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Assay validation was performed using four consecutive experiments with the related statistical evaluation. A cell-based assay on microtitre plates measured repeatedly within one day and on consecutive days was chosen as the model. The following problems were addressed: i) choosing an appropriate design on a plate to avoid heterogeneities, ii) quantification of all sources of variability, iii) selecting between linear and non-linear parallel line assays. A mixed model was used with the random factors: rows, columns and plates and fixed effect factors with either linear or nonlinear parallel line models.

Introduction

Therapeutic proteins are nowadays produced using recombinant gene technology. The determination of their activity is commonly not feasible by physico-chemical methods and, therefore, in-vitro bioassays are used. In these, the relative potency of a test sample is estimated in comparison with an international or internal standard of known and clearly defined activity. The design and statistical evaluation of such assays are described in the US and European Pharmacopoeias [1,[START_REF][END_REF]. Commonly, a sigmoid dose-response curve is obtained with an approximately linear range around the ED 50 . A non-linear, parallel model using all data or a linear, parallel model using a fraction of the data in the linear range can therefore be used as alternative evaluation methods.

In-vitro bioassays are commonly carried out on replicated microtitre plates.

Several statistical problems may occur in the assay validation and evaluation. These are: i) Spatial heterogeneities caused by different positions within and between the plates that interfere with the measurements of the responses to different samples and dosages, e.g. differences between rows, columns, plates, days of measurements and the positions of the standards and samples, ii) Selection of an optimum design for either a non-linear or linear model utilising the available wells per plate. The objective is to guarantee an unbiased and stable estimate of the relative potency with a narrow confidence interval. Further, real data problems might also occur, such as comparison of two different measurement devices and outlier detection.

The first problem was addressed by the variance component analyses. On the basis of these results optimised linear and non-linear assay designs were defined and compared.

2 Materials and Methods 

Microtitre plates

Standard commercial 96-well microtitre plates were used. As can be seen from Figure 1, the plates are divided into 8 rows (A -H) and twelve columns (1 -12).

Variance component analysis

Variance component analysis is a statistical approach to characterise the variance components for a single continuous measure, e.g. optical density (RFU), for the possible sources of variation (factors), such as between days, between plates, between rows, between columns and the residual error. Commonly, a hierarchical design is used in variance component analysis, i.e. the factors are nested hierarchically, e.g. wells within a plate, replicated plates within days. A single plate in a microtitre-plate assay is characterised by a spatial row-column design (see Figure 1) which is not hierarchical and therefore a specific random effect model should be used.

In Monday, Tuesday, Wednesday, etc. For such a design, we used a mixed model approach that included both fixed effect factors and random effect factors, whereby the variance component estimates for the random effects are of particular interest for the characterisation of the assay variability.

The objectives were i) to rank the sources of variation from seriously important to negligible, ii) to reduce the impact of the serious factors, e.g. by restricting their levels, or, if reduction was technically not feasible, iii) to guarantee the control and stability of these serious factors.

In some publications on assay validation, the variance components are inadequately characterised by simple estimation of the coefficient of variation (CV) [START_REF] Jacobson | An optimised automated assay for determination of metabolic stability using hepatocytes: assay validation, variance component analysis and in vivo relevance[END_REF] or fixed effect analysis of variance (ANOVA) [START_REF]Analysis of variance[END_REF]. For example, Morelock (2005) [5] characterised the variability for an IL-1RA in vitro assay by comparison of coefficients of variation (CVs) only in a complex validation study on 96 well microtitre plates using the IC 50 (estimated from 12 non-equidistant concentration on a plate using a Hill model) for several days, runs, plates and rows.

For the estimation of the EC 50 (effective dose) alone in microtitre-plate assays used for screening for drug discovery, [START_REF] Rodrigues | A three-stage experimental strategy to evaluate and validate an interpolate IC50 format[END_REF] [START_REF] Tsang | Statistical approaches to determine analytical variability and specifications: applications of experimental design and variance component analysis[END_REF] compared the usual intra-plate design with a proposed inter-plate assay.

Systematic effects across each dimension of the plates were assessed, as well as inter-plate effects. They detected apparent spatial trends between the columns and rows that were considered to be insignificant. Nevertheless, slight differences in the resulting potency values were observed which were discussed and could as well be due to other reasons, such as dilution issues. Unlike these findings, we found relevant spatial differences within the plates. This may be explained by the fact that we used a sensitive testing model and the most relevant concentrations of the analyte, including the EC 50 , in our experiments. In contrast, the findings relating to spatial heterogeneities reported by Rodrigues et al. [START_REF] Tsang | Statistical approaches to determine analytical variability and specifications: applications of experimental design and variance component analysis[END_REF] are mainly based on comparisons of the maximum and minimum controls.

Whereas Rodrigues [START_REF] Tsang | Statistical approaches to determine analytical variability and specifications: applications of experimental design and variance component analysis[END_REF] does not specify in detail the statistical methodology, we have mainly applied variance component analysis as a basic tool and combined it, where appropriate, with hierarchical models of variance analysis. The results of this mixed model are both conclusive in terms of statistics and valuable in terms of guidance for developing and assessing optimised assay designs.

Several publications on assay validation using hierarchical variance components exist, e.g. [START_REF] Ren | Reducing bioassay variability by identifying source of variation and controlling key parameters in assay protocol[END_REF], for the random factors: two days, two analysts, two HPLC devices and two columns. Variance component analysis has already been described in [START_REF] Rodrigues | A three-stage experimental strategy to evaluate and validate an interpolate IC50 format[END_REF], where it was used to assess a bioassay based on luminescent bacteria with the sources "between batches", "between vials", "between tubes" variance components for a hierarchical design "batch > vial > tube". In a pilot study, the authors estimated the variance components and presented them as a percentage of the total This technique was used in section 3.1. However, the focus of this paper is on the use of mixed linear and non-linear models for both doseresponse models in a parallel-line assay (PLA) and the estimation of the variance contributions of the random effects, i.e. we are not just characterising the impact of the random factors, we are also modelling the dose-response relationship -either linearly according to a parallel-line assay (PLA) or according to a non-linear parallel-line assay.

For the estimation of an unbiased and precise potency level and its confidence interval, an important issue is to choose between a linear and a non-linear PLA. First of all, statistical approaches and related algorithms are available, even as public domain software [START_REF] Ritz | Non-linear regression with R. useR![END_REF]. For ideal data, there is no most powerful approach with relation to the number of concentrations, number of replicates per concentration, variance, slope of the doseresponse relationship, etc. [START_REF] Hothorn | A simulation study for linear and nonlinear PLA to estimate relative potency[END_REF]. In practice, the selection of the linear part for a PLA is a challenge, because the true range of the underlying sigmoid dose-response curve is unknown and an un-centred choice results in nonlinearity and even non-parallelism. However, a linear PLA needs only two 
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Experiments and Results

3.1 Analysis of spatial heterogeneities and trends on microtitre plates Spatial heterogeneities and trends are known to occur within and between microtitre plates that will bias the results of the bioassays with respect to the EC 50 and potency estimates. This problem is usually overcome by omitting extreme positions on the plates, i.e. the margin positions of rows A and H and the columns 1 and 12 (see Figure 1). Furthermore, replicates of the dosages of the standards and samples are measured that are distributed on the plates in such a way that preferably the replicates of each treatment but not their means are affected by the spatial heterogeneities caused by different positions within and between the plates.

In order to investigate the influence of any spatial heterogeneity on the growth of the cells, all wells of all plates were loaded with a constant A total of N = 9 plates was prepared on three days, three plates per day.

As described above, all wells were uniformly loaded with medium, cells and 1 µg/ml of the antibody. In addition, the plates were read with photometers from two different manufacturers. This also allows analysis of device-specific influences on the measurement.

Heat maps were chosen as spatial descriptive statistics, (see Figure 3)

which is a convenient way of displaying the complete raw data, in which the relative fluorescence units (RFUs) are represented by different grey scales. Dark grey squares represent low values, whereas light grey regions represent measurements of higher relative fluorescence units.

Significant spatial effects are seen predominantly at the borders of the plates, which therefore justifies the omission of the marginal rows and columns. Other spatial effects are apparently distributed randomly over the plates and should not therefore interfere with the chosen assay design.

The question arises whether this observation in a descriptive plot can be quantified by means of quantitative estimation of the underlying variance components using a mixed model. The MIXED procedure in the SAS System 9.1 was used for the estimation of variance components because asymptotic confidence intervals are available. A random-component model was fitted using the Mivque method with the hierarchical random factors: days, plates (within days), rows (within plates, within days) and columns (within plates, within days).

Figure 4a shows the percentages of the variances in a pie-chart for the complete raw RFU data.

Most of the observed variance is explained by the differences between days (35%), which is not surprising because it is not possible to use the same cell suspension on different days and, therefore, the variance between days also reflects the variance caused by different physiological conditions, growth stages and cell count between days. The variance component for the plates within days is also quite significant with 20%.

This may reflect unavoidable differences in the incubation conditions resulting, for example, from different position in the incubators. The variance component for columns within plates and dates was found to be 16%, which is also a significant value. The question is whether one of these serious variability-determining factors can be reduced. After some experimenting, we were able to reduce the variance components of the factor columns within plates and dates and rows within plates and dates to only 8% or 1 % of the complete variance respectively, (see Figure 4b) by changing the design on the plate by omitting the marginal columns and rows, i.e. a plate design using rows B -G and columns 2 -11 only. Further omission of the adjacent columns/rows, i.e. using only rows B -F and columns 2 -10, reduced the percentage influence to 1% and 0 % respectively, (see Figure 4c). This design (see Figure 2) was used for the validation of the linear parallel line assay described in section 3.3.

Therefore, the question arises whether the design with triplicate standard samples in rows {3, 6, 9}, with triplicate test A samples in rows {2, 5, 8}, and with triplicate test B samples in rows {4, 7, 10} (see Figure 2) is appropriate. Figure 4c shows instead of the variability between columns on a plate, the variability between the columns corresponding to three specific sample locations. Also, most of the variability of the experiment can be explained by the different days and plates. The variability between columns of the treatment locations is negligibly small. Therefore, one can argue that, although there is no complete randomisation, the spatial effects on a plate may not influence the inference between the different treatments. To analyse possible heterogeneities between these row positions, a pseudo-PLA between the three can be determined. Figure 5 shows linear curves with near-to-zero slopes without any heterogeneity between standard, which is represented by dark grey lines and circles (Ο), test A, represented by medium grey lines and triangles (∆) and test B, represented by light grey lines and plus signs (+). This design for a microtitre plate was therefore used in the following. 

Evaluation of a design for both linear and non-linear PLA

In this experiment we used a design including nine concentrations (10, 3, 2, 1.33, 0.89, 0.59, 0.40, 0.26, 0.08 µg/ml) for both standard and samples which were triplicated on a single microtitre plate. Three independent "known" samples per day were used to cover the possible potency range from 80 to 125% of the standard. This complete set was investigated on 6 days, i.e. a total of 18 plates were used. The statistical analysis of the variance components was performed with a linear mixed model to characterise the linear PLA and with a non-linear mixed model to characterise the non-liner PLA. Figure 6 shows the scatter plots for the raw RFU data of the 18 plates, where the standard is represented by a circle (Ο), the 80% sample by a triangle (∆) and the 125% sample by a plus sign (+). Reproducible sigmoid dose-response curves for the 18 plates are shown.

Linear PLA

We first analysed the data by means of a linear PLA. To determine the variance components, the relationship between RFU and the logarithmic concentration in log(µg/ml) was described with a hierarchical linear model.

The differences between the treatments (80% and 125% of the concentration of the control) and the slope of the linear model were determined as fixed factors. To reflect the experimental design, a random effects structure was assumed with treatments nested in the plates, which andb.

Table 1 presents the estimated variance components for the random factors in this linear mixed model. The dominant effects are the intercept heterogeneities between the three treatments within the 18 plates.

Irrespective of these interfering effects, the estimated potencies are near the target values and their confidence intervals clearly contain the target values, see Table 2.

Non linear 4-PL

Secondly we analysed the data by a non-linear 4-PL model. The relationship between RFU and the concentration in µg/ml was described by a hierarchical four parametric log-logistic model (4-PL). The model fits are shown in Figure 9.

The model fit and the data correspond well over these 18 plates. The differences between the treatments (80% and 125% of the concentration of the control) were determined as fixed factors. To reflect the experimental design, a random effect structure was assumed with treatments nested in the plates, which in turn were nested in a factor accounting for the different dates when the experiment was performed.

For these random effect factors, variance components were determined, (see Table 3) showing a particularly high variability of the upper asymptotes for both the factors date and plate. This is quite obvious because the upper asymptotes stand for uninfluenced growth of the cells due to a negligible concentration of antibody and, therefore, reflect the biological variability of the cells.

The estimated potencies meet the target values quite well but, when compared with the linear model, the confidence intervals are much wider, thus indicating lower precision of the non linear PLA as performed.

Conclusions

At first sight the combined design for either a linear or a non-linear PLA for the standard and the unknown samples were placed on one plate following an assay design that had been verified in pre-validation studies.

In this validation study, the samples A and B were identical, the only difference being their positions on the plate. The samples were derived from the standard solution which was diluted to target concentrations of 70%, 80%, 100%, 125% and 140% of the standard. This strategy allows assessment of accuracy in terms of percent recovery. Five plates, one for each target concentration, were loaded on one day. This procedure was repeated on three days resulting in a total of 15 plates. and below for activities less than 100%. The medium and light grey lines of samples A (∆) and B (+) are both similar with respect to slopes and intercepts. Already here in Figure 10 we see heterogeneity between the plates 1, 2 and 3 according to all intercepts of the three lines, i.e. platespecific different levels of RFU can be observed. The relative potency estimates and their two-sided 95% confidence intervals are summarised in Table 5.

The reproducibility of the relative potencies (Table 5) is excellent, i.e. the two-sided 95% confidence intervals include the true activity in each case.

Moreover, the relative potency for the comparison between the samples A and B is close to 1. The estimated percentage bias is extremely small. A plot of the residual versus the predicted values for the parallel line model is given in Figure 11. A clearly non-linear pattern is evident, which suggests that the optimum linear range was not chosen in this particular experiment. In practice this can be done using different dose levels, different dose increments, smaller dose range or less dose levels (down to three or even two).

As as the factor plate denotes also the day the experiment was performed, whereas for all of the random effects a random slope was also assumed.

The estimated variance components for the intercepts and slopes between plates and between potencies are presented in Table 6. The dominant heterogeneity, with nearly 39% explaining the variability, was detected for the plate-specific intercepts, as we already guessed from Figure 10. This means for later routine bioassays: a potency estimate from a single plate is over-optimistically precise. To achieve an unbiased potency estimate, several plates should be used.

Performance characteristics of an optimised non-linear parallel line design

An alternative approach is to estimate potency by means of the non-linear 4-PL model. Therefore, a special design that included six dosages (10, 2.8, 1.6, 0.8, 0.4 and 0.08 µg/ml) with 3 replicates for the standard and each unknown sample was used in this experiment. The remaining set-up was analogous to section 3. one day. This procedure was repeated on two separate days thus giving a total of 15 plates.

Figure 12 shows the model fit for the 15 individual plates. Analogously to the linear PLA we see the dark grey curve for the standard (Ο) overlaps with the medium and light grey lines of samples A (∆) and B (+) for 100%, whereas the standard curve is above the sample curves for activities greater than 100% and below for activities less than 100%. The lines of samples A (∆) and B (+) are similar over the entire range of concentrations. Also we assume heterogeneity between plates 1, 2 and 3 according to all upper asymptotes, i.e. generally plate-specific different levels of RFU were measured.

The relative potency estimates and their two-sided 95% confidence intervals are summarised in Table 7. As compared with the linear PLA, the reproducibility of the relative potencies is limited, in particular for the samples with the extreme targets 0.70 and 1.40. However, the two-sided 95% confidence intervals include the true activity in each case. Moreover, the width of the confidence intervals is much greater than that in the linear PLA, reflecting the determination of the non-linear models over heterogeneous plates. The bias was as large, with a tendency to underestimate the true potencies of less than 100% and an overestimation of the true potencies greater than 100%. 8. The dominant heterogeneity is the upper asymptote, which is visualised in Figure 12, analogously to the heterogeneities in the intercepts in section 3.3.

Method comparison

In the experiments in section 3.13.1, the RFUs for the same concentration in all wells were measured using two different fluorescence reader -Mithras LB 940 and Varioskan Flash Multimode reader. The two measurements are on rather different scales: Mithras LB 940 between 70,000 and 100,000 and Varioskan Flash between 300 and 500. The two approaches for model comparison were therefore performed: linear regression analysis and variance component analysis for the ratio of the levels of individual wells. Figure 13 shows the scatter plot with the fit.

There is no specific structure, either between the different days or the different plates. individual wells, the two measurements are comparable. No substantial plate or day effect was found either for the elementary correlation coefficients. Table 9 shows overlapping confidence intervals for plate/day specific correlation coefficients, i.e. there is no difference between the two measurement approaches in any condition. In a first experiment possible heterogeneities on the plate were determined, whereby an optimum design for a single plate was chosen. In the second experiment a compromise design for both linear and non-linear PLA was used to compare performance parameters for both strategies from one set of data. In the third and fourth experiments, optimum designs for either a linear or a non-linear PLA were investigated. The linear PLA gives the most precise and unbiased potency estimations and narrow widths of the confidence intervals. However, there are further possibilities for improvement of the design of the linear PLA by choosing the linear range of the sigmoid dose-response curve better, e.g. using only four or even three concentrations and/or using smaller dose increments. The nonlinear PLA was apparently inferior to the linear PLA in terms of reproducibility and precision. Moreover, it showed a bias of overestimating target potencies greater than 100% and underestimating potencies smaller than 100%. Bearing in mind the results of the variance component analysis, the reason for this surprising finding may be the variability of the upper asymptote, which also influences the calculation of the ED50. In our experiments the dose-response curves for the standard and the samples were calculated individually for each treatment. Depending on the nature of the experiments performed and supported by validation experiments, it may be wise to calculate common asymptotes for a set of dose response curves and focus the evaluation on the data points between the ED80 and the ED20 of the individual dose response curves.

Concluding Remarks

It is important to notice the -not surprising -dominant variability between plates within a day and especially between consecutive days. Clearly this is technically unavoidable. However, relevant estimations of potencies (and their confidence limits) should not be based on one plate alone, but precisely on such repeated plates, in order to avoid pseudo-precise results.

Finally, we compared two means of measurements of the relative fluorescence units and found comparability. 
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2. 1

 1 The bioassayAn antibody based cytotoxicity assay was chosen as a model for a cellbased bioassay and was used in all the experiments performed. It is an invitro bioassay which measures the biological response of the cell line WIL 2-S to the antibody. The cell suspension (1x10 6 cells/ml), the growth medium (RPMI1640), the dilutions of standard and unknown and the controls were dispensed on microtitre plates. Incubation was performed at 37°C, 95% rH and 5% CO2 for 15 -26 hours. After incubation the viable cell count was measured by determining the metabolic reduction of Alamar Blue®. This dye exhibits fluorescence in response to cellular enzymatic activity. The intensity of the fluorescence is measured with a photometer in relative fluorescence units (RFU).

  particular, in a microtitre-plate assay both fixed effect factors (such as treatment with the test compound and the chosen fixed levels of standard, sample 1, sample 2) or potency (with fixed chosen levels of 70, 80, 100, 125 and 140%) and random effect factors (such days or plates) are included. A corpus of literature exists on the definition of fixed and random effect factors. Here it is clear that the three test levels were well chosen and are fixed, whereas the various days and various plates can be regarded as random selection from many days and many plates, not just

  the "between vials" variability dominated with 71%. Five possible factors influencing the bioassay were investigated by means of a factorial design, whereby the activation temperature was strictly controlled in a second study. The total variability was reduced by 85%.

  10 6 cells/ml and a uniform concentration of 1 µg/ml antibody. The concentration of antibody falls in the range of the EC 50 concentrations observed. Therefore, the resulting responses can be reasonably expected to be in the central and steep part of the doseresponse curve. The plates were incubated with Alamar Blue® and measured photometrically in accordance with the usual procedures.

  turn were nested in a factor accounting for the different dates when the experiment was performed. In addition a random linear slope was assumed for all of the random factors. The predictions by means of this model are presented in Figure7, together with the raw data. It can easily be seen that a linear model for a linear PLA was inappropriate for this wide range of concentrations. This is supported by diagnostic graphics such as QQ-Plots or plotting the residual versus the predicted values in Figures 8a

3

 3 does not seem to be a really appropriate solution. Nevertheless, a comparison of the two models that is not biased by different quality of data can be made from a single set of data. This comparison should include selection of the data used, e.g. limiting the linear PLA to the linear portion of the curve and/or modifications in the methods of evaluation, e.g. to reduce the variability of the asymptotes by taking account of the biological background. On the basis of the unmodified data, with the reservations made, both models seem to be equivalent in terms of accuracy, but efforts are necessary to improve the precision of the non-linear model. Performance characteristics of an optimised linear parallel line design In this experiment the biological activity was determined by means of an optimised linear parallel line model using measurements from the linear part of the dose response curve only. Five dose levels were used, namely 2, 1.33, 0.89, 0.59 and 0.4 µg/ml. The objective was to evaluate the results in terms of accuracy and precision of the linear PLA and later comparison with the non-linear parallel line model. Three compounds were tested for each treatment, the standard (S) and two samples (A and B) with unknown activity. The whole set of replicates

Figure 10

 10 Figure10shows the predictions of the model for the 15 individual plates (plates 1, 2 and 3 for the 5 concentrations). As expected, it can be seen that the dark grey curve for the standard (Ο) overlaps with the medium and light grey lines for sample A (∆) and B (+) for 100%, whereas the

3 .

 3 One standard and two samples (unknowns A and B) were prepared on each plate. The samples A and B were identical, the only difference being their positions on the plate. The samples were derived from the standard solution, which was diluted to target concentrations of 70%, 80%, 100%, 125% and 140% of the standard. Five plates, one for each target concentration, were loaded on

  -linear mixed model assuming a four parameter log-logistic doseresponse model, the three fixed effects (determining the four parameters of the logistic model for each factor level): treatments (with levels: 'Standard', 'Sample A', 'Sample B'), potency (with levels 70, 80, 100, 125, and 140%) and its interaction and the random effects: plate (with 3 levels) and relative potency (nested inside the plate), the variance components were estimated for the upper and lower asymptote, the EC50 value and the slope. The estimated variance components for the four model parameters and the random factors are shown in Table

  Assay validation was determined in a series of experiments with their related statistical evaluation. The principle design was a cell-based assay on a microtitre plate, repeatedly measured within one day and on some consecutive days. The basic questions to be answered were: i) what is an appropriate design on a plate to avoid heterogeneities, ii) what sources of variability are serious and can they be eliminated, or at least restricted, iii) is the evaluation appropriate by means of a linear or a non-line parallel line assay? The mixed model with random factors rows, columns, plates, and the fixed effect factors of either a linear or even a non-linear parallel line model (PLA) was used as standard statistical technique.
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 1234c105 Figure 1: 96 well microtitre plates Figure 2: Positions of the treatments in the linear parallel line design

Figure 6 :Figure 7 :

 67 Figure 6: Raw data scatter plots (80%: medium grey, ∆; 100%: dark grey, Ο; 125%: light grey, +) Figure 7: Predictions of the hierarchical linear model separately for each of the 18 plates (80%: medium grey, ∆; 100%: dark grey, Ο; 125%: light grey, +) Figure 8a, b: QQ-and residual plot for the linear mixed model
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 910111213 Figure 9: Predictions of the hierarchical 4 parameter log-logistic model separately for each of the 18 plates (80%: medium grey, ∆; 100%: dark grey, Ο; 125%: light grey, +) Figure 10: Model fit for the optimized linear parallel line model Figure 11: Residual plot for the parallel line modelFigure 12: Model fit for the non linear parallel line model Figure 13: Scatter plot of Mithras LB940 and Varioskan Flash multimode reader RFU measures (different greyscales identify different days, different symbols identify different plates)
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Table 1 :

 1 Estimated variance components for the random effects structure of the mixed effect linear model

	Factor	Source	
	Date	Intercept	0
		Slope	0
	Plate in date	Intercept	3820.42
		Slope	1378.28
	Treatment in plate in date	Intercept	4607.49
		Slope	996.26
	Residual		17186.42

Table 2 :

 2 Estimated potencies for the comparison of the standard with the treatment with 80% of the active compound and comparison of the control with the 125% treatment.

	Page 29 of 52				
	Target				
	potency EC 50 Comparison	Estimated rel. potency	Lower CI	Upper CI
	0.8	Standard / Sample	0.76	0.70	0.83
	1	Standard / Sample	1.02	0.94	1.11
	1.25	Standard / Sample	1.25	1.15	1.36

Table 3 :

 3 Estimated variance components for the random effects for the 4 PL

	model		
	Factor	Source	
	Date	Upper Asymptote	10532.51
		Lower Asymptote	1472.71
		Slope	0.10
	Plate in date	Upper Asymptote	12527.26
		Lower Asymptote	605.58
		Slope	0.04
	Treatment in plate in date	Upper Asymptote	18.40
		Lower Asymptote	0.06
		Slope	0.00
	Residual		4704.72

Table 4 :

 4 Potency estimation by the 4-PL model

	Page 31 of 52			
	Target	Estimated		
	potency	EC50 Comparison rel.	Lower	Upper
	0.8	potency Standard / Sample A 0.85	0.59	1.47
	1	Standard / Sample A 1.02	0.74	1.52
	1.25	Standard / Sample A 1.25	0.78	2.53

Table 5 :

 5 Potency estimates for the optimised linear parallel line assays

						Page 32 of 52
	Target		Estimated			Estimated %
	potency	EC50 Comparison	rel. potency	Lower CI	Upper CI	bias
	0.7	Standard / Sample A	0.71	0.67	0.74	-1.4
	0.7	Standard / Sample B	0.72	0.69	0.75	-2.9
	1	Sample A / Sample B	1.02	0.98	1.06	-2.0
	0.8	Standard / Sample A	0.80	0.76	0.83	0.0
	0.8	Standard / Sample B	0.81	0.78	0.85	-1.3
	1	Sample A / Sample B	1.02	0.98	1.06	-2.0
	1	Standard / Sample A	1.00	0.97	1.04	0.0
	1	Standard / Sample B	0.99	0.95	1.03	1.0
	1	Sample A / Sample B	0.99	0.95	1.03	1.0
	1.25	Standard / Sample A	1.20	1.15	1.25	4.0
	1.25	Standard / Sample B	1.20	1.16	1.25	4.0
	1	Sample A / Sample B	1.01	0.97	1.04	-1.0
	1.4	Standard / Sample A	1.35	1.29	1.42	3.6
	1.4	Standard / Sample B	1.36	1.30	1.43	2.9
	1	Sample A / Sample B	1.01	0.97	1.05	-1.0

Table 6 :

 6 Variance component estimates for the estimated relative potencies

	Page 33 of 52		
	Factor Variance	Source		% Variance component
	Plate:potency (Intercept) 3266.1	8.77
		Slope	6646.5	17.85
	Plate	(Intercept) 14353.8	38.54
		Slope	7233.9	19.42
	Residual		5744.2	15.42

Table 7 :

 7 Potency estimates of the optimised non linear parallel line assays

	Target		Estimated			Estimated
	potency EC50 Comparison	rel. potency	Lower CI	Upper CI	% bias
	0.70	Standard / Sample A	0.52	0.37	0.74	25.7
	0.70	Standard / Sample B	0.54	0.38	0.75	22.9
	1.00	Sample A / Sample B	1.02	0.74	1.42	-2.0
	0.80	Standard / Sample A	0.74	0.50	1.08	7.5
	0.80	Standard / Sample B	0.85	0.56	1.29	-6.2
	1.00	Sample A / Sample B	1.05	0.62	1.77	-5.0
	1.00	Standard / Sample A	1.08	0.78	1.50	-8.0
	1.00	Standard / Sample B	0.95	0.70	1.30	5.0
	1.00	Sample A / Sample B	0.91	0.63	1.33	9.0
	1.25	Standard / Sample A	1.24	0.91	1.70	0.8
	1.25	Standard / Sample B	1.12	0.83	1.52	10.4
	1.00	Sample A / Sample B	1.23	0.78	1.94	-23.0
	1.40	Standard / Sample A	1.72	1.09	2.72	-22.9
	1.40	Standard / Sample B	1.91	1.22	2.99	-36.4
	1.00	Sample A / Sample B	1.14	0.62	2.09	-14.0

Table 8 :

 8 Variance component estimates for the estimated relative potencies and their confidence intervals
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		Variance	
	Parameter	Plate	Potency within plate
	Upper Asymptote	26660.27	11161.04
	Lower Asymptote	1970.10	719.29
	EC50	0.06	0.06
	Slope	0.14	0.03
	Residual error		3865.63

Table 9 :

 9 Day-and plate-specific correlation coefficients between Mithras and
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	Varioscan RFU measures			
	Day	Plate	Coefficient	Lower	Upper limit
			of	limit	
			correlation		
	1	1	0.952	0.929	0.968
	1	2	0.962	0.943	0.974
	1	3	0.926	0.891	0.950
	2	4	0.941	0.912	0.960
	2	5	0.972	0.959	0.981
	2	6	0.949	0.924	0.966
	3	7	0.958	0.938	0.972
	3	8	0.931	0.898	0.954
	3	9	0.964	0.947	0.976
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