
HAL Id: hal-00527736
https://hal.science/hal-00527736

Submitted on 20 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Verification of a timed multitask system with UPPAAL
Houda Bel Mokadem, Béatrice Berard, Vincent Gourcuff, Olivier de Smet,

Jean-Marc Roussel

To cite this version:
Houda Bel Mokadem, Béatrice Berard, Vincent Gourcuff, Olivier de Smet, Jean-Marc Roussel. Veri-
fication of a timed multitask system with UPPAAL. IEEE Transactions on Automation Science and
Engineering, 2010, 7 (4), pp.921 - 932. �10.1109/TASE.2010.2050199�. �hal-00527736�

https://hal.science/hal-00527736
https://hal.archives-ouvertes.fr

1

Verification of a timed multitask system with

UPPAAL

Houda Bel mokadem, Béatrice Bérard, Vincent Gourcuff, Olivier De Smet and Jean-Marc Roussel

Abstract—System and program verification has been a large
area of research since the introduction of computers in industrial
systems. It is an especially important issue for critical systems,
where errors can cause human and financial damages. Pro-
grammable Logic Controllers (PLCs) are now widely used in
many industrial systems and verification of the corresponding
programs has already been studied in various contexts for
a few years, for the benefit of users and system designers.
First restricted to an untimed setting, verification was recently
extended to systems where quantitative constraints are needed,
possibly related to time elapsing. For instance, timed features like
TON (Timers ON delay), used in PLC programs, were modeled
with timed automata, thus increasing the size of the verification
problems addressed.

In this framework, we propose the modeling and verification
of a particular timed multitask PLC program, which is part of
the so-called MSS (Mecatronic Standard System) platform from
Bosch Group. In this case study, time aspects are combined with
multitask programming, which raises questions related to the
reaction time between the detection of a signal and the resulting
event. Our model for station 2 of the MSS platform is a network
of timed automata, including automata for the operative part
and for the control program, which is first described in SFC
then translated in Ladder Diagram.

This model is constrained with atomicity hypotheses concern-
ing program execution, and model checking of a reaction time
property is performed with the tool UPPAAL.

Index Terms—Programmable Logic Controllers, Timed Au-
tomata, Model Checking.

I. INTRODUCTION

General context. Verification of safety properties for pro-

grams is a very important issue for users and system designers,

particularly when those programs are to control critical ap-

plications for reactive systems. Indeed, many accidents have

been discovered to be the result of programming errors, which

lead to the need of formal methods for system verification.

Among these methods, model-checking is a rather successful

one. Basically, the model-checking technique consists in (i)

modeling the program and its environment as a transition

system, (ii) modeling some property as a logical formula,

and (iii) using an algorithm to test if the model satisfies the

formula. This algorithm is based on a symbolic exploration of

Manuscript received March 23, 2009
This work was supported by the Pluri Formation Project VSMT of ENS

Cachan.
H. Bel mokadem is with LSV, Ens de Cachan, mokadem@lsv.ens-cachan.fr
B. Bérard is with LIP6, Université P. et M. Curie, beatrice.berard@lip6.fr
V. Gourcuff is with LURPA, Ens de Cachan, vincent.gourcuff@lurpa.ens-

cachan.fr
O. De Smet is with LURPA, Ens de Cachan, olivier.de smet@lurpa.ens-

cachan.fr
J.-M.. Roussel is with LURPA, Ens de Cachan, jean-

marc.roussel@lurpa.ens-cachan.fr

the system state space, thus providing an exhaustive search

for counter-examples for the property to be tested. It is

implemented in a tool called model-checker, many of them

having been developed for untimed systems.

Since the nineties, the attention focused on systems where

quantitative properties related to time are involved. For such

systems, additional components must be introduced, for in-

stance clocks, thus increasing the size of the model and making

the verification step harder. Nevertheless, the model of timed

automata, introduced in 1990 by Alur and Dill [2], [3], has

proved very fruitful: some positive decidability results were

obtained for this model, as well as for some extensions, and

analysis algorithms were implemented in efficient tools called

timed model-checkers, like HYTECH [10], KRONOS [6] or

UPPAAL [12], which were then applied to industrial case

studies.

Comparison with other techniques [9] [22] such as discret

event simultation (POOSL, http://www.es.ele.tue.nl/poosl/,

SHESIM), symbolic timing analysis (SymTA/S,

http://www.symtavision.com), modular performance analysis

(MPA, http://www.mpa.ethz.ch) showed similar cost in time

and resources for less accurate results. This comforts us in

the choice of the timed verification approach.

The particular framework of PLC programs also attracted

increasing interest in the past few years. In this area, work

was mostly devoted to the untimed setting [18], [4], [8], even

when function blocks for timers were included [19], although

the model of timed automata has already been used for the

modeling of timed features in PLC programming [7], [15],

[16].

Contribution. In this work, we are interested in the combi-

nation of these time aspects with multitask PLC programming.

Our case study concerns a part (called station 2) of the MSS

(Mecatronic Standard System) platform from Bosch Group,

in which multitask programming can be used to reduce the

reaction time of the control program to an external signal. The

program is written in Ladder Diagram, one of the languages

most commonly used in this area, which is part of the IEC-

61131-3 standard [11]. We give semantics for a subclass of

Ladder Diagram programs including timer function blocks,

in terms of timed automata, and we also provide a timed

automata based model for the operative part of the system.

These timed automata are described in UPPAAL syntax. While

a similar approach was introduced in [15], we propose here

additional restrictions which significantly reduce the size of

the complete model, obtained from its components by a

synchronized product. These restrictions consist of atomicity

hypotheses, compacting sequences of actions from the control

program into a single one, and lead to reasonable verification

2

times for the response property to be checked. We also give a

simpler model for timers, using particular features of UPPAAL.

Outline. Section 2 of the paper explains the context of

this study: the problem of reaction times in PLC programs,

and includes a description of timed automata and a short

presentation of UPPAAL. In Section 3, we give more details on

Bosch MSS platform and in Section 4, we give the semantics

of the control program. Section 5 presents the UPPAAL timed

automata which form the components of the network, while

Section 6 gives the results of the verification step.

II. PROGRAMMABLE LOGIC CONTROLLERS AND TIMED

AUTOMATA

In this section, we describe the general context of our study

and recall the main features of timed automata.

A. Programmable Logic Controllers with multi-task program-

ming

Programmable Logic Controllers (PLCs) execute programs

for the control of an operative part, to which they are con-

nected via an input/output system. The control programs can

be written in several languages described in the IEC-61131-

3 standard. The execution of such a program consists in

iterating a cycle with three main steps (Fig. 1): first, input

variables are read and their values are stored in memory.

Then a computation step is performed using these values,

producing output values which are also stored. The last step

is an activation using the output values. The cycle duration P

is called the PLC scan.

!"#!$%#&'()!*+,*(-#./.'012+)

3)401#&'()

501401#('126(12+)

Figure 1. The cyclic execution of a PLC program

The programming design may be either mono-task or mul-

titask. In the first case, a single program executes sequentially,

while in the second case, the main task can be interrupted by

additional parts of code, either with a fixed period or triggered

by some events. These two execution models result in different

reaction times to changes of values. In the mono-task case, if

the change of value occurs at the input scan, the corresponding

output is emitted at the end of the PLC cycle. If the change

occurs later, this output may be emitted at as far as the end of

the next cycle. This results in a reaction time in the interval

[P, 2P] (Fig. 2). This reaction time can be reduced with multi-

task programming, which is available in most PLCs (with the

use of so-called Organization Blocks [20]): consider an event-

driven task interrupting the main task when some event occurs.

In turn, the interrupting task reads its input and computes its

new output values. Depending on the configuration and type

of the PLC, these values can be emitted either at the end of the

event-driven task or at the end of the current main task. In this

work, we investigate the second case where output values of

the event-driven task are emitted by the main program, which

yields a reaction time of at most P .

2)401#27

3)401#28 +01401#+8

+01401#+7

%9':.#8 %9':.#7

Figure 2. Reaction time with mono-task programming

B. Timed automata

The model of timed automata was introduced by Alur and

Dill [2], [3]. A timed automaton is built from two main parts:

• a finite automaton in the usual sense, which describes the

states also called locations and the discrete transitions of

the system,

• a finite set of real variables called clocks, used for the

specification of quantitative time constraints which may

be associated with transitions. These variables evolve

synchronously with time.

Example. The timed automaton on Fig. 3 describes a system

which observes a sequence of events a. In location ok, the

delay between two consecutive occurrences of a must belong

to [5, 6[. If it is less than 5, an alarm is triggered (the automaton

enters location alarm), and if the time reaches 6 before the

next a occurs, the system enters the error location. To measure

these delays, a clock x is reset at each occurrence of a inside

the interval [5, 6[. It then increases as time elapses and its

value can be compared to the constants 5 and 6, to see if a

change of mode is required.

init

ok alarm

error

−, a, x := 0

x ≥ 5, a, x := 0

x < 5, a, −

x = 6, e, −

x ≤ 6

Figure 3. A timed automaton

Formally, a timed automaton is a tuple A =
(Σ, X,Q, q0, I, E), where

• Σ is a finite set of actions,

• X is the finite set of clocks,

3

• Q is a finite set of locations, with q0 ∈ Q the initial

location,

• I is a mapping associating with each location q an

invariant I(q),
• and E is the set of transitions.

In order to describe more precisely the components I and E,

we denote by P (X) the powerset of the set X (of clocks) and

by C(X) the set of boolean conjunctions of atomic formulas

of the form x ⊲⊳ c for a clock x, a constant c in N (the set

of natural numbers) and ⊲⊳ in {<,≤,=,≥, >}. Elements of

C(X) are called clock constraints.

• An invariant I(q) for location q is a clock constraint,

which contains only atomic formulas of the form x ≤ c or

x < c. This constraint must hold as long as time elapses

in this location. In the example of Fig. 3, the condition

x ≤ 6 is an invariant for location ok.

• The set E of transitions is a subset of Q×C(X)×Σ×
P (X)×Q.

A transition (q, g, a, r, q′) of the automaton is written

q
g,a,r
−−−→ q′ ∈ E. Its label contains three parts (each one

is optional):

1) The first one g is a constraint in C(X), called the

guard, which must be satisfied for the transition to

be fired. For instance, x < 5 is the guard for the

transition from location ok to location alarm.

2) The second one, called action name, is an element

of Σ, like a in the example.

3) The third one, r ∈ P (X), called clock reset,

contains the subset of X of clocks which must

be reset to zero when the transition is fired. For

r = {x}, a reset of x when reaching location ok is

written x := 0 in Fig. 3.

In order to define the semantics of a timed automaton, we

use the notion of clock valuation. Let R≥0 denote the set of

non-negative real numbers. A valuation is a mapping from X

to R≥0, and the set of valuations is written R
X
≥0

. For each

v ∈ R
X
≥0

and d ∈ R≥0, we use v + d to denote the valuation

which maps each clock x ∈ X to the value v(x) + d.

For a subset r of X , we write v[r ← 0] for the valuation

which maps each clock in r to the value 0 and agrees with v

over X \ r.

Constraints of C(X) are interpreted over clock valuations.

The semantics of a timed automaton is given in terms of

transition systems. A configuration of the system is a pair

(q, v), where q is a location of the automaton and v is a

valuation of the variables, i.e. a mapping associating a real

value with each clock. The initial configuration is (q0, v0)
where all clock values are equal to 0 in v0.

The system may change its configuration in two ways.

• Either by letting time elapse: as long as no invariant is

violated in the current location, time may progress and

the clock values increase by the amount of time elapsed.

Such a move is written (q, v)
d
−→ (q, v +d) for a delay of

d time units, and it is possible only if v + d satisfies the

invariant I(q) of location q.

• Or by carrying out a discrete transition of the automaton:

the clocks to be reset take the value zero, while the values

of the other clocks remain unchanged. This is written

(q, v)
a
−→ (q′, v′), when there is a transition q

g,a,r
−−−→ q′ in

E such that v satisfies the constraint g, v′ = v[r ← 0]
and v′ satisfies the invariant of q′.

In the example above, the initial configuration of the system

is (init, 0). A particular execution of the system can be

described by the following sequence of configurations:

(init, 0)
7.2
−−→ (init, 7.2)

a
−→ (ok, 0)

5.3
−−→ (ok, 5.3)

a
−→

(ok, 0)
6
−→ (ok, 6)

e
−→ (error, 6)

C. The tool Uppaal

The tool UPPAAL (see [5] for the most recent developments)

offers a compact description language, a simulation module

and a model-checker. In this paragraph we present a subset of

UPPAAL functionalities which are sufficient for our purpose.

A system is represented in UPPAAL by a collection of timed

automata, which communicate through binary synchroniza-

tion: a channel c can be defined for two automata. Sending

a message is denoted by the discrete action c! while receiving

the message is denoted by c?. These automata also handle

a set of (discrete) integer variables, a feature which makes

easier the modeling of complex systems. Then, a guard is a

conjunction of atomic clock conditions and similar conditions

on the integer variables. Moreover, a clock reset may be

augmented by an update of the integer variables, of the form

z := c for some constant c.

A global configuration is a triple (ℓ, v, w) where ℓ is a

location vector (indicating the current state in each component

of the timed automata network), v is a valuation of the clocks

and w is a valuation for discrete variables: as before, they

assign to each clock a real value, but they also assign to

each discrete variable an integer value. An execution in the

network starts in initial locations of the different components

with all the clocks and variables set to zero. The semantics

of this model is expressed by moves between configurations.

Three types of moves can occur in the system: delay moves,

internal moves and synchronized moves. Delay moves and

internal moves have already been described above for a single

automaton, so we simply describe now the global evolution.

1) Delaying.: Given a current location vector, time elapses

for all automata synchronously, as long as no invariant is

violated. All clock values increase by the amount of time

elapsed. No changes occur for the locations or the integer

variables. The move for a set of n automata can be described

as above by (ℓ, v, w)
d
−→ (ℓ, v + d, w), where ℓ = (q1, . . . , qn)

is the tuple of locations, v is the clock valuation and w is

the valuation of discrete variables. It is possible only if v + d

satisfies the conjunction of invariants I(qi), for all 1 ≤ i ≤ n.

2) Performing an internal action.: An internal action is an

action which corresponds to neither c! (sending a message),

nor c? (receiving a message). If such an action is enabled (the

variable values satisfy the guard condition), the component can

perform this action alone, while the others do nothing. Only

the location of this component is changed, as well as its vari-

ables, according to the transition. If qi
gi,ai,ri
−−−−−→ q′i is the transi-

tion possible from component i, the global move can be written

((q1, . . . , qi, . . . , qn), v, w)
ai−→ ((q1, . . . , q

′
i, . . . , qn), v′, w′)

4

with v′ = v[ri ← 0] and w′ is obtained by the update of

discrete variables from component i.
3) Synchronizing.: If, in the network, some complemen-

tary actions c! and c? are enabled in two components (in

particular, guards must be satisfied by the current valua-

tion), then these components can synchronize. Note that if

a component can execute only an action c! while no other

component can perform a complementary action c?, then

this component is blocked. A carefree programing can lead

to a deadlock, for instance if the system consists of two

components, the first one executing c! followed by d? when

the second executes d! followed by c?. In the synchronizing

transition, the location vector is changed for both components

and the clock and variable values are changed according to

the clock reset and updates of variables for the two transi-

tions. If components i and j synchronize on some channel

c, with transitions qi
gi,c!,ri
−−−−→ q′i and qj

gj ,c?,rj

−−−−−→ q′j , the

move is described by ((q1, . . . , qi, . . . , qj , . . . , qn), v, w)
c
−→

((q1, . . . , q
′
i, . . . , q

′
j , . . . , qn), v′, w′), with v′ = v[(ri ∪ rj) ←

0] and w′ is obtained by the update of discrete variables from

components i and j. Multiple assignment of the same variable

can occur, but it generally indicates bad programming in the

control program.

To illustrate this composition operation, consider the ex-

ample from [21], where three components A, B and M
communicate with two channels in and out (Fig. 4). The first

one produces an in! message every 7 time units, the second

one, B, emits out? messages, with at least 4 time units between

them, and the third one, M, performs the communication by

transmitting to B (out!) the messages received from A (in?),

with a delay between 3 and 8 time units.

A

x ≤ 7

B

C D

z ≤ 8

x = 7, in!, x := 0

y ≥ 4, out?, y := 0

in?, z := 0

3 ≤ z ≤ 8, out!

A:

B:

M:

Figure 4. Three components with channels in and out

Fig. 5 shows how to obtain the composition A | B | M, by

synchronizing on the channels in and out.

ABC

x ≤ 7

ABD

x ≤ 7, z ≤ 8

x = 7, in, x, z := 0

y ≥ 4, 3 ≤ z ≤ 8, out, y := 0

Figure 5. Composition A | B | M

Finally, we introduce two additional features of UPPAAL

which will be very useful in our modeling.

• A committed location (decorated by the special label C)

in an automaton, corresponds to a location in which no

progress of time is possible and no transition from a non-

committed location is allowed.

• A broadcast channel is a channel where more than two

automata may communicate: emission of a message c!
can be synchronized with several (possibly zero) re-

ceptions c? in other components. Note that this is a

non-blocking synchronization, since the sender is never

blocked, although the receiver must synchronize if it can.

Guards on clocks are not allowed on the receiving edge.

III. DESCRIPTION OF THE MSS (MECATRONIC STANDARD

SYSTEM) PLATFORM

A. Presentation.

Figure 6. Presentation of station 2 of the MSS platform

Platform MSS (from Bosch Group) provides a function for

sorting a stock of pinions of different materials and for adding

or withdrawing a press-fit bushing to a given pinion [17]. The

platform contains four stations.

Our study is centered on station 2. Fig. 6 shows the various

components of this station, which are schematized in Fig. 7.

The work-pieces are transported by a linear conveyor put

into motion by a belt, and driven by an engine with two

direction moves. They first reach a scanning position, where

the presence or absence of a press-fit bushing is detected.

They are then tested by three sensors (respectively inductive,

capacitive and optical sensor) to determine their material

(steel, copper or black PVC). The detected information is

forwarded to the next stations. A rotary/lift gripper performs

the transfer to a follow-on station if applicable.

The function performed by the controller for the linear

conveyor and the detection of the press-fit and material is

presented in Fig. 8 by the SFC [11] specification, where no

interruptive task is used. In step 1 the motor starts to move

the conveyor to the right. Steps 2 and 3 are used to detect the

presence of a pinion and arrival of the conveyor at the test

position. Step 4 stops the motor to halt the conveyor, steps 5

and 6 correspond to the test by the jack. At the end of the

test, step 7 restarts the motor to move the conveyor further to

the right. Steps 8 to 11 test the material of the pinion as it

passes under the various sensors. Step 12 is activated when

the conveyor is at the rightmost position (motor stops), the

5

Figure 7. Scheme of station 2

end of the transfer by the rotary/lift gripper is indicated by

EVACUATED PINION. Step 13 returns the conveyor to its initial

position. It can be noted that the controller specification uses

6 timed functions as TON blocks (for instance t1/X1), in

order to measure delays. The semantics of timers is explained

in IV-C.

Figure 8. SFC specification of station 2

With this specification, a problem arises when the conveyor

arrives at the bearing test position (POS TEST sensor). At this

time the conveyor moves at high speed (200 mm/s) and the

variation of the reaction time of the control system, above

10 ms, is not negligible. Indeed the conveyor position should

have a precision of 1 mm for the tester (or jack) to be able

to penetrate inside the pinion, in case the bearing is absent.

So, we can deduce that the the variation of the reaction time

of the control system must be less than 5 ms. In the rest of

the paper, we study the case of a multitask controller, with

an event-driven task, launched on the rising edge of the test

position (POS TEST) sensor, which stops the conveyor if it

comes from the loading station.

B. Properties to check.

The multitask control program of this station must satisfy

the following properties:

P1: to ensure safety, the conveyor must stop on its way

out but not when it comes back from unloading.

P2: the time performance is accurate: the conveyor stops

in less than 5 ms at the press-fit bushing test point.

In this work, we focus on the timed property P2, and show

that the multitask solution reduces the reaction time (Fig. 2).

For the first property, the model of the system will be built

so that an erroneous control program can invalidate it. In our

case, the proposed control program ensures P1.

IV. MODELING STATION 2

In this section, we briefly recall the timed automata based

semantics proposed by [15] for a control program. Then we

explain the structure of our model for (station 2 of) the MSS

platform, with a particular attention to the question of timers.

Finally we give the complete description of Uppaal timed

automata for the system.

A. Modeling principles for the control program

Various models have already been proposed for the analysis

of PLC programs. Our approach is based on the model

introduced by [15], which disregards the exact execution times

of elementary instructions.

x ≥ ε1, x := 0

x ≤ ε2 x ≤ ε2 x ≤ ε2

x ≤ ε2x ≤ ε2

Figure 9. Mader-Wupper model

As depicted in Fig. 9, the model has a clock x to measure

the cycle scan, which is thus reset after each cycle of the

program. The duration of the two steps input scan and

output activation (see Fig. 1) is at least ε1 while the

whole PLC cycle is at most ε2. Therefore, the invariant x ≤ ε2

is associated with each location. The guard x ≥ ε1 appears

on the last edge of the cycle which models the output

activation and input scan steps. A dotted edge in the

model describes a step of the control program.

Mader-Wupper also models each timer block as a timed

automaton that runs in parallel with the control program.

Synchronization is performed through operations on the timer

variables and on the timer calls, which requires one extra clock

and three synchronization channels for each timer.

B. An overview of the model

Our model is built in a compositional way from a collection

of non-deterministic processes with finite control structure and

real-valued clocks, communicating through channels or shared

variables (see Fig. 10). The two main parts are the environment

6

and the control program, which communicate through shared

variables and synchronization messages. The modeling of the

operative part (environment) is necessary for the verification

of the safety and performance properties stated previously.

!"#$"%&'()*+)$,-./

012

3"$,)/"(4

56',/!7#$6',)/"(4)

!"#$"%&'()*+)

8*99.,$8"/$*,(

:-'#"/$6')-"#/

2*9-*,',/);

2*9-*,',/

))))))))<

2*9-*,',/)

)))))=

3'((">'()*+

?@,8A#*,$B"/$*,

3'((">'()*+)*./-./

3'((">'()*+)"8/$6"/$*,

Figure 10. An overview of the model

The operative part initializes the input variables of the PLC,

used to compute the output variables. According to these new

values, messages are sent to the operative part, acting as orders

given to start or stop the conveyor, or to get the jack down.

When the conveyor is at the testing position, the operative part

sends a message to activate the event-driven task. Details are

explained in Section 5.

C. Modeling timers

The control program contains timing operations, described

by functional blocks called TON (Timer On-delay). This

mechanism has:

• two input variables: a boolean variable IN , to start or

stop counting the time and a time parameter PT (Preset

Time) which indicates the timing delay,

• two output variables: a boolean variable Q, with value 1
if the delay has expired and a time variable ET (Elapsed

Time) which gives the time elapsed from the last rising

edge of IN .

The IEC 61131-3 standard explains the behavior of a TON

block by the diagram in Fig. 11. The time count starts when the

variable IN changes from 0 to 1. Then variable ET increases

until reaching the value PT . At that point, variable Q is set to

1. When IN changes to 0, then ET and Q are immediately

set to 0. If IN changes from 1 to 0 before ET reaches the

delay PT , then ET is immediately set to 0.

0

ET

PT

Q

IN

Figure 11. Time diagram of a TON block

Note that only the boolean variables of the timers IN

and Q appear in the control program (Fig. 8). For the IEC

61131-3, it is not mandatory to connect all input and output

variables of a functional block. Since the variable ET is

not used in the program it will not appear explicitly in the

model of the timer (see Fig. 12), but is instead modeled by a

clock. The parameters PT associated with various instances

of TON blocks are defined in a declaration part which is not

represented here.

Six independent timers are used in station 2 control pro-

gram. We now explain how our model of a TON function

block differs from that of Mader-Wupper [15] and how we

use broadcast channels in UPPAAL to avoid deadlocks. Each

TON block is modeled by an automaton, described in Fig. 12,

with three locations, one clock x-Ton and two discrete variables

Ton-Ine (input) and Ton-Qe (output).

idle running
x_Ton <= Ton_pte

Timeout

Ton_Ine == 1
TON?
Ton_Qe := 0,

x_Ton:=0

Ton_Ine==0
TON?

(x_Ton == Ton_pte)

&& Ton_Ine ==1

Ton_Qe := 1

Ton_Ine == 0
TON?

Ton_Qe := 0

Figure 12. UPPAAL model of a TON block

Initially idle, the location becomes running when the timer

has been switched on and Timeout, when some fixed preset

delay (constant Ton pte) has been reached. At each cycle

of the main task, a synchronization message TON! is sent

with a broadcast channel (as seen in Fig. 18). This message

is synchronized with TON? for all timers. We choose this

modeling technique because it allows us to use a single

broadcast channel for all TON blocks instead of three ordinary

channels per TON in Mader-Wupper’s model. Note that in

our case, no deadlock can occur. This choice is validated in

practice since all TONs are used to measures delay of larger

scale than the PLC cycle time. Another assumption in PLC

languages is that the state of a TON block cannot change as

the control program is processed.

D. Modeling the environment

In order to validate not only the PLC program but also its

integration in the system it has to control, we also need to

model the operative part. This implies a thorough knowledge

of the system to control, particularly the behavior of each el-

ement and its reaction time. Modeling the environment makes

it possible to speed-up the verification time, in particular by

reducing the combinatorial aspects related to non-deterministic

definition of all possible input values, including sometimes

non relevant ones. Indeed, when the input values of the PLC

program are emitted by a model instead of a non-deterministic

process, the space of reachable states is reduced. Since our

timed properties are significant only in nominal mode, we

choose to restrict the model of the plant to the nominal mode

without failure.

7

Each physical device is represented by a timed automaton.

In such an automaton, a given location represents a particular

configuration of the device. However, while some components

of the operative part, like a sensor for example, behave as

discrete event systems, this is not the case for all of them.

Some devices like closed-loop control have pure continuous

behaviors, and cylinders have hybrid behaviors, discrete in

the end of their course but continuous during the move. In

the models proposed here, clocks are the only continuous

components, while physical continuous moves are discretised

(for instance for the conveyor). Modeling with hybrid tools

like HYTECH (instead of UPPAAL) would be a solution to this

problem, but at the price of much larger verification times, and

sometimes even no guarantee of termination.

1) The linear conveyor: The conveyor is the main element

of the operative part, because several triggerings of sensors

depend on its position. It is also the most delicate to model

because of its continuous behavior along the belt, while our

model can only provide a discrete abstraction of this behavior,

leaving out the details which do not influence the properties

to be checked. In order to obtain reasonable performances in

terms of memory and automatic verification time, we model

only the almost stable positions, i.e. the positions where

the conveyor can stop, or trigger a sensor. These positions

correspond to the six states: inductive-sensor, capacitive-

sensor, optical-sensor, test, left, right. They are simply

associated with a particular point on the conveyor trajectory,

useful for detection, but the conveyor does not stop in these

positions, except if it receives a stop! message. Between two

given positions, the behavior of the conveyor is assumed to

be a movement with constant speed, and is thus modeled by

a clock. This clock evolves in only one state and is controlled

by an invariant, the corresponding constant representing the

time needed by the conveyor to cross the distance between

these two positions. For example, the conveyor goes from

the left position to the capacitive-sensor position in 490 to

500 ms. There is another abstraction imposed by the fact that

no stopwatch exists in UPPAAL: between two almost stable

positions, the conveyor cannot change direction. However, on

a stable position, the direction is permitted to change, which

allows property P1 to be violated. In fact this property is sat-

isfied with our control program as in [18]. The conveyor sends

synchronization messages to the various sensors (like optics!)
and the event-driven task (postest!) at the time of its arrival

to the test position. It also modifies the input variables of the

control program. The corresponding automaton is represented

in Fig. 13.

Note that we did not model time non-determinism for the

movement of the conveyor from right to left (lower part of the

automaton). This is not relevant for the properties to check as

this corresponds to step 13 of the SFC specification Fig. 8.

2) The external environment: In station 2, the leftmost posi-

tion corresponds to the loading of pinions, while the rightmost

position is used for unloading. However, the control of loading

and unloading operations is not part of this station, which just

waits for them to be done. Information about termination of

one of these operations is obtained through changes of input

values. Upon loading, the conveyor is provided an unspecified

pinion. This is modeled by an automaton, presented in Fig. 14,

which selects in a non-deterministic way the nature of the

pinion (variable ob) when the conveyor is at the leftmost

position.

wait_loading
pinion_loaded

left_pos== 1

DCY :=1,

ob:=1,

evac_pinion:=0

DCY:= 0,

evac_pinion:=1,

ob:=0

right_pos == 1

left_pos== 1

DCY := 1,

ob:=4,

evac_pinion:=0

left_pos==1

DCY := 1,

ob:= 3,

evac_pinion:=0

left_pos== 1

DCY :=1,

ob:= 2,

evac_pinion:=0

left_pos== 1

DCY:=1,

ob:=5,

evac_pinion:=0

left_pos== 1

DCY:=1,

ob:=6,

evac_pinion:=0

left_pos==1
ob:=0

Figure 14. Model of the environment external to station 2

3) The jack: The jack detects the presence or absence of

a press-fit bushing in a work-piece. This test is made by a

vertical movement of the jack until a limiting position. The

jack must go down until the limiting position is reached, in a

given time, to conclude to the absence of the press-fit bushing.

The time alloted for this movement is given in the specification

(see Fig. 8) by the TON t2/X4. As it is larger than the PLC

cycle duration, the down jack order will be held during several

PLC cycles. The model of this sensor (Fig. 15) depends on

the characteristics of the work-pieces which are represented

by the values of the variable ob. The automaton starts from

location top. It moves to state go-down when it receives a

message down-jack? from the PLC program. From this point

on, there are two cases: if there is a press-fit bushing in the

work-piece (represented in the model by the guard ob ==
1||ob == 3||ob == 5) then the automaton waits in the state

go-down, else it moves to state limiting position. This model

of the jack needs at least two PLC cycles to reach a stable

position, which is ensured by the t2 duration.

top go_down limiting_position

down_jack?

up_jack?
up_jack?

jack_down:= 0

ob==1 || ob==5 || ob == 3,

pos_test==1

down_jack?up_jack? down_jack?

ob==0 ||ob==2 || ob == 4 || ob == 6||

((ob==1 || ob==3 || ob==5) && pos_test ==0)

down_jack?

jack_down:=1

Figure 15. Timed automaton for the jack

4) The sensors: The optical, capacitive and inductive sen-

sors are modeled by timed automata synchronized with the

automaton of the conveyor. We only show here the model for

8

left

moveR1

x_c <= 500

moveR2

x_c <= 500

moveR3

x_c <= 500

moveR4

x_c <= 500

moveR5

x_c <=1000

moveL1

x_c <= 500

moveL2

x_c <=500

moveL3

x_c <=500

moveL4

x_c <=500

moveL5

x_c <=1000

capacitive-sensor test
optical-sensor inductive-sensor right

!"#$%!&'(

)*+,-./

012'#3"4,-.

)*+56-78.

+939+%:

!"#$%!&'(

)*+,-.

)*+56-578.

3"4'14':

)*+,-.

!"#$%!&'(

)*+,-./

3"4*'14',-.

)*+56-578.

"3'%+4:

!"#$%!&'(

)*+5,-.
%;<=+:

)*+6-78.
!"#$%!&'(

)*+,-.

)*+56-58>.

3"4$%!&':

$%!&'#3"4,-5?

!"#012'(

)*+,-./

$%!&'#3"4,-.

)*+5--?...
%;<=+:

!"*012'(

)*+,-.

)*+--@..
"3'%+4:

!"#012'(

)*+,-.

)*+--@..
3"4'14':
3"4*'14',-?

!"#012'(

)*+,-./

3"4*'14',-.

)*+--@..
+939+%:

!"#012':

)*+,-.

)*+--@..

012'#3"4,-?

4'"3(

!"#012'(

4'"3(4'"3(4'"3(
4'"3(4'"3(!"#$%!&'(

!"#$%!&'(!"#$%!&'(!"#$%!&'(!"#$%!&'(!"#$%!&'(

!"#012'(!"#012'(!"#012'(
!"#012'(

!"#012'(

Figure 13. Timed automaton for the conveyor

the optical sensor, the others are very similar, only location

names and signal names should be adapted. The conveyor

sends the activation messages (for example optics? in Fig. 16)

when it is under the corresponding sensor. According to the

nature of the material, the sensor modifies the value of the

corresponding variable (here optical) which is then used by

the PLC program. No clock is used in this model as its value

is used only during the input scan of the PLC cycle. The state

of the sensor is used as a constant within a given PLC scan.

The filtering delay for the sensors is assumed to be smaller

than the input scan duration (Fig. 1).

idle

x_co <= 400

!"##$%%!"##&%%!"##'%%!"##(

!)*+,-./#$0

12,!/#3

!)*+,45

12,!6##6(33

!)*+,-./#63

!"##36%%6!"##76%%6!"##8

!)*+,45

12,!/#3

Figure 16. Timed automaton for the optical sensor

E. Modeling the control program

1) The main program: The functional specification of the

global system is modified from Fig. 8 to use an interruptive

task in Ladder language (see Fig. 17).

In this specification, the interruptive task is triggered by the

POS_TEST sensor. To stop only from left to right, the action

is conditioned by being in SFC step 2 or 3 (denoted by x2

and x3 in the interruptive task in Fig. 17.

This SFC specification needs to be translated into a PLC

programming language. Recall that the execution of a PLC

program is a cycle with three phases: input reading, program

execution and output writing as in Fig. 1. This translation is

done using the (classical) algebraic representation of SFC [13]

triggered by POS TEST==1

X3 MOTOR

EVT1_ACTIVX2

Figure 17. SFC specification of station 2 with LD interruptive task

with three sequential modules inside the program execution

part.

• The first module is the computation of the clearing

conditions of the transitions as boolean variables called

CFT0 ... CFT18 in Fig. 18. For instance, the t0

transition in Fig. 17 is associated with CFT0 variable

9

idle

input_reading
x_cycle<=10

output_emission
x_cycle <= 10

computing
x_cycle<=10

x0 :=1, x1:= 0,x2:= 0,

x3:= 0,x4:= 0,x5:= 0,

x6:= 0,x7:= 0,x8:= 0,

x9:= 0,x10:= 0,x11:= 0,

x_cycle:=0

motor == 1 && right == 1

go_right !

motor==1 && right == 0

go_left!

motor==0

stop!

up_jack==1

upjack!

down_jack==1

downjack!

motor == 0 || right == 0motor==0 || right == 1motor==1up_jack== 0

down_jack==0

x_cycle:= 0

x_cycle >=5

x0 := CFT18||(x0 && ! CFT0),

x1:= CFT0 ||(x1 && !CFT1 && !CFT2),

x2:= CFT1 || (x2 && ! CFT3),

x3:= CFT2||(x3 && ! CFT4),

x4:= (CFT3||CFT4)||(x4 && ! CFT5 && ! CFT6),

x5:= CFT5 ||(x5 && !CFT7),

x6:= CFT6 || (x6 && !CFT8),

x7:= (CFT7||CFT8)||(x7 && !CFT9 && !CFT10 && !CFT11),

x8:= CFT9 || (x8 && !CFT12),

x9 := CFT10 || (x9 && ! CFT13 && ! CFT14),

x10:= CFT13 ||(x10 && ! CFT15),

x11 := CFT14 || CFT11 ||(x11 && ! CFT16),

x12 := (CFT12 ||CFT15 ||CFT16)||(x12 && ! CFT17),

x13:= CFT17 ||(x13 && ! CFT18)

CFT0 := x0 && DCY,

CFT1:= x1 && capacitive,

Ton_in35 := x1,

CFT3 := x2 && evt1_activ,

CFT4:= x3 && evt1_activ,

Ton_in33:= x4,

CFT6:= x4 && jack_down,

Ton_in38 := x5,

Ton_in37 := !jack_down,

Ton_in34 := x7,

CFT10:= x7 && optical,

CFT11:= x7&& inductive,

CFT12:= x8 && right_pos,

Ton_in36 := x9,

CFT14 := x9 && inductive,

CFT15 := x10 && right_pos,

CFT16:=x11 && right_pos,

CFT17:= x12 && evac_pinion,

CFT18 := x13 && left_pos

TON!

CFT2 := Ton_Q35,

CFT5 := Ton_Q33,

CFT7:= x5 && Ton_Q38,

CFT8 := x6 && Ton_Q37,

CFT9:= Ton_Q34,

CFT13:= Ton_Q36

motor:=(x0==1 || x12==1 ? 0 : motor),

motor:=(x1==1 || x7 ==1 || x13 ==1 ? 1 : motor),

right:=(x1==1 ? 1 : right),

right:=(x13==1 ? 0 : right),

down_jack:=x4,

up_jack:= x6 || x5,

present_pinion:=(x2==1 ? 1 : present_pinion),

present_pinion:=(x3==1 ? 0 : present_pinion),

pvc_pinion :=(x8==1 ? 1 :pvc_pinion),

pvc_pinion :=(x10==1 || x11==1 ? 0 : pvc_pinion),

cooper_pinion := (x10==1 ? 1 : cooper_pinion),

cooper_pinion := (x8==1 || x11==1 ? 0 : cooper_pinion),

steel_pinion := (x11==1 ? 1 :steel_pinion),

steel_pinion := (x8==1 || x10==1 ? 0 : steel_pinion),

evt1_activ := (x4==1 ? 0 : evt1_activ),

present_bearing := (x5 ? 1 : present_bearing),

present_bearing := (x6 ? 0 : present_bearing)

Figure 18. UPPAAL model of main program

defined by CFT0=x0&&DCY which means that state 0

must be active and the transition condition DCY must be

true to allow activation of step 1 and deactivation of step

0 in the next module.

• The second module is the computation of the

step variables called x0 ... x13 in the same

figure. For step 1, activation is computed by

x1=CFT0‖(x1&&!CFT1&&!CFT2).

• The last module is the computation of actions using

the step variables. As seen in Fig. 17, action motor is

reset when step 0 or step 12 is activated and set when

step 1 or step 7 or step 13 is activated, this is writ-

ten as R_motor=x0‖x12, S_motor=x1‖x7‖x13,
motor=S_motor&&!R_motor.

Those algebraic equations are directly implemented in the

PLC with Ladder diagram language, they are also used in the

UPPAAL model with small syntactic variations as in Fig. 18.

The complete PLC cycle is modeled in UPPAAL by an

automaton structured as a loop, which includes a clock to

measure the cycle time (equal to 10 time units here). This

loop consist of four steps:

1) input reading and computation of new values for the

evolution conditions (CFT) of the SFC,

2) computation of other new values for SFC variables: step

activation (x) and output computation (motor ...),

3) output writing, performed by a sequence of messages

for synchronization with the operative part,

4) reset of the clock modeling the cycle time.

The atomicity hypothesis is the following: time can elapse

only in the three states between these steps (input reading,

computing, output emission in Fig. 18), to represent the

duration of their execution. Note that the outputs are usually

emitted simultaneously by the PLC, so that the duration of the

ouput emission is negligible with respect to the cycle time.

We ensure this atomicity property of step (3) with committed

locations.

2) The event-driven program: Since it is run upon acti-

vation of the bushing-test position, the event-driven task is

strongly dependent on the environment. This aspect is modeled

by the emission of a message from the conveyor, received by

the automaton of the event-driven task (see Fig. 19).

When the message postest? is received, the automaton

executes the algebraic equations which represent the Ladder

program and modifies the internal variable motor if the

10

idle

x2==0 && x3==0

x2==1 || x3==1
motor:=0,
evt1_activ:=1postest?

X3 MOTOR

EVT1_ACTIVX2

Figure 19. UPPAAL model for the event-driven task

condition holds. Note that the execution time of the even-

driven task is taken as null due to its negligible duration.

In practice, for a basic PLC, this execution time is about 1

microsecond while the cycle time of the main program is about

3 milliseconds.

The first committed location is used to model the priority

of the event-driven task and the other ones to express the null

duration.

The two programming designs are considered in order to

determine the conditions under which the requirements are

satisfied and to compare both models:

• the event-driven task only modifies the internal memory

of the output as defined above (see Fig. 17),

• the event-driven task is not activated and the main task

is designed to control the whole process (see Fig. 8).

V. VERIFICATION WITH UPPAAL

A. The observer automaton.

In order to verify the timed property P2, we need to

introduce an additional automaton (see Fig. 20) which is

composed with the rest of the system. This automaton plays

the role of an external observer and does not interfere with

the model previously described.

idle

obs

stop

!"#$%#$&'

()*+

,-**.&//&,0**.

#$"!'

()*+

Figure 20. Observer automaton

This automaton contains a location stop, reached when the

conveyor stops in testing position. It also contains a clock X

to measure the reaction time. The observer automaton starts

from state idle with X set to 0. When the message postest?

is received from the conveyor, the automaton moves to state

obs and resets the clock X . From this point on, the clock

value again increases with time. When the message stop? is

received from the main program, the automaton switches to

state stop which must be committed to avoid time elapsing.

Thus, the value of X in this last state corresponds to the time

elapsed between the triggering of the event-driven task and the

physical stop of the conveyor. To check the timed property P2,

we express its negation (C1 in the table I below): the observer

automaton will eventually reach the state stop with the value

of the clock X greater than 5 time units. Property C1 is written

as

E<> (observer.stop and X > 5)

in UPPAAL syntax, which is a fragment of the logic TCTL [1].

In this formula, the combination E<> means “for some path

in the future” and observer.stop denotes location stop of the

observer automaton. The formula above can thus be read as

”for some paths in the future, the location stop of the observer

is reached with the value of clock X greater than 5”.

Note that if property C1 is true in our abstracted model, it

is also true in the real program. Indeed, if time can elapse in

the intermediate locations of the main program, this will result

in a possibly greater value for the clock X . On the contrary,

if we obtained a negative answer, we would have to extend

the model so that time could elapse in the location just before

emission of the message stop!.

B. Experiments.

First note that the global model has about 30.106 config-

urations, which are explored in an on the fly computation of

the set of reachable states.

Table I
RESULTS OF THE EXPERIMENTS

property result time memory

with the event driven task
C1:E<> observer.stop and X > 5 yes 15 s 30 Mb
C2:E<> observer.stop and X ≤ 5 yes 15 s 30 Mb
C3:E<> observer.stop and X > 10 no 22 s 61 Mb

without the event driven task
C5:E<> observer.stop and X ≥ 10 yes 16 s 30 Mb
C6:E<> observer.stop and X > 20 no 22 s 70 Mb
C7:E<> observer.stop and X < 10 no 22 s 69 Mb

with Mader-Wupper model
C8:E<> observer.stop and X > 5 - - -

Table I gives the time and memory used for verification

(on a linux machine with a pentium4 at 2.4 GHz with 3

Gb RAM). The results provide a comparison of the reaction

times between mono-task and multitask programming. Indeed,

on the one hand, properties C5, C6 and C7 show that the

conveyor stops between 10 and 20 time units after it reaches

the test position. This is far from being a surprise because

these values correspond respectively to one and two PLC cycle

times. On the other hand, property C3 shows that the conveyor

stops in less than one PLC cycle time (which would also be the

case if time could elapse in intermediate locations because the

length of the cycle is preserved). Thus, multitask programming

reduces the reaction time. However, property C1 proves that

11

it is not sufficient to satisfy the requirement P2.

Note that, after 29 hours of computation, we stopped the

verification process in the case of Mader-Wupper model.

These performances are due to two main reasons: the atomicity

hypothesis for executions between some states of the main

program and the enhanced model of the TON block.

• The atomicity hypothesis: we assume that each one of the

four steps of the main program (section IV-E1) executes

instantaneously. Recall that time can elapse only in three

states (input reading, computing, output emission).

• The enhanced model of the TON block: we use one

broadcast channel to synchronize all the TON blocks and

the main program instead of three ordinary channels for

each TON block as in Mader-Wupper model.

VI. DISCUSION AND CONCLUSION

In this work, we use a generic algebraic translation of

SFC specification with TON blocks which leads to formal

semantics for a subset of Ladder diagram language, with timed

automata. The loop structure of the automaton is generic, and

updates on the transitions result directly from the algebraic

equations.

We also describe the operative part of station 2 of MSS

platform with timed automata. This part is not generic in this

paper, but some work has been devoted to this problem [14].

On this network of timed automata represented in UPPAAL

syntax, we formally prove by model-checking that multitask

programming reduces the reaction time of the conveyor, upon

emission of an output order to stop. While this does not really

come as a surprise, we obtain reasonable verification times

(less than 30 s) on a global model with about 30.106 states,

by adding an atomicity hypothesis to Mader-Wupper model

and modifying the automata for timer blocks. In comparison,

model-checking the same formula with the original model had

to be stopped after several hours.

This experiment shows that timed model-checking is a use-

ful technique for the verification of PLC programs. Attention

must be focused on the following points:

• The semantics of the language must be formally defined.

Here, due to the algebraic translation of SFC specifi-

cations and the loop structure of the PLC cycle, the

construction of a timed automaton and a control program

in Ladder diagram language could be generated in a

systematic way. This construction process could be done

automatically in the future.

• Timed aspects can be integrated with respect to some

constraints (logical time for the control program, discrete

time for plant model).

• The technique requires hypotheses on the behavior of the

operative part, on the real-time kernel of the PLC, to build

a compact enough model of the system.

Taking these conditions into account may lead to efficient

formal verification of timed properties. We believe that design-

based approaches (e.g. synchronous languages) would not fit

this objective. While design-based approaches can also be used

for formal verification purposes, we think that they are not

so convenient to deal with the asynchronous context of PLC

programming.

Scaling remains the main challenge for verification tech-

niques due to the combinatorial explosion: combining asyn-

chronous processes will result in a very high number of

configurations even with untimed models. Here we choose to

present a timed approach combined with multitask processes

in one PLC. Adding more processing stations controlled by

the same PLC would not be a real problem. However, adding

a processing station controlled by another PLC leads to

combinatorial explosion due to a fine description of the PLC

behavior.

Although this study is not yet at industrial scale, our

approach aims at techniques that can be applied in an industrial

context, with commonly used languages as starting point. This

can provide tools to enhance the quality of control programs

with the usual industrial practices.

REFERENCES

[1] R. Alur, C. Courcoubetis, and D. L. Dill. Model-checking in dense real-
time. Information and Computation, 104(1):2–34, 1993.

[2] R. Alur and D. L. Dill. Automata for modeling real-time systems. In Proc.

17th Int. Coll. Automata, Languages, and Programming (ICALP’90),

Warwick University, England, July 1990, volume 443 of Lecture Notes in

Computer Science, pages 322–335. Springer, 1990.
[3] R. Alur and D. L. Dill. A Theory of Timed Automata. Theoretical

Computer Science (TCS), 126(2):183–235, 1994.
[4] G. Canet, S. Couffin, J.-J. Lesage, A. Petit, and Ph. Schnoebelen. Towards

the automatic verification of PLC programs written in Instruction List.
In Proc. IEEE Int. Conf. Systems, Man and Cybernetics (SMC’2000),

Nashville, TN, USA, Oct. 2000, pages 2449–2454, 2000.
[5] A. David, G. Behrmann, K. G. Larsen, and W. Yi. A Tool Architecture for

the Next Generation of UPPAAL. Technical Report 2003-011, Department
of Information Technology, Uppsala University, Feb. 2003. 20 pages.

[6] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool KRONOS.
In Proc. Workshop Hybrid Systems III: Verification and Control, New

Brunswick, NJ, USA, Oct. 1995, volume 1066 of Lecture Notes in

Computer Science, pages 208–219. Springer, 1996.
[7] H. Dierks. PLC-Automata: A New Class of Implementable Real-Time

Automata. Theoretical Comput. Sci., 253(1):61–93, 2000.
[8] G. Frey and L. Litz. Formal methods in PLC-programming. In Proc.

IEEE Int. Conf. Systems, Man and Cybernetics (SMC’2000), Nashville,

TN, USA, Oct. 2000, pages 2431–2436, 2000.
[9] M. Hendriks and M. Verhoef. Timed automata based analysis of

embedded system architectures In Parallel and Distributed Processing

Symposium, 2006 , 2006. DOI: 10.1109/IPDPS.2006.1639422
[10] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. A user guide to HyTech.

In Proc. 1st Int. Workshop Tools and Algorithms for the Construction and

Analysis of Systems (TACAS’95), Aarhus, DK, May 1995, volume 1019
of Lecture Notes in Computer Science, pages 41–71. Springer, 1995.

[11] IEC (International Electrotechnical Commission). IEC Standard 61131-

3 : Programmable controllers - Part 3, 1993.
[12] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell. Journal

of Software Tools for Technology Transfer, 1(1–2):134–152, 1997.
[13] J. Machado, B. Denis, J.-J. Lesage, J.-M. Faure, J. Ferreira Da Silva.

Logic controllers dependability verification using a plant model In Proc.

3rd IFAC Workshop on Discrete-Event System Design, (DESDes’06),

Rydzyna (Poland), Sept. 2006, pages 37-42.
[14] J. Machado, B. Denis, J.-J. Lesage. A generic approach to build plant

models for DES verification purposes In 8th International Workshop On

Discrete Event Systems, WODES’06, Ann Arbor (USA), July 2006, pages
407-412.

[15] A. Mader and H. Wupper. Timed automaton models for simple
programmable logic controllers. In Proc. 11th Euromicro Conference on

Real-Time Systems (ECRTS’99), York, UK, June 1999, pages 114–122.
IEEE Comp. Soc. Press, 1999.

[16] E. Olderog. Correct real-time software for programmable logic con-
trollers. In Correct System Design. Recent Insights and Advances, volume
1710 of Lecture Notes in Computer Science, pages 342–362. Springer,
1999.

12

[17] Rexroth Bosch Group. Mechatronik standard system.
http://www.boschrexroth.com/country units/europe/germany/sub
websites/brs germany/de/didactic/lehrsysteme/mechatronik/mechatronik
standard system mss/index.jsp.

[18] O. Rossi, O. de Smet, S. Lampérière-Couffin, J.-J. Lesage, H. Papini, and
H. Guennec. Formal verification: a tool to improve the safety of control
systems. In 4th Symposium on Fault Detection, Supervision and Safety

for Technical Processes (IFAC Safeprocess 2000), Budapest, Hungary,
pages 885–890, 2000.

[19] O. Rossi and Ph. Schnoebelen. Formal modeling of timed function
blocks for the automatic verification of Ladder Diagram programs. In
Proc. 4th Int. Conf. Automation of Mixed Processes: Hybrid Dynamic

Systems (ADPM’2000), Dortmund, Germany, Sept. 2000, pages 177–182.
Shaker Verlag, Aachen, Germany, 2000.

[20] Siemens. Programming with STEP 7 v5.4 ref: A5E00706944-01
http://www.automation.siemens.com

[21] J. Sifakis and S. Yovine. Compositional specification of timed systems.
In Proc. 13th Annual Symposium on Theoretical Computer Science

(STACS’96) , volume 1046 of Lecture Notes in Computer Science, pages
347–359. Springer, 1996.

[22] F.W. Vaandrager and A.L. de Groot. Analysis of a biphase mark protocol
with Uppaal and PVS In Formal Aspects of Computing, Volume 18,
number 4, pages 433–458. Springer, 2006.

[23] L. Waszniowski and Z. Hanzlek. Formal verication of multitasking
applications based on timed automata model In Real-Time Syst, Volume
38, pages 39–65, 2008 DOI 10.1007/s11241-007-9036

Houda Bel mokadem received a PhD degree from
École Normale Supérieure de Cachan (France). She
is associate professor at ENSA de Tanger (Morocco).
Her research area is the verification of temporal
properties.

Béatrice Bérard is full professor at University
Pierre et Marie Curie. Her research area is the
modeling and verification of concurrent systems with
quantitative constraints, in particular real time and
hybrid systems.

Vincent Gourcuff received a PhD degree from
École Normale Supérieure de Cachan (France). He
is qualified teacher at Institute of Technology of
Cachan (France). He carries out research on the
verification of safety properties on PLC programs.

Olivier De Smet is currently associate professor
of manufacturing engineering at Conservatoire Na-
tional des Arts et Métier (Paris, France) and carries
out research at the LURPA on the control of Discrete
Event Systems with verification approaches.

Jean-Marc Roussel received a PhD degree in 1994.
He is currently associate professor of automatic
control at École Normale Supérieure de Cachan
(France) and carries out research at the LURPA on
the control of Discrete Event Systems with algebraic
approaches.

