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Abstract—This paper presents system analysis, modeling and 
simulation of an Electric Vehicle (EV) with three different 
control strategies: Field Oriented Control (FOC), Direct Torque 
Control (DTC), and DTC using Space Vector Modulation (DTC-
SVM). The objective is to assess the control strategy impact on 
the EV efficiency taking into account the vehicle dynamics. 
Indeed, among EV motor electric propulsion features, the 
energy efficiency is a basic characteristic that is influenced by 
vehicle dynamics and system architecture. Simulation tests have 
been carried out on a 37-kW EV that consists in an induction 
motor with a three-level IGBT inverter. Preliminary results 
seem to indicate that the DTC-SVM scheme is the best
candidate. 

Keywords—Electric vehicle, induction motor, efficiency, field 
oriented control, Direct torque control, space vector modulation. 

I. INTRODUCTION

Electric vehicles are set to improve the energy and
environmental impact of an increasing road transport 
population by offering a more energy efficient and less 
polluting drive-train alternative to conventional internal 
combustion engine vehicles. So the electric vehicle production 
is expected to increase dramatically these years. The electric 
propulsion system is the heart of EV [1]. It consists of the 
motor drive, transmission device, and wheels. In fact, the motor 
drive, comprising of the electric motor, power converter, and 
electronic controller, is the core of the EV propulsion system. 
The motor drive is configured to respond to a torque demand 
set by the driver. Many researches [2-3] have demonstrated the 
induction motor is one of the right electric motor candidates for 
the most EVs due to its low cost, robustness, highly reliable 
and free from maintenance. 

However, induction motors constitute a theoretically 
challenging control problem since the dynamical system is 
nonlinear, the electric rotor variables are not measurable, and 
the physical parameters are most often imprecisely known. In 
addition, unlike the traditional industrial setting, in which the 
induction motor operates mostly at steady state, the EV 
applications require high performance control of electric 

motors to obtain fast transient responses and energy 
efficiency. Important characteristics of an EV motor include 
good drive control and fault tolerance, as well as low noise 
with high efficiency. The control of the induction motor for 
EVs has attracted much attention in the past five years; 
especially the speed sensorless control of induction motors 
has been a popular area due to its low cost and strong 
robustness [3]. 

In recent years, FOC induction motor drives have greatly 
increased. In parallel, a number of studies have been 
developed to find out different solutions for the control of the 
induction motor drives with two objectives, namely 
achievement of a precise and quick control of the field motor 
and torque like in FOC drives, and reduction of the
complexity of the algorithms involved in a FOC control. 

Among the various proposals, DTC is an entirely different 
approach to induction motor torque control that was developed 
to overcome FOC relatively poor transient response and 
reliance on induction motor parameters. However, beside some 
attractive features such as fast dynamic response, low 
sensitivity to parameter changes, lack of internal current control 
loops and inherently motion sensorless operation [4-5] there 
exist some problems associated with DTC, namely: difficult to 
start and low-speed operation, high current and torque ripple, 
variable switching frequency and high nose level, violence of 
polarity consistency rules (to avoid ±1 switching over dc-link 
voltage), as well as high sampling frequency needed for digital 
implementation of hysteresis controllers. Most of above 
difficulties can be eliminated when instead of the hysteresis 
controllers with switching table a linear PI controller with a 
voltage pulse width modulator (PWM) are used. The PI 
controllers calculate the required stator voltage vector, 
averaged over a sampling period. The voltage vector is finally 
synthesized by a PWM technique, which in most cases is the 
space vector modulation (SVM). Therefore, contrary to the 
conventional DTC solution, in a DTC-SVM scheme the 
switching harmonics are neglected in the control algorithm [6]. 

This paper presents then three different control methods 
for EVs propulsion in order to achieve the propulsion 
optimized efficiency. 
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II. VEHICLE MODEL

Compared to previous works, the proposed control 
strategy takes into account the vehicle aerodynamics, and is 
not applied to the sole induction motors. This model is based 
on the principles of vehicle mechanics and aerodynamics [7]. 
The total tractive effort is then given by 

= + + + +te rr ad hc la waF F F F F F         (1) 

Where Frr  = is the rolling resistance force; 
   Fad  = is the aerodynamic drag; 
   Fhc  = is the hill climbing force; 

Fla = is the force required to give linear  
 acceleration; 

Fwa = is the force required to give angular  
  acceleration to the rotating motor. 

It should be noted that Fla and Fwa will be negative if the 
vehicle is slowing down and that Fhc will be negative if it is 
going downhill. The power required to drive a vehicle at a 
speed v has to compensate counteracting forces. 

( )= = + + + +te te rr ad hc la waP vF v F F F F F      (2) 

The efficiency of the motor and its controller are usually 
considered together, as it is more convenient to measure the 
efficiency of the whole system. We saw that motor efficiency 
varies considerably with power, torque, and also motor size 
[8]. The efficiency is quite well modeled by 

2 3m
c i

T

T k T k k Cω

ωη =
ω + + ω + ω +

       (3) 

Where kc is the copper losses coefficient, ki is the iron 
losses coefficient, kw is the windage loss coefficient and C 
represents the constant losses that apply at any speed. Table 1 
shows typical values for these constants for two motors that 
are likely candidates for use in electric vehicles.

Table 1. Typical values for the parameters of (3). 

Parameters Lynch type PM motor, 
with brushes, 2-5 kW 

100 kW, high speed 
induction motor 

kc 1.5 0.3 
ki 0.1 0.01 
kω 10-5 5.0×10-6

C 20 600 

III. CONTROL METHODS

A number of different control schemes for accurate torque 
control of an induction motor for this electric vehicle 
application, have been investigated. FOC and DTC were 
chosen for simulation, as they are standard induction motor 
control techniques. An improvement to DTC is DTC-SVM, a 
new torque control scheme that is also simulated. 

A. Nomenclature 

Vds (Vqs) = d-axis (q-axis) stator voltages; 
ids (iqs)  = d-axis q-axis) stator currents; 

λdr (λqr) = d-axis (q-axis) rotor flux linkages; 
Rs (Rr)  = Stator (rotor) resistance; 
Ls (Lr)  = Stator (rotor) inductance; 
Lm   = Magnetizing inductance; 
Lσ   = Leakage inductance (Lσ = Ls – Lm

2/Lr); 
ωe(ωr)  = Stator (rotor) electrical speed; 
Ω   = Rotor speed (ωr/p); 
ωsl   = Slip frequency, ωsl = ωs − ωr

B   = Motor damping ratio; 
p   = pole-pair number. 
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B. FOC 

Generally, dynamic modeling of an induction motor drive 
is based on rotating reference-frame theory and a linear 
technique. A system configuration of an induction motor 
drive is shown in Fig. 1. This motor drive consists of an 
induction motor, a bang-bang current-controlled pulse width 
modulated (PWM) inverter, a field-orientation mechanism, a 
coordinate translator and a speed controller. The electrical 
dynamics of an induction motor in the synchronously rotating 
reference frame (d-q-axis) can be expressed by (4-6) [9-10]. 
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r m L

d B
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dt J J

ω = − ω − −          (5) 

( )m t dr qs qr dsT k i i= λ − λ           (6) 
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Fig. 1. Direct field-oriented induction motor drive. 
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C. DTC 

The basic idea of the method is to calculate flux and 
torque instantaneous values only from the stator variables. 
Flux, torque, and speed are estimated. The input of the motor 
controller is the reference speed, which is directly applied by 
the pedal of the vehicle. Control is carried out by hysteresis 
comparators and a switching logic table selecting the 
appropriate voltage inverter switching configurations [7], 
[11]. Figure 2 gives the global configuration of a DTC 
scheme and also shows how the EV dynamics will be taken 
into account. The induction motor mechanical equation is as 
follows. 

r
B L m

d
J T T T

dt

ω + + =           (7) 

The induction motor stator flux can be estimated by

( )
( )

2 2

1tan

ds ds s ds

qs qs s qs

s ds qs
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V R i dt

V R i dt

−
λ

λ = −

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
 λ 
θ =  λ  

∫
∫

          (8) 

Then, the electromagnetic torque is estimated using

( )3

2 2m ds qs qs ds

p
T i i= λ − λ           (9) 

D. DTC-SVM

With the development of microprocessors and DSP 
techniques, the SVM technique has become one of the most 
important PWM methods for Voltage Source Inverter (VSI) 
since it gives a large linear control range, less harmonic 
distortion, fast transient response, and simple digital 
implementation [12-13]. 
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Fig. 2. DTC block diagram. 

The SVM principle is based on the switching between two 
adjacent active vectors and two zero vectors during one 
switching period. It uses the space vector concept to compute 
the duty cycle of the switches. Fig. 3 shows a scheme of a 
three-phase two-level inverter with a star-connection load. 

From Fig.3, the output voltages of the inverter can be 
composed by eight states u0, u1…u7, corresponding to the 
switch states S0(000), S1(100),…..S7(111), respectively. These 
vectors can be plotted on the complex plane (α-β) as shown 
in Fig.4, and are given by [3] 

( 1)( / 3)2
1,2....6

3
0 0,7

j k
dc

k

V e for k
u

for k

− π == 
 =

The rotating voltage vector within the six sectors can be 
approximated by sampling the vector and switching between 
different inverter states during the sampling period [13]. The 
vector uS is commonly split into two nearest adjacent voltage 
vectors and zero u0 and u7 in an arbitrary sector. For example, 
during one sampling interval, vector uS in sector I can be 
expressed as 

0 71 2
0 1 2 7( )S

S S S S

T TT T
u t u u u u

T T T T
= + + +       (10) 

Where T0, T1, T2, T7 are the turn-on time of the vectors u0, 
u1, u2, u7; and TS is the sampling time. TS - T1 - T2 = T0 + T7 ≥
0, T0 ≥ 0 and T7 ≥ 0. 

Fig. 3. Three-phase two-level inverter. 

αααα

ββββ

θ π
π θ

Fig. 4. Space vectors. 
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The block diagram of the DTC-SVM control scheme for
voltage source inverter-fed IM is shown in Fig. 5 [14]. In this 
method two PI controllers are used for torque and flux 
regulation. The outputs of the PI flux and torque controllers 
generate the reference stator voltage components Usd, Usq

expressed in the stator flux oriented coordinates (d-q). These 
components are dc voltage commands and then transformed into 
stationary coordinates (α-β) the commanded values Usα, Usβ are 
delivered to space vector modulator (SVM), which generates 
switching signals Sa, Sb, Sc for power transistors. [3-6] 

V. SIMULATION RESULTS

Numerical simulations have been carried out, on an EV 
propelled by 37-kW induction motor drives. The objectives of 
the carried out simulations are to assess the efficiency and 
dynamic performances of the different control strategies. The 
test cycle is the urban ECE-15 + sub-urban cycle (Fig. 6).  

Regarding the obtained results shown by Figs 7 to 8, DTC 
techniques exhibit improved transient torque response 
compared to standard rotor flux FOC. The disadvantage of the 
compared schemes is increased current distortion, resulting in 
increased motor losses. DTC-SVM is an exception that 
exhibit low current distortion and also fast torque response 
and low torque ripple. Therefore, these results seem to 
indicate that the DTC-SVM scheme is the best candidate for 
an EV drive optimized control. 

λ

α β

α β

α β

θ
λ

Fig. 5. DTC-SVM block diagram. 
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Fig. 6. (ECE-15 + sub-urban) driving cycle. 

Figure 9 illustrate the efficiency of the motor and its 
controller, one can notice that there is not a great difference 
between the FOC and the DTC, the DTC-SVM technique 
represent less chattering compared to the two preceding 
techniques, this advantage confirms well that DTCSVM is a 
good candidate if one wants to make the optimization of the 
total energy of the vehicle. 

Figure 10 shows the induction motor flux for conventional 
DTC and DTC-SVM controller, in the beginning of the
simulation process, the nominal flux is applied to the 
induction motor drive until it reaches its steady state. One can 
confirm that the system is stable for the two control 
techniques, with elimination of the chattering for DTC-SVM. 

VI. CONCLUSION

This paper dealt with the comparative analysis of three 
control schemes for electric vehicles efficiency improvement; 
namely: FOC, DTC, and DTC-SVM. These control schemes 
were simulated using an induction motor model combined the 
vehicle aerodynamics. The DTC-SVM control can achieve 
the complete decoupled control of torque and flux and 
significant torque ripple reduction. Compared with the 
conventional DTC and FOC control methods, it has low 
torque ripple, low current distortion and high-performance 
dynamic characteristics. The limited power supply in EV 
requires a high efficiency electrical drive system. The drive 
for such a system must have a quick response and simple 
configuration. A suitable control strategy having the above 
mentioned features for the electrical drive is the DTC-SVM 
technique. 

APPENDIX

RATED DATA OF THE SIMULATED INDUCTION MOTOR

37 kW, 50 Hz, 400/230 V, 64/111 A, 24.17 Nm, 2960 rpm 
Rs = 85.1 mΩ, Rr = 65.8 mΩ

Ls = 31.4 mH, Lr = 29.1 mH, Lm = 29.1 mH 
J = 0.23 kg.m² 

EV MECHANICAL AND AERODYNAMIC PARAMETERS

m = 1540 kg (two 70 kg passengers), A = 1.8 m2, r = 0.3 m 
µrr1 = 0.0055, µrr2 = 0.056, Cad = 0.19, G = 104, ηg = 0.95 

T = 57.2 Nm (stall torque), v0 = 4.155 m/sec 
g = 9.81 m/sec2, ρ = 0.23 kg/m3
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