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Abstract. Integration of spatial data into multidimensional models leads to the 

concept of Spatial OLAP (SOLAP). Usually, SOLAP models exploit discrete 

spatial data. Few works integrate continuous field data into dimensions and 

measures. In this paper, we provide a multidimensional model that supports 

measures and dimension as continuous field data, independently of their 

implementation. 

Keywords: Spatial OLAP, Field data, Spatial Data Warehouses, 

Multidimensional models 

1   Introduction 

It has been estimated that about 80% of the data stored in corporate databases 

integrates geographic information [7]. This information is typically represented 

according two models, depending on the nature of data: discrete (vector) and field 

[22]. The latter model represents the space as a continuous field. Fields have to be 

discretized to be represented into computers according to data input, and data 

analysis. These representations can be grouped into two categories: incomplete and 

complete. Incomplete representations store only some points and need supplementary 

functions to calculate the field in non-sampled areas. Complete representations 

associate estimated values to regions and assume that this value is valid for each point 

in the regions (raster). Fields are very adapted for modeling spatial phenomena such 

as pollution, temperature, etc. They allow a point by point analysis through the Map 

Algebra operators [16] [22]. 

In order to benefit from Data warehousing and OLAP decision support 

technologies [11] also in the context of spatial data, some works extended them 

leading to the concept of Spatial OLAP (SOLAP), which integrates OLAP and 

Geographic Information Systems (GIS) functionalities into a unique framework [2]. 

As for the model underlying SOLAP systems, several research issues from theoretical 

and implementation point of view have risen. Indeed, several works focus on indexing 

[20] and visualization techniques [6]. Motivated by the relevance of a formal 
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representation of SOLAP data and operators, some spatio-multidimensional models 

based on vector data have been defined (a review can be found in [4]). Few works 

consider field data into multidimensional models [1], [23] and [15]. These models 

present some limitations that do not allow fully exploiting continuous field data into 

OLAP from these points of view: aggregation functions, hierarchies based on field, 

and independence of field data implementation. Thus, in this paper we propose a 

spatio-multidimensional model integrating field data.  

The reminder of this paper is organized as follows: Section 2 recalls fundamentals 

of spatial analysis techniques, and existing SOLAP models for field data. Our model 

is proposed in the Section 3. Finally, in Section 4 conclusions and future work are 

presented. 

2   Related work 

The term Map Algebra was first introduced in [22] to describe operators on raster data 

(complete field data). Map Algebra operators are classified according to the number 

of grids and cells involved. Local operators apply a mathematical or logical function 

to the input grids, cell by cell. Focal operators calculate the new value of each cell 

using neighboring cells values of the input grid. Zonal operators calculate new values 

as a function of the values of the input grid which are associated with the zone of 

another grid, called zone layer. An extension of the Map Algebra (Cubic Map 

Algebra) to the temporal dimension is presented in [16]. The authors redefine Map 

Algebra operators on a cube of cells whose coordinates are three-dimensional. Then, 

the sets of operators are modified accordingly as shown on Figure 1. In [5] the authors 

define an algebraic model for field data. This framework provides a formal definition 

of Map Algebra operators independent of their implementation. Along this line, the 

work of [8] formally describes how Map Algebra fundamentals can be used for image 

manipulation. Finally, Map Algebra has been defined also for incomplete field data 

such as Voronoi tessellations [13]. Indeed, "Map Algebra obliges analysts to organize 

reality according to a particular data structure (raster) instead of allowing making 

the reality suggest the most adequate data structure for the analysis" [10]. 

On the other hand, the integration of spatial data into data warehousing and OLAP 

systems leads to the concept of Spatial OLAP (SOLAP). SOLAP is based on the 

spatial multidimensional model that defines spatial dimensions and spatial measures.  

In particular, a spatial dimension is a classical dimension whose levels contain spatial 

attributes. This allows for visualizing measures on maps to discover (spatial) relations 

and unknown patterns. According to the vector model, a spatial measure is defined as 

a set of geometries and/or the result of spatial operators [2] [14]. Some spatial 

multidimensional models, based on the vector model, have been proposed [4]. Despite 

of the significant analysis power of field data and its associated spatial analysis 

operators, only few works address this issue. [15] extends the concepts of spatial 

dimension to informally define "spatial matrix (raster) dimension" where at least one 

level represents raster data. Then, a member is a cell of the raster. Moreover, she 

introduces also the concept of "matrix cube" where each fact is associated to a cell of 

the raster data with its attributes. Aggregation functions are Map Algebra operators 



(local, focal and zonal). The author limits field data to raster. By this way, the work 

loses in terms of abstraction for field data. Indeed, Map Algebra has been defined also 

on other forms of representation of field data such as Voronoi tessellation [13], and 

terrain representations, such as TIN, that could be very useful for understanding and 

analyzing multidimensional data [6]. 

 

(a) (b) (c)

(d) (e)
 

Figure 1. Map Algebra: a) local, b) focal, c) zonal [22], Cubic Map Algebra: d) focal, e) zonal 

[16]. 

Hence, [23] proposes a conceptual multidimensional model for taking into account 

field data independently of their implementation. They define a "field measure" as a 

value that changes in space and/or time. The model limits aggregation functions for 

field measure to local Map Algebra functions. They also introduce a "field hierarchy" 

when a level is a field data that is not linked to facts. Consequently, it is not possible 

to have field measures at different granularities, which are mandatory for spatial 

analysis [21]. Finally [1] defines the concept of "continuous cube" when spatial 

dimensions are composed of infinite spatial members whose associated numerical 

measures are calculated using interpolation functions, as they use an incomplete 

representation of spatial members. This model does not allow introduce field data as 

measures and in hierarchies. 

Therefore, a formal model is necessary to create the foundation for a framework 

for the multidimensional analysis of field data as dimensions (field hierarchies) and 

measures. Table 1 shows the requirements for this model and how existing works 

address them. As shown in table 1, there is no existing model that supports all of these 

requirements. This is the reason why we propose a new SOLAP model in this paper.  

 

 

 



Table 1: Requirements for spatial multidimensional model for continuous field data. 

Requirements [1] [23] [15] 

Measures as continuous field data  NO YES Partially (only for raster 

data) 

Hierarchy on continuous field data NO NO Partially (only for raster 
data) 

Aggregation functions as Map Algebra 

functions 

NO Partially (only local 

functions) 

Partially (only for raster 

data) 

Independence of implementation YES YES NO 

3   Spatio-multidimensional model for field data 

Before introducing our model we present a SOLAP application for monitoring 

earthquakes in Italian regions. Spatial analyst wants answer to queries like this: 

“Where were earthquakes, and what was their intensity per region at different scales 

(resolutions)?”. This SOLAP application presents a measure that is a field object 

representing the earthquakes, a temporal dimension, and a spatial dimension that 

represents terrain models of Italian regions at different scales. 

3.1 Geographic data model 

In this section, we provide a uniform representation for field and vector data, which 

are used by the multidimensional model to define measures and dimensions members. 

An Object represents an object of the real world described by some alphanumeric 

attributes. It is used in the model to represent levels and members (Sec. 3.2). 

Definition 1. Object  

An Object Structure Se is a tuple 〈a1, …an〉 where ∀ i ∈ [1,…n] ai  is an attribute 

defined on a domain dom(ai) 
An Instance of an Object Structure Se is a tuple 〈val(a1),…val(an)〉 where ∀ i ∈ [1,…n] 

val(ai) ∈ dom(ai) 

We denote by 'I(Se)' the set of instances of Se 

 

A Geographic Object extends an Object to represent geographic information 

according to the vector model. Indeed, a Geographic Object [3] is a geometry (geom) 

and an optional set of alphanumeric attributes ([a1, …an]) whose values are associated 

to the whole geometry according to the vector model (Figure 2a). 

 

Definition 2. Geographic Object 

Let g ⊂ R
2 
i.e.

 
a subset of the Euclidian space. An Object Structure Se  = 〈geom, [a1, 

…an]〉 is a Geographic Object Structure if the domain of the attribute geom is a set of 

geometries: dom(geom)∈ 2g 

geom is called 'geometric support' 

 

 



Example 1.  

The geographic object structure representing Italian regions is Sregion=〈geom, name〉 
where 'geom' is the geometric support, and 'name' is the name of the region.  An 

instance of Sregion is t2 = 〈plo, Lombardia〉 where 'plo' is the geometry of the region 
Lombardia (Figure 2a).  

 

                        
p2

f2(x;y)=12

 
                          (a)                                                                 (b) 

Figure 2: a) Italian regions: Instances of Sregion, b) Earthquakes: an instance of Searthq. 

According to [13] fields are geographic objects with a function that maps each 

point of their geometry to an alphanumeric value. This definition allows for 

representing field data independently of their implementation (complete/incomplete) 

(Field Object). Thus, A Field Object extends a Geographic Object with a function that 

associates each point of the geometry to an alphanumeric value. In this way, a Field 

Object allows for representing geographic data according to the field and the vector 

model at the same time ("Independence of implementation" requirement of Table 1). 

 

Definition 3. Field Object 

Let Se = 〈geom, field, [a1, …an]〉 a Geographic Object Structure. Se is a Field Object 

Structure if the domain of the attribute field is a set of functions defined on m sub-sets 

of points of geom having values in an alphanumeric domain domfield :  dom(field)= {f1 … 
fm} 

An Instance of an Field Object Structure Se is a tuple 〈g, fj, val(a1),…val(an)〉 where: 
− ∀ i ∈ [1,…n] val(ai) ∈ dom(ai), g ∈ dom(geom) 

− fj : g → domfield and fj ∈ {f1 , …, fm} 

 

We note 'field support' the input domain of fj 

 

Example 2.  

The field object structure representing earthquakes is Searthq=〈geom, intensity〉 where 
'geom' is the geometric support, and 'intensity' is a set of functions defined on 'geom' 

with values in R. 'intensity' represents the intensity of the earthquake. An instance of 

Searthq is t2 = 〈p2, f2〉 where p2 is a geometry and f2 represents the intensity of the 
earthquake on the 11-1999 in Lombardia. f2 is defined on each point of p2 with values 

in R, for example f2 (x;y) = 12 (Figure 2b). 

 

By the same way, we can define a field object structure to represent terrain models 

of Italian regions at different scales by adding to the geographic object Sregion the field 

attribute representing terrain elevation. 

Piemonte 

Lombardia 

Emilia-Romagna 

plo 



3.2 Spatio-multidimensional model for field data 

A spatio-multidimensional model organizes data using the concepts of dimensions 

composed of hierarchies, and facts described by measures. An instance of the spatio-

multidimensional model is a hypercube. Section 3.2.1 presents the concepts of 

dimensions, facts, and measures, and Section 3.2.2 formalizes cuboids. 

3.2.1 Hierarchies and facts 

According to [3] a spatial hierarchy organizes vector objects in a hierarchical way. 

Formally, a Spatial Hierarchy organizes the Geographic Objects [3] (i.e. vector 

objects) into a hierarchy structure using a partial order ≤h where Si ≤h Sj means that Si 

is a less detailed level than Sj. An instance of a hierarchy is a tree (<h) of instances of 

Geographic Objects (spatial members). Then, measures are aggregated according to 

the groups of spatial members defined by the tree <h. 

Hence, in this work we define a Field Hierarchy as a hierarchy of field objects. 

For that, we extend the spatial hierarchy by defining a tree (<f) on the geometric 

coordinates (field supports) of the spatial members represented by field objects 

("Hierarchy on continuous field data" requirement of Table 1). By this way it is possible to 

visualize field objects at different scales or resolutions (Figure 4). Moreover, the 

alphanumeric values associated to each point of the field measures are aggregated 

according to the groups of coordinates of spatial members defined by the tree <f . By 

this way, our model uses the continuous representation of spatial members (Field 

Objects) to aggregate measure, allowing visualizing field measures at different scales 

or resolutions (see Figure 6b). 

 

Definition 4. Field  Hierarchy 

A Field Hierarchy Structure, Hh, is a tuple 〈L h, h, h, ≤h〉 where:  
− h, h, are of Field Object Structures, and Lh is a set of Field Object Structures 

− ≤h is a partial order defined on L h, h, h   as defined in [3] 
 

An Instance of a Field Hierarchy Structure Hh is two partial orders: <h and <f such 

that: 

− <h is defined on the instances of L h, h, h  as defined in [3] 
We note <h  'geographic objects order'  

 

− <f is defined on the field supports of the instances of L h, h, h such that: 
- if coodi <f coodj then Si ≤h Sj , where coodi  belongs to a field support of an 

instance of Si , and coodj belongs to a field support of an instance of Sj, (coodi and 

coodj are geometric coordinates) 

 

- ∀ coodi which does not belong to the field supports of the instances of h, ∃ one 
coodj  belonging to the field support of an instance of Sj such that coodi <f coodj 

 

- ∀ coodi which does not belong to the field supports of the instances of h, ∃ coodj 
belonging to the field support of an instance of Sj such that coodj <f coodi 



We note <f  'field objects order'  

 

The set of leafs of the tree represented by <h with root ti are denoted as leafs(Hh, ti). 

The set of leafs of the tree represented by <f with root coodi are denoted as 

leafsFieldSupport(Hh, coodi). 

 

Example 3.  

The field hierarchy structure representing the administrative dimension that groups 

regions into zones is Hlocation = 〈Llocation, Sregion, Sall_location, ≤location〉 where Llocation = 

{Szone} and (Sregion ≤location Szone). Sregion and Szone are the spatial levels of the hierarchy 

(Figure 3a). An example of instance of Hlocation is shown on Figure 3b and 3c. We can 

notice two trees: the geographic objects order that is represented by black lines 

(Figure 3b), and the field objects order, which is represented by dashed lines (Figure 

3c). 

 

Sregion

Szone

North Italy

Lombardia

Piemonte
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Veneto
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Trentino
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x1;y1
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(a)                          (b)                                (c) 

Figure 3: Field hierarchy grouping regions into zones, a) Schema, b) Hierarchical relationships 

between geographic objects, c) Hierarchical relationships between geometric coordinates. 

Example 4.  

The hierarchy structure representing the terrain models of Italian regions at different 

resolutions is Hregres = 〈Lregres, Sregion, Sall_regres, ≤regres〉 where Lregres = {Sregres} and (Sregion 
≤regres Sregres ) (Figure 4a). Its instance is shown on Figure 4b and Figure 4c. Note that a 

geometric coordinate at the coarser resolution is associated with a set of geometric 

coordinates at the most detailed resolution (Figure 4c). For example, this hierarchy 

can be defined using the bilinear interpolation algorithms used for changing resolution 

for raster data at different scales. 



Sregion

Sregres

Lombardia

Piemonte

Val d’Aosta
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                             (a)                       (b)                              (c) 

Figure 4: Field hierarchy representing regions at different scales, a) Schema, b) Hierarchical 

relationships between geographic objects (geographic objects order), c) Hierarchical 

relationships between geometric coordinates (field objects order). 

Once we have introduced the concepts of measures, and hierarchies for field data, 

we present the concept of Field Cube. A Field Cube Structure represents the spatio-

multidimensional model schema where a field object is used as measure that is 

analyzed according classical hierarchies and one field hierarchy ("Measures as continuous 

field data" requirement of Table 1). Note that without losing in generalization, we 

suppose to have only one spatial dimension and one field measure to simplify the 

formalism of the model. In the same way, we do not introduce numerical measures as 

they can be simply represented using numeric attributes as defined in [3]. An instance 

of a field cube structure represents the fact table or the basic cuboid of the lattice 

cuboids.  

 

Definition 5. Field Cube  

A Field Cube Structure, FCc ,  is a tuple 〈H1,…Hn, FieldObject〉 where:  
- H1 is a Field Hierarchy Structure (Spatial dimension) 

- ∀ i ∈ [2,…n] Hi  is a Hierarchy Structure (Dimensions) 

- FieldObject is Field Object Structure (Field measure) 

 

An Instance of a Field Cube Structure FCc , I(FCc), is a set of tuples {〈tb1,…tbn, tbf〉} 
where: 

- ∀ i ∈ [1,…n] tbi is an instance of the bottom level of Hi  (i) (Most detailed levels 
members) 

- tbf is an instance of FieldObject (Field measure value) 

 

Example 5. 

The field cube structure of our case study is FCearthq = 〈Hregtres, Htime, Searthq〉. Hregtres is 
the field hierarchy (the spatial dimension),  Htime is the temporal dimension, and Searthq 
is the field measure. It allows answering previous formulated query “Where were 

earthquakes, and what was their intensity per region at different scale (resolutions)?”. 

Table 2 shows the instance of FCearthq. Its cartographic representation is shown on 

Figure 5. 



Table 2:  Instance of FCearthq. 

Reg Month Earthq 

Lombardia 9-1998 t1 
Lombardia 11-1999 t2 
Piemonte 11-1999 t6 

 

Lombardia

Piemonte
t2

t3

Month: 11-1999

Lombardia

t1

Month: 9-1998

 

Figure 5: Cartographic representation of the instance of FCearthq.                 

3.2.2 Hypercube 

The instance of the spatio-multidimensional model is a hypercube. A hypercube can 

be represented as a hierarchical lattice of cuboids [9]. The most detailed cuboid 

contains detailed measures (basic cuboid). Other cuboids contain aggregated 

measures. Then, cuboids are represented by levels and (aggregated) measures values 

(Sec. 3.2.2.2). How field measures are aggregated from fact table data (basic cuboid) 

to represent non-basic cuboids is presented in Sec. 3.2.2.1. 

3.2.2.1 Aggregation of field measures 

The aggregation of field measures is defined by means of:  

- For the geometric support: spatial aggregation,  

- For alphanumeric attributes: alphanumeric aggregations 

- For the field attribute: 

- Local Map Algebra, or focal/zonal map cubic algebra operator when 

aggregating on the non-field hierarchies 

- Alphanumeric aggregation when aggregating on the field hierarchy 

Indeed aggregation of field measures is done in two steps. In the first step we 

aggregate along the non-field hierarchies, and then along the field hierarchy. 

3.2.2.1.1  Aggregation on non-field hierarchies 

In this section we formalize the geometric and alphanumeric aggregations.  



Definition 6. Spatial aggregation 

Let G the geometric attribute. Its aggregation is defined by means of a function OG 

that has as input n geometries of the attribute G, and that returns one geometry: 

 OG : dom(G)×… × dom(G) →  
 2g where g is a subset of the Euclidian Space R2    

   

Definition 7. Alphanumeric aggregation 

Let A be an alphanumeric attribute. Its aggregation is defined by means of a function 

OA that has in input n values of the attribute A, and that returns one value of the 

attribute A:  

OA : dom(A)×… × dom(A) → dom(A)         

 

On non-field hierarchies, the aggregation of the field attribute is defined by means 

of a function (OF) that takes as input a set of functions representing the field attributes 

values (f1…fn), and it returns a new function (f1n). This function is defined on the field 

support of f1…fn, and the value of each point (f1n(x;y)) is calculated by applying a 

alphanumeric function OA to the values of the other functions (OF (f1(x;y)…fn(x;y))). 

Then, OF represents a map/map cubic algebra operator that is specialized in local, 

focal or zonal by means of the OA function. Indeed, OA is applied point by point for 

local map function, or to sets of coordinates defined by the functions Neighborhood(x;y) 

and Zone(FieldObjects, (x;y)) for focal map cubic and zonal map cubic operators 

respectively (("Aggregation functions as Map/Map Cubic Algebra functions " requirement of 

Table 1)). 

 

Definition 8. Aggregation of the Field attribute on non-field hierarchies using 

Map Algebra and Cubic Map algebra functions 

Let F be a field attribute, and f1…fn functions of the domain of F with g as field 

support (without loss of generality, we suppose the f1…fn have the same field support) 

 f1 : g → domF … fn : g → domF,  and  f1…fn ∈ dom(F). 

Let OA be an alphanumeric aggregation 

 

Then, the aggregation of F is defined by means of a function OF that takes as input 

f1…fn, and that returns a function f1n  defined on g and having values in domF (f1n : g → 

domF) (f1n = OF (f1…fn))  such that: 

- using Local operator:  
f1n (x; y) = OA(f1(x;y),  …, fn(x;y)) for each point (x;y) of g   

 

- using Cubic Focal operator:  
f1n (x; y)= OA(f1  (Neighborhood(x;y))…fn(Neighborhood(x;y))) for each point (x;y) of g 

where:  

Neighborhood(x;y) is a function that returns the neighbourhood points of (x;y), 

 

- using Cubic Zonal operator: 

 f1n (x; y)= OA(f1(Zone(FieldObjects,(x;y))…fn(Zone(FieldObjects,(x;y))) for each point (x;y) 

of g  where: 



Zone(FieldObjects, (x;y)) is a function that takes as input a set of Field Objects and a 

point, and it returns the neighbourhood points of (x;y)that belong to the zone 

indentified by the FieldObjects on this point.    

     

Definition 9. built non-field (Figure 7) 

Let tbf1,…tbfk    and tnf
  
instances of the field object structure Se = 〈geom, field, [a1, …am]〉 

Let ONF, called non-field aggregation mode,  a set of aggregation functions:  
- OG  the spatial aggregation for geom 

- O1... Om the alphanumeric aggregations for a1, …am 

- OF  the Map Algebra/Map Cubic Algebra aggregation for field 

 

We say that tnf is built non-field from tbf1,…tbfk using ONF if: 
- tnf.geom = OG  (tbf1. geom,…, tbfk.geom) 

- ∀ i ∈ [1,…m] tnf .ai. = Oi  (tbf1. ai,…, tbfk. ai) 
- tnf .field = OF(tbf1.field,…, tbfk. field) 

 

Example 6. 

Let an instance of Searthq  t1 = 〈p1, f1〉 where p1 is a geometry and f1 represents the 
intensity of the earthquake on the 9-1998 in Lombardia. It is defined on each point of 

p1 with values in R. For example f1 (x;y) = 10 (Figure 6a). To aggregate the field 

attribute intensity on the temporal dimension, we use a cubic focal operator AVG. 

Therefore the result of the aggregation of f1 and f2 on (x;y) by taking into account 

neighbours of (x;y) is f3 (x;y)= ((13*4+10)+(11*4+12))/10=11.7  (we suppose that the 

values of neighbourhood points of (x;y) of t1 and t2 are 10 and 12 respectively) (Figure 

6a).  We suppose that we apply the geometric union for geometry. 

Then, t3 is built non-field from t1 and t2. t3 is an aggregated measure of the cuboid 

defined by the century level of the temporal dimension (see Table 3). 

Table 3:  Instances of the cuboid defined by the century level of the temporal dimension. 

Region Century Earthq 

Lombardia 900 t3 
Piemonte 900 t6 

 

Then, as a field measures is mapped also on spatial dimensions, then a particular 

aggregation must be provided taking into account the field hierarchy in order to allow 

the visualization of field measures at different resolutions or scales. 

3.2.2.1.2 Aggregation on the field hierarchy 

The aggregated measures of a cuboid defined by coarser spatial levels are the 

aggregation of the (aggregated) measures of the cuboids defined by non-spatial levels. 

Definition 10. built field (Figure 7) 

Let t1
nf,…, tv

nf  and tf
  be instances of the field object structure Se 〈geom, field, [a1, …am]〉. 

Let OF, called field aggregation mode, a set of aggregation functions: 

- OG  the spatial  aggregation for geom 



- O1... Om the alphanumeric aggregations for a1, …am  

- OA  the alphanumeric aggregation for field 

 

We say that tf  is built field from t1
nf,…, tv

nf using OF if: 
- tf .geom = OG  (t1

nf. geom,…, tv
nf.geom) 

- ∀ i ∈ [1,…m] tf .ai. = OG  (t1
nf. ai,…, tv

nf. ai) 

- tf .field (x; y)= OA (f1(x1;y1),  …, fm(xm;ym)) where f1,  …, fm
 belong to t1

nf.field , … tv
nf.field, 

for each point (x;y) of the field support of field 

 

p1

f1(x;y)=10

p2

f2(x;y)=12

f1(xi;yi)=13

f2(xi;yi)=11

p3

f3(x;y)=11.7

Focal AVG =
f3(x;y)=11.7f3(x1;y1)=10

f4(x2;y2)=10.85

 
                                (a)                                                               (b) 

Figure 6: a) Aggregation on the "intensity" field attribute on the temporal dimension, b) 

Aggregation on the "intensity" field attribute on the field hierarchy. 

 

Example 7. 

In order to visualize the measure at different resolutions, we aggregate on the Field 

Hierarchy Hregres applying the average. Then f4(x;y)  = 

AVG(leavesFieldSupport(Hdeptres, (x2;y2))) = AVG(f3(x;y), f3(x1;y1)) = (10+11.7)/2 = 

10.85 (Figure 6b). Then, t4 is built field from t3. t4 is an aggregated measure of the 

cuboid defined by the century and regres levels (see Table 4). 

Table 4:  Instance of FCearthq. 

Regres (region at scale 

1:1.000) 

Century Earthq 

Lombardia 900 t4 

Piemonte 900 t5 

3.2.2.2 Cuboids of field data 

Once described how the measures of the different cuboids are related by 

aggregation functions, in this section we formalize the concept of cuboid. In 

particular, a cuboid schema, noted Field View Structure, is composed by a set of 

levels, a non-field aggregation mode, and a field aggregation mode. An instance of a 

field view structure is a set of tuples composed of a member for each level and a 

(aggregated) field measure value. The aggregated field measure value on the spatial 

t1 

t2 

t3 t3 

t4 



dimension (tf) is obtained aggregating measures (t1
nf …, tv

nf) obtained after the 

aggregation on the non-spatial dimensions of detailed measures (tbf1 …, tbfk) as shown 

on Figure 7. 

Definition 11. Field View 

A Field View Structure Vv is a tuple 〈FCc, L, ONF, OF〉 where:  
- FCc=〈H1,…Hn, FieldObject〉 is a Field Cube Structure (Spatio-multidimensional 

model schema) 

- L is a tuple 〈S1,…Sn〉  where∀ i ∈ [1,…n] Si  is a level of Hi (Levels that define the 

cuboid) 

- ONF is a non field aggregation mode (Aggregation functions used on non-spatial 

dimensions) 

- OF is a field aggregation mode  (Aggregation functions used on the spatial 

dimension) 

 

An Instance of a field view Structure is a set of tuples {〈t1,…tn
 , tf〉} where: 

- ∀ i ∈ [1,…n] ti is an instance of Si  (Dimensions members) 
- tf is: ((aggregated) field measure on spatial dimension, Figure 7 - see Table 4 for 

an example) 

- an instance of FieldObject 

- built field from t1
nf,…, tv

nf using OF where ((aggregated) field measures on non-

spatial dimensions, Figure 7 - see Table 3 for an example):  

- tf.field (x;y)= OF.OA (f1(x1;y1),  …, fm(xm;ym)) for each point (x;y) of its field 

support where: 
- (x1;y1),  …, (xm;ym) belong to leafsFieldSupport(H1, (x;y)) 
- f1 ,  …, fm belong to t1

nf.field,…, tv
nf.field 

- Eachtj
nf is built non field from tbj

f1, …, tbj
fk  using ONF where (Non aggregated 

field measures, Figure 7 - see Table 2 for an example): 

- tbj
f1, …, tbj

fk 
 
are the measure values of the tuples of I(FCc)  〈tbj

1, 

tb1
2… tb1

n, tbj
f1〉, ...,〈tbj

1, tbk
2… tbk

n, tbj
fk〉  where: 

- ∀ i ∈ [2,…n] tb1
i … tbk

i = leafs(Hi, ti)  

- tbj
1  belongs to leafs(H1, t1) 

Example 8. 

The Field View Structure representing earthquakes per region at the scale 1:10000 

and per century is Vearthq = 〈FCearth, 〈Scentury, Sregres〉, 〈Union, Focal-Avg〉, 〈Union, Avg〉〉. 
Table 4 shows its instance.  

4   Conclusion and future work 

Integration of spatial data into multidimensional models leads to the concept of 

SOLAP. SOLAP models exploit the discrete representation of spatial data. Few works 

integrate continuous field data into dimensions and measures. In this paper, motivated 

by the relevance of a formal representation of SOLAP data, we provide a 

multidimensional model that considers field data independently form their 



implementation, as measures and dimensions. In particular we provide a unique data 

model for vector and field data (Geographic and Field Objects). We provide a formal 

representation of the spatio-multidimensional model schema (Field Cube: Field 

Hierarchy and Field Measures) and the associated hypercube's cuboids (Field View). 

Actually, we are working on the formal definition of SOLAP operators that allows the 

navigation between the cuboids (roll-up/drill-down), and slicing the cuboids (slice). 

We plan to work on the implementation of the model in a ROLAP architecture. This 

implies the definition of: (i) query languages for OLAP server [18] for field data [12], 

(ii) indexes [20] and pre-aggregation techniques [19] for spatial data warehouses 

using field dimensions and measures, and (iii) interactive field maps [17] for SOLAP 

clients. 

tf is built field from
t1

nf… tv
nf using OF

t1
nf is built non field

from tb 1
f1 ,… tb1

fk

using ONF

tb1
1… tbv

1 = leafs(H 1, t1)

tb1
2… tbk

2= leafs(H 2, t2)

Instance of the 
Field Cube (basic 

cuboid)

Instance of the 
Field view (cuboid)

 

Figure 7: Instance of a Field View Structure 
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