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Abstract

The average human genome contains a small cohort of active L1 retrotransposons that encode two proteins (ORF1p and
ORF2p) required for their mobility (i.e., retrotransposition). Prior studies demonstrated that human ORF1p, L1 RNA, and an
ORF2p-encoded reverse transcriptase activity are present in ribonucleoprotein (RNP) complexes. However, the inability to
physically detect ORF2p from engineered human L1 constructs has remained a technical challenge in the field. Here, we
have employed an epitope/RNA tagging strategy with engineered human L1 retrotransposons to identify ORF1p, ORF2p,
and L1 RNA in a RNP complex. We next used this system to assess how mutations in ORF1p and/or ORF2p impact RNP
formation. Importantly, we demonstrate that mutations in the coiled-coil domain and RNA recognition motif of ORF1p, as
well as the cysteine-rich domain of ORF2p, reduce the levels of ORF1p and/or ORF2p in L1 RNPs. Finally, we used this
tagging strategy to localize the L1–encoded proteins and L1 RNA to cytoplasmic foci that often were associated with stress
granules. Thus, we conclude that a precise interplay among ORF1p, ORF2p, and L1 RNA is critical for L1 RNP assembly,
function, and L1 retrotransposition.
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Introduction

Long Interspersed Element-1 (LINE-1 or L1) sequences comprise

17% of human DNA and represent the predominant class of

autonomous retrotransposon-derived sequences in the genome [1].

Greater than 99.9% of L1 elements are molecular fossils that are no

longer capable of mobilization (i.e., retrotransposition) [1–3].

However, the average human genome still harbors a small cohort

(approximately 80–100) of retrotransposition-competent L1s (RC-

L1s) [4,5]. A wealth of experimental evidence suggests that ongoing

RC-L1 retrotransposition has the potential to impact the genome by

a myriad of mechanisms (reviewed in [6–8]).

A human RC-L1 is approximately 6 kb in length; it begins with

a ,910 bp 59 untranslated region (UTR) that harbors an internal

RNA polymerase II promoter [9–11], two non-overlapping open

reading frames (ORF1 and ORF2), and ends with a 39 UTR that

is followed by either a polyadenylic acid (poly A) or A-rich

sequence (Figure 1A) [12,13]. Genetic and biochemical evidence

suggest that the ORF1 and ORF2-encoded proteins (ORF1p and

ORF2p, respectively) preferentially associate with their encoding

mRNA in cis to form a ribonucleoprotein particle (RNP) that

probably is an intermediate in the retrotransposition process

[14–19]. The resultant RNP then gains access to the nucleus,

where L1 integration presumably occurs by target-site primed

reverse transcription (TPRT) [20–23].

Studies conducted with mouse and human RC-L1s have

uncovered a number of conserved domains within ORF1p that

are important for retrotransposition. The amino acid sequence of

the ORF1p amino-terminus is poorly conserved among mamma-

lian L1s, but it is predicted to form a coiled-coil or a-helical

domain that is important for ORF1p multimerization [15,24–27].

In human ORF1p, this region contains a putative leucine zipper

(LZ) domain that is absent from other mammalian L1s, although a

similar motif is present in the L1-like Swimmer element of teleosts

[15,24,27–29]. The coiled-coil domain of ORF1p is followed by a

RNA recognition motif (RRM) [30], and experiments in cultured

human cells have shown that mutations in conserved residues of

the RRM domain (e.g., a N157A/R159A double mutant) adversely

affect L1 retrotransposition and the formation of cytoplasmic

structures known as ORF1 cytoplasmic foci [31].

The carboxyl-terminus of ORF1p contains amino acid residues

that are conserved among mammalian L1s [24,27,32]. Biochem-
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ical analyses have shown that mouse ORF1p homotrimers bind L1

RNA in a sequence independent manner [33,34]. Mutations of a

conserved di-arginine motif (RR261–262 in human L1) can decrease

ORF1p RNA binding or mouse ORF1p nucleic acid chaperone

activity [33,35]. Similarly, studies using human L1s revealed that

alanine mutations in conserved amino acid residues in the

carboxyl terminus of ORF1p (RR261–262, and YPAKLS282–287,

respectively) both compromise the ability of ORF1p to localize to

RNPs and severely reduce L1 retrotransposition efficiency [16,32].

Thus, ORF1p is postulated to have critical functions at discrete

steps in the retrotransposition pathway.

Biochemical and genetic studies have revealed that human and

mouse ORF2 are translated by an unconventional mechanism

[36–39]. It is hypothesized that as few as one or two molecules of

ORF2p are translated per L1 RNA molecule, which could explain

why it has been difficult to detect ORF2p produced from

engineered L1s in cultured cells [37]. ORF2p contains endonu-

clease (EN) and reverse transcriptase (RT) activities that are

critical for the target-site cleavage and reverse transcription steps

of TPRT [22,23,32,40]. ORF2p also contains a conserved

cysteine-rich (C) domain near its carboxyl-terminus [27,41].

Mutations in the C-domain adversely affect L1 retrotransposition

[32]; however, the biochemical role of the C-domain in L1

retrotransposition remains poorly understood.

Epitope-tagging systems and enzymatic assays have been

developed to facilitate detection of L1 ORF1p and ORF2p RT

activity from engineered wild-type and mutant human L1s [16,17].

However, the inability to reliably and directly detect ORF2p from

engineered human L1s in transfected cultured human cells has

hindered progress in the field [37,42]. Here, we have devised an

epitope and/or RNA-tagging system to show that ORF1p, ORF2p,

and L1 RNA form a ribonucleoprotein complex, which may

represent a minimal RNP retrotransposition intermediate. Consis-

tent with previous studies, transient transfection/immunofluores-

cence-based experiments revealed that the L1-encoded proteins and

L1 mRNA often form discrete cytoplasmic foci, and that many of

these foci associate with stress granules [31]. Finally, we have

extended previous analyses [16,17] and demonstrate that mutations

in conserved functional domains of ORF1p and/or ORF2p

adversely affect L1 RNP formation, the reverse transcription of

L1 RNA, and L1 cytoplasmic foci formation. Thus, we have

developed a system that should allow a greater understanding of the

L1 retrotransposition mechanism at the molecular level.

Results

A system to detect L1 ORF2p in cultured cells
Previous studies have examined the co-localization of L1

ORF1p and L1 RNA in RNPs derived from cells transfected

with epitope-tagged wild-type or mutant human L1 expression

constructs [16,17]. To physically detect L1 ORF2p, we modified

existing L1 expression vectors (pJM101/L1.3 or pDK101) to

contain either a 530 bp TAP tag or a 72 bp FLAG-HA tag on the

carboxyl-terminus of ORF2p (Figure 1A; pAD2TE1 and

pES2TE1) [43,44]. To facilitate the identification of L1 RNA,

we also introduced a 1312 bp DNA fragment that contains 24

copies of a stem-loop sequence that can bind the phage MS2

protein into the L1 39UTR (Figure 1A; pAD3TE1) [45,46]. As a

control, we generated a plasmid that expresses TAP-tagged

ORF2p from a monocistronic transcript (Figure 1A; pAD500).

L1 constructs were equipped with a retrotransposition indicator

cassette (mneoI), subcloned into a pCEP4 episomal expression

vector, and were assayed for retrotransposition in cultured human

HeLa cells [32,47,48]. Inclusion of either the TAP or FLAG-HA

epitope tag onto the carboxyl-terminus of ORF2p had little effect

on the L1 retrotransposition efficiency when compared to a wild-

type control construct lacking the tag (Figure 1B; pADO2Tt,

pAD2TE1, and pES2TE1 vs. pJM101/L1.3). Similarly, the

inclusion of the MS2 stem loop sequences into the L1 39UTR

did not dramatically affect L1 retrotransposition efficiency

(Figure 1B; pADL1MT vs. pJM101/L1.3), although we did

observe an approximate 2.7 fold reduction in L1 retrotransposition

efficiency from a construct containing both the protein and MS2

tags (Figure 1B; pAD3TE1 vs. pJM101/L1.3). As a negative

control, we demonstrated that a construct containing a missense

mutation in the putative L1 RT active site (pAD135; D702A) was

defective for retrotransposition (Figure 1B). Thus, engineering

epitope and/or RNA tags into the L1 expression vectors is

compatible with retrotransposition in cultured cells.

Physical detection of ORF2p in HeLa cells
To detect the L1-encoded proteins from the engineered

plasmids, we transfected each construct into HeLa cells and

selected for cells containing the respective L1 expression vectors by

exploiting the hygromycin B selectable marker on the pCEP4

episome (Figure 1A; see Materials and Methods). Consistent with

previous studies [16,17,49], western blot analyses of whole cell

lysates using antibodies directed against the ORF1p T7-epitope

tag revealed the presence of a ,40 kDa protein from constructs

containing the tag (Figure 2A, middle panel (aT7); pAD2TE1,

pAD3TE1, and pES2TE1), but not from controls lacking the tag

(Figure 2A; pJM101/L1.3 and pADO2Tt). We also could detect

the ,40 kDa protein with polyclonal antibodies against endoge-

nous human ORF1p (Figure 2B, aORF1 panels; pAD2TE1,

pJM101/L1.3, and pDK101) [50]. Notably, we observed a slight

difference in the mobility of T7-tagged and untagged ORF1p

(Figure 2B; right panel (aORF1), pJM101/L1.3 vs. pDK101),

which most likely is due to the additional amino acids imparted by

the T7 epitope tag. Controls revealed that ORF1p was not

detected from a construct that lacks ORF1 (Figure 2A and 2B;

pAD500) or from a construct that contains a premature stop

Author Summary

Long Interspersed Element-1 (LINE-1 or L1) sequences are
the predominant class of autonomous retrotransposons in
the human genome and comprise an astounding 17% of
human DNA. Although the majority of L1s are considered
to be ‘‘dead,’’ an average human genome contains ,80–
100 active L1s. Active L1s encode two proteins (ORF1p and
ORF2p) that are required for mobility (retrotransposition)
by a ‘‘copy and paste’’ mechanism termed target-site
primed reverse transcription. Prior experiments suggested
that ORF1p, ORF2p reverse transcriptase activity, and L1
mRNA associate in ribonucleoprotein (RNP) particles and
that RNP formation is a necessary step in L1 retrotranspo-
sition. However, the difficulty in detecting ORF2p from
engineered human L1s has prevented a thorough under-
standing of its role in L1 retrotransposition. Here, we have
exploited epitope and/or RNA–tagging strategies to detect
and characterize a ‘‘basal’’ RNP complex from engineered
human L1s. We also expanded on previous studies and
characterized how mutations in conserved functional
domains of ORF1p and ORF2p can adversely affect L1
RNP formation/function. Finally, our strategy allowed us to
detect the L1–encoded proteins and L1 RNA in cytoplas-
mic foci. Thus, we have developed and employed a system
to gain greater understanding of LINE-1 retrotransposition
at the molecular level.

Cytoplasmic LINE-1 RNPs
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Figure 1. The retrotransposition efficiency of engineered L1s used in this study. A. A diagram of L1 plasmids used in this study: Each plasmid
is a derivative of pJM101/L1.3 or pDK101 [4,16]. The constructs were tagged with the mneoI retrotransposition indicator cassette [32,47], and are
expressed from the pCEP4 episomal vector (Invitrogen). Labeled rectangles indicate the relative positions of the L1 59UTR, ORF1p and ORF2p. Labeled
flags at the 39 ends of ORF1 and/or ORF2 are used to denote the epitope tag in the respective constructs. pAD3TE1 also contains 24 copies of a stem-
loop sequence that can bind the phage MS2 protein (light rectangle labeled MS2 24x) [65]. pAD500 is a monocistronic ORF2p expression vector that
lacks ORF1 as well as the inter-ORF spacer sequence. B. Representative results of the retrotransposition assay: L1 retrotransposition efficiency was
assayed as described previously [32,48]. HeLa cells transfected with pJM101/L1.3 serve as a positive control. Untransfected HeLa cells and HeLa cells
transfected with an RT mutant (pAD135; D702A) serve as negative controls. Cartoons of constructs used in the experiment are indicated in the figure.
All constructs contain the mneoI retrotransposition indicator cassette.
doi:10.1371/journal.pgen.1001150.g001
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codon in ORF1 (Figure 2A; pADO1S). Qualitative reverse

transcriptase-PCR (RT-PCR) experiments further confirmed that

L1 RNA was expressed from each of the transfected constructs

(Figure 2C; see Oligonucleotides and RT-PCR sections in

Materials and Methods for details).

To detect ORF2p expression, we conducted western blot

analyses on whole cell lysates derived from transfected cells using

antibodies directed against either the TAP or FLAG-HA epitope

tag (Figure 2A). A ,170 kDa protein was detected from L1

constructs containing TAP-tagged ORF2p, but not from an

untagged wild-type control (Figure 2A; left panel (aTAP);

pADO2Tt, pAD2TE1, pAD3TE1, and pAD500 vs. pJM101/

L1.3). The ,170 kDa product corresponds to the predicted size of

ORF2p (,150 kDa) plus the predicted size of the TAP tag

(,19 kDa) [12,43]. A ,170 kDa protein also was detected using

antibodies against endogenous ORF2p (Figure 2B; left panel

(aORF2)) [42]. Similarly, a ,155 kDa protein was detected from

L1 constructs containing FLAG-HA-tagged ORF2p, but not from

the untagged wild-type control (Figure 2A; right panel (aHA):

pES2TE1 vs. pJM101/L1.3). Consistent with previous genetic

studies, TAP-tagged ORF2p expression was greatly diminished by

introducing a stop codon in ORF1 (Figure 2A; pADO1S) and was

most abundant when expressed from an ORF2p monocistronic

expression vector (Figure 2A and 2B; pAD500) [37].

Epitope-tagged ORF2p localizes to ribonucleoprotein
particles

To test whether ORF2p localizes to ribonucleoprotein particles

(RNPs), we transfected HeLa cells with pAD2TE1, selected for

transfected cells, and isolated RNPs by ultracentrifugation (see

Materials and Methods) [16,17]. Western blotting revealed that

ORF1p and ORF2p were readily detected in the RNP fraction

(Figure 3A, top panel).

We next used the L1 Element Amplification Protocol (LEAP)

assay to determine whether the RNP preparations contained an L1-

specific reverse transcriptase activity [17]. Consistent with previous

studies, a diffuse set of LEAP products that ranged in size from

,220 to ,400 bp was detected in pAD2TE1-derived RNPs, but

not from pAD135-derived (D702A; RT mutant) RNPs (Figure 3A,

lower panel). Cloning and sequencing of the pAD2TE1-derived

LEAP products confirmed that L1 reverse transcription generally

initiated at variable sites within the L1 poly (A) tail, which accounts

for variably-sized LEAP products (data not shown [17]).

Epitope-tagged ORF2p form a complex with ORF1p and
their encoding RNA

To further verify that ORF1p, ORF2p, and L1 mRNA form an

RNP, HeLa cells were transfected with either pES2TE1 or

pDK101. Whole cell extracts then were subjected to immunopre-

cipitation using an anti-FLAG M2 antibody fused to agarose beads

(Figure 3B). Incubation of the beads with a FLAG peptide followed

by western blot analysis revealed an enrichment of ORF1p and

ORF2p in the pES2TE1, but not in the pDK101 immunoprecip-

itated reactions (Figure 3C). We sometimes detected a faint band

of ,40 kDa in the pDK101 immunoprecipitated reactions upon

longer film exposures, suggesting that some T7-tagged ORF1p

may bind non-specifically to the anti-FLAG M2 agarose beads

(data not shown). However, subsequent experiments/product

characterization determined that the pES2TE1 immunoprecipi-

tated fraction contained LEAP activity, whereas the pDK101

immunoprecipitated fraction lacked a readily detectable LEAP

activity (Figure 3D).

Interestingly, we consistently observed less ORF1p associated

with RNPs in immunoprecipitation experiments when compared to

experiments conducted with whole cell lysates or crude RNPs

(Figure 2A and Figure 3A). These data suggest either that ORF1p is

less tightly associated with L1 mRNA than ORF2p in RNPs (which

is consistent with previous observations [17]) and/or that a fraction

of ORF1p is dissociated from L1 RNA during the immunoprecip-

itation process. Regardless, whereas previous studies showed that

ORF1p, ORF2p RT activity, and L1 RNA co-localize to RNPs

[16,17], we were able to demonstrate the physical association of

these components in immunoprecipitation experiments.

Mutations in both ORF1p and ORF2p affect L1 RNP
formation and/or function

Previous studies identified activities associated with ORF1p and

ORF2p that are critical for L1 retrotransposition [22,30,32,35].

Here, we expanded on these analyses to determine whether

mutations in the L1-encoded proteins affect their ability to localize

to RNPs and/or impact L1 reverse transcriptase activity in the

LEAP assay. We first tested mutants in the following functional

domains of ORF1p: 1) the putative leucine zipper domain

(pADLZC; L93,100,107,114V); 2) the RNA-recognition motif

(pAD113; NLR157–159ALA); 3) the carboxyl-terminal nucleic acid

binding domain (pAD105; RR261–262AA); 4) an ORF1p mutation

that affects mouse nucleic acid chaperone activity (pAD106;

RR261–262KK); and 5) a double mutant in the putative leucine

zipper domain and carboxyl-terminal nucleic acid binding domain

(pADL/R; L93,100,107,114V/RR261–262AA) (Figure 4A; see Materi-

als and Methods) [16,30–32,35]. Each of these mutations,

including the LZC mutation (pADLZC; L93,100,107,114V), severely

compromise L1 retrotransposition efficiency in HeLa cells (Figure

S1A, S1B). The LZC mutant data are in agreement with a

published report, which demonstrated a L93/100/114A triple

mutation inactivates L1 retrotransposition [31].

Figure 2. Detection of ORF1p and ORF2p from engineered L1 constructs. A. Representative results from western blot analyses: Whole cell
lysates derived from untransfected HeLa cells or HeLa cells transfected with the indicated L1 expression constructs were subjected to western blot
analyses. Top panels: western blots conducted with anti-TAP antibodies (aTAP; left side) or anti-HA antibodies (aHA; right side) to detect epitope-
tagged ORF2p. Middle panels: western blots conducted with anti-T7 antibodies (aT7) to detect epitope-tagged ORF1p. Lower panels: western blots
conducted with anti-tubulin antibodies (aTubulin) served as a loading control. Molecular weight standards (Invitrogen, left side, and New England
Biolabs, right side) are listed at the left of each series of gels. B. Protein detection specificity: Whole cell lysates derived from HeLa cells transfected with
the indicated constructs were subjected to western blot analyses using antibodies against either endogenous ORF1p (aORF1) or endogenous ORF2p
(aORF2). TAP-tagged ORF2p also was detected using an anti-TAP antibody. T7-tagged ORF1p also was detected with an anti-T7 antibody. Tubulin
was detected using an anti-tubulin (aTubulin) antibody and served as a loading control. Molecular weight standards (Invitrogen) are listed at the left
of each series of gels. C. RT-PCR analyses: RT-PCR reactions using RNAs isolated from whole cell lysates derived from transfected cells revealed that L1
RNA was expressed from each of the constructs. GAPDH mRNA detection was used to assess the quality of the RNA preparations and as a loading
control. Reactions without template (PCR control) or reverse transcriptase (RT control) were used as negative controls. DNA size markers (Invitrogen)
are indicated at the left of the gel. Colored cartoons of the constructs used in the experiments are indicated next to their respective names. The black
lines indicate the 59 and 39 UTRs. The green and red boxes indicate ORF1 and ORF2p respectively. When present, epitope tags are indicated. All
constructs contain the mneoI retrotransposition indicator cassette.
doi:10.1371/journal.pgen.1001150.g002

Cytoplasmic LINE-1 RNPs

PLoS Genetics | www.plosgenetics.org 5 October 2010 | Volume 6 | Issue 10 | e1001150



Figure 3. Biochemical identification of a basal L1 RNP complex. A. L1 RNPs contain ORF1p, ORF2p, L1 RNA, and L1 reverse transcriptase activity:
RNP pellets were obtained from untransfected HeLa cells, or from HeLa cells transfected with wild-type (pAD2TE1) and reverse transcriptase deficient
(pAD135) L1 constructs. As in Figure 2, tagged ORF1p and ORF2p were detected using anti-T7 (aT7) and anti-TAP (aTAP) respectively. Ribosomal S6
protein was detected using an anti-S6 (aS6) antibody and was used as an RNP loading control. Reverse transcriptase activity was detected using the
LEAP assay as described previously [17]. Reactions without template (No Template) or RNPs (No RNP/RNA) were used as negative controls. Top panel:
LEAP reactions (LEAP-L1). Middle panel: L1 RT-PCR reactions conducted with M-MLV reverse transcriptase control for the presence of L1 RNA in RNPs
(M-MLV-L1). Bottom panel: GAPDH RT-PCR reactions conducted with M-MLV reverse transcriptase assess RNP RNA quality and serve as a RT-PCR
internal control (M-MLV-GAPDH). B. Flow chart of the L1 RNP immunoprecipitation reaction: Whole cell extracts were prepared from HeLa cells
transfected with either pDK101 or pES2TE1. Immunoprecipitation reactions were conducted by incubating the resultant lysates with agarose beads
fused to an anti-FLAG M2 antibody. The elution of ORF2p from the beads was performed by FLAG peptide competition. Western blotting and LEAP
assays were performed on aliquots of the whole cell extracts or the elution fractions to detect the L1-encoded proteins and L1-specific reverse
transcriptase activity, respectively. C. Co-immunoprecipitation of ORF1p and ORF2p: Whole cell extract (input) and immunoprecipitated (elution)
products from pDK101 or pES2TE1 transfected cells were subjected to western blotting to identify ORF2p (aHA; top panel), ORF1p (aT7 middle panel)
or tubulin (aTubulin, bottom panel). The femto ECL substrate (Pierce) was used to detect ORF1p and ORF2p. D. A basal L1 RNP complex contains L1
RNA and retains L1 reverse transcriptase specific activity: LEAP was performed on whole cell extracts (input) or immunoprecipitated (elution) products
from pDK101 or pES2TE1 transfected cells. Reactions conducted without template (No Template) or without RNPs (No RNP) were used as negative
controls. As in Figure 2, colored cartoons of the constructs are indicated in panels A, C and D. Molecular weight/DNA size markers (Invitrogen) are
indicated at the left of the images. All constructs contain the mneoI retrotransposition indicator cassette.
doi:10.1371/journal.pgen.1001150.g003
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Figure 4. TAP tagged ORF2p and RT activity detection in RNP preparation. A. Schematic representation of the amino acid mutation positions
in L1 sequence: The names of plasmids containing L1s with mutations in the ORF1p coiled-coil domain (CC-LZ), the ORF1p RNA recognition motif
(RRM), and the ORF1p carboxyl-terminal (CTD) domain are indicated below the schematic. The names of plasmids containing mutations in the ORF2p
endonuclease domain (EN), reverse transcriptase domain (RT) or cysteine-rich domain (C) also are shown. pADL/R is a double mutant that contains a
putative leucine zipper mutation and a carboxyl-terminal domain mutation in ORF1p. pADL/C is a double mutant that contains a putative leucine
zipper mutation in ORF1p and a C-domain mutation in ORF2p. The flags indicate the epitope tag present on ORF1 and ORF2. B. Detection of ORF1p
and ORF2p from mutant L1 constructs: RNPs from HeLa cells transfected with a RC-L1 (pAD2TE1) or the indicated mutant L1 constructs (see Figure 4A)
were analyzed by western blotting [16]. Tagged L1 proteins were detected as in Figure 3; ORF2p (top panel), ORF1p (middle panel). Ribosomal S6
protein detection was used as a loading control (bottom panel). Molecular weight markers (Invitrogen) are indicated at the left of the image. C. L1 RT
activity of RNP fractions detected by LEAP: An aliquot from each of the indicated RNP preparations noted above was used to perform LEAP assays (see
Figure 3) [17]. RNPs from pAD2TE1 served as a positive control. RNPs from untransfected HeLa cells or pAD135 (D702A; RT mutant) transfected cells
served as negative controls. Reactions without RNPs (No RNP/RNA) or template (No Template) also were used as negative controls. Top panel: LEAP
reactions (LEAP-L1). Middle panel: L1 RT-PCR reactions conducted with M-MLV reverse transcriptase control for the presence of L1 RNA in the RNP
fractions (M-MLV-L1). Bottom panel: GAPDH RT-PCR reactions conducted with M-MLV reverse transcriptase assess RNP RNA quality and serve as a RT-
PCR internal control (M-MLV-GAPDH). DNA size markers (Invitrogen) are indicated at the left of the image. All constructs in panel B and C contain the
mneoI retrotransposition indicator cassette.
doi:10.1371/journal.pgen.1001150.g004
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Multiple independent RNP preparations derived from cells

transfected with each of the respective mutants were analyzed by

western blotting to examine the presence and abundance of both

ORF1p and ORF2p (Figure 4B). LEAP assays then were used to

determine whether those RNPs contained an L1-specific reverse

transcriptase activity (Figure 4C). Once again, control MLV RT-

PCR-based experiments, using the same oligonucleotide primers

employed in the LEAP assay, indicated that L1 RNA was present

at roughly comparable levels in the RNP fraction of HeLa cells

transfected with the mutant constructs (Figure 4C).

Consistent with previous data [16], a mutation in the ORF1p

carboxyl-terminal domain (pAD105; RR261–262AA) led to a severe

reduction in the ability of ORF1p, but not ORF2p, to localize to

the RNP fraction (Figure 4B). RNPs derived from pAD105-

transfected cells had a readily detectable LEAP activity, although

the constellation of LEAP products differed from those in the wild-

type control, pAD2TE1, because they frequently initiated reverse

transcription from within the 39 end of the L1 mRNA (Figure 4B

and 4C; Figure S2A, S2B, S2C and S2D; pDK105 RR261–262AA;

data not shown). Similar data also were observed for an L1

containing a mutation in the carboxyl-terminal domain (pDK116;

YPAKLS282–287AAAALA) as well as for pAD500, a TAP-tagged

ORF2p construct that lacks ORF1 (Figure 4B and Figure S2A and

S2B). These findings support the hypothesis that ORF2p can

preferentially associate with its encoding RNA independent of

ORF1p binding and that the resultant RNPs retain LEAP activity

[17]. Indeed, the constellation of LEAP products observed in the

RR261–262AA, YPAKLS282–287AAAALA, and pAD500 mutants

support our previous hypothesis that ORF1p binding to L1

mRNA possibly may restrict hybridization of the LEAP primer to

the L1 poly (A) tail [17].

Mutations that affect mouse nucleic acid chaperone activity

(pAD106; RR261–262KK) had little effect on the ability of ORF1p

and ORF2p to localize to RNPs or on LEAP activity (Figure 4B;

[16,35]). We occasionally observed a greater abundance of the

lower molecular weight LEAP products, when compared to our

wild-type control, pAD2TE1 (Figure 4C). Indeed, closer inspec-

tion consistently revealed slightly higher levels of the major LEAP

products (,220 to ,400 bp) and a slightly lower level of the

shorter LEAP products from the RR261–262KK mutant (pAD106

and pDK106; Figure 4C, Figure S2B and S2C) when compared to

LEAP products derived from the RR261–262AA (pAD105 and

pDK105; Figure 4C, Figure S2B and S2C) and YPAKLS282–

287AAAALA mutants (pDK116; Figure S2B). Thus, although the

L1 RT activity detected in the LEAP assay does not appear to

require ORF1p, it is clear that specific mutations in ORF1p can

affect the constellation of products observed in these assays.

Mutations in the putative ORF1p leucine zipper-binding

domain (pADLZC; L93,100,107,114V) reduced ORF1p and ORF2p

localization in the RNP fraction and consistently exhibited lower

qualitative levels of LEAP activity when compared to the wild-type

control, pAD2TE1 (Figure 4B and 4C). Indeed, quantitative

LEAP experiments conducted with pLZC-derived RNPs (a

L93,100,107,114V mutant that lacks an epitope tag on ORF2p)

revealed a five to seven-fold reduction in LEAP activity when

compared to a corresponding wild-type control (pDK101; Figure

S2E). Subsequent data from LEAP experiments designed to detect

variable length L1 cDNA products further suggest that the LZC

mutation adversely affects early steps in the reverse transcription of

L1 RNA and does not appear to affect L1 RT elongation (Figure

S2F).

The putative leucine zipper domain-carboxyl terminal domain

double mutant (ADL/R; L93,100,107,114V/RR261–262AA) shared

biochemical characteristics of each single mutant. Similar to

pAD105; RR261–262AA, ORF1p levels were severely reduced in

pADL/R-derived RNPs. However, similar to the putative leucine

zipper domain (pADLZC; L93,100,107,114V) mutant, ORF2p levels,

as well as LEAP activity, were reduced in pADL/R-derived RNPs

when compared to the wild-type control, pAD2TE1. Moreover,

the LEAP product profile in the double mutant resembled that in

the pAD105 mutant (Figure 4B and 4C; Figure S2). Thus, the

above data suggest that the LZC mutant adversely affects the

accumulation and/or stability of L1 RNPs and that the reduction

of ORF2p in RNPs likely contributes to the observed decrease in

LEAP activity.

Mutations in the ORF1p RRM domain (pAD113; NLR157–159

ALA) also led to a severe reduction in the ability of ORF1p and

ORF2p to localize to the RNP fraction of transfected cells

(Figure 4B). Indeed, ORF2p only was observed upon over-

exposure of the resultant western blots (data not shown). The

reduced level of ORF2p in pAD113-derived RNPs also correlated

with a decrease in LEAP activity when compared to the

pAD2TE1 wild-type control (Figure 4B and 4C). Notably, it is

unlikely that the NLR157–159ALA mutation dramatically affects

ORF2 translation because we can detect ORF2p from this mutant

by immunofluorescence (see below). Moreover, preliminary data

(n = 4 independent experiments) indicates that the NLR157–159

ALA mutant can serve as a ‘‘driver’’ in a genetic-based trans-

complementation assay to mobilize a reporter gene (ORF1mneoI;

[19]) at roughly 60 to 80% the level of the wild-type control,

pAD2TE1-NT (Doucet et al., preliminary data). These data are

consistent with previous genetic studies, which suggested that

ORF1p binding to L1 RNA is not required for ORF2 translation

[37]. Moreover, the data suggest that the NLR157–159ALA

mutations severely compromise the accumulation and/or stability

of L1 RNPs (see Discussion).

We next tested mutants in the following functional domains of

ORF2p for their effect on L1 RNP formation and L1 reverse

transcriptase activity: 1) the L1 endonuclease domain (pAD136;

H230A); 2) the L1 reverse transcriptase domain (pAD135; D702A); 3)

the cysteine-rich domain (pAD162; CWWDC1143–1147SWWDS)

(Figure 4A) [19,22,32]. As expected, the L1 RT mutant (pAD135;

D702A) did not dramatically affect the ability of ORF1p or ORF2p

to localize to RNPs, although it did abolish LEAP activity (Figure 4B

and 4C) [17]. These data are consistent with previous suppositions

that the D702A mutant likely blocks the reverse transcription step in

TPRT [17,32,40].

We repeatedly observed a slight reduction of ORF2p in RNPs

derived from the tested endonuclease mutant, and this reduction

correlates with a reproducible decrease in LEAP activity

(Figure 4A; pAD136; H230A). We also observed a severe reduction

of ORF2p, as it was only detected upon longer film exposures

(data not shown), and a strong decrease of LEAP activity in RNPs

derived from the tested cysteine-rich domain mutant (pAD162;

CWWDC1143–1147SWWDS). Finally, the leucine zipper/C-domain

double mutant (pADL/C; L93,100,107,114V/CWWDC1143–1147

SWWDS) displayed both a reduction of ORF1p in RNPs and a

concomitant decrease in LEAP activity (Figure 4B and 4C).

As additional controls for the above experiments, we demon-

strated that mutant constructs containing a T7-epitope tag on

ORF1p, but lacking an ORF2p epitope tag exhibited similar

qualitative LEAP activities as the pAD2TE1 mutant based

constructs (Figure S2). We also demonstrated that the amount of

T7-tagged ORF1p and TAP-tagged ORF2p in whole cell lysates is

similar to that in the RNP fraction for each of the pAD2TE1

mutant constructs, and that these proteins were not enriched in

insoluble aggregates in the pellet obtained after cell lysis (data not

shown). Thus, we conclude that mutations within discrete
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functional domains of ORF1p and ORF2p have differential effects

on L1 RNP formation/function.

Immunofluorescence detection of the L1–encoded
proteins and L1 mRNA

Previous studies have shown that ORF1p often aggregates in

cytoplasmic structures termed cytoplasmic foci [31]. Unlike the

RNP assays described above (which detect the steady state amount

of ORF1p and ORF2p in the RNP fraction of hygromycin

resistant cells ,9 days post-transfection), the L1 cytoplasmic foci

formation assays allows the opportunity to visually detect the L1-

encoded proteins and/or L1 RNA when over-expressed

,48 hours post-transfection.

To test whether the ORF1p cytoplasmic foci also contain

ORF2p and L1 RNA, we conducted immunofluorescence-based

localization experiments in a U-2 OS human osteosarcoma cell

line that can support the retrotransposition of engineered human

L1 constructs (Figure S3A). Initial experiments conducted with

pAD2TE1 revealed that ORF1p and ORF2p generally co-

localized to discrete cytoplasmic foci 48 hours post-transfection,

and that many foci were located near the periphery of the nucleus

(Figure 5A). Time course analyses further demonstrated that

cytoplasmic foci were apparent in ,50% of transfected cells as

early as 12 hours post-transfection, and that ,90% of transfected

cells displayed cytoplasmic foci 72 hours post-transfection (Figure

S3B). ORF1p/ORF2p-containing cytoplasmic foci also were

observed in U-2 OS cells transiently transfected with pAD2TE1-

NT, which lacks the mneoI retrotransposition indicator cassette

(Figure 5A) and with a pAD2TE1 derivative lacking the

heterologous cytomegalovirus immediate early (CMV) promoter,

although foci appeared 24–48 hours later as compared to cells

transfected with the wild type control, pAD2TE1 (data not shown).

ORF1p and ORF2p co-localization also was observed using an

anti-HA antibody to detect ORF2p (Figure 5A; pES2TE1) or

antibodies against endogenous ORF1p or ORF2p (Figure S3C;

pES2TE1). Qualitatively similar results were obtained when

pAD2TE1 was transiently transfected into HeLa or 143Btk cells,

which also support L1 retrotransposition [32,51] (data not shown).

To test whether L1 RNA co-localizes with ORF1p and ORF2p

to cytoplasmic foci, we transiently transfected pAD3TE1 into U-2

OS cells. In situ hybridization experiments using a fluorescently-

labeled probe complementary to the MS2 stem loop structures in

the L1 39UTR revealed the presence of L1 RNA in cytoplasmic

foci as well as in nuclei of transfected cells (Figure 5B and Figure

S3D). The co-localization of ORF1p, ORF2p, and L1 RNA was

confirmed by conducting co-transfection experiments with

pAD3TE1 and a plasmid expressing a fluorescently labeled MS2

protein (Figure S3D), and by staining with antibodies against

ORF1p and ORF2p (Figure S3C). As above, qualitatively similar

results were obtained upon transient transfection of pAD3TE1

into HeLa or HEK293 cells, which also support L1 retrotranspo-

sition [32,51] (data not shown).

To determine whether L1 foci are associated with specific

cytoplasmic substructures, we co-transfected U-2 OS cells with

pAD2TE1 and plasmids that express GFP fusion proteins that can

localize to processing bodies (i.e., P-bodies) and/or stress granules.

Consistent with previous analyses, ORF1p and ORF2p associated

with an Ago2-GFP fusion protein that localizes both to P-bodies

and stress granules (Figure 5C; panel 1) [31,52]. Refining this

analysis revealed that ORF1p and ORF2p co-localized with the

stress granule marker G3BP-GFP [53], but did not associate with

the P-body marker DCP1a-GFP [54] (Figure 5C; panel 2 and 3).

By comparison, experiments conducted with fluorescently labeled

antibodies specific for eIF3 and G3BP [53,55] revealed that stress

granules appear to closely associate with the L1 foci (Figure 5C,

panel 4 and 5).

Together, the above data demonstrate that ORF1p, ORF2p,

and L1 mRNA co-localize to cytoplasmic foci when over-

expressed from a variety of engineered L1 episomal expression

constructs and that many of these cytoplasmic foci associate with

stress granules. However, future experiments are needed to

determine whether cytoplasmic foci represent accumulation

depots for L1 RNPs or if they play an important role in L1

retrotransposition.

Mutations in ORF1p and ORF2p adversely affect the
formation of L1 cytoplasmic foci

We next examined if mutations in the L1-encoded proteins

affect L1 cytoplasmic foci formation. Transient transfection of

ORF1p mutant expression vectors into U-2 OS cells followed by

immunofluorescence staining with anti-T7 and anti-TAP antibod-

ies confirmed that ORF1p and ORF2p are expressed in these cells

(Figure 6A). Consistent with previous studies, mutations in the

ORF1p RRM domain (pAD113; NLR157–159ALA) and carboxyl-

terminal RNA binding domain (pAD105; RR261–262AA) led to a

reduction in the number of L1 cytoplasmic foci (Figure 6A and 6B)

[31]. A reduction in the number of L1 cytoplasmic foci also was

observed for an RRM domain mutant (pAD102; REKG235–238

AAAA), an additional carboxyl-terminal domain mutant

(pAD116; YPAKLS282–287AAAALA), and the putative leucine

zipper domain/carboxyl-terminal RNA binding domain double

mutant (pADL/R; L93,100,107,114V/RR261–262AA). By comparison,

mutations in the putative ORF1p LZ domain (pADLZC;

L93,100,107,114V) or mutations that affect the nucleic acid

chaperone activity of mouse ORF1p (pAD106; RR261–262KK

and pAD107; R261K) had little effect on L1 cytoplasmic foci

formation (Figure 6A and 6B), although we sometimes observed an

apparent nucleolar localization of ORF1p in pADLZC transfected

cells. None of the ORF2p mutations had a dramatic effect on L1

cytoplasmic foci formation (Figure 6A and 6B), although, we

observed a diffuse nuclear localization of TAP-tagged ORF2p in

cells transfected with either pAD162 or the putative leucine zipper

domain/cysteine-rich domain double mutant (pADL/C;

L93,100,107,114V/CWWDC1143–1147SWWDS) (Figure 6A).

The above data suggest that the ability of ORF1p to bind L1

RNA is critical for L1 cytoplasmic foci formation (Figure 6B).

Consistent with this idea, we were able to detect L1 cytoplasmic

foci, as well as diffuse ORF1p staining, in U-2 OS cells transiently

transfected with a T7-tagged ORF1p expression vector (Figure 6C;

pDK500). However, L1 cytoplasmic foci were not detected in U-2

OS cells transiently transfected with a TAP-tagged ORF2p

expression vector (Figure 5D; pAD500). Thus, these data, as well

as our previously published trans-complementation experiments

[56], suggest that ORF1p interacts with its encoding RNA in cis,

and that this association allows L1 cytoplasmic foci formation in

the absence of ORF2p.

Discussion

ORF2p has been notoriously difficult to detect from engineered

human L1s in cultured cells. It has been hypothesized that human

ORF2p is translated at low levels when compared to ORF1p and/

or may be an unstable protein, which might help explain why it

has evaded detection [36–39,42]. Previous biochemical studies

have identified human ORF2p from vascular endothelial cells in

vivo [57] and have demonstrated that ORF2p RT activity co-

localizes with ORF1p and L1 RNA in cytoplasmic RNPs derived

from HeLa cells transfected with wild-type engineered human L1
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expression constructs [16,17]. Here, we have built on these studies

and have combined epitope and RNA tagging strategies to

physically detect L1 ORF1p, ORF2p and L1 mRNA in

cytoplasmic RNPs.

Why our approach allows the ready detection of ORF2p

expressed from engineered human L1 constructs requires further

study. Experiments conducted with anti-TAP antibodies consis-

tently yielded more robust detection of ORF2p when compared to

anti-HA or anti-ORF2p antibodies. Thus, the inclusion of a large

carboxyl-terminal tag, such as the TAP-tag, might stabilize

ORF2p. However, since engineered L1 constructs containing

either the TAP or HA epitope tags on the carboxyl-terminus of

ORF2p remain retrotransposition-competent, the strategy de-

scribed here allows a way to both directly study the expression of

ORF1p and ORF2p from a bicistronic transcript and establishes

an experimental platform to determine how each protein interacts

with L1 RNA. Furthermore, this strategy now allows a

comprehensive means to assess how mutations in ORF1p and/

or ORF2p affect L1 RNP biogenesis and/or L1 retrotransposition.

Biochemical methods allowed us to assess how mutations in the

L1-encoded proteins affect RNP function. For example, in

agreement with previous studies, a mutation in the carboxyl-

terminal domain of ORF1p (pAD105, RR261–262AA) markedly

reduced ORF1p levels in RNPs, but did not noticeably affect

ORF2p accumulation or LEAP activity (Figure 6A; Figure S3)

[16,17]. Similarly, we could detect ORF2p and LEAP activity in

RNPs derived from cells transfected with a construct that lacks

ORF1 (Figure 6A and 6B). Thus, we conclude that ORF2p can

preferentially associate in cis with its encoding transcript to form an

RNP independently of ORF1p RNA binding (Figure 7).

Our studies further suggest that an interplay exists between

ORF1p, ORF2p and L1 RNA that is critical for proper L1 RNP

formation/function (Figure 7). For example, mutations in the

putative leucine zipper (pADLZC; L93,100,107,114V) or RRM

(pAD113; NLR157–159ALA) domains led to a reduced amount of

ORF2p in the RNP fraction, as well as a decrease in LEAP

activity. The L93,100,107,114V mutations reside in the N-terminal

coiled-coil domain of ORF1p and could potentially alter the

structure of the protein. Similarly, the NLR157–159ALA mutations

reside near coiled-coil domain/RRM junction and structural

studies indicate that a hydrogen bond between N157 and D252 is

important for correct folding of the RRM domain [30]. Thus,

both of the above mutations may adversely affect the structural

integrity of ORF1p, leading to the destabilization of the resultant

L1 RNPs. Indeed, such a scenario could potentially account for

the reduced levels of ORF2p in RNPs and/or L1 RT activity in

these mutants (Figure 7). It is unlikely that the L93,100,107,114V,

L93,100,107,114V/RR261–262AA, and NLR157–159ALA mutants sig-

nificantly affect ORF2p translation, since our preliminary data

indicate that each mutant can serve as a ‘‘driver’’ in a genetic-

based trans-complementation assay (Doucet, Hulme et al., prelim-

inary data).

As expected, a mutation in the endonuclease domain of ORF2p

(pAD136; H230A) had no discernable affect on the ability of

ORF1p to accumulate in RNPs when compared to a wild-type

control construct. However, this mutation consistently led to a

slightly reduced amount of ORF2p in RNPs, which correlated

with a lower LEAP activity [17]. These findings could potentially

explain why the H230A mutant consistently exhibited lower levels

of endonuclease-independent L1 retrotransposition in Chinese

Hamster Ovary cells that are deficient in the non-homologous

end-joining pathway of DNA repair when compared to a D205A

endonuclease domain mutation [58].

Mutations in the cysteine-rich domain (pAD162; CWWDC1143–1147

SWWDS) did not have a major effect on the ability of ORF1p to

accumulate in the RNP fraction. However, these mutations led to a

reduced amount of ORF2p in the RNP fraction and a concomitant

decrease in LEAP activity when compared to a wild-type control

construct. How mutations in the C-domain affect ORF2p accumu-

lation in RNPs requires further study; however, it is possible that

these mutations alter the ability of ORF2p to interact with L1 RNA

and/or host factors that are important for the biogenesis of L1 RNPs

(Figure 7).

A second assay allowed us to determine how mutations in the

L1-encoded proteins affect L1 protein expression and cytoplasmic

foci formation shortly after transfection. First, we observed that

ORF1p and ORF2p can be detected when transiently expressed

from the wild-type and mutant L1 constructs used in the study. We

next measured the ability of these proteins to form cytoplasmic

foci. Consistent with previous studies, retrotransposition-

defective L1s containing mutations in either the RRM (pAD113;

NLR157–159ALA, pAD102; REKG235–238AAAA) or carboxyl-

terminal domain of ORF1p (pAD105, RR261–262AA; pAD116,

YPAKLS282–287AAAALA) reduced L1 cytoplasmic foci formation

[31,42,59]. In contrast, mutations in the putative leucine zipper

domain (pADLZC; L93,100,107,114V) or mutations analogous to

those that adversely affect the nucleic acid chaperone activity of

mouse ORF1p (pAD106; RR261–262KK), which are not predicted

to inhibit L1 RNA binding, or mutations in ORF2p had little

effect on L1 cytoplasmic foci formation [16,35]. Thus, unlike our

biochemical assays, the L1 cytoplasmic foci formation assay does

not allow us to readily assess ORF2p function. Instead, it provides

a valuable tool to screen for ORF1p mutations that affect RNA

binding or perhaps protein stability (Figure 7).

Consistent with previous studies, we found that L1 cytoplasmic

foci are in close association with proteins that are components of

stress granules (Figure 7) [31,59]. Interestingly, recent studies have

shown an important role for another cytoplasmic structure (P-

Figure 5. Cellular identification of L1 cytoplasmic foci. A. Cellular localization of the L1-encoded proteins: Immunofluorescence was conducted
on pAD2TE1 transfected U-2 OS cells 48 hours post-transfection. T7-tagged ORF1p (green; left column) and TAP-tagged ORF2p (red; middle column)
staining are shown for representative transfected cells. A merged image is shown in the rightmost column; DAPI (grey) was used to stain nuclear
DNA. Cartoons of the constructs are indicated at the left of the micrographs. The blue rectangle in the constructs indicates the mneoI cassette. B.
Cellular localization of L1-encoded proteins and RNA: Immunofluorescence/RNA FISH was conducted on pAD3TE1 transfected U-2 OS cells 48 hours
post-transfection. T7-tagged ORF1p (green), TAP-tagged ORF2p (blue), L1 RNA (red), and DAPI (turquoise) staining are indicated in left four
micrographs. A merged image is shown in the rightmost panel. The cartoon of pAD3TE1 is shown above the micrographs. C. L1 cytoplasmic foci are
associated with stress granules: Immunofluorescence/fluorescence microscopy was performed on U-2 OS cells co-transfected with pAD2TE1 and one
of the following plasmids: 1) pAgo2-GFP (green staining, top row of images); 2) pDCP1a-GFP (green staining, second row of images); 3) pG3BP-GFP
(green staining, third row of images). T7-tagged ORF1p (red), and TAP-tagged ORF2p (blue) also are shown. A merged image is shown in the
rightmost panels; DAPI (grey) was used to stain nuclear DNA. Immunofluorescence also was performed on U-2 OS cells transfected with pAD3TE1.
Images using antibodies against the endogenous stress granule components eIF3 (aeIF3 (green)) and G3BP (aG3BP (green)) are shown. L1 RNA (red),
and ORF2p (blue) also are indicated. Arrows indicate the association of L1 cytoplasmic foci (white) and stress granules (yellow). A merged image is
shown in the rightmost columns; DAPI (grey) was used to stain nuclear DNA. All L1 constructs in panel B and C contain the mneoI retrotransposition
indicator cassette.
doi:10.1371/journal.pgen.1001150.g005
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bodies) for Ty3 and Ty1 retrotransposition in yeast [60–62].

Whether L1 cytoplasmic foci play an important role in L1

retrotransposition awaits further experimentation.

In sum, we have developed a powerful system to physically

detect the proteins and RNA encoded by both retrotransposition-

competent and mutant L1 constructs in RNP complexes, which

now augments previous studies that were based on inferring the

presence of ORF2p from its enzymatic activity. It is noteworthy

that RNPs derived from the RC-L1s characterized in this study

exhibit the biochemical properties predicted of a ‘‘basal’’ L1

retrotransposition intermediate. Thus, we speculate that at least

some of the L1 cytoplasmic foci identified here could serve as bona

fide L1 retrotransposition intermediates. Finally, we predict that

the use of the L1 expression constructs developed here will allow a

powerful means to identify host factors that play a role in L1

retrotransposition and predict that adaptations of this system will

prove useful in identifying RNPs encoded by other non-LTR

retrotransposons.

Materials and Methods

Oligonucleotides
Sequences of the oligonucleotides used in this study that have

been published previously or are available upon request.

39RACE adapter: 59- GCGAGCACAGAATTAATACGACT-

CACTATAGGTTTTTTTTTTTTVN-39

39RACE outer: 59-GCGAGCACAGAATTAATACGACT-39

GAPDH 39 end: 59-GACCCTCACTGCTGGGGAGTCC-39

Neo Promoter Sens (NPS): 59-GGTTGCTGACTAATTGA-

GATGCATGC-39

Neo8161S: 59-CACATTCCACAGCTGATCGATACC-39

L1 39end: 59-GGGTTCGAAATCGATAAGCTTGGATCCA-

GAC-39

LEAP-86: 59-CAAACCACAACTAGAATGCAGTG-39

LEAP-46: 59-GTGAAATTTGTGATGCTATTGC-39

Plasmid constructs
The following plasmids are based on the previously described

pJM101/L1.3 and pDK101 constructs [4,16]. The amino acid and

nucleotide numbers indicate the mutation position based on L1.3

accession number L19088 [63]. The constructs were cloned into the

pCEP4 expression vector (Invitrogen) and contain the mneoI indicator

cassette [32,47] in the L1 39UTR unless otherwise indicated. PCR

followed by subcloning was used to introduce the respective epitope tag

sequences onto the 39 end of ORF2. As a result of this procedure, we

deleted a portion of the L1 39UTR (nts 5818 to 5953). Oligonucleotides

used in our cloning strategies are available upon request.

pADO2Tt contains a Tandem Affinity Purification epitope tag

(TAP tag) [43] on ORF2p and was cloned from the pZome-1-C

vector (Euroscarf).

pAD2TE1 is derived from pDK101 (L1.3) [16] and contains

both the T7 gene 10 epitope tag on the carboxyl-terminus of

ORF1p and a TAP tag on the carboxyl-terminus of ORF2p.

pAD2TE1-D2 is derived from pAD2TE1, but lacks CMV

promoter and SV40 polyadenylation signal present in the original

pCEP4 vector.

pAD2TE1-NT is identical to pAD2TE1, but lacks the mneoI

indicator cassette.

pES2TE1 is identical to pAD2TE1, but contains a tandem

affinity FLAG-HA tag on the carboxyl-terminus ORF2p [44].

pAD500 is derived from L1.3DORF1NN [37], and contains a

TAP tag on the carboxyl-terminus of ORF2p.

pADL1MT is derived from pJM101/L1.3 and contains 24

repeats of the MS2 stem-loop (MS2 tag) upstream of the mneoI

indicator cassette in the L1 39UTR. The MS2 repeats were

subcloned from the pTRIP vector [64].

pAD3TE1 is identical to pAD2TE1, but contains the MS2 tag

in the 39UTR (at the same position as in pADL1MT).

pADO1S is identical to pAD2TE1, but contains three stop

codons in ORF1. The first two stop codons (R7Stop; K8Stop) were

generated by introducing a thymidine at nucleotide position 928 to

create a frameshift mutation and by mutating an A to a T at

nucleotide position 930. The third stop codon is from the construct

pJM108/L1.3 carrying the mutation S119Stop [19,32].

pADLZC is identical to pAD2TE1, but contains four leucine to

valine mutations (L93,100,107,114V) in the ORF1p putative leucine

zipper domain.

pAD102 is identical to pAD2TE1, but contains the REKG235–238

AAAA mutations in the ORF1p RRM domain [16,32].

pAD105 is identical to pAD2TE1, but contains the RR261–262AA

mutations in the ORF1p C-terminal domain [16,19,32].

pAD106 is identical to pAD2TE1, but contains the RR261–262KK

mutations in the ORF1p C-terminal domain [16].

pAD107 is identical to pAD2TE1, but contains the RR261–262KR

mutation in the ORF1p C-terminal domain [16].

pAD113 is identical to pAD2TE1, but contains the NLR157–159

ALA mutations in the ORF1p RRM domain [31].

pAD116 is identical to pAD2TE1, but contains the

YPAKLS282–287AAAALA substitution in the ORF1p C-terminal

domain [16,32].

pAD135 is identical to pAD2TE1, but contains the D702A

mutation in the putative ORF2p RT active site [19].

pAD136 is identical to pAD2TE1, but contains the H230A

mutation in the ORF2p EN domain [19].

pAD162 is identical to pAD2TE1, but contains the

CWWDC1143–1147SWWDS mutations in the ORF2p C-domain

[32].

pADL/R is identical to pAD2TE1, but contains a putative

leucine zipper domain as well as a C-terminal domain mutant

(L93,100,107,114V; RR261–262AA) in ORF1p.

Figure 6. L1 cytoplasmic foci formation requires the nucleic acid binding domain of ORF1p. A. L1 cytoplasmic foci formation requires the
nucleic acid binding domain of ORF1p: Immunofluorescence was performed on U-2 OS cells transfected with the indicated pAD2TE1-derived mutant
plasmids (described in Figure 4A). T7-tagged ORF1p (green; top panels) and TAP-tagged ORF2p (red; middle panels) staining are shown for
representative transfected cells. A merged image is shown in the bottom panels; DAPI (grey) was used to stain nuclear DNA. B. Quantitative analyses
of L1 cytoplasmic foci formation: The number of U-2 OS transfected cells that contains L1 cytoplasmic foci were quantified. The name of the construct
used for each transfection is indicated on the X-axis (described in Figure 4A). The percentage of transfected cells displaying L1 cytoplasmic foci is
indicated on the Y-axis. pAD2TE1 serves as a positive control. The average of four independent experiments is indicated; error bars = standard
deviation of the mean. C. ORF1p is necessary and sufficient for L1 cytoplasmic foci formation: Immunofluorescence was performed on U-2 OS cells
transfected with pDK500 and pAD500. A cartoon of the constructs is shown at the left of the micrographs. T7-tagged ORF1p (green; left column) and
TAP-tagged ORF2p (red; middle column) staining are shown for representative transfected cells. A merged image is shown in the rightmost column;
DAPI (grey) was used to stain nuclear DNA. The graph indicates the percentage of cells exhibiting L1 cytoplasmic foci. The name of the construct is
indicated on the X-axis. The percentage of transfected cells displaying L1 cytoplasmic foci is indicated on the Y-axis. pAD2TE1 serves as a positive
control. Four independent analyses of 100 transfected cells were analyzed for each construct. Error bars = standard deviation of the mean. All L1
constructs contain the mneoI retrotransposition indicator cassette.
doi:10.1371/journal.pgen.1001150.g006
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Figure 7. A working model of L1 cytoplasmic RNP formation. A hypothetical model based on our data that builds on previous models of L1
retrotransposition by target-site primed reverse transcription (TPRT; recently reviewed in [6,8]). ORF1p (green oval), ORF2p (red oval), and L1 RNA
(waved blue line) associate with their encoding mRNA via cis-preference to form a ‘‘basal’’ retrotransposition complex (right side, pAD2TE1).
Mutations in ORF1p and/or ORF2p functional domains have different affects on L1 RNP formation and/or function (thin gray arrows). Mutations in the
ORF1p RNA recognition motif (pAD113) disrupt L1 cytoplasmic foci formation and lead to a severe reduction of ORF1p and ORF2p in cytoplasmic RNP
complexes (top left side). In some mutants (pAD105 and pAD500) ORF2p can still associate with L1 RNA in the absence of ORF1p RNA binding
(bottom left side). Mutations in the putative ORF1p leucine zipper domain (pADLZC) lead to a reduction in ORF1p and ORF2p in RNPs (top center; the
reduction in ORF2p is indicated by the striped red oval). Mutations in the ORF2p cysteine-rich domain (pAD162) still allow L1 cytoplasmic foci
formation, but adversely affect ORF2p accumulation in RNPs (bottom center). Mutations that disrupt ORF1p nucleic acid chaperone activity (pAD106)
or mutations in either the ORF2p endonuclease (pAD136) or reverse transcriptase (pAD135) domains form cytoplasmic RNPs containing ORF1p,
ORF2p, and L1 RNA (right side of figure). These mutations probably adversely affect L1 retrotransposition downstream of RNP formation and/or
during TPRT. Some RNP complexes localize to L1 cytoplasmic foci and frequently are found in association with stress granules (bold gray arrows).
However, whether these foci play a role in L1 retrotransposition remains unknown (indicated by the dotted line and question mark).
doi:10.1371/journal.pgen.1001150.g007
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pADL/C is identical to pAD2TE1, but contains a putative

leucine zipper domain mutation (L93,100,107,114V) in ORF1p as

well as a C-domain mutation (CWWDC1143–1147SWWDS) in

ORF2p.

LZC is derived from pDK101 and contains four leucine to

valine mutations (L93,100,107,114V) in the ORF1p putative leucine

zipper domain.

LZ1/2 is derived from pDK101 and contains two leucine to

valine mutations (L93,100V) in the ORF1p putative leucine zipper

domain.

LZ2/3 is derived from pDK101 and contains two leucine to

valine mutations (L100,107V) in the ORF1p putative leucine zipper

domain.

LZ3/4 is derived from pDK101 and contains two leucine to

valine mutations (L107,114V) in the ORF1p putative leucine zipper

domain.

pDK101, pDK102, pDK105, pDK106, pDK107,
pDK108, pDK116, pDK135, and pDK500 were described

previously [16].

pMS2-GFP-nls, pMS2-CFP, and pTRIP were generous

gifts from Edouard Bertrand [64–66].

pAgo2-GFP and pDCP1a-GFP were generous gifts from

Gregory Hannon [54].

pG3BP-GFP was a generous gift from Jamal Tazi [53].

Cell culture
Cell lines were maintained in a tissue culture incubator (37uC at

a 7% CO2 level) in high glucose Dulbecco’s modified Eagle

medium (DMEM) without pyruvate (GIBCO), supplemented with

10% fetal bovine calf serum and 1X Penicillin-Streptomycin-

Glutamine (GIBCO) as described previously [32].

The L1 retrotransposition assay
The cultured cell retrotransposition assay was conducted as

described previously [32,48]. Briefly, 26104 HeLa cells/well were

plated in 6 well dishes. Within 24 hours, each well was transfected

with 1 mg of plasmid DNA (prepared with a Midiprep Plasmid

DNA Kit (QIAGEN)) using FuGene-6 transfection reagent

(Roche). Three days post-transfection, cells were grown in the

presence of G418 (400 mg/mL) to select for retrotransposition

events. The media was changed daily. After ,12 days of selection,

the resultant cells were washed with 1X Phosphate-Buffered Saline

(PBS), fixed, and stained with crystal violet to visualize colonies. In

parallel, HeLa cells were plated in 6 well dishes and transfected

with 0.5 mg of the same plasmids and hrGFP (Stratagene). Three

days post-transfection cells were subjected to flow cytometry and

the transfection efficiency was determined based on the number of

GFP positive cells by FACS. In some experiments, 26105 HeLa

cells/well were transfected to monitor L1 retrotransposition.

Protein expression and western blot analysis
HeLa cells were transfected with a given L1 expression

construct in T-25, T-75, or T-175 tissue culture flasks. Whole

cell lysates then were prepared after 9 days of hygromycin

selection as described previously [16]. The cells were washed in

1X PBS, scraped from plates in 1X PBS, and spun at 3,000 g for 5

minutes at 4uC. One volume of pelleted cells was lysed using two

volumes of the following buffer: 1.5 mM KCl, 2.5 mM MgCl2,

5 mM Tris-HCl, pH 7.5, 1% deoxycholic acid, 1% Triton X-100,

1X Complete Mini EDTA-free Protease Inhibitor Cocktail (Roche

Applied Science). The cells were resuspended by gentle pipetting

and incubated on ice for 10 minutes. The lysate was cleared by

centrifugation at 3,000 g for 5 minutes at 4uC. Untransfected

HeLa cell samples were obtained three days after plating. The

Bradford reagent (Bio-Rad) was used to determine the protein

concentrations [67]. The same amount of total protein was

separated by SDS-PAGE. BenchMark Pre-Stained Protein Ladder

(Invitrogen) was used as a molecular weight marker. The proteins

were detected by western blot using the following primary

antibodies: mouse anti-T7-Tag (Novagen), rabbit anti-TAP (Open

Biosystems), rat anti-HA (3F10 clone, Roche), mouse anti-a-

tubulin (Sigma), rabbit anti-S6 (Cell Signaling Technology), rabbit

anti-ORF1p (a generous gift from Thomas Fanning [50]) and

rabbit a-ORF2p-N (a generous gift from John Goodier [42]. Goat

anti-mouse, anti-rabbit and anti-rat HRP-conjugated secondary

antibodies were purchased from GE/Amersham. Western blots

were developed using either the pico or femto ECL substrate

(Pierce) according to manufacturer’s protocols.

RNA preparation and RT–PCR analysis
RNA isolation was performed with the RNeasy Kit (QIAGEN)

coupled to an on-column DNase treatment (QIAGEN). Whole cell

lysates (10–50 mL) were used as starting material. The isolated

RNAs were resuspended in Ultrapure distilled water (GIBCO) and

quantified using a Nanodrop spectrophotometer (Thermo Scien-

tific). For the LEAP assay controls, RNA was isolated from a

50 mL RNP sample (1.5 mg/mL). RT-PCR was performed on

0.5 mg total RNA, using the 39RACE adapter primer (0.4 mM)

and M-MLV reverse transcriptase (200U) (Promega). The

resultant cDNA products then were amplified by PCR using

HotStart Pfu Turbo polymerase (Stratagene) with one primer

specific to the transfected L1 constructs (L1 39 end) or GAPDH

(GAPDH 39 end) and the 39RACE outer primer, as described

previously [17]. The PCR cycles were as follows: one cycle at 94uC
for 3 minutes, then thirty five cycles of 94uC for 30 seconds, 58uC
for 30 seconds and 72uC for 30 seconds. Then, a final extension

was performed at 72uC for 10 minutes.

LEAP assay
The LEAP assay has been described previously [17]. Briefly,

HeLa cells were plated at 66106 cells/flask in T-175 flasks, and

transfected within 24 hours with 30 mg plasmid DNA (Midiprep

Plasmid DNA Kit (QIAGEN)) using FuGene-6 transfection

reagent (Roche). HeLa cells were grown in the presence of

hygromycin from days 3 to 9 post-transfection (200 mg/mL) to

select for episome-containing cells. HeLa cells grown for three

days in the absence of hygromycin served as an untransfected

(naı̈ve) control. On day 9, transfected cells and naı̈ve HeLa cells

were harvested, lysed, and the cleared whole cell lysates were

centrifuged through an 8.5%/17% (w/v) sucrose cushion at

178,000 g for 2 hours. The resultant pellet was resuspended with

100 mL dH2O +1X Complete EDTA-free protease inhibitor

cocktail (Roche). Bradford reagent (Bio-Rad) was used to

determine protein concentration and this RNP sample was diluted

to a final concentration of 1.5 mg/mL. An aliquot (1.5 mg) of the

RNP sample was added to 49 mL of LEAP assay master mix

(50 mM Tris-HCL (pH = 7.5), 50 mM KCl, 5 mM MgCl2,

10 mM DTT, 0.4 mM 39RACE adapter primer, 20U RNasin

(Promega), 0.2 mM dNTPs, and 0.05% (v/v) Tween 20) and was

incubated at 37uC for 1 hour. LEAP cDNA products (1 mL) were

amplified in a standard 50 mL PCR reaction containing 0.4 mM of

the 39RACE outer primer and 0.4 mM of one of the following

forward primers: L1 39 end; Neo promoter sense; Neo8161S;

LEAP-86; LEAP-46, using HotStart Pfu Turbo polymerase

(Stratagene) according to the manufacturer’s protocol (see Figure

S2). The resultant products were visualized on 2% agarose gels.

PCR products were isolated, cloned into the pCR-Blunt vector

(Invitrogen), and sequenced to confirm their identity. The diffuse
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profile of the amplification above 220 bp is explained by initiation

of reverse transcription at many places on L1 poly (A). Lower

bands, below 200 bp, are due to an internal initiation of reverse

transcription 59 of the poly (A) tail [17].

Affinity purification
The affinity purification procedure described in Figure 3 was

adapted from a published protocol [68]. To prepare the samples,

HeLa cells were plated in T-175 flasks and transfected as described

in the previous paragraph. Hygromycin selection on days 3 to 9

post-transfection was used to select for cells expressing the

respective constructs. Using these conditions, one T-175 flask

per plasmid was sufficient to yield enough cellular material (3 mg)

for an experiment. Cells were washed, scraped from the flasks in

1X PBS, and centrifuged at 3,000 g for 5 minutes at 4uC. Cells

were lysed by repeated pipetting with 3 volumes of IP FLAG

buffer (0.1% NP-40, 100 mM KCl, 20 mM Tris-HCl pH 8,

1 mM DTT, 10% Glycerol, 1X complete EDTA free Protease

inhibitor (Roche)) and incubated for 15 minutes on ice. The

cellular debris was removed by centrifugation at 3,000 g for 5

minutes at 4uC. The protein concentration of the supernatant was

quantified by a Bradford assay (Biorad Protein Assay).

For immunoprecipitation reactions, anti-FLAG beads (EZview

Red ANTI-FLAG M2 Affinity Gel, Sigma) were equilibrated in

0.1M Glycine (pH 2.2) (5 mL for 100 mL of beads) for 5 minutes at

room temperature. After addition of Tris-HCl (pH 8.0) (10 mL for

100 mL of beads), the beads were spun down for 3 minutes at 3000

rpm and then washed 3 times with IP FLAG buffer (mentioned

above). For each condition, 3 mg of protein extract (input) was

then incubated on a rotating wheel overnight at 4uC with 20 mL of

the pre-equilibrated anti-FLAG beads. The next day, the beads

were washed 5 times with 1 mL of IP FLAG Buffer for 10 minutes

at 4uC. The beads were incubated 1 hour (at 4uC on the wheel)

with 200 mL of IP FLAG buffer containing 200 mg/mL of 3X

FLAG peptide (Sigma). The elution fraction then was collected

and analyzed alongside the corresponding input fraction by

western blotting (as described above in the dedicated section). The

femto ECL substrate (Pierce) was used in the detection of both T7-

tagged ORF1p and FLAG-HA-tagged ORF2p in this experiment.

An aliquot (1 mL) of the input and elution samples then were used

to perform the LEAP assay (see previous section for detailed

protocol).

Quantitative real-time PCR
Quantitative PCR was performed on LEAP cDNA samples or

M-MLV RT-PCR products using the 7300 Real Time PCR

system (Applied Biosystems). For analysis, 1 mL of LEAP or M-

MLV RT products was added to 19 mL of master mix (1X SYBR

Green PCR Master Mix (Applied Biosystems), 500 nM L1 39 end

primer, and 500 nM L1 Reverse primer), and amplified in a

standard Q-PCR run of 45 cycles. The average cycle threshold

(Ct) value for each experimental or control sample was calculated

from three independent reactions within a Q-PCR run. The

‘absolute quantitation by standard curve’ method was used to

determine the number of cDNA molecules in each LEAP RNP or

RNA sample. A standard curve was generated using dilutions of a

L1 LEAP product cloned into a plasmid, and a best fit line

(log(molecules) versus average Ct value) for these standards was

generated by linear regression. For each wild-type or mutant L1,

RNA levels from three independent RNP samples were examined

by at least one RT reaction and two Q-PCR runs. The level of

LEAP activity in each wild-type or mutant L1 was determined

from four independent RNP samples. These RNP samples were

characterized by at least one and up to three independent LEAP

RT reactions and one or two independent Q-PCR runs. For

LEAP activity, the negative control RT- (pDK135) gave a

background amplification level of ,15–30 molecules of cDNA

due to the presence of the transfected L1 plasmid in the RNP

sample. This RT- background control was included in each Q-

PCR run and the background amount of molecules was subtracted

from each experimental sample in Figure S2 and when calculating

fold changes.

Fluorescent In Situ Hybridization (FISH) and
immunofluorescence

U-2 OS cells were plated at 105 onto sterile glass cover slips in 6

well tissue culture dishes. The following day, cells were transfected

using 1 mg of purified plasmid DNA (Midiprep Plasmid DNA Kit,

QIAGEN) and 3 mL of FuGene-6 Transfection Reagent (Roche

Applied Science). The FISH protocol was adapted from the

Robert Singer (Albert Einstein College of Medicine, New York)

lab protocol (available at http://www.singerlab.org/protocols) and

was modified to allow protein detection by immunofluorescence.

Briefly, 48 h post-transfection, cells were washed twice with 1X

PBS and fixed with 4% paraformaldehyde in 1X PBS for 10

minutes at room temperature. The fixed cells then were washed 2

additional times with 1X PBS. The fixed cells were permeabilized

by treatment with 70% ethanol overnight at 4uC. The following

day, cells were rehydrated with 1X saline-sodium citrate (SSC) and

10% formamide for 5 minutes at room temperature. To prepare

the hybridization solution, a first mix containing 40 mg of E.coli

tRNA (Sigma), 1X SSC, 10% formamide, and 7.5 ng of MS2-Cy3

probe (generous gift from Dr. Edouard Bertrand) was boiled for 1

minute at 100uC in order to denaturize the probe. The quantities

of probe and tRNA are indicated for hybridization of one slide. A

second mix was prepared with 10% dextran sulfate, 2 mM

vanadyl-ribonucleoside complex (Sigma), and 0.02% RNase free

BSA (Roche Applied Science). After probe denaturation, mixes 1

and 2 were combined to form the final hybridization solution. The

re-hydrated cells were hybridized overnight at 37uC in 30 mL of

this hybridization solution. Cells were then washed twice for 30

minutes at 37uC with 1X SSC, 10% formamide and 3% BSA and

then were incubated with primary antibodies for 1 hour at 37uC.

The cells were washed three times with 1X PBS and were

incubated with secondary antibodies and 0.2 mg/mL 49,69-

diamidino-2-phenylindole (DAPI, Molecular Probes) for 30

minutes at 37uC and washed three times with 1X PBS. The

primary and secondary antibodies were diluted in 1X PBS and 3%

BSA and are as follows: anti-T7 (Novagen), anti-TAP (Open

Biosystems), anti-HA (Roche), rabbit anti-ORF1p (a generous gift

from Thomas Fanning) [50]) and rabbit a-ORF2p-N (a generous

gift from John Goodier) [42], anti-eIF3 (Santa Cruz BioTechnol-

ogy), anti-G3BP (generous gift from Jamal Tazi), Alexa Fluor 488

anti-mouse and anti-rabbit (Invitrogen), Alexa Fluor 546 anti-

mouse and anti-rabbit (Invitrogen), Cy3-conjugated anti-rat

(Jackson Immuno Research) and Cy5-conjugated anti-mouse

and anti-rabbit (Jackson Immuno Research). Cells were rinsed

with water and mounted on slides with Vectashield (Vector

Laboratories). Samples were then analyzed with appropriate

fluorescent filters on DMRXA Leica microscope and images were

captured using a Zeiss LSM510 META confocal microscope.

The above protocol was used for both RNA and protein

detection analyses. In experiments where we only sought to detect

RNA, the protocol was stopped after hybridization with the MS2-

Cy3 probe and subsequent washes. Cover slides were stained with

DAPI and mounted on slides as described above. In experiments

where we only sought to detect protein, fixed cells were

permeabilized by treatment with anhydrous methanol for 1
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minute. After three washes with 1X PBS, the cells were incubated

with 3% BSA in 1X PBS for 30 minutes. Antibody incubation and

DAPI staining were performed as described above. We verified

that the protein A domain contained in the TAP tag of ORF2p did

not react with the secondary antibodies (data not shown).

Analysis of L1 cytoplasmic foci
In general, L1 cytoplasmic foci formation was measured

48 hours post-transfection. At least two independent series of

slides were analyzed. Each analysis corresponds to 100 transfected

cells that were quantified in a blinded manner. Cells in which we

were able to distinguish a concentrated cytoplasmic signal from a

diffuse cytoplasmic signal using a 63x or 100x objective (equivalent

of 1 micrometer of diameter) were considered as L1 cytoplasmic

foci.

Supporting Information

Figure S1 Retrotransposition assays with mutant L1 constructs.

A. Retrotransposition assays with mutant L1 constructs: 26104

HeLa cells were transfected with the indicated constructs.

pJM101/L1.3 and pAD2TE1 were used as positive controls. All

of the pAD-based constructs contain the ORF1p T7 epitope tag

and the ORF2p TAP-tag except for pAD500, which lacks ORF1.

pAD135 is an RT mutant (D702A), and serves as a negative

control. B. Retrotransposition assay with leucine zipper domain

mutants: 26105 HeLa cells were transfected with the indicated

pDK101-derived constructs. T7WT (pDK101) is a wild-type L1

(L1.3) that contains the T7 epitope tag on the carboxyl terminus of

ORF1p. pDK101 was modified to create LZ1/2 (L93V, L100V),

LZ2/3 (L100V, L107V), LZ3/4 (L107V, L114V), and LZC

(L93V, L100V, L107V, L114V). Each of the mutations abolished

L1 retrotransposition.

Found at: doi:10.1371/journal.pgen.1001150.s001 (0.57 MB TIF)

Figure S2 The effect of ORF1p mutations on LEAP activity. A.

Results of western blot analyses: RNPs derived from wild-type

(pDK101) and the indicated mutant constructs were subjected to

western blot analyses with an anti-T7 antibody (aT7). An

,40 kDa band indicative of epitope-tagged ORF1p is shown.

Untransfected HeLa cells served as a negative control. The

ribosomal S6 protein was detected using an anti-S6 (aS6) antibody

(bottom panel; RNP prep control) and served as a loading control.

Molecular weight markers (Invitrogen) are indicated at the left of

the gel. B. Results of LEAP assays: Top panel: An aliquot of the

above RNPs was used to measure LEAP activity. RNPs derived

from wild-type (pDK101) generate strong LEAP products of

,220–400 bp and served as a positive control. Untransfected

HeLa cells and an RT mutant (pDK135; D702A) serve as negative

controls. LEAP products generated in ORF1p mutant RNPs are

shown. Reactions conducted without template (No Template) or

without RNPs (No RNP/No RNA) were used as negative controls.

Middle and bottom panels: RT-PCR with M-MLV RT and

primers specific to either the transfected L1 constructs or GAPDH

confirmed the presence of L1 RNA in RNPs and the integrity of

the RNA isolation procedure. DNA size markers (Invitrogen) are

indicated at the left of the gel. C. LEAP products derived from the

ORF1p RNA binding mutant (RR261-262AA) and putative

chaperone mutant (RR261-262KK): Representative LEAP prod-

ucts derived from wild-type (pDK101), an ORF1p RNA binding

mutant (pDK105; RR261-262AA), and a putative ORF1p nucleic

acid chaperone activity mutant (pDK106; RR261-262KK) are

depicted at the top gel. The middle and bottom gels are RT-PCR

reactions conducted with M-MLV RT and primers specific to L1

and GAPDH transcripts, respectively. The black arrow on the

middle gel indicates the size of the specific L1 cDNA amplification

products. Untransfected HeLa cells and a RT mutant (pDK135)

served as negative controls. Additional negative controls include

reactions conducted without template (No Template) as well as

reactions conducted without RNPs or RNA (No RNP/No RNA).

DNA size markers (Invitrogen) are indicated at the left of the gel.

D. LZC RNPs have decreased reverse transcriptase activity: Top

panel: RNPs derived from T7WT (pDK101) generate strong

LEAP products of ,220–400 bp. By comparison, LZC (see Figure

S1B) had a less intense band at ,220–400 bp. LEAP products also

were seen in the RR261-262AA (pDK105) mutant and the LZC/

RR261-262AA mutants. No product was seen in untransfected

HeLa cells or for a L1 containing a RT active site mutation

(pDK135; RT-). Middle panels: RT-PCR with M-MLV RT and

primers specific to either the transfected L1 constructs or GAPDH

confirmed the presence of L1 RNA in RNPs and the integrity of

the RNA isolation procedure. No RNP/RT and dH2O served as

negative controls. DNA size markers (Invitrogen) are shown at the

left side of the gel. Bottom panels: Western blot against the T7

epitope tag detects ORF1p (aT7). Untransfected HeLa cells served

as a negative control. Western blot against ribosomal protein S6

was used as a loading control (aS6). Molecular weight markers

(Invitrogen) are indicated at the left of the blot. E. Quantitative

PCR of LEAP cDNAs from ORF1p LZC and carboxyl-terminal

nucleic acid binding domain mutants: Representative results of a

Q-PCR run are shown. Standard deviations are indicated on the

graph. Q-PCR was performed on four independent RNP preps for

T7WT (pDK101), LZC, RR261-262AA (pDK105), and the LZC/

RR261-262AA double mutant. Three of four preps showed a 5–7

fold decrease in LZC LEAP activity compared to wild-type. One

RNP prep showed a 16–23 fold decrease in LZC LEAP activity

compared to wild-type. F. LZC mutation does not appear to affect

reverse transcriptase elongation: Top panel: PCR was performed

on LEAP cDNAs using different primers pairs. The names of the

primers and the approximate size of each product are indicated in

the cartoon above the gel. LZC RNPs yield fewer products when

compared to T7WT (pDK101) RNPs with all tested primer sets.

Bottom panel: RT-PCR with M-MLV RT confirms the presence

of L1 RNA in the RNP samples. DNA size markers (Invitrogen)

are indicated at the left of the gel. The L1 constructs in all panels

contain the mneoI retrotransposition indicator cassette.

Found at: doi:10.1371/journal.pgen.1001150.s002 (1.42 MB TIF)

Figure S3 L1 retrotransposition and L1 cytoplasmic foci

formation in U-2 OS cells. A. L1 retrotransposition assays:

26104 cells were transfected with the indicated L1 constructs.

pJM101/L1.3 and pAD2TE1 were used as positive controls.

Untransfected cells and pAD135 (RT mutant (D702A)) serve as

negative controls. A cartoon of each L1 is shown above the tissue

culture dishes. Green rectangle = ORF1; Red rectangle =

ORF2. The relative positions of the T7 and TAP tags also are

indicated. All constructs contain the mneoI retrotransposition

indicator cassette. B. Time course analyses of L1 cytoplasmic foci

formation: Cells were transfected with pAD2TE1. X-axis = time

after transfection. Y-axis = percentage of transfected cells

containing L1 cytoplasmic foci. For each time point, 100

transfected cells were analyzed for the presence of ORF1p and

ORF2p in L1 cytoplasmic foci. Error bars = standard deviation

(n = 3). C. Cytoplasmic localization of L1 proteins and RNA: Top

panels: Cells were transfected with pAD3TE1. ORF2p was

visualized with an anti-ORF2 antibody (aORF2, green). ORF1p

was visualized with an anti-T7 antibody (aT7, blue). L1 RNA was

visualized with an MS2-Cy3 FISH probe (red). A merged image is

shown in the rightmost column; DAPI (grey) was used to stain

nuclear DNA. Middle panels: Cells were transfected with
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pES2TE1. ORF2p was visualized with an anti-ORF2 antibody

(aORF2, green) and an anti-HA antibody (aHA, red). ORF1p was

visualized with an anti-T7 antibody (aT7, blue). A merged image

is shown in the rightmost column; DAPI (grey) was used to stain

nuclear DNA. Bottom panels: Cells were transfected with

pES2TE1. ORF1p was visualized with an anti-ORF1 antibody

(aORF1, green) and an anti-T7 antibody (aT7, blue). ORF2p was

visualized with an anti-HA antibody (red). A merged image is

shown in the rightmost column; DAPI (grey) was used to stain

nuclear DNA. D. Localization of L1 RNA: Top panels: Cells were

transfected with pADL1MT. L1 RNA was visualized with an

MS2-Cy3 FISH probe (MS2-Cy3, red). DAPI was used to stain

nuclear DNA (gray). A merged image is shown in the rightmost

column. Middle panels: Cells were co-transfected with pAD3TE1

and pMS2-GFP-nls. Fluorescence was used to visualize MS2-GFP-

nls (green). L1 RNA was visualized with an MS2-Cy3 FISH probe

(MS2-Cy3, red). ORF1p was visualized with an anti-T7 antibody

(aT7, blue). A merged image is shown in the rightmost column.

Bottom panels: Cells were co-transfected with pAD3TE1 and

pMS2-CFP. Fluorescence was used to visualize MS2-CFP (green).

L1 RNA was visualized with an MS2-Cy3 FISH probe (MS2-Cy3,

red). ORF2p was visualized with an anti-TAP antibody (aTAP,

blue). A merged image is shown in the rightmost column. The use

of MS2 binding protein system confirms the cytoplasmic

localization of the L1 RNA observed by FISH as well as the co-

localization of L1 RNA with ORF1p and ORF2p. The L1

constructs in all panels contain the mneoI retrotransposition

indicator cassette.

Found at: doi:10.1371/journal.pgen.1001150.s003 (2.01 MB TIF)
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