ) := 1− ψ
(
κr(λ, 0)

)

λ
, r, λ ≥ 0 . (54)

Lemma 2.6 For any r ∈ (0,∞), and for any λ ∈ [0,∞), one has

Lr(λ) = N
(
〈ℓr〉e−λm(B̄(ρ,r))

)
= e−αrE

[
e−λM

∗
r

]
.

Proof: First observe that if µ = ψ
−1

(λ), then (22) entails that κr(λ, µ) = ψ
−1

(λ),
for any r ≥ 0. If µ 6= ψ

−1
(λ), then (22) can be rewritten as the following integral

equation ∫ κr(λ,µ)

µ

du

λ− ψ(u)
= r , r, λ, µ ≥ 0 and µ 6= ψ

−1
(λ) . (55)

Note that µ〈ℓr〉+λm(B̄(ρ, r)) = µLrζ+λ
∫ ζ
0 ds1{Hs≤r}, for any r, λ, µ ≥ 0. Then, (22)

entails N(1 − exp(−µ〈ℓr〉 − λm(B̄(ρ, r)) ) ) = κr(λ, µ). We differentiate this identity
with respect to µ to get

N
(
〈ℓr〉e−µ〈ℓr〉−λm(B̄(ρ,r))

)
=
∂κr
∂µ

(λ, µ) =
λ− ψ

(
κr(λ, µ)

)

λ− ψ(µ)
,

which implies the first equality by taking µ = 0.

It remains to prove that eαrLr(λ) = E[exp(−λM∗
r )]. To that end, recall that U is a

(conservative) subordinator defined on (Ω,F ,P) with Laplace exponent ψ∗′ = ψ′ −α.
Then (43) and (41) imply

E [ exp(−λM∗
r )| U ] = exp

(
−
∫

[0,r]

dUs κr−s(λ, 0)
)
.

We therefore get

E

[
exp

(
−
∫

[0,r]

dUsκr−s(λ, 0)
)]

= exp
(
−
∫ r

0

dsψ∗′(κr−s(λ, 0))
)

= exp
(
αr−

∫ r

0

dsψ′(κs(λ, 0))
)
.

Now recall that ∂
∂sκs(λ, 0) = λ− ψ(κs(λ, 0)) and a simple change of variable gives

∫ r

0

dsψ′
(
κs(λ, 0)

)
= logλ− log

(
λ− ψ(κr(λ, 0))

)
,

which easily completes the proof of the lemma. �

Lemma 2.7 For any r, λ ≥ 0, one has

∫ − logLr(λ)

0

dx

ϕ
(
λ(1−e−x)

) = r.
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Proof: Recall (55) that asserts that r =
∫ κr(λ,0)
0

du(λ − ψ(u))−1. Set v = ψ(u) and
recall that the derivative of ψ−1 is 1/ϕ. So, easy changes of variable entail

r =

∫ κr(λ,0)

0

du

λ−ψ(u) =

∫ ψ(κr(λ,0))

0

dv

(λ−v)ϕ(v) =

∫ 1

Lr(λ)

w−1dw

ϕ(λ(1−w)) =

∫ − logLr(λ)

0

dx

ϕ
(
λ(1−e−x)

)

that is the desired result. �

Remark 2.1 It is obvious from Lemma 2.6 that λ 7→ − logLr(λ) is increasing. Note
that Lemma 2.7 implies that r 7→ − logLr(λ) is also increasing. �

We now prove the key estimate for the lower bound in Theorem 1.2.

Lemma 2.8 Set C2 = (1 − e−1)−1. There exists r2 ∈ (0,∞) that only depends on ψ
such that

L2r

(
C2ϕ

−1
( 2
r
loglog

2

r

) )
≤ exp

(
− 2loglog

2

r

)
, r ∈ (0, r2).

Proof: The proof is in four steps. We first claim the following.

∀ r, λ ∈ (0,∞), − logLr(λ) ≤ 1 =⇒ 2

λ
ψ
(
rλ/2

)
≤ 1 . (Claim 1)

Proof of (Claim 1): Note that 1− e−x ≥ x/2 for any x ∈ [0, 1] and recall that 1/ϕ is
the derivative of ψ−1. If − logLr(λ) ≤ 1, then Lemma 2.7 entails that

r =

∫ − logLr(λ)

0

dx

ϕ
(
λ(1−e−x)

) ≤
∫ 1

0

dx

ϕ(λx/2)
= 2ψ−1(λ/2)/λ ,

which entails (Claim 1). We next claim the following.

∀ r, λ ∈ (0,∞), − logLr(λ) > 1 =⇒ L2r(2λ) ≤ exp
(
−r ϕ

(
2(1−e−1)λ

) )
. (Claim 2)

Proof of (Claim 2): Assume that − logLr(λ) > 1. Then, Lemma 2.7, combined with
elementary inequalities entails the following.

ψ−1(λ)

λ
=

∫ 1

0

dx

ϕ(λx)
≤
∫ 1

0

dx

ϕ(λ(1−e−x)) ≤
∫ − logLr(λ)

0

dx

ϕ
(
λ(1−e−x)

) = r. (56)

By Remark 2.1, we have − logL2r(2λ) > − logLr(λ) > 1. Thus, we get

2r =

∫ − logL2r(2λ)

0

dx

ϕ
(
2λ(1−e−x)

) ≤
∫ 1

0

dx

ϕ(λx)
+

∫ − logL2r(2λ)

1

dx

ϕ
(
2λ(1−e−x)

)

≤ ψ−1(λ)

λ
− logL2r(2λ)

ϕ
(
2(1−e−1)λ

) . (57)

(here again, we use the inequality 1−e−x ≥ x/2, x ∈ [0, 1]). Then (57) and (56) entail
that r ≤ − logL2r(2λ)/ϕ(2(1−e−1)λ), which implies (Claim 2).

Recall from (12) the definition of g. We claim that there exists R ∈ (0, 2r0) such
that

∀r ∈ (0, R) , − logLr
(

4

g(r/2)

)
> 1 . (Claim 3)
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Proof of (Claim 3): Let us set λr = ϕ−1(2r loglog
2
r ), for any r ∈ (0, r0). Thus,

g(r/2) = (loglog 2
r )/λr. Suppose that − logLr( 4

g(r/2) ) ≤ 1. Then, (Claim 1) easily

entails that 1 ≥ 1
2g(r/2)ψ

(
4r/(2g(r/2))

)
, which is equivalent to the following:

1 ≥ 1

2
· loglog

2
r

λr
· ψ
(

4λr
2
r loglog

2
r

)
=

1

2
· loglog

2
r

λr
· ψ
(

4λr
ϕ(λr)

)

Now recall from (48) that 4λr/ϕ(λr) ≥ ψ−1(λr). Thus, the latter inequality implies
2 ≥ loglog 2

r and (Claim 3) holds true with R being the largest r in (0, 2r0) such that
loglog 2

r ≥ 2.

End of the proof of the lemma: Recall the notation C2 = (1 − e−1)−1. There exists
r2 ∈ (0, R) such that 4/ loglog 2

r2
≤ C2/2. The definition of g implies

4

g(r/2)
=

4

loglog 2
r

ϕ−1
( 2
r
loglog

2

r

)
≤ 1

2
C2ϕ

−1
( 2
r
loglog

2

r

)
, r ∈ (0, r2).

Remark 2.1 and (Claim 3) entail that for any r ∈ (0, r2),

1 < − logLr
(

4

g(r/2)

)
≤ − logLr

(
1

2
C2ϕ

−1
( 2
r
loglog

2

r

))
.

Now (Claim 2) implies that

L2r

(
C2ϕ

−1
( 2
r
loglog

2

r

))
≤ exp

(
−rϕ

(
ϕ−1

( 2
r
loglog

2

r

)))
= exp

(
−2 loglog

2

r

)
,

which completes the proof of the lemma. �

The following estimate is used in the proof of Theorem 1.1.

Lemma 2.9 There exist r3, C3, C4 ∈ (0,∞) that only depend on ψ such that for any
r ∈ (0, r3), one has

g(16r)N
(
supH ≥ 3r ;

∫ ζ

0

1{Hs≤2r}ds ≤ C3 g(16r)
)
≤ C4e

− 3
2 loglog 2

r r loglog
1

r
.

Proof: Recall that (g2rj , d
2r
j ), j ∈ I2r, stand for the open connected components

of {s ∈ [0, ζ] : Hs > 2r} and that H2r,j = H(g2rj +·)∧d2rj
− 2r, j ∈ I2r, are the

corresponding excursions of H above 2r. Recall that G2r is the sigma-field generated
by the height process H̃2r below level 2r, augmented by the N -negligible sets. Recall
from (31) the notation N2r. The branching property asserts that under N2r and
conditionally given G2r, the random variable Y :=

∑
j∈I2r 1{supH2r,j≥r} is distributed

as a Poisson random variable with parameter L2r
ζ N(supH > r) = L2r

ζ v(r). Now
observe that N -a.e. 1{Y 6=0} = 1{supH≥3r}. Thus,

N2r

(
1{supH≥3r} | G2r

)
= N2r

(
1{Y 6=0} | G2r

)
= 1− e−v(r)L

2r
ζ ≤ v(r)L2r

ζ .

Since
∫ ζ
0 1{Hs≤2r}ds is G2r-measurable, we get

N2r

(
supH ≥ 3r ;

∫ ζ

0

1{Hs≤2r}ds ≤ C3g(16r)
)
≤ v(r)N2r

(
L2r
ζ 1{

∫ ζ
0
1{Hs≤2r}ds≤C3g(16r)}

)
.

where C3 is a positive constant to be specified further. Recall that N -a.e. 1{L2r
ζ 6=0} =

1{supH>2r}. Consequently,

N
(
supH ≥ 3r ;

∫ ζ

0

1{Hs≤2r}ds ≤ C3g(16r)
)
≤ v(r)N

(
L2r
ζ 1{

∫ ζ
0
1{Hs≤2r}ds≤C3g(16r)}

)
.

21



Recall that L2r
ζ = 〈ℓ2r〉, that

∫ ζ
0 1{Hs≤2r}ds = m(B̄(ρ, 2r)) and recall from (54) the

notation L2r(λ). Then, the Markov inequality combined with Lemma 2.6 entails for
any λ ≥ 0,

N
(
L2r
ζ 1{

∫
ζ
0
1{Hs≤2r}ds≤C3g(16r)}

)
= N

(
〈ℓ2r〉1{m(B̄(ρ,2r))≤C3g(16r)}

)

≤ eC3λg(16r)L2r

(
λ
)
. (58)

Set r3 = r1∧r2, where r1 and r2 are as in Lemmas 2.5 and 2.8. We fix r ∈ (0, r3). Since
we assumed that δ = δψ > 1, there exists C ≥ 1 such that g satisfies a C-doubling
condition (8). Thus, g(16r) ≤ C5g(r/2). Recall notation λr = ϕ−1(2r loglog

2
r ) and

note that λrg(r/2) = loglog 2
r . Take λ = C2λr in (58) and use Lemma 2.8 to get

N
(
L2r
ζ 1{

∫
ζ
0
1{Hs≤2r}ds≤C3g(16r)}

)
≤ exp

(
− (2− C3C

5) loglog
2

r

)
.

We now choose C3 such that C3C
5 = 1/2. We then get for any r ∈ (0, r3),

g(16r)N
(
supH ≥ 3r ;

∫ ζ

0

1{Hs≤2r}ds ≤ C3g(16r)
)
≤ g(16r)v(r)e−

3
2 loglog 2

r . (59)

We now use Lemma 2.5 to get the following.

g(16r)v(r) ≤ C4 · g(r)v(r) ≤ C4 · v(r) loglog 1
r

ϕ−1(1r loglog
1
r )

≤ C4 · v(r) loglog
1
r

ϕ−1(1r )
≤ C4C1 · r loglog 1

r
,

which implies the desired result with C4 = C4C1 by (59). �

We recall in a lemma a result due to Fristedt and Pruitt [21] on subordinators that
is needed to prove the upper bound in Theorem 1.2. Recall that ϕ = ψ′ ◦ ψ−1 and
that ψ′(0) = α. We set ϕ∗ = ϕ− α. Thus, ϕ∗(0) = 0 and ϕ∗ is the Laplace exponent
of a conservative subordinator.

Lemma 2.10 (Fristedt and Pruitt [21] Theorem 1 p 173) Let (Sr, r ≥ 0) be a subordi-
nator starting at 0 defined on (Ω,F ,P) whose Laplace exponent is ϕ∗. Let us assume
that δ = δψ > 1. Recall that g is the gauge function defined by (12). Then, there exists
a constant Kψ ∈ (0,∞) that only depends on ψ such that

P−a.s. lim inf
r→0

Sr
g(r)

= Kψ .

Remark 2.2 Theorem 1 [21] is actually more general than the result stated in Lemma
2.10. It actually asserts the following: If γ = γψ > 1, then for any a > 1, there exists
Ka,ψ ∈ (0,∞) that only depends on a and ψ, such that

P−a.s. lim inf
r→0

Sr
g∗(ar)

= Ka,ψ , (60)

where g∗ is derived from ϕ∗ as g is derived from ϕ in (12). Observe that ϕ∗ and
ϕ are equivalent at infinity. Thus, g ∼0 g

∗ and g∗ can be replaced by g in (60). If
δ = δψ > 1, then g satisfies the doubling condition (8). Consequently, g(ar) ≍0 g(r)
and Blumenthal zero-one law allows to deduce Lemma 2.10 from (60) under the more
restrictive assumption δ = δψ > 1. �
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3 Proof of Theorem 1.2.

Recall that (Ut, t ≥ 0) is a subordinator defined on (Ω,F ,P) with Laplace exponent
ψ∗′(λ) = ψ′(λ) − α, λ ≥ 0. Recall that N ∗ =

∑
j∈I∗ δ(r∗j , H∗j) is a random point

measure on [0,∞) × C0 defined on (Ω,F ,P) such that conditionally given U , N ∗ is
distributed as a Poisson point measure with intensity dUr ⊗ N(dH). Also recall the
notation

M∗
r =M∗

r (r) =
∑

j∈I∗

1[0,r](r
∗
j ) ·

∫ ζ∗j

0

1{H∗j
s ≤r−r∗j }

ds , r ≥ 0 ,

where ζ∗j stands for the lifetime of H∗j, for any j ∈ I∗. We now set

∀r ≥ 0 , Sr =
∑

j∈I∗

1[0,r](r
∗
j )ζ

∗
j .

First observe that
∀r ≥ 0 , M∗

r ≤ Sr . (61)

Next observe that (Sr, r ≥ 0) is cadlag and that S0 = 0. Let 0 = r0 < r1 < . . . < rn
and λ1, . . . , λn ≥ 0. Recall from (17) that N(1− exp(−λζ) ) = ψ−1(λ). We then get

E
[
exp

(
−
∑

1≤k≤n

λk(Srk − Srk−1
)
)]

= E
[
exp

(
−
∑

1≤k≤n

ψ−1(λk)(Urk − Urk−1
)
)]

= exp
(
−
∑

1≤k≤n

(rk − rk−1)ϕ
∗(λk)

)
.

This implies that (Sr, r ≥ 0) is a subordinator with Laplace exponent ϕ∗. Lemma
2.10 applies: There exists a constant Kψ ∈ (0,∞) that only depends on ψ such that

P− a.s. lim inf
r→0

M∗
r

g(r)
≤ lim inf

r→0

Sr
g(r)

= Kψ <∞ . (62)

Let us prove a lower bound. Lemma 2.6 asserts that E[exp(−λM∗
r )] = eαrLr(λ).

Recall notation λr = ϕ−1(2r loglog
2
r ) so that λrg(r/2) = loglog 2

r . Lemma 2.8 asserts
that there exist r2, C2 ∈ (0,∞) such that L2r(C2λr) ≤ exp(−2 loglog 2

r ) for any r ∈
(0, r2). Let K be a positive real number to be specified later. By Markov inequality,
for any r ∈ (0, r2), one has

P (M∗
2r ≤ Kg(r/2) ) = P

(
C2λrM

∗
2r ≤ C2K loglog

2

r

)

≤ exp
(
C2K loglog

2

r

)
E
[
exp

(
− C2λrM

∗
2r

)]

≤ exp
(
C2K loglog

2

r
+ 2αr

)
L2r(C2λr)

≤ exp
(
− (2− C2K) loglog

2

r
+ 2αr

)
.

We choose K such that C2K = 1/2. Borel-Cantelli entails

P-a.s. lim inf
n→∞

M∗
2−n

g(2−n−2)
≥ K .

Recall that g satisfies a C-doubling condition. Thus, g(2r) ≤ C2g(r/2), for all suffi-
ciently small r > 0. Since r 7→M∗

r is non-decreasing, we get

P-a.s. lim inf
r→0

M∗
r

g(r)
≥ C−3 lim inf

n→∞

M∗
2−n

g(2−n−2)
≥ C−3K > 0 . (63)
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By standard results on Poisson point processes, lim infr→0 M∗
r /g(r) is a random

variable that is measurable with respect to the tail sigma-field of U at 0+ and Blu-
menthal’s 0-1 law entails that there exists a constant denoted by Cψ such that P-
a.s. lim infr→0 M

∗
r /g(r) = Cψ . Moreover (62) and (63) show that Cψ ∈ (0,∞). Then,

(44) implies

N

(∫

T

m(dσ)1{lim infr→0 m(B(σ,r))/g(r) 6=Cψ}

)
= 0 ,

which entails Theorem 1.2. �

4 Proof of Theorem 1.1.

The proof is in several steps that are stated as lemmas. Recall that for any a > 0, the
intervals (gaj , d

a
j ), j ∈ Ia, are the open connected components of {s ∈ [0, ζ] : Hs > a}.

Recall notation Ha,j = H(gaj+·)∧daj
− a, j ∈ Ia, for the excursions of H above a. We

shall denote by ζa,j = daj − gaj , the lifetime of Ha,j . Recall that Ga stands for sigma-

field generated by the height process H̃a below a, augmented by the N -negligible sets
and recall from (31) the notation Na. The branching property asserts that under Na
and conditionally given Ga, the point measure

Ma =
∑

j∈Ia

δ(
La
ga
j
, Ha,j

)

is distributed as a Poisson point measure with intensity 1[0,Laζ ]
(x)dx ⊗ N(dH). We

apply this property as follows. Let F : C0 → [0,∞) be measurable. Set ZaF =∑
j∈Ia F (H

a,j) and note that ZaF = 0 if supH ≤ a. A basic result on Poisson
point processes entails that Na(Z

a
F |Ga) = LaζN(F (H)). Recall that N -a.e.1{Laζ 6=0} =

1{supH>a}. Thus, N(ZaF ) = N(Laζ )N(F (H)). By (23), N(Laζ) = exp(−αa) ≤ 1, which
entails

N
(∑

j∈Ia

F (Ha,j)
)
≤ N(F (H)) . (64)

For any n ∈ N, we denote by Dn the set {k2−n−3 ; k ∈ N}. For any a ∈ Dn and
for any j ∈ Ia, we define the event E(a, j) as follows

E(a, j) =
{

supHa,j > 3.2−n−3 ;

∫ ζa,j

0

1{Ha,js ≤2.2−n−3}ds ≤ C3g(2.2
−n)

}
,

where C3 is the constant appearing in Lemma 2.9. For any positive integer Q, we then
set

Un,Q =
∑

a∈Dn∩[0,Q+1]

∑

j∈Ia

g(2.2−n)1E(a,j) . (65)

We suppose that 2−n−3 < r3, where r3 is the constant appearing in Lemma 2.9. We
apply (64) with a ∈ Dn ∩ [0, Q+ 1] and Lemma 2.9 with rn = 2−n−3, and we get

N
(∑

j∈Ia

g(2.2−n)1E(a,j)

)
≤ C4rn loglog

1

rn
e−

3
2 loglog 1

rn ≤ C52
−n−3n−3/2 logn,

Here C4 is the constant appearing in Lemma 2.9 and C5 only depends on ψ. Since
#(Dn ∩ [0, Q+ 1]) = 2n+3(Q+ 1) ≤ 2Q.2n+3, we get

N (Un,Q) ≤ 2C5Q · n−3/2 logn , (66)

which easily entails the following lemma.

24



Lemma 4.1 There exists a Borel set A1 ⊂ C0 such that C0\A1 is N -negligible and
such that on A1,

∀Q ∈ N , lim
n→∞

∑

m≥n

Um,Q = 0 .

Recall notation P∗
g for the g-pre-packing measure on T . Lemma 4.1 is now used to

prove the following.

Lemma 4.2 There exists C6 ∈ (0,∞) that only depends on ψ such that on A1, one
has P∗

g (K) ≤ C6m(K), for any compact subset K of T .

Proof: Recall the notation Γ = supH = sup{d(ρ, σ) ; σ ∈ T } that is the total
height of T . Without loss of generality, we can assume that Γ ∈ (0,∞) on A1. Let
0 < ε < min(1,Γ) and let Q be a positive integer such that Q > Γ. Let K be any
compact subset of T and let (B̄(σℓ, rℓ), ℓ ≥ 0) be any ε-packing of K. Namely, the
closed balls B̄(σℓ, rℓ)’s are pairwise disjoint, σℓ ∈ K and rℓ ≤ ε, for any ℓ ≥ 0. Observe
that at most one ball may contain the root ρ. Without loss of generality, we assume
that if a ball of the ε-packing of K contains ρ, then it is B̄(σ0, r0). Thus, ρ /∈ B̄(σℓ, rℓ),
for any ℓ ≥ 1.

We fix (σ, r) ∈ {(σℓ, rℓ) ; ℓ ≥ 1}. Since r ≤ ε < 1, there exists an integer n(r) ≥ 1
such that 2−n(r) < r ≤ 2.2−n(r). Since ρ /∈ B̄(σ, r), one has d(ρ, σ) > r and there
exists t0 ∈ (0, ζ) such that p(t0) = σ (recall that p stands for the canonical projection
from [0, ζ] onto T ). Thus, Ht0 = d(ρ, σ) > r > 8.2−n(r)−3 and there exists a unique
integer k > 8 such that k2−n(r)−3 ≤ Ht0 < (k + 1)2−n(r)−3. We then set

{
g = sup{s ∈ [0, t0] : Hs = (k − 3)2−n(r)−3}
d = inf{s ∈ [t0, ζ] : Hs = (k − 3)2−n(r)−3}.

To simplify notation, we set a = (k − 3)2−n(r)−3 ∈ Dn(r) ∩ [0, Q+ 1].

(I) Observe that 0 < g < t0 < d < ζ, that Hg = Hd = a, that Hs > a for any
s ∈ (g, d) and that Ht0 − a ≥ 3.2−n(r)−3. Therefore there exists a unique j ∈ Ia
such that

(gaj , d
a
j ) = (g, d) , Ha,j

s = H(g+s)∧d − a , s ≥ 0 , and supHa,j ≥ 3.2−n(r)−3 .

(II) Recall that b(s1, s2) = inf [s1∧s2,s1∨s2]H and d(s1, s2) = Hs1 +Hs2 − 2b(s1, s2),

for any s1, s2 ∈ [0, ζ]. Let s ∈ (g, d) be such that Hs − a ≤ 2.2−n(r)−3. First
observe that b(s, t0) ≥ a. Next observe that Ht0 −a ≤ 4.2−n(r)−3. Consequently,
d(s, t0) ≤ 2.2−n(r)−3 +Ht0 − a ≤ 6.2−n(r)−3 < r. Thus,

{s ∈ (g, d) : Hs − a ≤ 2.2−n(r)−3} ⊂ {s ∈ [0, ζ] : d(s, t0) ≤ r},

which implies that
∫ ζa,j
0 1{Ha,js ≤2.2−n(r)−3}ds ≤ m

(
B̄(σ, r)

)
.

Recall that B̄(σ0, r0) is the only ball of the ε-packing that may contain the root. Since
the B̄(σℓ, rℓ)’s are pairwise disjoint, (I) and (II) imply the following inequalities

∑

ℓ≥0

g(rℓ)1{m(B(σℓ,rℓ))≤C3g(rℓ)}
≤ g(ε) +

∑

n:2−n<ε

Un,Q .

This entails the following

∑

ℓ≥0

g(rℓ) =
∑

ℓ≥0

g(rℓ)1{m(B(σℓ,rℓ))>C3g(rℓ)}
+
∑

ℓ≥0

g(rℓ)1{m(B(σℓ,rℓ))≤C3g(rℓ)}

25



≤ 1

C3
m
(
K(ε)

)
+ g(ε)+

∑

n:2−n<ε

Un,Q , (67)

where we have set K(ε) = {σ ∈ T : d(σ,K) ≤ ε}. Recall from (9) the definition of

P
(ε)
g . Since the previous inequality holds true for any ε-closed packing of K, we get

P
(ε)
g (K) ≤ 1

C3
m
(
K(ε)

)
+ g(ε)+

∑

n:2−n<ε

Un,Q .

Since K is compact, limε→0 m(K(ε)) = m(K). The previous inequality, combined
with Lemma 4.1, implies the desired result on A1 with C6 = 1/C3. �

Recall that Theorem 1.2 asserts that there exists a Borel subset A2 ⊂ C0 such that
N(C0\A2) = 0 and such that, on A2, we have

m
({
σ ∈ T : lim inf

r→0
g(r)−1m

(
B(σ, r)

)
6= Cψ

})
= 0 (68)

Lemma 4.3 There exist C7, C8 ∈ (0,∞) that only depend on ψ such that on A1∩A2,
for any Borel set B ⊂ T , we have

C7m(B) ≤ Pg(B) ≤ C8m(B) .

Proof: We set Good = {σ ∈ T : lim infr→0 g(r)
−1m(B(σ, r)) = Cψ} and Bad =

T \Good. We argue deterministically on A1 ∩A2. Observe that Pg(Bad) ≤ P∗
g (T ) ≤

C6m(T ) < ∞. By (68), m(Bad) = 0. Then, for any compact K ⊂ Bad, Lemma 4.2
implies that Pg(K) ≤ P∗

g (K) ≤ C6m(K) = 0. Thus, Property Pack(2) implies that
Pg(Bad) = 0. For any Borel subset B ⊂ T we get Pg(B) = Pg(B ∩ Good) and
m(B) = m(B ∩Good). The comparison lemma 2.1 then entails

(Cψ)
−1C−2m(B ∩Good) ≤ Pg(B ∩Good) ≤ (Cψ)

−1m(B ∩Good),

which proves the lemma with C7 = (Cψ)
−1C−2 and C8 = (Cψ)

−1. �

We now prove a 0-1 law to complete the proof of Theorem 1.1. To that end we
need the following lemma.

Lemma 4.4 Let ηn ∈ (0,∞), n ≥ 0, be a sequence that decreases to 0. Then, there
exists a constant C9 ∈ [0,∞] that only depends on ψ and on the sequence (ηn)n≥0,
such that N -a.e. for Lebesgue-almost all t ∈ [0, ζ],

lim inf
n→∞

1

ηn
Pg

(
p([t, t+ ηn])

)
= C9 .

Proof: see Appendix A. �

Remark 4.1 If Pg(p([t, t+ηn])) was a Borel-measurable function of H , then Lemma
4.4 would be a direct consequence of Lemma 2.2. However, this point seems difficult to
prove because the packing measure Pg is defined in two steps and the second step (11)
(or its variant Pack(3)) causes measurability problems. This explains the unexpected
length of the proof of Lemma 4.4. �

We now completes the proof of Theorem 1.1. By (28), Lemma 4.3 and Lemma
4.4, there exists a Borel subset A of C0 such that N(C0\A) = 0 and such that for any
H ∈ A, the following holds true.

(a) The mass measure m is diffuse and m(Sk(T )) = 0.
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(b) For any Borel subset B of T , we have C7m(B) ≤ Pg(B) ≤ C8m(B).

(c) For Lebesgue-almost all t ∈ [0, ζ], C9 = lim infn→∞ η−1
n Pg

(
p([t, t+ ηn])

)
.

We follow the end of the proof of Theorem 1.1[15]. We argue deterministically on A.
Let 0 ≤ s ≤ t ≤ ζ. Suppose that there exists r ∈ [0, ζ]\[s, t] such that p(r) ∈ p([s, t]).
Then there exists u ∈ [s, t] such that p(u) = p(r). We then get Hu = Hr = b(u, r) and
since u 6= r, (29) implies that p(r) ∈ Sk(T ). This easily implies the following.

p([s, t]) ∩ p([u, v]) ⊂ Sk(T ) ∪ {p(t)} , 0 ≤ s ≤ t ≤ u ≤ v ≤ ζ . (69)

For any t ∈ [0, ζ], we set q(t) = Pg(p([0, t])). Observe that for any 0 ≤ s ≤ t ≤ ζ,
p([0, t]) = p([0, s]) ∪ p([s, t]). Then, (69) combined with (a) and (b), implies that for
any 0 ≤ s ≤ t ≤ ζ.

Pg(p([s, t]))=q(t) − q(s), m(p([s, t]))= t− s, and C7(t− s)≤q(t)− q(s)≤C8(t− s).

The function q is then absolutely continuous. Thus, q is differentiable Lebesgue-almost
everywhere, q(t)− q(s) =

∫
[s,t] q

′(u)du and for Lebesgue-almost all t ∈ [0, ζ],

q′(t) = lim inf
n→∞

1

ηn
(q(t+ ηn)− q(t)) = lim inf

n→∞
η−1
n Pg

(
p([t, t+ ηn])

)
= C9 ,

by (c). This proves that C7 ≤ C9 ≤ C8 and that Pg(p([s, t])) = C9(t − s), for any
0 ≤ s ≤ t ≤ ζ. Since m and Pg are diffuse, this entails that for any interval J ⊂ [0, ζ],
Pg(p(J)) = C9m(p(J)) = C9ℓ(J), where ℓ stands for the Lebesgue measure.

Let O be an open set of (T , d). Denote by Jn, n ≥ 0, the (possibly empty) open
connected components of p−1(O) that are pairwise disjoint subintervals of [0, ζ]. By
(69), (a) and (b), we get Pg

(
p(Jn) ∩ p(Jn′)

)
= 0, for any 0 ≤ n < n′. Consequently,

Pg(O) =
∑

n≥0

Pg

(
p(Jn)

)
= C9

∑

n≥0

m
(
p(Jn)

)

= C9

∑

n≥0

ℓ
(
Jn
)
= C9ℓ(p

−1(O)) = C9m(O).

Set cψ = (C9)
−1. Then, cψPg(O) = m(O), for any open subset of T , which entails

cψPg = m. This completes the proof of Theorem 1.1 since N(C0\A) = 0. �

A Appendix: proof of Lemma 4.4.

Let us recall basic facts on analytic sets and let us set some notation. Let E be a
topological space that is Polish. We shall always denote by B(E) the Borel sigma-field
of E. A subset A ⊂ E is said to be analytic iff there exists an auxiliary Polish space
E′ and a Borel set B of E×E′ equipped with the product topology such that A is the
projection of B on E. We shall denote by A(E) the set of the analytical subsets of
E. Then B(E) ⊂ A(E) and A(E) is stable under countable unions and intersections.
Moreover, the continuous image of an analytic set is also analytic (see Jech [26] pp
142-148 and Dudley [9] Chapter 13 Section 2 pp 493-501). Let F ⊂ E be a closed
subset. Since F is Polish and since the canonical injection from F into E is continuous,
we have A(F ) = {A∩F ;A ∈ A(E)} and B(F ) = {B∩F ;B ∈ B(E)}. We shall denote
by σA(E) the sigma-field generated by A(E). Let µ be a sigma-finite positive measure
defined on B(E). We denote by Bµ(E) the Borel sigma field B(E) augmented by the
µ-negligible sets. Recall that A(E) ⊂ Bµ(E) (see Dudley [9] Theorem 13.2.6 p 497).
This easily entails the following lemma.
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Lemma A.1 Let E be a Polish space and let f : E → [0,∞] be a σA(E)-measurable
function. For any sigma-finite nonnegative measure µ on B(E), there exists a B(E)-
measurable function f̄µ : E → [0,∞] such that {x ∈ E : f̄µ(x) 6= f(x)} is µ-negligible.

Recall Notation 2.1: C0 is the usual Polish space of the continuous functions from
[0,∞) to R. For any h ∈ C0, ζ(h) denotes sup{t ∈ [0,∞) : h(t) 6= 0}, with the
convention sup ∅ = 0. Recall that C stands for the set of continuous functions with
compact support: C = ζ−1([0,∞)). For any r ∈ [0,∞), we also set Cr = ζ−1([0, r])
that is a closed subset of C0. For any h ∈ C , we set ‖h‖ = sup |h|. Observe that the
topology of the Polish space (Cr, ‖·‖) is the trace on Cr of the topology of C0. Thus,
B(Cr) = {B ∩ Cr;B ∈ B(C0)} and A(Cr) = {A ∩ Cr;A ∈ A(C0)}, that are resp. the
Borel sigma-field and the set of analytic subsets of the Polish space (Cr, ‖·‖).

Let h ∈ C . Recall from Section 2.2 the definition of the compact rooted R-tree
(Th, dh, ρh). Recall that ph : [0, ζ(h)] → Th stands for the canonical projection. Recall
that mh is the measure induced by the restriction of the Lebesgue measure ℓ on
[0, ζ(h)] via the canonical projection (see (27)). Recall that p̄h : [0,∞) → Th is given
by p̄h(t) = ph(t ∧ ζ(h)), t ∈ [0,∞).

Let g be the packing gauge function that is derived from ψ by (12). For any
ε ∈ (0,∞) and for any subset A ⊂ Th, we denote by P

(ε)

g,h(A) the quantity defined by
(9), by P∗

g,h(A) the g-pre-packing measure of A that is defined by (10). We finally
denote by Pg,h(A) the g-packing measure of A that is defined by (11). Property (14)
asserts that P∗

g,h(A) = P∗
g,h(Ā) where Ā stands for the closure of A in Th. Combined

with Property Pack(3), it entails the following:

Pg,h(Th) = inf
{
sup
n≥0

P
∗
g,h(Qn) ; Qn compact, Qn ⊂ Qn+1,

⋃

n≥0

Qn = Th
}
. (70)

Recall C7, C8 ∈ (0,∞), that appear in Lemma 4.3. We introduce the following
subset of functions

S =
{
h ∈ C : ∀B ∈ B(Th) , C7mh(B) ≤ Pg,h(B) ≤ C8mh(B)

}
. (71)

Lemma 4.3 shows that C0\S is N -negligible.
Recall that for any t ∈ [0,∞) and any h ∈ C0, ȟt stands for the shifted function

(h(t + s), s ≥ 0). Recall that for any η ∈ [0,∞) we have defined Rη : C0 → C by
setting Rηh(s) = h(s ∧ η) − h(η), s ∈ [0,∞). Let us fix h ∈ C , t, η ∈ [0,∞). To

simplify notation, we set h̃ = Rη(ȟ
t). Observe that for any s, s′ ∈ [0, η], one has

dh(t+ s, t+ s′) = dh̃(s, s
′). This induces a bijective isometry  from (p̄h([t, t+ η]), dh)

onto (Th̃, dh̃). Moreover, mh̃ is the measure induced by mh(· ∩ p̄h([t, t + η]) ) via 
and Pg,h̃ is the measure induced by Pg,h(· ∩ p̄h([t, t + η]) ) via . This entails the
following lemma.

Lemma A.2 Let h ∈ C and let t, η ∈ [0,∞). Set h̃ = Rη(ȟ
t). Then, Pg,h̃(Th̃) =

Pg,h(p̄([t, t+ η])). Moreover, if h ∈ S, then h̃ ∈ S.

For any p ∈ N
∗, we denote by Kp the set of compact subsets of the interval [0, p] ⊂ R,

equipped with the usual metric. We equip Kp with the Hausdorff distance denoted
by d(p)

H . Then (Kp, d
(p)

H ) is a compact metric space (see Definition 2.2 (a)).

Lemma A.3 Let p ∈ N
∗. The function (h,K) ∈ Cp ×Kp 7→ P∗

g,h(p̄h(K)) ∈ [0,∞] is
B(Cp)⊗ B(Kp)-measurable.

Proof: For any ε ∈ (0,∞), K ∈ Kp and h ∈ Cp, we denote by Πpε(h,K) the set of the
non-empty finite sequences (t1, r1), . . . , (tn, rn) ∈ K×(0, ε] such that dh(ti, tj) > ri+rj ,
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for any 1 ≤ i < j ≤ n. Since p̄h(ti) and p̄h(tj) can be joined by a geodesic in
Th, dh(ti, tj) > ri + rj is equivalent to B̄h(p̄h(ti), ri) ∩ B̄h(p̄h(tj), rj) = ∅, for any
1 ≤ i < j ≤ n. It easily entails

P
(ε)
g,h(p̄h(K)) = sup

{ ∑

1≤i≤n

g(ri) ; ∃ (ti, ri)1≤i≤n ∈ Πpε(h,K)
}
.

Since P
∗
g,h(p̄h(K)) = limε↓0 ↓P

(ε)
g,h(p̄h(K)). It is sufficient to prove that for any

x ∈ [0,∞), the following subset {(h,K) ∈ Cp × Kp : P
(ε)

g,h(p̄h(K)) > x} is open in
Cp × Kp, equipped with the product topology. So we fix ε, x ∈ (0,∞), K ∈ Kp and
h ∈ Cp and we assume that P

(ε)

g,h (p̄h(K)) > x. There exists 0 ≤ t1 < . . . < tn ≤ p in
K and r1, . . . , rn ∈ (0, ε], such that

∑
1≤i≤n g(ri) > x and dh(ti, tj) > ri + rj , for any

1 ≤ i < j ≤ n. We first set

ε1 = min
1≤i<j≤n

dh(ti, tj)−ri−rj > 0 and ε2 =
1

3
min

1≤i<j≤n
|ti − tj | > 0 .

Next, set ω(h, δ) = sup{|h(t)− h(s)|; s, t ∈ [0,∞) : |s− t| ≤ δ}, for any δ ∈ (0,∞) and
note that limδ→0 ω(h, δ) = 0. Assume that δ ∈ (0, ε2) and choose t∗1, . . . , t

∗
n ∈ [0, p],

such that |ti − t∗i | < δ, for any 1 ≤ i ≤ n. An easy computation entails that
∣∣dh(ti, tj)− dh(t

∗
i , t

∗
j )
∣∣ ≤ 4ω(h, δ) , 1 ≤ i < j ≤ n. (72)

Next observe that for any h′ ∈ Cp,
∣∣dh(t∗i , t∗j ) − dh′(t∗i , t

∗
j )
∣∣ ≤ 4‖h − h′‖, for any

1 ≤ i < j ≤ n. Therefore, for any δ ∈ (0, ε2), for any t∗1, . . . , t
∗
n ∈ [0, p] such that

|ti − t∗i | < δ and for any h′ ∈ Cp, we get
∣∣dh(ti, tj)− dh′(t∗i , t

∗
j )
∣∣ ≤ 4ω(h, δ) + 4‖h− h′‖ , 1 ≤ i < j ≤ n. (73)

Now, fix δ ∈ (0, ε2) and η > 0 such that ε1 > 4ω(h, δ) + 4η, which is always possible.
Let (h′,K ′) be any element of Cp × Kp such that ‖h − h′‖ < η and d(p)

H (K,K ′) <
δ. Then, there exist t∗1, . . . , t

∗
n ∈ K ′ such that |ti − t∗i | < δ and (73) entails that

dh′(t∗i , t
∗
j ) > ri + rj , for any 1 ≤ i < j ≤ n. Consequently, P

(ε)
g,h′(p̄h′(K ′)) > x, which

completes the proof of the lemma. �

We next introduce the space K N
p of the Kp-valued sequences. We equip K N

p

with the product topology. Standard results assert that K N
p is a Polish space (it is a

compact metric space). We also denote by Sp the subset of the increasing sequences
of compact subsets of [0, p]:

Sp =
{
K = (Kn)n≥0 ∈ K

N

p : Kn ⊂ Kn+1 , n ≥ 0
}
.

It is easy to prove that Sp is a closed subset of K N
p . Therefore, Sp is also Polish and

B(Sp) = {B ∩ Sp;B ∈ B(Kp)
⊗N}. Recall that ℓ stands for the Lebesgue measure on

the real line. We shall need the following Lemma.

Lemma A.4 The set Zp =
{
K = (Kn)n≥0 ∈ Sp : ℓ

(
[0, p]\⋃n≥0 Kn

)
= 0
}
is a Borel

subset of Sp.

Proof: We first prove that for any x ∈ [0,∞), the set {K ∈ Kp : x ≤ ℓ(K)} is
a closed subset of (Kp, d

(p)

H ). Observe that {K ∈ Kp : x ≤ ℓ(K)} = ∅ if x > p.
We assume that x ∈ [0, p]. Let Kn ∈ Kp, n ≥ 0, be such that x ≤ ℓ(Kn) and
limn d

(p)

H (Kn,K) = 0. For any ε ∈ (0,∞), there exists nε ∈ N such that for any

n ≥ nε, Kn ⊂ K(ε). Then, for any ε ∈ (0,∞), we have x ≤ ℓ(K(ε)), which entails
x ≤ ℓ(K) by letting ε go to 0. This proves that K ∈ Kp 7→ ℓ(K) is B(Kp)-measurable
For any K = (Kn)n≥0 ∈ Sp, we set Ψ(K) = supn≥0 ℓ(Kn). Then, Ψ is B(Sp)-
measurable. Now, note that Ψ(K) = ℓ(

⋃
n∈≥0Kn). Thus, Zp = Ψ−1({p}) ∈ B(Sp).

�
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Lemma A.5 There exists a function Λ : C0 → [0,∞] that is σA(C0)-measurable such
that Λ(h) = Pg,h(Th), for any h ∈ S.

Proof: Let us fix p ∈ N
∗. For any K = (Kn)n≥0 ∈ Sp, and for any h ∈ Cp, we set

Γp(h,K) = supn≥0 P∗
g,h(p̄h(Kn)). Lemma A.3 easily implies that Γp : Cp × Sp →

[0,∞] is B(Cp) ⊗ B(Sp)-measurable. Recall from Lemma A.4 the definition of Zp.
Then, we set Λp(h) = infK∈Zp Γp(h,K), for any h ∈ Cp. For any x ∈ (0,∞), we also
set

Bx = {(h,K) ∈ Cp × Sp : K ∈ Zp and Γp(h,K) < x} = (Cp × Zp) ∩ Γ−1
p ([0, x) ).

Note that Bx is a Borel subset of Cp ×Sp. Moreover, if we denote by π the canonical
projection from Cp × Sp to Cp, then {h ∈ Cp : Λp(h) < x} = π(Bx) that is an
analytic subset of Cp. This proves that Λp : Cp → [0,∞] is σA(Cp)-measurable.

We next introduce Z
o
p = {(Kn)n≥0 ∈Sp :

⋃
n≥0 Kn= [0, p]}. Observe that Z

o
p ⊂

Zp. Let us fix h ∈ Cp. Note that the set of sequences of compact subsets of Th that
are of the form (p̄h(Kn))n≥0, when (Kn)n≥0 varies in Z o

p , is the same as the set of
sequences of compact subsets Qn ∈ Th, n ≥ 0, such that Qn ⊂ Qn+1 and

⋃
Qn = Th.

Therefore, (70) entails

Λp(h) ≤ inf
K∈Z o

p

Γp(h,K) = Pg,h(Th) , h ∈ Cp. (74)

Suppose that h ∈ S ∩ Cp, fix K = (Kn)n≥0 ∈ Zp, and recall that Pg,h(p̄h(Kn)) ≤
P∗
g,h(p̄h(Kn)), for any n ≥ 0. Then

Pg,h

(
p̄h
( ⋃

n≥0

Kn

) )
≤ Γp(h,K) .

Since, [0, ζ(h)]∩ p̄ −1

h (Th\p̄h(
⋃
Kn) ) ) ⊂ [0, p]\⋃Kn, we get mh

(
Th\p̄h

(⋃
n≥0 Kn

))
=

0. Since h ∈ S, it implies Pg,h

(
Th\p̄h

(⋃
n≥0 Kn

))
= 0. Consequently, Pg,h(Th) ≤

Γp(h,K), for any K ∈ Zp. This, combined with (74), entails

Pg,h(Th) = Λp(h) , h ∈ S ∩ Cp .

Next, it is easy to check that for any h ∈ C and for any p, q ≥ ζ(h), we have Λp(h) =
Λq(h). Then it makes sense to set Λ(h) = Λp(h) if h ∈ C and p ≥ ζ(h) and to set
Λ(h) = ∞ if h ∈ C0\C . Thus, for any x ∈ (0,∞), we get Λ−1([0, x)) =

⋃
Λ−1
p ([0, x)),

that is an analytic subset of C0 since A(Cp) ⊂ A(C0) and since A(C0) is stable under
countable unions. This completes the proof of the lemma. �

Remark A.1 If Z o
p is a Borel subset of Sp, then the previous proof simplifies. How-

ever, we are only able to show that Sp\Z o
p is analytic (namely, that Z o

p is co-analytic),
which is not useful for our purpose. �

If we combine Lemma A.2 and Lemma A.5, then we get

∀h ∈ S , ∀t, η ∈ [0,∞) , Λ(Rηȟ
t) = Pg,h

(
p̄h([t, t+ η])

)
. (75)

We now consider the excursion H = (Ht)t≥0 of the height process. Recall notation
ζ = ζ(H). We define a measure Q on C0 as follows.

∀B ∈ B(C0) , Q(B) =

∫ ∞

0

N(ζ > t ; Ȟt ∈ B) dt = N
(∫ ζ

0

1{Ȟt∈B}dt
)
.

For any n ∈ N, we set Vn = {h ∈ C0 : h(0) ≤ n}. Obviously, Vn is a closed subset of C0

and
⋃
Vn = C0. Moreover, (23) entails Q(Vn) =N(

∫ ζ
0
1{Ht≤n}dt) =

∫ n
0
N(Laζ ) da≤ n.

This proves that Q is a sigma-finite measure on C0.
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Lemma A.6 For any η ∈ (0,∞), there exists a function Λ̄η : C0 → [0,∞] that is
B(C0)-measurable and such that {h ∈ C0 : Λ̄η(Rηh) 6= Λ(Rηh)} is Q-negligible.

Proof: We fix η ∈ (0,∞). For any n ∈ N, we define the finite measure Qn,η on C0 by
setting Qn,η(B) = Q(Vn ∩R−1

η (B) ), B ∈ B(C0). Lemma A.1 asserts that there exists

a B(C0)-measurable function Λ̄n,η : C0 → [0,∞] such that the set Sn,η := {h ∈ C0 :
Λ̄n,η(h) 6= Λ(h)} is Qn,η-negligible. Namely, Vn∩R−1

η (Sn,η) is Q-negligible. Let us set

Sη :=
⋃
n≥0 Vn ∩ R−1

η (Sn,η) that is Q-negligible and let us set Λ̄η = lim infn→∞ Λ̄n,η
that is B(C0)-measurable. It is easy to check that for any h ∈ C0\Sη, Λ̄η(Rηh) =
Λ(Rηh), which completes the proof of the lemma. �

We now fix a sequence (ηn)n≥0 of positive numbers that decreases to 0 and for any
h ∈ C0, we set

D(h) = lim inf
n→∞

η−1
n Λ(Rηnh) and D̄(h) = lim inf

n→∞
η−1
n Λ̄ηn(Rηnh) .

Observe that D̄ : C0 → [0,∞] is B(C0)-measurable. Lemma A.6 implies that the subset
{h ∈ C0 : D(h) 6= D̄(h)} is Q-negligible. Moreover, Lemma 2.2 entails that there exists
C9 ∈ [0,∞] that only depends on ψ and on (ηn)n≥0 such that

Q({h ∈ C0 : D̄(h) 6= C9}) = N
(∫ ζ

0

1{D̄(Ȟt) 6=C9}

)
= 0 . (76)

We now complete the proof of Lemma 4.4 as follows. We first set S∗ = {h ∈ C0 :
D(h) = C9}. Lemma A.6 and (76) entail that C0\S∗ is Q-negligible. Therefore, we
can find a Borel set B∗ ∈ B(C0) such that

B∗ ⊂ S∗ and Q(C0\B∗) = 0 . (77)

We next set

M(h) =

∫ ζ(h)

0

1{ȟt∈C0\S∗}
dt and M̄(h) =

∫ ζ(h)

0

1{ȟt∈C0\B∗}
dt .

Since C0\B∗ ∈ B(C0), standard arguments imply that h 7→ M̄(h) is B(C0)-measurable.
Thus, the set B := {h ∈ C0 : M̄(h) = 0} is a Borel subset of C0. By Fubini, we get

∫

C0

M̄(h)N(dh) = N
( ∫ ζ

0

1{Ȟt∈C0\B∗}
dt
)
= Q(C0\B∗) = 0.

Therefore,N(C0\B) = 0. Recall from (71) the definition of S and recall that C0\S isN -
negligible. Let us fix h ∈ S∩B. Then,M(h) = 0 sinceM(h) ≤ M̄(h), by (77). Namely,
for Lebesgue almost all t ∈ [0, ζ(h)], ȟt ∈ S∗, that is lim infn→∞(ηn)

−1Λ(Rηn ȟ
t) =

D(h) = C9. Since h ∈ S, (75) implies that Λ(Rηn ȟ
t) = Pg,h(p̄h([t, t + ηn])). We

thus have proved that for any h ∈ S ∩ B, for Lebesgue-a.a. t ∈ [0, ζ(h)], C9 =
lim infn→∞(ηn)

−1Pg,h(ph([t, t+ ηn])), which completes the proof of Lemma 4.4 since
C0\(B ∩ S) is N -negligible. �
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