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Discrete spectrum of a model Schrödinger operator

on the half-plane with Neumann conditions

Virginie BONNAILLIE-NOËL∗, Monique DAUGE†,
Nicolas POPOFF†, Nicolas RAYMOND†

October 19, 2010

Abstract

We study the eigenpairs of a model Schrödinger operator with a quadratic poten-

tial and Neumann boundary conditions on a half-plane. The potential is degenerate in

the sense that it reaches its minimum all along a line which makes the angle θ with the

boundary of the half-plane. We show that the first eigenfunctions satisfy localization

properties related to the distance to the minimum line of the potential. We investigate

the densification of the eigenvalues below the essential spectrum in the limit θ → 0
and we prove a two term asymptotics for these eigenvalues and their associated eigen-

vectors. We conclude the paper by numerical experiments obtained by a finite element

method. The numerical results confirm and enlighten the theoretical approach.

1 Introduction and main results

The aim of this paper is to study the eigenpairs of a Schrödinger operator with a degenerate

electric potential of the form (t cos θ − s sin θ)2 on the half-plane t > 0. This problem

is motivated by the asymptotics of the lowest eigenvalues of Schrödinger operators with

magnetic fields (ih∇ + A)2 and Neumann boundary conditions on smooth domains Ω in

R3. Indeed, near the boundary of Ω, the magnetic field can be approximated by a constant

field which makes an angle θ ∈
[
0, π

2

]
with the boundary (approximated by the tangent

plane). Thus, after a choice of gauge, we are led to investigate the operator with Neumann

conditions on the half-space R3
+ = {(r, s, t) ∈ R3 : t > 0}:

h2D2
s + h2D2

t + (hDr + t cos θ − s sin θ)2,
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where Dx denotes −i∂x for any variable x. The first step in the study of this operator is a

Fourier transform in r. If θ = 0, we are led to the so-called de Gennes operator on an half-

line (see [6]). If θ 6= 0, after a translation in s we are reduced to a Schrödinger operator

with an electric potential on the half-plane R2
+ = {(s, t) ∈ R2 : t > 0}:

h2D2
s + h2D2

t + (t cos θ − s sin θ)2.

After a rescaling, we can reduce to the case h = 1.

Thus, this is a natural question to wonder how the eigenpairs of this operator behave

when θ goes to 0 (the form domain does not depend continuously on θ).

In this paper, we investigate this question and study the exponential concentration of

eigenvectors.

1.1 Discrete and essential spectrum of model operators

We denote by x = (s, t) the coordinates in R2 and by Ω the half-plane:

Ω = R2
+ = {x = (s, t) ∈ R2, t > 0}.

We study the self-adjoint Neumann realization on the half-plane Ω of the Schrödinger

operator Lθ with potential Vθ:

Lθ = −∆ + Vθ = D2
s +D2

t + Vθ,

where Vθ is defined for any θ ∈ (0, π
2
) by

Vθ : x = (s, t) ∈ Ω 7−→ (t cos θ − s sin θ)2.

We can notice that Vθ reaches its minimum 0 all along the line t cos θ = s sin θ, which

makes the angle θ with ∂Ω. We denote by DN(Lθ) the domain of Lθ and we consider the

associated quadratic form qθ defined by:

qθ(u) =

∫

Ω

(
|∇u|2 + Vθ|u|2

)
dx,

whose domain D(qθ) is:

D(qθ) = {u ∈ L2(Ω), ∇u ∈ L2(Ω),
√
Vθ u ∈ L2(Ω)}.

The operator Lθ is positive. We now recall the min-max principle which allows us to

define the n-th eigenvalue using Rayleigh quotients (see [18, Theorem XIII.1], [19, p. 75]):

Proposition 1.1 (min-max principle) Let A be a self-adjoint operator that is bounded

from below, qA its quadratic form and D(qA) its form domain. Let us define

µn = sup
Ψ1,...,Ψn−1∈D(qA)

inf
Ψ∈[Ψ1,...,Ψn−1]⊥

Ψ∈D(qA), ‖Ψ‖=1

qA(Ψ) = inf
Ψ1,...,Ψn∈D(qA)

sup
Ψ∈[Ψ1,...,Ψn]

‖Ψ‖=1

qA(Ψ) . (1.1)

Then, for each fixed n, we have the alternative “(a) or (b)”:
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(a) There are n eigenvalues (counted with multiplicity) below the bottom of the essential

spectrum, and µn is the n-th eigenvalue counted with multiplicity;

(b) µn is the bottom of the essential spectrum, and in that case µn = µn+1 = ... and

there are at most n− 1 eigenvalues (counting multiplicity) below µn.

Let σn(θ) be the n-th eigenvalue of Lθ defined by the min-max principle and we denote

by spess(Lθ) its essential spectrum. Let us recall some fundamental spectral properties of

Lθ when θ ∈
(
0, π

2

)
.

It is proved in [8] that spess(Lθ) = [1,+∞) and that θ 7→ σn(θ) is non decreasing.

Moreover, the function (0, π
2
) ∋ θ 7→ σ1(θ) is increasing, and corresponds to a simple

eigenvalue < 1 associated with a positive eigenfunction (see [11, Lemma 3.6]). As a

consequence θ 7→ σ1(θ) is analytic (see for example [10, Chapter 7]).

In all our investigations, of fundamental importance is the family of one-dimensional

self-adjoint operators Hζ , ζ ∈ R defined by:

Hζ = Hζ(t;Dt) = D2
t + (t− ζ)2, (1.2)

on their common Neumann domain on the half-line:

{v ∈ H2(R+), t2v ∈ L2(R+), v′(0) = 0}.

The spectral properties of this family of operators have been studied in [6]. Let us recall

some of these. We denote by µ(ζ) the lowest eigenvalue of Hζ , and by vζ a normalized

associated eigenfunction. We have the following limits (see [6, §3]):

lim
ζ →+∞

µ(ζ) = 1 and lim
ζ →−∞

µ(ζ) = +∞.

Let us also mention that

µ(ζ) =
ζ →−∞

O(ζ2). (1.3)

In addition, the function µ reaches (non degenerately) its minimum denoted by Θ0 for a

unique value ζ0 (as proved in [6, Theorem 4.3]). There holds (see [4] for refined numerical

computations):

ζ2
0 = Θ0 and Θ0 ≃ 0.590106125 .

1.2 Main results of the paper

Our results concern exponential decay estimates for eigenvectors of Lθ and the asymptotic

behavior of its eigenvalues in the small angle limit θ → 0. All along this paper, (σ(θ), uθ)
will denote an eigenpair of Lθ with σ(θ) < 1. We prove the exponential decay estimates

for uθ stated in the following two theorems, improving the results of [17]. Our first result

gives an isotropic exponential decay with a weight of the type eα|x|:
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Theorem 1.2 Let (σ(θ), uθ) be an eigenpair of Lθ with σ(θ) < 1. We have:

∀α ∈
(
0,
√

1 − σ(θ)
)
, ∃Cα,θ > 0, qθ(e

α|x|uθ) ≤ Cα,θ‖uθ‖2
L2(Ω). (1.4)

Our second result is an anisotropic decay estimate in the orthogonal direction of the

zero set of Vθ:

Theorem 1.3 Let 0 < β < 1
2
. Let (σ(θ), uθ) be an eigenpair of Lθ with σ(θ) < 1. Then

there exists a constant K(β) such that

qθ(e
βVθuθ) ≤ K(β)‖uθ‖2

L2(Ω). (1.5)

Estimates (1.4) and (1.5) have different performances in different directions: For γ ∈
[0, π], let us consider the points

x = r(cos γ, sin γ), r > 0,

on the half-line of angle γ with ∂Ω. Then

|x| = r and Vθ(x) = r2 sin2(γ − θ).

Thus estimate (1.4) is stronger than (1.5) if γ = θ, but weaker as soon as γ 6= θ.

Then, we want to analyze the behavior of the eigenvalues below the essential spectrum

when θ goes to zero. In a first step, we prove that the number of such eigenvalues tends to

infinity:

Theorem 1.4 We have the following upper bound for the n-th eigenvalue σn(θ) of Lθ:

σn(θ) ≤ Θ0 cos θ + (2n− 1) sin θ, ∀n ≥ 1. (1.6)

Therefore, if we denote by n(θ) the number of eigenvalues of Lθ below the essential

spectrum, we have:

n(θ) ≥ 1 − Θ0 cos θ

2 sin θ
+

1

2
. (1.7)

In a second step, we use semi-classical techniques to get a two term asymptotics for

those eigenvalues:

Theorem 1.5 For all M0 ≥ 1, there exist h0 > 0 and C(M0) > 0 such that for all

0 < θ ≤ h0 and 1 ≤ n ≤M0:
∣∣∣∣∣σn(θ) −

(
Θ0 + θ

√
µ′′(ζ0)

2
(2n− 1)

)∣∣∣∣∣ ≤ C(M0) θ
3/2. (1.8)

Moreover, the gap between successive eigenvalues provides information on the associ-

ated eigenfunctions: We will see that they are close to some quasimodes we are going to

construct, see section 4.3.
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1.3 Organization of the paper

After the present introduction, we prove in Section 2 the isotropic and anisotropic decay

estimate of Theorems 1.2 and 1.3. In Section 3, we prove Theorem 1.4, which shows that

the number of eigenvalues below 1 tends to infinity as the angle θ tends to 0. We also prove

that eigenvalues densify on the whole interval [Θ0, 1] when θ → 0. Section 4 is devoted to

the proof of Theorem 4.1 which immediately implies Theorem 1.5.

In Section 5 we present a series of computations of eigenpairs performed with the

finite element library MÉLINA [12]. They illustrate the anisotropic exponential decay of

eigenvectors, and also clearly display an asymptotic expansion for the n-th eigenvalue of

Lθ as θ → 0 in the form:

σn(θ) = Θ0 + (2n− 1)a1θ − a2,nθ
2 − a3,nθ

3 + O(θ3),

where a1 ≃ 0.7651882 and a2,n, a3,n are some coefficients. This expansion is coherent

with (1.8), all the more since a1 coincides with the 7-digit numerical approximation of√
µ′′(ζ0)/2 according to the 1D computations presented in [4]. In addition, for small an-

gles θ, the eigenvectors show their resemblance with the quasimodes constructed in tensor

product form, cf. section 4.3 and Figures 8-10.

2 Exponential decay of eigenvectors

The aim of this section is to prove Theorems 1.2 and 1.3. For that purpose, we need to

recall some ingredients in order to implement the so-called “Agmon’s estimates”.

2.1 Preliminaries

Here we recall a few classical identities due to Agmon. There are consequences of the

“IMS” formula and can be found in [2] (see also [5] and [16] for the same kind of applica-

tions).

Lemma 2.1 Let u ∈ DN(Lθ) and Φ be a bounded and uniform Lipschitz function defined

on Ω. Then we have

〈Lθu, e
2Φu〉 = qθ(e

Φu) − ‖|∇Φ|eΦu‖2
L2(Ω). (2.1)

Taking u = uθ in Lemma 2.1, we get the obvious corollary:

Corollary 2.2 Let (σ(θ), uθ) be an eigenpair for Lθ and Φ be a bounded and uniform

Lipschitz function defined on Ω. We have the following identities:
∫

Ω

(σ(θ) + |∇Φ|2)e2Φ|uθ|2 = qθ(e
Φuθ), (2.2)
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∫

Ω

|∇(eΦuθ)|2 +

∫

Ω

(Vθ − σ(θ) − |∇Φ|2)e2Φ|uθ|2 = 0. (2.3)

Let (Ω+,Ω−) be a partition of Ω: Ω = Ω+ ∪ Ω− with Ω+ ∩ Ω− = ∅, then we have

∫

Ω+

(Vθ − σ(θ) − |∇Φ|2)e2Φ|uθ|2 ≤ sup
Ω−

∣∣Vθ − σ(θ) − |∇Φ|2
∣∣
∫

Ω−

e2Φ|uθ|2. (2.4)

In order to satisfy the hypotheses of this corollary, we will need to perform a partition

of unity. This is the aim of the following two lemmas to explain how to deal with such a

partition.

Lemma 2.3 Let χ ∈ C∞
0 (Ω) and u ∈ D(qθ), then

qθ(χu) =

∫

Ω

|χ|2(|∇u|2 + Vθ|u|2) +
1

2

∫

Ω

∇|χ|2∇|u|2 +

∫

Ω

|∇χ|2|u|2. (2.5)

If we suppose moreover that u ∈ DN(Lθ), we have:

qθ(χu) = 〈χ2Lθu, u〉 + ‖|∇χ|u‖2
L2(Ω). (2.6)

Lemma 2.4 Let (χi)i be a finite regular partition of unity with
∑

i χ
2
i = 1. Then for all

u ∈ D(qθ), ∑

i

qθ(χiu) = qθ(u) +

∫

Ω

∑

i

|∇χi|2|u|2. (2.7)

2.2 Isotropic decay of the eigenvectors

This subsection is devoted to the proof of Theorem 1.2.

PRELIMINARIES. Let (χ1, χ2) be a partition of unity on R+ with χ2
1 + χ2

2 = 1 and:

{
0 ≤ χ1 ≤ 1, χ1(r) = 1 if r ≤ 1, and 0 if r ≥ 2,

0 ≤ χ2 ≤ 1, χ2(r) = 0 if r ≤ 1, and 1 if r ≥ 2.

We define

χR
1 (x) = χ1(

|x|
R

) and χR
2 (x) = χ2(

|x|
R

). (2.8)

We have ∇χR
j (x) = 1

R
∇χj(

x
R
). Thus we deduce:

∃C > 0, ∀j = 1, 2, ∀x ∈ Ω, |∇χR
j (x)| ≤ C

R
. (2.9)

Let us fix α > 0. As Agmon’s distance, we choose the function:

Φ(s, t) = α
√
s2 + t2 = α|x|. (2.10)
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It clearly satisfies |∇Φ|2 = α2. We do not know yet that eΦuθ ∈ D(qθ). This is the reason

why we use a cut-off function in order to use the Corollary 2.2. We define for k ∈ N:





Φk(x) = α|x| if |x| ≤ k,
Φk(x) = α(2k − |x|) if k ≤ |x| ≤ 2k,
Φk(x) = 0 if |x| ≥ 2k.

We have: {
|∇Φk|2 = |∇Φ|2 = α2 if |x| ≤ 2k,

|∇Φk|2 = 0 if |x| > 2k.

FIRST STEP. Using (2.2) and (2.7) we have:

∫

Ω

(σ(θ) + |∇Φk|2)e2Φk |uθ|2 =
2∑

j=1

qθ(χ
R
j e

Φkuθ) −
2∑

j=1

∫

Ω

∣∣∇χR
j

∣∣2e2Φk |uθ|2. (2.11)

Let us choose ε ∈ (0, 1 − σ(θ)) and

α =
√

1 − ε− σ(θ). (2.12)

Thus, we have:

σ(θ) + |∇Φ|2 = 1 − ε. (2.13)

It follows that:
∫

Ω

(σ(θ)+|∇Φk|2)e2Φk |uθ|2 = (1−ε)‖eΦkuθ‖2
L2(Ω)+(σ(θ)−1+ε)

∫

|x|>2k

|uθ|2dx. (2.14)

We choose R > 0 such that
C2

R2
≤ ε

4
, (2.15)

where C is the constant appearing in (2.9). Hence we get:

2∑

j=1

∫

Ω

∣∣∇χR
j

∣∣2|eΦkuθ|2 ≤
ε

2
‖eΦkuθ‖2

L2(Ω). (2.16)

Relations (2.11), (2.14) and (2.16) provide:

ε

2
‖eΦkuθ‖2

L2(Ω) ≤ ‖eΦkuθ‖2
L2(Ω) −

2∑

j=1

qθ(χ
R
j e

Φkuθ) + (σ(θ) − 1 + ε)

∫

|x|>2k

|uθ|2dx

≤ ‖eΦkuθ‖2
L2(Ω) − qθ(χ

R
2 e

Φkuθ). (2.17)

SECOND STEP. In order to bound from below the energy “far from the origin” qθ(χ
R
2 e

Φkuθ),
we introduce a classical notation attached to Persson’s lemma:

Σ(Lθ, r) = inf
{
qθ(u), ‖u‖L2(Ω) = 1, u ∈ C∞

0 (Ω ∩ ∁Br)
}
,
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where Br denotes the ball of radius r centered at 0, and ∁Br its complement. It results

from Persson’s lemma (see [15]) that the limit of Σ(Lθ, r) as r → +∞ equals the bottom

of the essential spectrum of Lθ, thus 1:

lim
r→+∞

Σ(Lθ, r) = 1. (2.18)

We have:
qθ(χ

R
2 e

Φkuθ)

‖χR
2 e

Φkuθ‖2
L2(Ω)

≥ Σ(Lθ, R), (2.19)

and so:

qθ(χ
R
2 e

Φkuθ) ≥ Σ(Lθ, R)

∫

|x|>2R

e2Φk |uθ|2dx. (2.20)

Using (2.17), we get:

ε

2
‖eΦkuθ‖2

L2(Ω) ≤
∫

|x|<2R

e2Φk |uθ|2dx+ (1 − Σ(Lθ, R))

∫

|x|>2R

e2Φk |uθ|2dx.

Using (2.18), we can choose R large enough such that, besides (2.15):

1 − Σ(Lθ, R) <
ε

4
.

We deduce:
ε

4

∫

Ω

e2Φk |uθ|2 ≤
∫

|x|<2R

e2Φk |uθ|2dx.

We finally get:

∀k ∈ N, ‖eΦkuθ‖2
L2(Ω) ≤

4

ε
e4αR‖uθ‖2

L2(Ω). (2.21)

CONCLUSION. However, |eΦkuθ| converges pointwise to |eΦuθ| as k goes to infinity. It

follows from Fatou’s lemma that eΦuθ ∈ L2(Ω). The conclusion comes from:

‖∇(eΦuθ)‖2
L2(Ω) + ‖Vθ e

Φuθ‖2
L2(Ω) = (1 − ε)‖eΦuθ‖2

L2(Ω),

as a direct consequence of (2.3) and (2.13).

Remark 2.5 This proof is the key point in order to prove that uθ is in the Schwartz’s class,

see [17].

Examining the arguments of this proof, we can see that α and the constant Cα,θ can be

chosen uniformly in any closed interval [θ0, θ1] with θ0 > 0 and θ1 <
π
2
. Since σ(θ) → 1

as θ → π
2
, it is impossible to obtain uniform estimates as θ → π

2
. When θ → 0, there

is no valid uniform estimates in the tangential variable s. However, considering only a

dependence with respect to t, we get a uniform control in θ:
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Proposition 2.6 Let η < 1. There exist C > 0 and γ > 0 such that for any eigenpair

(σ(θ), uθ) of Lθ with σ(θ) ≤ η there holds

∫

Ω

e2γt|uθ|2dsdt ≤ C‖uθ‖2
L2(Ω). (2.22)

Proof: The proof is similar as for Theorem 1.2. We choose Φ = γt and instead (2.8) we

use the partition of unity (χR
j ) with respect to t:

χR
1 (x) = χ1(

t
R
) and χR

2 (x) = χ2(
t
R
). (2.23)

The first step of the proof goes the same way with

ε ∈ (0, 1 − η),

and the key point of the second point is then the lower bound, — which replaces (2.20):

qθ(χ
R
2 e

Φuθ) ≥ ‖χR
2 e

Φuθ‖2
L2(Ω). (2.24)

This inequality is a consequence of the fact that the support of χR
2 is now far from the

boundary of Ω, — since the bottom of the spectrum of the self-adjoint realization on R2 of

D2
t + D2

s + Vθ is 1. Thus, as ε is set and the size of R does not depend anymore on θ for

this choice of Φ, we get that the upper bound in (2.21) is independent from θ. �

2.3 Anisotropic decay from the minimum of the potential

In this section we prove the decay of uθ away from the minimum of Vθ stated in Theorem

1.3. Let δ ∈ (0, 1). Following [1], we introduce the function associated with Agmon’s

geodesics:

Φ(x) = (1 − δ)

∫ √
Vθ(x)

√
σ(θ)

√(
l2 − σ(θ)

)
+
dl, (2.25)

where f+ denotes the positive part of a function f . Let’s notice that if we define the function

g(d) =

∫ d

√
σ(θ)

√
(l2 − σ(θ))+ dl,

we have

Φ(x) = (1 − δ)g(
√
Vθ(x)).

It is an elementary computation to check that we have (uniformly in θ):

g(d) =
d→+∞

d2

2
+ O(ln d) and g′(d) =

d→+∞
d+ O(d−1). (2.26)
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So Theorem 1.3 holds if and only if qθ(e
Φuθ) is bounded uniformly in θ for all δ ∈ (0, 1).

Let us prove this. We choose δ ∈ (0, 1). By construction of Φ, we have:

|∇Φ|2 = (1 − δ)2(Vθ − σ(θ))+. (2.27)

Let η > 0, we define a partition of unity for Ω:

A+
η = {(s, t) ∈ Ω, Vθ(s, t) − σ(θ) > η} and A−

η = {(s, t) ∈ Ω, Vθ(s, t) − σ(θ) ≤ η}.

On A+
η , we have:

Vθ − σ(θ) − |∇Φ|2 = (Vθ − σ(θ))(2δ − δ2) > η(2δ − δ2). (2.28)

Similarly, we have on A−
η :

|Vθ − σ(θ) − |∇Φ|2| =

{
σ(θ) − Vθ if Vθ < σ(θ),
(Vθ − σ(θ))(2δ − δ2) if not.

Let us assume that

0 < η(2δ − δ2) ≤ Θ0 < σ(θ). (2.29)

Then, we have the following upper bound:

sup
A−

η

∣∣Vθ − σ(θ) − |∇Φ|2
∣∣ ≤ σ(θ). (2.30)

We now combine (2.4), (2.28) and (2.30) in order to get:

η(2δ− δ2)

∫

A+
η

e2Φ|uθ|2 ≤
∫

A+
η

(Vθ −σ(θ)− |∇Φ|2)e2Φ|uθ|2 ≤ σ(θ)

∫

A−
η

e2Φ|uθ|2. (2.31)

Since ‖uθ‖L2(Ω) = 1 and that Φ is maximal on the boundary of A−
η , we get:

‖eΦuθ‖L2(Ω) ≤
( σ(θ)

η(2δ − δ2)
+ 1
)

exp

∫ √
σ(θ)+η

√
σ(θ)

(1 − δ)
√
l2 − σ(θ) dl. (2.32)

We denote by K(η, δ, σ(θ)) the right hand side of the last inequality. If we fix δ > 0, the

function

R+ × [Θ0, 1] → R

(η, σ) → K(η, δ, σ)

is clearly positive and continuous. We notice that:

lim
η→0

K(η, δ, σ) = +∞.

10



Recall that we assume the condition on η given by (2.29). We introduce the interval I(δ) =(
0, Θ0

2δ−δ2

]
. This allows us to define the positive constant

K0(δ) = max
σ∈[Θ0,1]

min
η∈I(δ)

K(η, δ, σ).

The minimum is achieved for a η0 ∈ I(δ). Choosing this η0, we deduce from (2.32):

‖eΦuθ‖L2(Ω) ≤ K0(δ). (2.33)

If we define

Φ̃(x) =

(
1 − δ

2

)∫ √
Vθ(x)

√
σ(θ)

√
(l2 − σ(θ))+ dl,

we have

‖eΦ̃uθ‖L2(Ω) ≤ K0

(δ
2

)
.

Because of (2.26), we have easily

∃K1(δ) > 0, ∀d > 0, |d e− δ
2
g(d)| < K1(δ). (2.34)

We notice that
√
Vθ e

Φ−Φ̃ =
√
Vθ e

− δ
2
g(
√

Vθ) and with (2.34), we deduce:

∃K1(δ) > 0, ‖
√
Vθ e

Φ−Φ̃‖L∞(Ω) ≤ K1(δ). (2.35)

Therefore, we have:

‖
√
Vθ e

Φuθ‖L2(Ω) ≤ ‖
√
Vθ e

Φ−Φ̃‖L∞(Ω)‖eΦ̃uθ‖L2(Ω),

and finally, with a new constant K2(δ):

‖
√
Vθ e

Φuθ‖L2(Ω) ≤ K2(δ). (2.36)

With the definition of Φ, we also get:

‖|∇Φ| eΦuθ‖L2(Ω) ≤ K3(δ). (2.37)

Using (2.1), we finally obtain

qθ(e
Φuθ) = ‖|∇Φ|eΦuθ‖2

L2(Ω) + σ(θ)‖eΦuθ‖2
L2(Ω) ≤ K(δ).

3 Densification of the spectrum for small angles

In this section, we investigate the behavior of the eigenvalues below 1.
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3.1 An upper bound

In this section, we give the proof of Theorem 1.4. In order to get the announced upper

bound, we will construct a family of quasimodes and use the min-max principle.

Let us introduce first some tools from spectral theory of self-adjoint operators (see for

example [18]). We denote by bθ(u) the Rayleigh quotient associated with a function u for

Lθ:

∀u ∈ D(qθ) \ {0}, bθ(u) =
qθ(u)

‖u‖2
L2(Ω)

.

The bilinear form associated with qθ is defined on the form domain by:

aθ(u, v) =

∫

Ω

(
DtuDtv +DsuDsv + Vθ uv

)
dx.

Lemma 3.1 Let vζ0 be a normalized eigenvector associated with the first eigenvalue Θ0

of the operator Hζ0 (cf. (1.2) and the properties recalled there), and let ψn be the n-th

Hermite function with the “physicists” convention. We recall that:

∀n ≥ 0, ∀x ∈ R, −ψ′′
n(x) + x2ψn(x) = (2n+ 1)ψn(x).

We define the normalized function ũn,θ by:

ũn,θ(s, t) = (cos θ sin θ)
1

4 vζ0(t
√

cos θ)ψn

(
s
√

sin θ − ζ0√
tan θ

)
. (3.1)

Then we have:

∀n ∈ N, ∀θ ∈
(
0,
π

2

)
, bθ(ũn,θ) = Θ0 cos θ + (2n+ 1) sin θ. (3.2)

Proof: The function ũn,θ is clearly in the form domain D(qθ). We are going to estimate

qθ(ũn,θ). Let us make the following rescaling and translation:



y = s

√
sin θ − ζ0√

tan θ
,

z = t
√

cos θ.

(3.3)

Then

qθ(ũn,θ) =

∫

Ω

(
cos θ|v′ζ0(z)ψn(y)|2 + sin θ|vζ0(z)ψ

′
n(y)|2

+ (z
√

cos θ − y
√

sin θ − ζ0
√

cos θ)2|vζ0(z)ψn(y)|2
)

dy dz

= cos θ

∫

Ω

(
|v′ζ0(z)ψn(y)|2 + (z − ζ0)

2|vζ0(z)ψn(y)|2
)
dy dz

+ sin θ

∫

Ω

(
|vζ0(z)ψ

′
n(y)|2 + y2|vζ0(z)ψn(y)|2

)
dy dz

− 2
√

sin θ
√

cos θ

∫

Ω

y(z − ζ0)|vζ0(z)ψn(y)|2 dy dz.

12



We have the following relations:
∫

R+

|v′ζ0(z)|2 + (z − ζ0)
2|vζ0(z)|2 dz = Θ0, (3.4)

∫

R+

(z − ζ0)|vζ0(z)|2 dz = 0, (3.5)

∫

R

|ψ′
n(y)|2 + y2|ψn(y)|2 dy = 2n+ 1, (3.6)

where (3.5) is a direct consequence of the Feynman-Hellman’s formula (see [9] and also

Section 4.1). Thus we have

qθ(ũn,θ) = Θ0 cos θ‖ψn‖2
L2(R) + (2n+ 1) sin θ‖vζ0‖2

L2(R+). (3.7)

Since vζ0 and ψn are normalized, and ‖ũn,θ‖2
L2(Ω) = 1, we deduce (3.2). �

Lemma 3.2 The functions ũn,θ, n ≥ 0, are orthogonal for the bilinear form aθ.

Proof: Let n 6= m be two integers. We recall that
∫

R
ψnψm = 0. As in the proof of Lemma

3.1, we have:

aθ(ũn,θ, ũm,θ) = Θ0 cos θ

∫

R

ψn(y)ψm(y) dy

+ sin θ

∫

R

ψ′
n(y)ψ′

m(y) + y2ψn(y)ψm(y) dy

− 2
√

sin θ
√

cos θ

∫

Ω

y(z − ζ0)ψn(y)ψm(y)|vζ0(z)|2 dy dz.

For the second term, we make an integration by parts:
∫

R

ψ′
n(y)ψ′

m(y) dy =

∫

R

−ψ′′
n(y)ψm(y) dy

=

∫

R

(2n+ 1 − y2)ψn(y)ψm(y) dy

= −
∫

R

y2ψn(y)ψm(y) dy.

Since the other terms are clearly equal to 0, we have aθ(ũn,θ, ũm,θ) = 0. �

Combining Lemmas 3.1 and 3.2, we deduce Theorem 1.4: Indeed, we only have to

apply the min-max principle with the functions (ũn,θ)n∈N which are orthogonal for the

bilinear form associated with Lθ.

Remark 3.3 We have just proved that the number of eigenvalues below the essential spec-

trum gets large as θ tends to 0. In [14, Theorem 4.3], the authors prove an asymptotic

expansion of this number.

We now show that the eigenvalues get dense in [Θ0, 1].
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3.2 Spectrum density

Proposition 3.4 Let ζ > 0 and n be an integer such that

µ(ζ) cos θ + (2n+ 1) sin θ < 1.

Then, there exist an eigenvalue λ of Lθ and a constant Cζ > 0 such that:

|µ(ζ) cos θ + (2n+ 1) sin θ − λ| ≤ Cζ

√
2 cos θ sin θ

√
n2 + 1 . (3.8)

Proof: In the same way as previously, we define the functions:

ũn,θ;ζ(s, t) = (cos θ sin θ)
1

4vζ(t
√

cos θ)ψn

(
s
√

sin θ − ζ√
tan θ

)
. (3.9)

where vζ is the normalized eigenfunction associated with the first eigenvalue µ(ζ) of Hζ

(cf. § 1.1). These functions are clearly in the form domain of Lθ. We have:

D2
t ũn,θ;ζ(s, t) = cos θ

(
µ(ζ) − (t

√
cos θ − ζ)2

)
ũn,θ;ζ(s, t),

D2
s ũn,θ;ζ(s, t) = sin θ

(
2n+ 1 −

(
s
√

sin θ − ζ√
tan θ

)2
)
ũn,θ;ζ(s, t).

We deduce

Lθũn,θ;ζ − (µ(ζ) cos θ + (2n+ 1) sin θ)ũn,θ;ζ =

2(cos θ sin θ)
1

2

( ζ√
tan θ

− s
√

sin θ
)
(t
√

cos θ − ζ)ũn,θ;ζ . (3.10)

Thus, noticing that ‖ũn,θ;ζ‖L2(Ω) = 1, we get:

‖Lθũn,θ;ζ − (µ(ζ) cos θ + (2n+ 1) sin θ)ũn,θ;ζ‖L2(Ω) =

2(cos θ sin θ)
1

2‖(t− ζ)vζ(t)‖L2(R+)‖sψn(s)‖L2(R). (3.11)

It is well known that ∫

R

s2ψ2
n(s) ds =

n2 + 1

2
,

and if we define Cζ = ‖(t− ζ)vζ‖L2(R+), we can conclude with the spectral theorem. �

We can notice that the right part of (3.8) goes to infinity as n gets large, so the previous

proposition is useless if θ is fixed and n goes to infinity. However we have the following

proposition:

Proposition 3.5 We have the densification result:

∀λ0 ∈ (Θ0, 1), ∀ε > 0, ∃θ0 ∈
(
0,
π

2

)
, ∀θ ∈ (0, θ0], ∃λ ∈ sp(Lθ), |λ0 − λ| < ε. (3.12)
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Proof: We only consider the case ε < 1. In the previous lemma we choose n = 0 and ζ
such that µ(ζ) = λ0, which is possible since Θ0 < λ0 < 1 and µ(ζ) takes all values of

[Θ0, 1) when ζ lays in R∗
+. Thus we get (3.12). �

In the next section, we improve the estimate of Theorem 1.4 for each fixed rank n when

θ goes to zero.

4 Asymptotics of eigenvalues in the small angle limit

As it has been proved in Theorem 1.4, when θ goes to zero, the number of eigenvalues n(θ)
below the essential spectrum tends to infinity. Thus, for any arbitrary integer M0, we can

find a value of θ small enough such that σM0
(θ) < 1. In this section, we investigate the

asymptotics of those eigenvalues and prove Theorem 1.5. We use again the scaling (3.3):




y = s

√
sin θ − ζ0√

tan θ
,

z = t
√

cos θ.

In the new variables, the operator Lθ rewrites

sin θD2
y + cos θD2

z + cos θ(z − ζ0 − y
√

tan θ)2 = cos θ(Lh + Θ0),

where we have set h = tan θ and

Lh = hD2
y +D2

z + (z − ζ0 − yh1/2)2 − Θ0. (4.1)

We denote by sn(h) the n-th eigenvalue of Lh. Due to the change of variables, we have

σn(θ) = cos θ
(
Θ0 + sn(tan θ)

)
.

Thus, in order to prove Theorem 1.5, we are going to establish the following asymptotics

for sn(h):

Theorem 4.1 For all M0 ≥ 1, there exist C(M0) > 0 and h0 > 0 such that for all

1 ≤ n ≤M0 and 0 < h < h0:

∣∣∣∣∣sn(h) − h

√
µ′′(ζ0)

2
(2n− 1)

∣∣∣∣∣ ≤ C(M0)h
3/2.

Remark 4.2 It follows from Theorem 4.1 that for h small enough the eigenvalues sn(h),
1 ≤ n ≤M0, are simple.
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The proof of Theorem 4.1 is organized in two main steps. Using the one-dimensional

operators Hζ (1.2), we can rewrite (4.1) as

Lh = hD2
y +Hζ0+y

√
h(z;Dz) − Θ0.

In a first step we construct quasimodes by an expansion in powers of h1/2, and using the

spectral theorem, we get a family of approximate eigenvalues and a rough upper bound for

sn(h). In a second step, we establish a lower bound. The basic idea to get such a lower

bound is to use a Born-Oppenheimer technique which consists of replacing Hζ0+y
√

h by its

ground energy µ(ζ0 + y
√
h) and to implement the standard harmonic approximation in the

semi-classical limit for the one-dimensional operator Lh,BO defined as:

Lh,BO = h2D2
y + µ(ζ0 + y

√
h) − Θ0.

However Lh,BO, seen as an operator acting on the domain of Lh – i.e. as two-dimensional

operator, has eigenvalues of infinite multiplicity, and we cannot use directly the min-max

principle to compare its spectrum with the eigenvalues of Lh. Thus, we have to justify,

through Agmon estimates and a Grushin type argument, that the eigenvalues of Lh are

bounded from below by those of Lh,BO seen as one-dimensional operator. Such a proce-

dure was described in [13] for degenerate potentials in Rn. Nevertheless, we cannot apply

directly the techniques of [13] because the minimal line of the potential Vθ goes to infinity

and we work in a domain with boundary.

4.1 Construction of quasimodes

We can write Lh as:

Lh = P0 + h1/2P1 + hP2,

with:

P0 = D2
z + (z − ζ0)

2 − Θ0 = Hζ0 − Θ0,

P1 = −2(z − ζ0)y,

P2 = D2
y + y2.

We look for a quasimode in the form:

uh = ϕ0 + h1/2ϕ1 + hϕ2,

attached to an eigenvalue expressed as:

γh = γ0 + h1/2γ1 + hγ2.

We are led to the system:

h0 : (P0 − γ0)ϕ0 = 0, (4.2)

h1/2 : (P0 − γ0)ϕ1 = γ1ϕ0 − P1ϕ0, (4.3)

h : (P0 − γ0)ϕ2 = γ2ϕ0 + γ1u1 − P2ϕ0 − P1ϕ1. (4.4)
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Considering (4.2), we are led to choose γ0 = 0 and

ϕ0(y, z) = vζ0(z)f(y),

for some f to determine. Then, we want to solve (4.3). In order to solve this equation, we

recall an easy computation. Let us take the derivative with respect to ζ of:

(Hζ − µ(ζ))vζ = 0.

Let us take ζ = ζ0, we get:

(Hζ0 − Θ0)(∂ζvζ)|ζ=ζ0 = 2(z − ζ0)vζ0 . (4.5)

We deduce: ∫

R+

(z − ζ0)v
2
ζ0

(z) dz = 0. (4.6)

We recall now that (4.3) admits a solution if and only if:

〈γ1ϕ0 − P1ϕ0, vζ0〉L2(R+,z) = 0,

where 〈·, ·〉L2(R+,z) denotes the standard L2 scalar product on R+ with respect to z.

By (4.5), we get: γ1 = 0 and, with (4.6), we can take:

ϕ1(y, z) = wζ0(z)yf(y), with wζ0(z) = (∂ζvζ)|ζ=ζ0 .

Finally, we consider (4.4) and, in the same way, we want:

〈γ2ϕ0 − P2ϕ0 − P1ϕ1, vζ0〉L2(R+,z) = 0.

This leads to the equation:
(
D2

y +

(
1 − 2

∫

R+

(z − ζ0)wζ0(z)vζ0(z) dz

)
y2

)
f = γ2f.

This is well-known that (see [3, p. 1283-1284] and also [7]):

µ′′(ζ0)

2
= 1 − 2

∫

R+

(z − ζ0)wζ0(z)vζ0(z) dz,

thus, we infer:

Hharmf = γ2f, with Hharm = D2
y +

µ′′(ζ0)

2
y2. (4.7)

Thus, for f we take an eigenfunction fn of Hharm, associated with the eigenvalue

λn,harm =

√
µ′′(ζ0)

2
(2n− 1). (4.8)

In this way, we have determined the coefficients γi and the functions ϕi (which are in the

Schwartz class) for i = 0, 1, 2. This analysis provides a quasimode for Lh:

‖
(
Lh − hλn,harm

)
uh(y, z)‖L2(Ω) ≤ C(n)h3/2‖uh(y, z)‖L2(Ω). (4.9)

Using the spectral theorem, we immediately deduce that:
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Proposition 4.3 For all M0 ≥ 1, there exist C(M0) > 0 and h0 > 0 such that for all

1 ≤ n ≤M0 and 0 < h < h0, there exists an eigenvalue sk(n)(h) of Lh such that:

|sk(n)(h) − hλn,harm| ≤ C(M0)h
3/2.

Remark 4.4 In particular, we observe that, for 1 ≤ n ≤M0 and h ∈ (0, h0):

0 ≤ sn(h) ≤ sk(n)(h) ≤ hλn,harm + C(M0)h
3/2 ≤ C̃(M0)h. (4.10)

4.2 Lower bound

To get a suitable lower bound of sn(h), we will use the so-called Born-Oppenheimer ap-

proximation Lh,BO with

Lh,BO := hD2
y +Wh(y), with Wh(y) = µ(ζ0 + yh1/2) − Θ0 ≥ 0.

Thus, we have

∀v ∈ DN(Lh), 〈Lhv, v〉 ≥ 〈Lh,BOv, v〉. (4.11)

4.2.1 Localization estimates of Agmon type

Let us take N0 such that 1 ≤ N0 ≤ M0. We are going to prove some localization of

the eigenfunctions of Lh associated with (sn(h))1≤n≤N0
. For all 1 ≤ n ≤ N0, we will

consider a normalized eigenfunction un(h) associated with sn(h) so that the distinct un(h)
are orthogonal. It is convenient to introduce the sum of the first eigenspaces of Lh:

EN0
(h) = span(u1(h), . . . ,uN0

(h)). (4.12)

Combining Proposition 2.6 and the scaling (3.3), we have the following localization

with respect to the normal variable z:

Proposition 4.5 There exist C > 0, γ > 0 and h0 > 0 such that for all h ∈ (0, h0) and

v ∈ EN0
(h): ∫

Ω

e2γz|v|2dydz ≤ C‖v‖2
L2(Ω). (4.13)

In this subsection, we improve the result of Theorem 1.2 by proving an optimal local-

ization with respect to y when h goes to 0:

Proposition 4.6 There exists C > 0 and h0 > 0 such that for all h ∈ (0, h0) and v ∈
EN0

(h): ∫

Ω

e2|y||v|2dydz ≤ C‖v‖2
L2(Ω). (4.14)
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Proof: For v = un(h), we can write:

qh(e
Φv) −

∫

Ω

(
|DzΦ|2 + h|DyΦ|2 + sn(h)

)
|eΦv|2 dydz = 0, (4.15)

where qh is the quadratic form associated to (4.1). Let us choose Φ(y) = |y|. With (4.11),

we deduce: ∫

Ω

(Wh − h− sn(h))|eΦv|2 dydz ≤ 0 (4.16)

Let us consider the positivity of:

Wh − h− sn(h)

in a region of the type |y| ≥ C0 with C0 > 0.

(i) Using the non-degeneracy of the minimum, we know that it exists ε0 such that:

Wh(y) ≥
µ′′(ζ0)

4
|y|2h, for |y| ≤ ε0h

−1/2. (4.17)

(ii) With η0 := min{µ(ζ0 ± ε0)} − Θ0, we have Wh(y) ≥ η0 > 0 for |y| ≥ ε0h
−1/2.

We deduce from (i) and (ii) that

Wh(y) ≥ min
{
η0,

µ′′(ζ0)

4
C2

0h
}

if |y| ≥ C0.

Therefore, using Remark 4.4 and choosing C0 large enough, and h small enough we get

the existence of c > 0 such that, for |y| ≥ C0:

Wh(y) − h− sn(h) ≥ ch. (4.18)

Combining this with (4.16), we obtain:

ch

∫

|y|≥C0

|eΦv|2 dydz ≤
∫

|y|≤C0

|Wh − h− sn(h)| |eΦv|2 dydz.

Then we take advantage of Remark 4.4 and boundWh(y) for |y| ≤ C0 byC ′
0h for a suitable

constant C ′
0 to deduce finally

ch

∫

|y|≥C0

|eΦv|2 dydz ≤ Ch‖v‖2
L2(Ω).

Thus we have proved (4.14) for v = un(h), 1 ≤ n ≤ N0. Using the orthogonality of the

eigenvectors un(h), we obtain (4.14) for v ∈ EN0
(h). �

Combining Propositions 4.5 and 4.6, we get the following two corollaries:
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Corollary 4.7 There exist C > 0, δ > 0 and h0 > 0 such that for all h ∈ (0, h0) and

v ∈ EN0
(h): ∫

Ω

eδ(|y|+z)|v|2dydz ≤ C‖v‖2
L2(Ω),

and in particular: ∫

Ω

(1 + z|y|3 + y6)|v|2dydz ≤ C‖v‖2
L2(Ω). (4.19)

Corollary 4.8 For all ε0 > 0, there exist h0 > 0, γ > 0 and C > 0 such that, for all

h ∈ (0, h0) and v ∈ EN0
(h):

∫

|y|≥ε0h−1/2

(1 + |y|4)|v|2 dydz ≤ Ce−γh−1/2‖v‖2
L2(Ω).

4.2.2 Approximation of eigenvectors

We will consider the projection Π0 : L2(Ω) → L2(Ry) ⊗ span{vζ0} defined by

w 7−→ 〈w, vζ0〉L2(R+,z)vζ0 .

The aim of the following proposition is to approximate un(h) by a tensor product:

Proposition 4.9 There exists C > 0 and h0 > 0 such that for all h ∈ (0, h0):

Q
(
un(h) − Π0un(h)

)
≤ Ch1/2‖un(h)‖2

L2(Ω),

Q
(
Dyun(h) − Π0Dyun(h)

)
≤ Ch1/4‖un(h)‖2

L2(Ω),

Q
(
yun(h) − Π0yun(h)

)
≤ Ch1/2‖un(h)‖2

L2(Ω),

where Q is the quadratic form of IdL2(Ry) ⊗ (Hζ0 − Θ0).

Proof: 1) We first notice that, since Θ0 is the first eigenvalue of Hζ0 , the quadratic form Q
is non-negative: Q(w) ≥ 0 for all w ∈ L2(Ry) ⊗B1(R+).

2) We also notice that, since vζ0 generates the kernel of Hζ0 − Θ0, there holds

Q(w) = Q(w − Π0w), ∀w ∈ L2(Ry) ⊗B1(R+).

Hence we only have to bound Q
(
un(h)

)
, Q
(
Dyun(h)

)
, and Q

(
yun(h)

)
.

3) Using the equation satisfied by un(h):

Lhun(h) = sn(h)un(h), (4.20)

and taking the scalar product with un(h) we find the identity

h‖Dyun(h)‖2 +Q(un(h))

− 2h1/2
〈
(z − ζ0)yun(h),un(h)

〉
+ h‖yun(h)‖2 = sn(h)‖un(h)‖2.
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With (4.10) and (4.19), we deduce

Q(un(h)) ≤ Ch1/2‖un(h)‖2.

4) Considering again the scalar product of identity (4.20) with un(h), we observe that,

using (4.10) and (4.11):

‖Dyun(h)‖2 ≤ C‖un(h)‖2. (4.21)

Moreover, calculating the derivative with respect to y of (4.20), we obtain:

LhDyun(h) + 2ih1/2(z − ζ0 − yh1/2)un(h) = sn(h)Dyun(h) (4.22)

and taking the scalar product with Dyun(h), we get:

‖D2
yun(h)‖2 ≤ Ch−1/2‖un(h)‖2, (4.23)

where we have used (4.19) to control the commutator term.

Considering once more the scalar product of (4.22) with Dyun(h), we infer:

h‖D2
yun(h)‖2 +Q(Dyun(h)) + 2ih1/2

〈
(z − ζ0 − yh1/2)un(h), Dyun(h)

〉

− 2h1/2
〈
(z − ζ0)yDyun(h), Dyun(h)

〉
+ h‖yDyun(h)‖2 = sn(h)‖Dyun(h)‖2.

With the help of (4.19), (4.21), (4.23) and integration by parts, we find

Q(Dyun(h)) ≤ Ch1/4‖un(h)‖2.

5) Similarly, we multiply (4.20) by y and find the identity

Lh(yun(h)) + 2h∂yun(h) = sn(h)yun(h), (4.24)

from which we deduce

h‖Dy(yun(h))‖2 +Q(yun(h)) + 2h
〈
∂yun(h), yun(h)

〉

− 2h1/2
〈
(z − ζ0)y

2un(h), yun(h)
〉

+ h‖y2un(h)‖2 = sn(h)‖yun(h)‖2.

We obtain finally

Q(yun(h)) ≤ Ch1/2‖un(h)‖2,

which concludes the proof. �

Corollary 4.10 There exist C > 0 and h0 > 0 such that for all h ∈ (0, h0) and v ∈
EN0

(h):
‖v − Π0v‖H1(Ω) + ‖yv − Π0yv‖L2(Ω) ≤ Ch1/8‖v‖L2(Ω). (4.25)
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Proof: Let us assume that w ∈ L2(Ry)⊗B1(R+) is such that: 〈w, vζ0〉L2(R+,z) = 0. Then,

we get:

Q(w) ≥ (µ2(ζ0) − Θ0)‖w‖2
L2(Ω),

where µ2(ζ0) denotes the second eigenvalue of Hζ0 . Therefore the left-hand side of (4.25)

is bounded by (µ2(ζ0) − Θ0)
−1
{
Q(v) +Q(Dyv) +Q(yv)

}
. Then, the conclusion follows

from Proposition 4.9. �

Corollary 4.11 There exists h0 > 0 such that for h ∈ (0, h0), the projection Π0 is an

isomorphism from EN0
(h) onto its range.

4.2.3 Conclusion

For all v ∈ EN0
(h), we have

〈
(hD2

y + µ(ζ0 + yh1/2) − Θ0)v, v
〉
≤ sN0

(h)‖v‖2
L2(Ω).

We recall (1.3) and we have, with Corollary 4.8:

∫

|y|≥ε0h−1/2

∣∣∣∣
(
µ(yh1/2 + ζ0) − Θ0 − h

µ′′(ζ0)

2
y2

)
v

∣∣∣∣
2

dydz = O(h∞)‖v‖2
L2(Ω),

and, by a Taylor approximation (using that µ is smooth):

∫

|y|≤ε0h−1/2

∣∣∣∣
(
µ(yh1/2 + ζ0) − Θ0 − h

µ′′(ζ0)

2
y2

)
v

∣∣∣∣
2

dydz ≤ C(ε0)‖y3h3/2v‖2
L2(Ω)

≤ C̃(ε0)h
3‖v‖2

L2(Ω),

the last inequality coming from (4.19). We get:

h
〈(
D2

y +
µ′′(ζ0)

2
y2
)
v, v
〉
− Ch3/2‖v‖2

L2(Ω) ≤ sN0
(h)‖v‖2

L2(Ω).

Applying Corollary 4.10, we obtain for all v ∈ EN0
(h):

h
〈(
D2

y +
µ′′(ζ0)

2
y2
)
Π0v,Π0v

〉
− Ch9/8‖Π0v‖2

L2(Ω) ≤ sN0
(h)‖Π0v‖2

L2(Ω).

With Corollary 4.11 and the min-max principle, we infer that:

h(2N0 − 1)

√
µ′′(ζ0)

2
− Ch9/8 ≤ sN0

(h)

and thus k(n) = n in Proposition 4.3. This ends the proof of Theorem 4.1.
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4.3 Eigenvector asymptotics

From Theorem 4.1, we obtain that the gap between the eigenvalues is of order h. Thus,

combining the construction of section 4.1 with the spectral theorem (see [20, Lemmas 12-

13, Section 9]), we can deduce approximation results for the eigenfunctions un(h) of Lh.

Let us denote by ũ♭
n(h) and ũ♯

n(h) the n-th quasimode with one and two terms, respectively,

constructed in section 4.1: We recall

ũ♭
n(h)(y, z) = fn(y) vζ0(z),

ũ♯
n(h)(y, z) = fn(y) vζ0(z) + h1/2yfn(y) ∂ζvζ

∣∣
ζ=ζ0

(z).
(4.26)

Here fn is the n-th eigenfunction of the harmonic oscillator Hharm cf. (4.7). It is straight-

forward that we can take

fn(y) = ψn−1

([µ′′(ζ0)

2

]1/4

y
)
, n ≥ 1, (4.27)

with ψm the Hermite function of rank m. Then there exists an eigenmode un(h) such that

‖un(h) − ũ♭
n(h)‖L2(Ω) ≤ C h1/2‖un(h)‖L2(Ω),

and ‖un(h) − ũ♯
n(h)‖L2(Ω) ≤ C h‖un(h)‖L2(Ω).

(4.28)

Setting

ũ♭
n,θ(s, t) = ũ♭

n(h)(y, z) and ũ♯
n,θ(s, t) = ũ♯

n(h)(y, z), (4.29)

with h = tan θ and (s, t) given by the change of variables (3.3), we obtain quasimodes for

Lθ which satisfy, for suitable eigenvectors un,θ of Lθ

‖un,θ − ũ♭
n,θ‖L2(Ω) ≤ C θ1/2‖un,θ‖L2(Ω) and ‖un,θ − ũ♯

n,θ‖L2(Ω) ≤ C θ‖un,θ‖L2(Ω).
(4.30)

5 Finite element computation of eigenpairs

In this section, we illustrate theoretical results given by Theorems 1.2, 1.3 on isotropic and

anisotropic decay of the eigenvectors of Lθ. We also show computations of the eigenvalues

which enhance the eigenvalue asymptotics given by Theorem 1.5.

The simulations have been realized with the Finite Element Library MÉLINA, see [12].

5.1 Eigenvalues

We illustrate here the behavior of the first eigenvalues of Lθ. The operator Lθ is de-

fined on an infinite domain Ω. We have to bound this infinite domain by a large box

Ra,b,c := (−a, b) × (0, c) to make numerical approximations possible. The eigenvalues
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of the problem set in the bounded domain have to be close to those of the original prob-

lem ; the convergence is expected as a, b, c tend to infinity. Numerically, we compute

the eigenvalues denoted by σn(θ; a, b, c) of the operator Lθ(a, b, c) = −∆ + Vθ on Ra,b,c

with Neumann condition on t = 0 and Dirichlet conditions on the artificial boundary

{s = −a} ∪ {s = b} ∪ {t = c}. Using the inclusion of the form domain of Lθ(a, b, c) in

that of Lθ, we prove

σn(θ) ≤ σn(θ; a, b, c).

Furthermore, by similar arguments, we obtain the monotonicity of σn(θ; a, b, c) according

to each variable a, b or c.

Figure 1 gives an approximation of the first 12 eigenvalues of Lθ below 1. For this, we

compute the first 12 eigenvalues of Lθ(a, a, a) with θ ∈ {ϑπ/2, ϑ = k/100, 1 ≤ k ≤ 99}
and a ∈ {10n, n = 1, . . . , 10} by using a finite element method with square elements of

degree Q10 in each direction. We have performed computations with 10 or 15 elements in

each direction.

0 0.2 0.4 0.6 0.8 1
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 1: Approximation of σn(θ) for θ = ϑπ/2 with ϑ ∈ {k/100, 1 ≤ k ≤ 99}.

By looking at Figure 1, we can conjecture that the derivative of σ1(θ) tends to zero

when θ goes to π
2
. This is true indeed, as we prove in the following proposition:

Proposition 5.1 For all θ ∈
(
0, π

2

)
, we have:

σ1(θ) cos θ − σ′
1(θ) sin θ > 0.

Moreover, we have:

lim
θ→π

2

θ< π
2

σ′
1(θ) = 0.
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Proof: For γ ≥ 0, we introduce the operator:

L(θ, γ) = D2
s +D2

t + (t(cos θ + γ) − s sin θ)2

and we denote by σ1(θ, γ) the bottom of its spectrum. Let ρ > 0 and α ∈ (0, π
2
) satisfy

cos θ + γ = ρ cosα and sin θ = ρ sinα.

We perform the rescaling t = ρ−1/2t̂, s = ρ−1/2ŝ and obtain that L(θ, γ) is unitarily

equivalent to:

ρ(D2
ŝ +D2

t̂ + (t̂ cosα− ŝ sinα)2) = ρLα.

In particular, we observe that σ1(θ, γ) = ρσ1(α) is a simple eigenvalue: there holds

σ1(θ, γ) =
√

(cos θ + γ)2 + sin2 θ σ1

(
arctan

(
sin θ

cos θ + γ

))
. (5.1)

Performing the rescaling t̃ = (cos θ + γ)t, we get the operator L̃(θ, γ) which is unitarily

equivalent to L(θ, γ) :

L̃(θ, γ) = D2
s + (cos θ + γ)2D2

t̃ + (t̃− s sin θ)2.

We observe that the domain of L̃(θ, γ) does not depend on γ ≥ 0. Denoting by ũθ,γ the

L2-normalized and positive eigenfunction of L̃(θ, γ) associated with σ1(θ, γ), we write:

L̃(θ, γ)ũθ,γ = σ1(θ, γ)ũθ,γ.

Taking the derivative with respect to γ, multiplying by ũθ,γ and integrating, we get the

Feynman-Hellman formula:

∂γσ1(θ, γ) = 2(cos θ + γ)

∫

Ω

|Dtũθ,γ|2dsdt ≥ 0.

We deduce that, if ∂γσ1(θ, γ) = 0, then Dtũθ,γ = 0 and ũθ,γ only depends on s, which is

a contradiction with ũθ,γ ∈ L2(Ω). Consequently, we have ∂γσ1(θ, γ) > 0 for any γ ≥ 0.

An easy computation using formula (5.1) provides:

∂γσ1(θ, 0) = σ1(θ) cos θ − σ′
1(θ) sin θ.

As recalled in Subsection 1.1, the function σ1 is analytic and increasing. Thus we deduce:

∀θ ∈
(
0,
π

2

)
, 0 ≤ σ′

1(θ) <
cos θ

sin θ
σ1(θ).

We get:

0 ≤ lim inf
θ→π

2

θ< π
2

σ′
1(θ) ≤ lim sup

θ→π
2

θ< π
2

σ′
1(θ) ≤ 0,

which ends the proof. �
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Figure 2: Approximations of σn(θ) for θ = ϑπ/2 with ϑ ∈ {k/100, 1 ≤ k ≤ 20}.

Figure 2 gives an approximation of the first eigenvalues of Lθ for small θ. For this,

we compute the eigenvalues of Lθ(a, a, c) with square 20 × 20 elements and degree Q10.

Figure 2 shows the computations on the rectangle [−100, 100]×[0, 50] when θ = ϑπ/2, ϑ ∈
{k/100, 1 ≤ k ≤ 10} and on [−100, 100] × [0, 100] when θ = ϑπ/2, ϑ ∈ {k/100, 10 ≤
k ≤ 20}. The figure corroborates the densification of the spectrum in [Θ0, 1] described in

Section 3.

We now illustrate formula (1.8). According to this formula, we have the convergence:

σn(θ) − Θ0

a1θ
→ 2n− 1 as θ → 0, with a1 =

√
µ′′(ζ0)

2
, (5.2)

for all n ≥ 1. Using numerical computations for Hζ , we find good approximations of Θ0

and a1, cf. Tables 1-2 in [4]:

Θ̆0 = 0.590106125 and ă1 ≃ 0.7651881.

Let us denote by σ̆n(θ) the n-th computed eigenvalue of Lθ, with a convenient choice of

the computational domain (−a, b) × (0, c). On Figure 3 we represent the functions

log 10(ϑ) 7−→ ρn,1(θ) :=
σ̆n(θ) − Θ̆0

ă1θ
(5.3)

where we recall that ϑ = 2θ/π.

We can see that the ratio ρn,1(θ) converges to 2n− 1, corroborating formula (5.2).
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Figure 3: Convergence of the ratio ρn,1(θ) as θ → 0, n = 1, . . . , 7 (bottom to top).

Computations displayed in Figures 4 and 5 allow to conjecture the next terms of the

asymptotic expansion for σn(θ). Indeed on Figure 4 we represent the functions

log 10(ϑ) 7−→ ρn,2(θ) :=
Θ̆0 + ă1(2n− 1)θ − σ̆n(θ)

θ2
. (5.4)

We observe that the ratio ρn,2(θ) converges to a numerical limit ăn,2 as θ → 0 for any

n = 1, . . . , 7, see Table 1.

n 1 2 3 4 5 6 7

ăn,2 0.32616 1.1577 2.8206 5.3148 8.6402 12.797 17.784

Table 1: Numerical limits ăn,2.

Thus we are lead to conjecture that σn(θ) admits an expansion of the form:

σn(θ) = Θ0 + a1(2n− 1)θ − an,2θ
2 + o(θ2).

We can still determine numerically the next term of the expansion. On Figure 5 we

represent the functions

log 10(ϑ) 7−→ ρn,3(θ) :=
Θ̆0 + ă1(2n− 1)θ − ăn,2θ

2 − σ̆n(θ)

θ3
. (5.5)

Figure 5 encourages to conjecture the following asymptotic expansion:

σn(θ) = Θ0 + a1(2n− 1)θ − an,2θ
2 − an,3θ

3 + o(θ3).
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Figure 4: Convergence of ρn,2(θ) as θ → 0, n = 1, . . . , 7 (bottom to top).
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Figure 5: Convergence of ρn,3(θ) as θ → 0, n = 1, . . . , 7 (bottom to top).
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5.2 Eigenvectors

In this section, we highlight the isotropic exponential decay of the eigenvectors of Lθ and

the anisotropic one given respectively in Theorems 1.2 and 1.3. Figure 6 illustrates the

anisotropic decay for θ close to π/2 : we compute the first eigenpair of Lθ(5, 15, 75) on

[−5, 15]× [0, 75] for θ = ϑπ/2, ϑ = 0.9, 0.85, 0.8, 0.7 with unit square elements of degree

Q2. The first eigenvector is localized along the line Vθ = 0 and we see the exponential

decay far away from this line. When θ is close to π/2, the eigenvector spreads along the

line Vθ = 0 and the exponential decay far away from the origin is not predominant.

σ̆1(θ) 1.0001656284 0.99987798948 0.99910390126 0.99445407220

Figure 6: First eigenmode of Lθ for θ = ϑπ/2 with ϑ = 0.9, 0.85, 0.8 and 0.7.

When θ = ϑπ/2 with ϑ ∈ {0.1, . . . , 0.6}, we observe equivalently the decay far away

from the line Vθ = 0 and the origin (see (1.4) and (1.5)). Figure 7 gives an approximation of

the first eigenvector and eigenvalue of Lθ on the computational domain [−15, 25] × [0, 15]
with unit square elements of degree Q6. We observe also that the first eigenvector spreads

less and less along the line Vθ = 0 when θ is decreasing and the decay becomes essentially

radial.
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0.98432278339 0.96110511136

0.92410049174 0.86980918147

0.79630376085 0.70307031204

Figure 7: First eigenmode of Lθ for θ = ϑπ/2 with ϑ = 0.6, 0.5, 0.4, 0.3, 0.2 and 0.1.

On Figure 8, 9, and 10 we consider the asymptotics θ → 0. Figure 8 gives an ap-

proximation of the first eight eigenmodes of Lθ computed by a finite element method with

rectangular 2 × 1 elements and degree Q6 on the domain [−20, 80] × [0, 10]. The oscilla-

tions with respect to the horizontal variable appear clearly. We can compare with Figures 9

and 10 where are represented the quasimodes1 ũ♭
n,θ and ũ♯

n,θ introduced in (4.26)–(4.30).

We observe an interesting correlation between the computed eigenvectors on Figure 8 and

the quasimodes on Figures 9 and 10.

1To compute these quasimodes, we approximate the one-dimensional eigenvector vζ0
with a finite dif-

ference method for the operator D2

t + (t − ζ0)
2 on [0, 10] with Dirichlet condition on t = 10, and

ζ0 = 0.76818365314 according to computations of [4].
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Figure 8: First 8 computed eigenvectors and eigenvalues of Lθ for θ = 0.0125π.
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Figure 9: Quasimodes ũ♭
n,θ and quasieigenvalues Θ̆0 + ă1(2n− 1)θ for θ = 0.0125π.
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Figure 10: Quasimodes ũ♯
n,θ and quasieigenvalues Θ̆0 + ă1(2n− 1)θ for θ = 0.0125π.

33



References

[1] S. AGMON. Lectures on exponential decay of solutions of second-order elliptic equa-

tions: bounds on eigenfunctions of N -body Schrödinger operators, volume 29 of

Mathematical Notes. Princeton University Press, Princeton, NJ 1982.

[2] S. AGMON. Bounds on exponential decay of eigenfunctions of Schrödinger opera-

tors. In Schrödinger operators (Como, 1984), volume 1159 of Lecture Notes in Math.,

pages 1–38. Springer, Berlin 1985.

[3] A. BERNOFF, P. STERNBERG. Onset of superconductivity in decreasing fields for

general domains. J. Math. Phys. 39(3) (1998) 1272–1284.
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