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Abstract

A formal and general expression for the bridge function is obtained
from the Fundamental Measure Theory. This expression involves solely
the knowledge of an analytical form of the free-energy, the weight
functions and the pair correlation function, and comes out in terms of
combinations of convolution products of the two latter quantities, thus
lifting the irreducibility of the concerned diagrams. It is applicable to
mixtures and inhomogeneous fluids. The validity of this expression is

then tested in the case of a one-dimensional hard rods fluid, for which
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exact expression of the correlations are known, and the Fundamental
Measure Theory is also exact. The formalism allows to sum the infinite
series and produce a compact analytical expression for the exact bridge
function. However, the numerical term by term evaluation of the se-
ries shows that severe convergence problems arise in the high density
regime, questioning the pertinence of usual such attempts. The present

approach opens interesting perspectives for the Theory of Liquids.

1 Introduction

In the Liquid State theory, the so-called bridge function represents an impor-
tant unsolved many-body problem. This function comes as an infinite sum
of highly connected sets of diagrams that are fundamentally irreducible[1, 2],
which makes their calculation difficult at low order diagrammatic contributions|3|
and impossible in the general case. Indeed, the diagrams involved in the virial
series|4] already indicate that the task of calculating bridge diagrams beyond
third order is very complex|5]. Yet, the knowledge of this function should
allow to close exactly the Ornstein-Zernike equation, leading to the exact
computation of the pair and direct correlation functions, therefore opening
the route to an accurate calculation of the thermodynamical properties for
any type of liquids. Any method which allows the computation such diagrams
would be an invaluable contribution to the Liquid State theory. Many as-
tute methods have been developed to palliate for our ignorance of the bridge

function, mostly by making use of the available diagrammatically proper,
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but approximate, known closure relations. The Verlet [6], Rogers-Young|7],
or Zerah-Hansen HMSA[8] closures, are some example of such diagrammat-
ically improper closures. The various degree of success and failures of these
tentatives, have led for the search for alternative methods to obtain the corre-
lation functions, one of the most successful being the Fundamental Measure
Theory (FMT) of Rosenfeld|9, 10]. This theory is the most achieved of all
density functional theories in the sense that it allows to obtain the Percus-
Yevick (PY) expression for the direct correlation function (DCF) of the hard
sphere fluid, solely from geometrical considerations on the overlap between
two spheres, while all other DFT use the DCF as a conditional input. This
theory involves a finite sets of weight functions, which are related to the ge-
ometrical properties of the individual particles. The pair DCF of the PY
theory, in particular, as well as any higher order DCFs, can be expressed
through this theory in terms of a sum of generalized convolution product of
these weight functions. It turns out that, this property allows a neat factori-
sation of the irreducible bridge diagrams, which to my knowledge has not
been previously reported, although Rosenfeld himself, and various authors
after him, have investigated the possibility of accounting for the bridge func-
tion through the FMT, by invoking considerations on the thermodynamical
self-consistency[11]. The expression for the bridge function derived here is
compact and is free from any self-consistency requirements.

In order to test this new expression, I investigate the only case where

an exact statistical mechanic solution of the liquid state is known, the one-
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dimensional hard rod fluids. This solution is in fact the PY solution for this
case[12, 13|, and because of the structure of the FMT, it is also an exact

solution of this latter theory.

2 General theory

In what follows, we consider a one component homogeneous molecular fluid,
whose particles interact through a pairwise additive pair potential v(1,2),
where 1 and 2 represent the two particles and the shorthand notation 1 =
(r1,€21) is understood (and similarly for 2), where 7 is the position of the
particle 1 and €27 its orientation, both in the lab fixed frame. The Mayer
function is defined as usual through fy(1,2) = exp(—pfv(1,2)) — 1, where
B = 1/kgT is the Boltzmann factor where T is the temperature and kg the
Boltzmann constant.

The FMT, in its initial version, was formulated by Rosenfeld|9] under
two assumptions. The first is the scaled particle expression (SPT)[14] for
the excess Helmholtz free density SF* = [ d1¢[p(1)] , where the free energy
density ¢ has been introduced as a functional of the inhomogeneous fluid
with one-body density p(1). This inhomogeneity need not necessarily arise
from any external field. Indeed, using the Percus trick|18], a supplementary
particle can be inserted into the homogeneous fluid in order to create the
external field from the same interaction, thus transforming a N-component

homogeneous fluid into a N+1 component inhomogeneous fluid. The second
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assumption concerns the factorisation of the Mayer function into a sum of
convolution product of weight functions. This second requirement is very
restrictive. Indeed, the mathematical decomposition of fj;(1,2) into prod-
ucts of weight functions can be rigorously obtained only for very few cases
of interactions, all of them involving hard particles, such as for example,
mixtures of hard sphere mixtures|9], hard hard cubes[15]. It does not work
for hard convex particles in general[16, 17]. More importantly, it cannot be
extended to more realistic interactions such as the Yukawa or Lennard-Jones
interactions, without introducing further approximations. For hard spherical
cores, it doesn’t work in even dimensions|10]. So, this factorisation ansatz is

certainly both the key point and the limitation of the FMT.

2.1 The bridge function within the FMT

Following Rosenfeld|9] and assuming this factorisation holds and that an ap-

propriate excess free energy is available, the two following statements apply:

fM(17 2) - Z fa1a2wa1(1) X Way, (2> (1)
o
™ (1,2,.n) = _3—p”ﬁFe$['D]
= _Ha1...an ¢a1...anwa1(1) X ... @ Wy, (n) (2)

The first statement is the factorisation ansatz, which introduces the full
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set of weight functions w,(1): the notation w,, (1) ® wa.,(2) stands for a
convolution of the spatial variable only [ dZ w,, (7 — Z, Q1)w,, (7, Q2), and
its generalization stands for a similar type of integral [ dZIlywa, (7 — Z, Q).
The constants f,z serve to indicate that not all weight combinations might be
allowed by construction - there value is zero or one accordingly. The second
statement concerns the definition of the n-th order direct correlation function
c™(1,2,..n), which is the n-order density derivative of the excess Helmholtz
free-energy I, [p], as expressed by the first equality. If the set of weighted
density variables {7, } is introduced, each of which defined by 7, = pw,(0) in
terms of the k£ = 0 value of the Fourier transform of the corresponding weight
function, then the second equality is just the result of applying the chain rule
in terms of these new density variables, in the sense of functional derivative
with weighted density function 7,(1) = [ d2p(2)w,(1,2) (in this notation,
an implicit spatial -and not angular- integration is assumed). The second
equality follows then from restoring the homogeneity of the N-particle system.
In the last equality we use the notation ¢,,. o, = 0"¢/0N4,-..0N,,. Since
these steps have been numerously treated in the various literature concerning
the FMT, I will not get into further details and just start from the two
equations above. Note that these equations look perfectly general since no
specific form for the free-energy has been required. However, the interrelation
from the weighted densities and the free-energy is consistently required. It
is noteworthy that the second order DCF should be identically equal to the

Mayer function in the zero density limit, thus selecting the proper weight
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combinations through the correct zero density limit of the excess free-energy.

The formal exact expression for the pair distribution function is:

g(1,2) = exp(—pv(1,2) + h(1,2) — ¢(1,2) + B(1,2)) (3)

where h(1,2) = g(1,2) — 1, ¢(1, 2) is the pair direct correlation function, and

B(1,2) the bridge function, which is formally defined as

B(1,2)= Y p"Ba(1,2) (4)

n>2

with

B,(1,2) = %/.../dB..d(njLQ) h(1,3)..h(1,n+2) "2, .n+2) (5)

Note that the sum in Eq.(4) starts at n=2, but in fact, it can be easily
seen that the case n = 1 gives the second term in the exponential of Eq.3,

Bi(1,2) = h(1,2) — ¢(1,2) , in virtue of Eq.(5) and the OZ equation:

h(1,2) — e(1,2) = p/dSh(1,2)0(2,3) (6)

All three relations above are exact. The closure relation (3) holds under
the pair-wise additivity assumption, but this is a minor restriction for the
present purpose.

Now, if one inserts Eq.(2) into Eq.(5), one obtains an explicit expression
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for each terms of the bridge function, which is more clearly expressed in
Fourier space:

. 1

Bn(lv 2) = - Z ¢al---an+1wal (Q)f(g;?..am_l (17 2) (7)

n!
n. Qa1...0n+1

where the K &f)%(l) are generally defined at order L as a product over the

T, functions as:

K(L) (1, 2) = Hk:l..LTak(la 2) (8)

aj...aq,

and the T, functions are convolution product over the spatial variable, better

expressed in Fourier space as:
To(1,2) = h(1, 2)ia(1) (9)

Eqs(7,8,9) represent the main result of this paper. As can be seen, each of
the bridge term is expressed as a convolutions or simple products, either in r-
space or k-space. As an illustration, we write down explicit forms of the first
two bridge terms of the density expansion Eq.(5), for a spherically symmetric

interaction, where the angular dependence is removed.

Buk) =~ 32 a0 () (10)
By(h) = 5 Gumotalb) K1) (11)

where K,3(r) = To(r)Ts(r) and Kap. (1) = To(r)Ts(r)T, (1), with To(k) =
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h(k)ia (k).

These expressions are very compact and easily computable, if the fol-
lowing quantities are available: the weights functions w,(r), an analytical
expression for the free-energy density ¢[n,|, and the pair correlation function
h(r). This is the case of the SPT based FMT formalism, for the first two
ingredients are provided. Therefore, one should be able to come up with
explicit term by term expressions for the infinite sum of bridge diagrams,
within any approximate closure that will produce the pair correlation. From
here on, we coin the acronym BFMT to this approximation of the bridge
function.

We note that the expression derived above is very explicit in terms of the
various contributions. Rosenfeld has formulated a self-consistent functional
form based on the FMT[11], which involves the calculation of the bridge
function, but only indirectly so. His calculation rests on the self-consistent
evaluation of the excess chemical potential, as obtained by the SPT-FMT
expression of the free-energy, and using the radial distribution function in
place of the one-body density[11]. The existence of the explicit FMT based
expression seems to have been unnoticed by him. Other authors that have
followed this route do not seem to have realized these underlying details

either.
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2.2 Differences between the PY and FMT bridge func-

tions

It is important to note that, if the PY solution for hard spheres (and hard
rods in 1D) is compatible with the FMT formulation of the pair DCF, it
does not mean that the PY closure approximation itself is compatible with
the BEMT expression derived above. In other words, higher order DCFs
may not be consistent with higher order expansion of the PY closure. We
demonstrate below that this is indeed not the case.

The PY closure approximation consists on neglecting the B(1,2) term
in the exact expression Eq.(3) and subsequently linearizing the part of the
remaining exponential that contains 7(1,2) = h(1,2) — ¢(1,2). It is then
written as:

9(1,2) = exp(=Lo(1, 2)[1 + (1, 2)] (12)

This expression can be, in turn, cast into that similar to Eq.(3), giving the

following effective PY-Bridge:

Bpy(1,2) = In[l +n(1,2)] — n(1,2) (13)

Expanding the exponential, and using the OZ equation Eq.(6), it is seen that

this approximation leads to the following expression for each of the B, (1,2)

10
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BPY)(1,2) = (—1)”(n—1)!/../d3..d(n+12)h(1,3)c(3,2)...h(1,n+2)c(2,n+2)

10 (14)

12 which, in turn, implies that the PY approximation for the n-order DCF is a

©CoO~NOUTA,WNPE

14 product over pair DCFs:

" (1,2, ..., n) = (=1)"(n — 2)le(1, 2)e(1, 3)...c(2, n) (15)
21 While this expression gives back the correct cpy(1,2) for the case n = 2, it
23 will not give the FMT expression of the higher order DCF Eq.(2) when the
pair expression for cpy is inserted into the above equation. This is an im-
portant remark, because it indicates that the bridge term computed through
the weights and an independent expression for the h(1,2), is truly a new ap-
proximation for the bridge function, unrelated to any previous expressions.
34 In particular, it would be very interesting to see what is the outcome of such
36 an expression in the case of the hypernetted chain equation. We investi-
38 gate this issue in a particular case below. Indeed, the only case when the
40 above approximation in Eq.(15) is exact is for the case of hard rods in one

42 dimension.

52 11
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3 The one-dimensional hard-rod fluid

Now that an expression for the bridge diagram is formulated, it should be
tested under the best possible conditions. Since the exact solution for the
Helmholtz free-energy and the pair direct correlation function are known in

the one-dimensional case of hard-rods, it is an ideal system to test the BEFM'T.

3.1 Theoretical details

The hard rods interactions in one dimension is defined as v(r) = cc if r < o
and v(r) = 0 if r > o, where o is the hard rod length. The excess free energy
is exactly known for this system|[12, 13|, and can be expressed in terms of

the FMT variables as[10]

BE )V = ¢P) = —pyIn(1 —ny) (16)

where 19 = p and 1, = po. The exact expression for the pair direct correlation

function is also known|[12, 13]:

= —71 A r g
C(T) - (1 B ,0)2 ( < ) (17)

and zero for » > ¢. This is in contrast with the two and three dimensional
cases, for which the exact DCF has a tail beyond the core part. This DCF
is also exactly recovered from the FMT in this case. The Mayer function,

fu(r) = —H(o—r), where H(r) is the Heaviside function, is exactly written

12
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as fu(r) = —wy ® wy in terms of the following weight functions|10]

wo(r) = H(r — R) (18)

©CoO~NOUTA,WNPE

1 wi(r) = 5(6(r — R) + 5(r + R)) (19)

where R = 0/2 is the “radii” of the hard rod. The one dimensional Fourier

transform of these weights are therefore

24 w1 (k) = cos(kR)

27 With the help of these functions and the FMT expression for the DCF Eq(2)
29 it is easily seen that
o _ Pow

33 clr) = 271D
34 (r) on?

*é1p
OnoOm

(w1 @ wy](r) — 2 [wo ® w1](r) (20)

36 Similarly, general expressions for any higher order DCFs can be obtained,
38 which are identical to their expression published three decades ago by Percus|13].
40 We now focus on the expression for the bridge function. Noting that the
n-order derivative of the free energy Eq.(16) falls into one the two following

categories, the first of which has (n — 1) permutations

47
48 (1D) . (n—2)!

10 T T <2”

52 13
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(1D) _ (n — 1)‘ Mo
L (L=

(22)

we obtain the following expression for the BFMT bridge function, suitably

better expressed in the Fourier space as:

B(k) = > Bu(k)

n>2

with

by (k) = %ﬁ}o(/ﬁ)fn(/ﬂ) + 1 (k) Togn—1) (k) + 1 Tm [

where the functions 7,,(r) and Tp,(r) are defined as

T(r) = (Tu(r))"

Ton(r) = To(r)(T1(r))"

(26)

(27)

with the T}, (n=0,1) functions defined in Fourier space as T}, (k) = @, (k)h(k).

Note that in Eqgs.(2324) we have used a slightly different notation that in the

general formalism, in order to merge the density factor in a unique factor in

Eq.(24).

The expression above is an infinite sum, and one would only hope that it

converges. However, the presence of the term (p/(1 — p))" (we set o = 1 for

14
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which value 7, = p) casts serious doubts about it, since this term diverges
at large n when p > 0.5. Fortunately, the series can be exactly summed
in the r-space by expressing it in terms of products of the variable T'(r) =

p/(1—p)Ti(r). The exact result for the summation is then, in Fourier space:

B(k) = wo(k)Qo(k) — fpﬁh(k)(%(k) (28)

where the functions @Q;(r) (i=0,1) are compactly expressed in the r-space as:
Qo(r) =In(1 —=T(r)) (29)

To(r) +T(r)

The above expression Eq(28) is the ezact expression for the 1D bridge func-
tion for the hard rod fluid. It is important to note that the above compact
expression was obtained by summing unconditionally a series expansion for
values that might not be necessarily within the correct radius of conver-
gence. In fact, the summation should be mathematically incorrect as soon as
p > 0.5. Nevertheless, the expression given above turns out to be the correct
one even in this case, by making use of the analytic continuation techniques.

Alternatively, the bridge function can be exactly calculated from the exact

DCF Eq.(17), through the PY expression Eq.(3)

Bip(r) =In(g(r)) —n(r) (31)

15
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where the radial distribution function (RDF) ¢(r), and consequently h(r),
needs to be computed from the OZ equation with the exact DCF. Note
the above relation gives the bridge function only for distances greater than
o, since g(r) = 0 inside the core gives indeterminate contribution in the
expression above. The BFMT expression, on the contrary, gives the bridge
function for all distances.

The exact thermodynamics of the hard rod fluid allows one to compute
exactly the value of Bip(r = 0). Indeed, for hard core objects one has an
exact relation between the value at » = 0 of the cavity function y(r) =
exp(Pu(r))g(r) and the excess chemical potential: y(r = 0) = exp(Lites)-

Therefore, from Eq(3) one has exactly

B(r =0) = Bpice + 1+ c(r =0) (32)

The excess chemical potential can be computed exactly from Eq(16) as
Bliez = —In(1 — p) + p/(1 — p). Using this result and Eq(17) one arrives at

the ezact result:

P
(1-p)?

A comparison of this equation to that given by Eqs(23,24) (albeit in r-

Bip(r =0) = =in(l - p) - (33)

space) shows that the former is a limit of an infinite sum on density. It can
be shown that, at r=0, all the r-functions are rigorously equal to unity, and

therefore Eqs.(23,24) become

16
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Bunlr =0) = = S (" (2 +1+ 1) (34

This expression reveals the serious convergence problems mentioned above
one has if one is to evaluate such sum directly. Indeed, while it is a simple
task to show the expression sums exactly to the result given above in Eq(33),
the direct evaluation of the series shows that it is convergent for p < 0.5, but
oscillatory for p = 0.5 and divergent for p > 0.5. The same considerations
apply equally to the full r-dependence function, and direct evaluation of
Eq(23) is possible only for p < 0.5. The numerical analysis of the series
above shows that, for p > 0.5 it diverges by oscillating around the correct
value given in Eq(33). It is easily verified that the expression is the correct
one for any densities by making use of analytic continuation techniques on
Eq.(34).

A final remark concerns the behaviour of the bride function for distances
within the core 0 < r < o. I find numerically (see below) that B(r) is strictly
linear. Therefore, if B(0) is known, one can complement Eq(31) by a linear

interpolation between B(0) and B(o).

3.2 Results

The numerical implementation of the various functions needs a very accurate
Fourier transform. Since fast Fourier transform techniques are used, the

functions are discretised on a grid with a number of points of 23 | and with

17
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a r-space grid-width of Ar = 0.0050, where o is the hard rod diameter. The
reduced density is defined as p* = po and the reduced distance as r* = r/o.
First of all, in order to get an idea of the importance of the bridge dia-
gram, we display the radial distribution function in Fig.1 and direct correla-
tion function in Fig.2, both for the exact results and those obtained from the
hypernetted-chain (HNC) approximation (dashed lines). This latter approx-
imate closure consists in setting B(1,2) = 0 in Eq.(3), therefore neglecting
the bridge function. These results are displayed for three different densities
(p* = 0.2,0.6,0.78) in both figures. The importance of the bridge function
become clearly important at higher density, as witnessed by the increasing
differences between the exact and HNC results. We note in Fig.2 that the
HNC approximation predicts that the DCF is non-zero outside the hard core
part for »* > 1, while the exact result is strictly zero. The HNC approxi-
mation could not be solved numerically for densities larger than p* = 0.78
because the solution become unstable beyond. We equally solved numerically
the PY approximation, in order to test the accuracy of our calculations. The
results are indistinguishable from the exact ones. However, the numerical
solution of the PY approximation becomes very sluggish for densities higher
than p* = 0.884, requiring very small density increments to reach the next
solution. We have not tried here to improve the numerical solution methods,
since the main goal is to test the accuracy of the FMT bridge function.
Fig.3 shows the T;(r) functions (i=0,1), for three different densities. These

functions, generally defined in Eq.(9), are the building blocks of the FMT

18

URL: http://mc.manuscriptcentral.com/tandf/tmph

Page 18 of 41



Page 19 of 41

©CoO~NOUTA,WNPE

Molecular Physics

bridge, as can be seen from Eqs.(24-27). There as many such functions
as the number of weights functions (here 2), and they all depend on the
density through the pair correlation function. For hard spheres, Ty(r) is
discontinuous at r* = 1 while 7;(r) has a discontinuous derivative at the
same point.

Fig.4 shows the bridge function for different densities, as calculated by
Eqs(28-30) and Eq(31), the latter which has been interpolated linearly to
the exact value at r=0. The two curves are indistinguishably superimposed.
Fig.5 shows the small scale structure at large distances and reveals that the
bridge function has considerable structure at higher densities.

Fig.6 shows how the series converge for two densities, p = 0.3 and p = 0.8.
It is obvious that the convergence is attained quickly in the first case while
it will never be obtained in the second case. The first term in the series
expansion is equally shown (dotted lines), and in the latter case one sees
that it is very far from the correct result. For the high density regime, the
analysis indicates that it is useless to incorporate the first few terms of the
bridge, as it is often done in the literature, through various techniques such

as virial expansions and such.

4 Conclusion

The present investigation has led to a formal expression of the bridge function

within the FMT formalism, that appears very promising since it allows, for

19
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the first time, to break into the irreducibility of the Mayer cluster diagrams.
Moreover, it is formulated in the general case including orientational depen-
dence of the interaction between particles. By construction of the FMT, it
is easily extended to mixtures as well, and to the inhomogeneous cases, as
shown in the appendixes below. While the FMT is initially formulated for
spherical particles, the extension to anisotropic hard core objects, such as el-
lipsoids for example, can be implemented by following the lines of Ref.[17, 19].
The important feature of the BFMT, which allows the irreducibility of the
exact diagrammatic formulation to be broken into convolution products, re-
lies ultimately in the underlying geometrical formulation of the FMT. This
feature is certainly important and deserves future analysis.

The fact that an analytical approach to B(r) exists in 1D, opens now
many interesting perspectives. In particular, this approximation deserved
to be tested in both two and three dimensional cases, and away from the
sole hard sphere case. Indeed, as indicated here, the bridge term can be
computed for any sorts of interactions, provided the pair correlation function
h(r) is given. It is not required to have a decomposition of the full Mayer
function in terms of weights, since those corresponding to the hard core could
serve this purpose as a reference term. The other parts of the interactions
would enter through the h(r). This amounts to treat the hard core part of
the bridge within the FMT approximation for it. Accordingly, the BFMT
formulation can be used for interactions are different as charged systems,

dipolar fluids, and realistic interactions such as water, for which a reference
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hard sphere FMT is directly applicable, since it is a single hardcore site. Some
of these research directions are currently being investigated. To conclude, the
BEFMT bridge formulation presented here seem a promising new direction in

extending and improving liquid state theory.

Appendix A: mixtures

The BEMT is readily formulated for the case of mixtures, since the underlying
SPT has been formulated in such case|14]. Consider a mixture of n species,
each consisting of V; particles, for a total of N particles. For each species,
we introduce the appropriate set of weight functions from the factorisation
of the pair Mayer functions fyr.;;(1,2) = exp(—pfuv;;(1,2)) — 1, where v;;(1,2)
is the pair interaction energy between particle 1 belonging to species ¢ and

particle 2 for species j:

fM;ij(172) - Z wioq(l) ® wja2(2> (Al)

1,02
where the weights of each species are additionally labeled by the species index
1 or j. The weighted densities, initially introduced for the inhomogeneous

case as above, are summed over all species contributions for each weight:

m(1) =3 [ dowia(1o)p() (A2)

From there, one builds the homogeneous n-DCF following Eq(2) and using
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again the chain rule. The bridge functions for mixtures come in species
pair, like the pair correlations and the interactions, but is expressed over all

possible species combinations, much like for the case of OZ for mixtures

By(1.2) = 3 0" Bijn(1,2) (A3)

n=2

with

1

" k3.knio

xclth (2,3, n+2) (A.4)

Jk3...kny2

where z; = N;/N is the mole fraction of species i, and the expression above
is valid from n > 2. Inserting the FMT expression of the DCF into the above
equation gives directly an expression similar to Eq.(7), expressed in Fourier

space as

- 1 4 i
Bij;n(172) - _ﬁ Z ¢a1---an+1 Z x3“'xn+2wja1(1)Kalz%::f:il2(172)

S Q] Qi k3..knt2
(A.5)

where the K%L (1 2) are the generalization to multicomponent system of

those defined in Eq.(8)

K’ikl...kL(:l’ 2) — Hl:l..LEklal(l’ 2) (A6)

aj...aq,
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and the new T functions (see Eq.(9)) are defined as:

Tija(la2) = hij(172>u~}ja(1) (A7)

Eqgs.(A.3A.5,A.6,A.7) represent the generalization to mixtures of the BFMT

bridge function.

Appendix B: The inhomogeneous case

Inhomogeneity is built into the formulation of the FMT|9, 10|. The principal
difference with the treatment given in the formulation in Section 2 is the
expression of the n-DCF for an inhomogeneous system. The inhomogeneity
comes solely from the one-body functionp(1), and consequently from the
weighted densities, as formulated in Section 2. The inhomogeneous DCF

becomes

A(1,2,.n) = —Hkgi;(k)ﬁ]’m[p] (B.1)

= —Ipay..an) /dxgzﬁalman (X)Wa, (1,2) @ ... @ Wy, (n, )

where the integral is over the spatial variable, which could also have an an-
gular contribution if the inhomogeneity has an angle dependence (such as for
a nematic fluid, for example), and the free-energy density derivatives now

depend of this variable also because of the explicit dependence through p(z).
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The definition of the weights needs to be adjusted to handle the inhomogene-
ity through the individual geometrical properties they previously contained.
If the inhomogeneity is purely spatial, such for a hard sphere fluid next to a
wall, then the previous spherical weight are conserved|9].

The bridge function can be defined for the inhomogeneous case very gen-

erally as
201
B1,2)=3 — / /d3..d(n +2) H(1,3) H(1,n +2) (2, .0+ 2)
“—n!
(B.2)
by introducing the generalized correlation functions
H(1,2) = p(2)h(1,2) (B.3)

The formal expression for the inhomogeneous bridge function follows directly
by following the same steps as in Section 2, and replacing h(1,2) by H(1,2)
defined above. This amounts to change only the definition of the T functions
in Eq.(9) as

To(1,2) = H(1,2)i,(1) (B.4)
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Figure captions

Fig.1

Fig.2

Fig.3

Fig.4

Fig.5

Fig.6

The RDFs for the hard rod fluid in 1D, for three different value of
the density p*. Exact results in full lines, HNC in dashed lines.
The inset in the lower panel shows the details at the contact

distance.

The DCFs for the hard rod fluid in 1D, for the same densities as
in Fig.1, with the same line conventions. The inset shows details
of the tail part of the DCF of the HNC approximation (full line

for p* = 0.78, dotted for p* = 0.6 and dashed for p* = 0.2).

The functions T;(r) (see Eq.(9)) for the hard rod fluid in 1D, for
three different value of the density p*. Full lines for 7y(r) and
dotted lines for7;(r).

The bridge functions B(r) for the hard rod fluid in 1D, for three
different densities: p* = 0.2,0.6,0.8. The solid line is the BFMT

result, and the dashed line the result from Eq.(31)

Same as Fig.4, but a close up of the behaviour of B(r) for small

distances.

The convergence of the series expansion for two densities p* =
0.3(top panel) and 0.8(bottom panel). Solid line for B(r), dotted

line for By(r), and dashed lines for successive summations to B(r)
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(only n = 2, 3,4 are shown).
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Answer to the Referee's comments.

I fully agree with the Reviewer that since the FMT is exact in 1D, it should give back the exact
bridge diagram. It took me some time to investigate this point numerically in detail, and it turned
out to be not such a trivial task at the end because of the divergence associated in the series
expansion at high densities.

The present version -hopefully free of previous misprints- contains a compact expression of the
bridge function (Eqs(28-30) which is the first exact expression for this function, if I am not
mistaken.

The manuscript is now totally revised in what concerns the part of the application to 1D hard rod
fluid. The abstract had to be rewritten as well.

I am more satisfied with the current version, and the work done for this system has also allowed to
better interpret numerical problems I was having in 3D with the same approach.

So I can only than this Reviewer for his very insightful comment.
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