
HAL Id: hal-00527605
https://hal.science/hal-00527605v1

Submitted on 8 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Spyware-based menaces against web applications
Sergio Castillo-Perez, Joaquin Garcia Alfaro

To cite this version:
Sergio Castillo-Perez, Joaquin Garcia Alfaro. Spyware-based menaces against web applications. In-
ternational Conference on Intelligent Networking and Collaborative Systems, Nov 2009, Barcelone,
Spain. pp.409-412, �10.1109/INCOS.2009.31�. �hal-00527605�

https://hal.science/hal-00527605v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Spyware-based Menaces Against Web Applications

Sergio Castillo-Perez†, Joaquin Garcia-Alfaro‡

†Autonomous University of Barcelona,

Dept. of Inf. and Comm. Engineering,

Edifici Q, 08193 Bellaterra, Spain

‡ Open University of Catalonia,

Computer Science and Multimedia Studies

Rambla Poble Nou 156, 08018 Barcelona, Spain

E-mail: scastillo@deic.uab.es, joaquin.garcia-alfaro@acm.org

Abstract

In the last decade, substantial progress has been made in

Internet and web-based technologies. Applications related

to education, health care, banking, or even social actions

between individuals and groups, can highly benefit with the

use of these technologies. However, computer attacks can

drastically compromise web users’ privacy. The spreading

of Spyware in Internet applications is a proper example. We

analyze in this paper the Spyware menace for compromising

the security and privacy of web browser resources.

Key words: Network Security, Privacy, Data Protection,

Countermeasures.

1 Introduction

The use of the web paradigm in all kinds of business mod-

els and organizations is becoming truly pervasive. Indeed,

its use is becoming an emerging strategy in all kinds of ap-

plication software companies [1]. It allows the design of

fully interactive applications which can potentially be used

by thousands of users around the world. The existence of

new technologies for the improvement of traditional web

features allows software engineers to conceive new services

and spaces which are not longer restricted to specific operat-

ing systems. Traditional information systems related to ed-

ucation, health care, banking, or even emergency response,

can highly benefit with the use of this technology.

The current complexity of the web paradigm has how-

ever a direct impact on the security of web browsers and

more precisely in the treatment of its resources. Attacks

against browsers can compromise the security and privacy

of web users. This can have serious consequences given the

pervasive presence of malicious software, such as Spyware.

Spyware can indeed be secretly installed on Web browsers

to steal sensitive data, such as user identities, passwords,

and financial data [7]. Web browsers must therefore

include, in addition to the expected value offered to their

users, reliable mechanisms to ensure security and privacy

of its users. We survey in this paper some Spyware-based

techniques that can be used by malicious entities to violate

web users’ privacy. We present a sample scenario that

shows how the privacy of a user accessing web services,

may be violated by Spyware associated to the Web browser.

We then discuss some defense mechanisms that might be

used to reduce the risk posed by the Spyware threat.

Paper organization — The remainder of this paper has

been organized as follows. Section 2 presents the Spy-

ware threat and develops our motivation scenario. Section

3 overviews some defense mechanisms to reduce the risk of

the Spyware threat. Section 4 closes the paper.

2 Spyware

Spyware is a type of malicious software (malware) [11]

which is installed secretly on the client side to monitor

users’ behaviors and/or steal sensitive information, such as

passwords and credit card numbers. Spyware uses Inter-

net communications to send the stolen information towards

malicious databases without the user knowledge or consent.

This captured information can eventually be sold with ma-

licious purposes, such as electronic fraud [6], identity theft,

spamming, etc. Moreover, Spyware is responsible of system

misbehavior, as the appearance of navigation windows with

unwanted advertising, web browser hijacking, slow Inter-

net connections speed and backdoor installation to partially

control the users’ system. Spyware is often complemented

by evasion mechanisms, often referred in the literature as

1



rootkits, to ease the process of evading its presence from

network and system operators, as well as to avoid being

eliminated from the infected system. These mechanisms in-

clude the use of third party techniques for hiding processes,

files and network connections; and the use of encryption

and anti-debugging techniques. The use of these evasion

mechanisms, and the corresponding change of basic system

functionality features and applications, is the main reason

of the system misbehavior aforementioned.

The term Spyware must not be confused with the term

virus or worm. Though all three terms refer to malware,

they are quite different regarding their operation modes, es-

pecially their infection mode. The main difference is that

Spyware does not usually self-replicate. In other words, a

system affected by Spyware does not spread the infection to

other computers. Spyware is generally spread onto a system

disguised as a different application that the user intends to

install. In this case, the infection depends on a direct inter-

action required by the user. The use of non-certified applica-

tions, system updates, or plug-ins, often downloaded from

malicious web sites or from malicious peer-to-peer systems,

is the most common way of Spyware infection. Alterna-

tive ways of Spyware infection also include the exploita-

tion of system application vulnerabilities. For instance,

the exploitation of web browsers vulnerabilities during user

browsing to force the system to download and install the

Spyware. We analyze more in detail the infection process in

the sequel.

2.1 Infection Process

Traditional Spyware infection mechanisms include the fol-

lowing two strategies: (1) infection processes started by

victim users and (2) self-infection processes automatically

started through existing system vulnerabilities. In the first

case, malicious code contained inside a trusted piece of soft-

ware gets installed into the system under user’s consent. The

camouflage of malicious code is often associated with il-

licit software, such as cracking of commercial applications

or altered versions of peer-to-peer (P2P) applications and/or

web browser add-ons. The use of social engineering is a

perfect example of how manipulating security-unaware user

into performing actions, such as opening infected emails or

visiting websites associated with the installation of the illicit

software. In any case, we consider that in this first category,

the infection process requires user’s tacit approval.

In the second case, the infection mechanism exploits ex-

isting vulnerabilities in system applications. We include in

this category the subsequent infection after a user agrees to

visit a malicious website or opens a document which ex-

ploits either the web browser or the visualization applica-

tion. The difference now is that the infection does not re-

quire user’s approval. The existence of a vulnerability here

is enough to trigger the infection process by executing the

malicious code hidden in the malicious web site or docu-

ment. In this case, the installation of the Spyware into the

system goes unnoticed by the user. This strategy is often

combined with more sophisticated attacks, such as Cross-

site scripting attacks (XSS for short) and/or DNS Spoofing

redirections. Once the infection process has been success-

fully performed, the Spyware is ready to start capturing and

profiling both user and system data. Different strategies can

be then used by the Spyware to implement the subsequent

gathering and evasion processes. We describe in the sequel

the use of user space vs. kernel space strategies.

User Space Execution — In this case, the malware only

has regular user privileges. Today’s most common Spyware

belongs to this category, since its development is straight-

forward — even unskilled attackers can do it based on au-

tomatic tools. Due its simplicity and the fact that such Spy-

ware acts under user privileges, the detection and disinfec-

tion of this category of Spyware are fairly trivial. The strate-

gies employed by this class of malware, in order to intercept

information and to evade detection/removal, is mainly based

on diverting the execution flow of the affected application,

ceding control to a certain code of the malware. Two differ-

ent techniques might be used: (1) modification of the mem-

ory addresses that are mapped to the shared libraries func-

tions used by the affected applications; and (2) exploitation

of the add-on/plug-in mechanisms provided by the affected

applications. Both techniques would allow the Spyware to

get complete control of the application flow, and so to im-

plement the interception and evasion routines.

Kernel Space Execution — The previous technique, al-

though it allows to infect user space memory areas, does

not enable the Spyware to further propagate the infection

throughout the system. Given that most of the affected ap-

plications running in user space are almost always stored

in system space areas, the Spyware would need administra-

tion privileges to keep spreading the infection everywhere

the system. The execution of the Spyware in Kernel space

provides with such a functionality. Specifically, the Spy-

ware code is now loaded and executed within the memory

space assigned for operating system routines. The execu-

tion within this memory space area provides to the mal-

ware higher resistance to be detected and/or removed from

the system. Indeed, the Spyware code is now running with

administration privileges. This implies higher complexity

in the Spyware code, which makes it less common. The

common way to manage the execution of malware at ker-

nel space relies on the modification of memory addresses

associated to the operating system calls (syscalls for short).

2.2 Web Browser Infection Scenario

We show in this subsection a hypothetical scenario where

the privacy of a given user, who is accessing web services,

may be violated by Spyware associated to the browser. The

2



technique used by the Spyware of our scenario to intercept

user’s data is to exploit the add-on mechanisms of certain

programs — in our case, the web browser. Most of today’s

web browsers allow this option in order to ease the adding

of new enhancements by third party programmers. To do so,

the main application’s routine delegates the execution flow

to the new functions and grants them the permission to con-

trol certain events. For instance, the main routine may grant

the access to both read and modify the Document Object

Model (DOM). If so, these complements may control the

web browser application during the loading of a web page,

the processing of uploaded/downloaded files, etc. Hence,

the way that this pluggable technology works can be ex-

ploited to put in place the necessary Spyware routines.

Let us suppose that a malicious user wants to obtain valid

credit card numbers with the aim of carrying out electronic

fraud. Let us also assume that the malicious user finds out

a given vulnerability associated to a particular version of

a web browser that allows the execution of arbitrary code.

Analyzing the vulnerability, our malicious user would pre-

pare various web servers containing the necessary code that

exploits the vulnerability and would spread the necessary

links (e.g., by using social engineering) [6]. The visit of the

victims to those malicious web sites leads to the Spyware

installation by exploiting the vulnerability. The objective of

the Spyware programmed by the malicious user is to capture

and redirect towards a secret place those credit card numbers

introduced by the victims during their electronic web-based

sessions. Hence, the aforementioned pluggable techniques

will be used by the installed Spyware.

To guarantee the success of the previous scenario, the at-

tacker must persuade a large number of victims (i.e., users of

the vulnerable web browser) to visit the malicious web sites.

The more victims the attacker would successfully fool, the

higher the attacker’s profit. The time factor would also be

decisive in this process since, as soon as the browser vul-

nerability is reported and fixed, the likelihood of success for

the attack will drastically be reduced. With the objective of

speeding up the infection process, several other strategies

such as DNS poisoning, Spamming, and cross-site scripting

attacks, are going to be used by the attacker to lead as much

victims as possible towards the malicious web sites.

After the infection, the Spyware — now seen as a

browser add-on — remains active, but silent, while waiting

for the matching of data associated to e-commerce transac-

tions (i.e., to capture data such as credit card numbers, ex-

piration numbers, passwords, etc.). All the information cap-

tured by the Spyware is eventually sent, once postprocessed

and protected, to the attacker’s database. Let us notice that

although the web browser can use cryptographic operations

to ensure the authenticity, integrity and confidentiality of the

information exchanged with e-commerce servers (e.g., use

of SSL/TLS communications), this does not protect the data

from being stolen by the Spyware which is locally executed

at the client side.

If we analyze the use of SSL/TLS in the TCP/IP model,

we can see that the information remains protected be-

tween the application layer (HTTPS) and the transport

layer (TCP). However, since the Spyware that infected the

browser is executed at the application layer (i.e., HTTPS),

it intercepts the information before being protected by

SSL/TLS. Therefore, it can store and modify such informa-

tion before it is sent to the following layers of the TCP/IP

model. We should also notice that the Spyware does not

raise either any suspicious alert associated to the use of

SSL/TLS certificates, since the verification process is not

affected by the infection. Similarly, the use of verification

codes, such as CVC2, CVV or CID, does not help either to

detect or prevent the malicious activities associated to the

Spyware. These codes are also provided by the users and

certainly captured by the Spyware without any difficulties.

3 Prevention Techniques

We can consider three main forms of prevention to avoid

the infection of a system by Spyware. The first one, more

ambitious, is to encourage users to improve their computer

hygiene. This includes the enhancement of their behavioral

patterns, such as keeping their operating systems and asso-

ciated components updated, to avoid downloading software

from untrusted sources, and to ignore emails or attachments

coming from unknown senders.

The second form of prevention, much more technical,

can be defined as a protection design pattern. The objec-

tive is to avoid the infection of a system or to reduce the

damage of the infection. This includes hierarchical protec-

tion domains, often called protection rings. The result is a

layered structure of trust in the operating system. This struc-

ture of trust is generally complemented by specific hardware

that allows a protected separation between trusted and un-

trusted processes. It provides, moreover, several levels of

access to the resources of the system. Rings, or domains,

are arranged in a hierarchical manner: from most privileged

(most trusted) to least privileged (least trusted). This pro-

tection mechanism is specially relevant to reduce the risk of

Spyware targeting the kernel level of an operating system.

It increments the technical difficulties to solve to get control

of the system services. Attacks would target now some kind

of low-level hardware vulnerabilities [4].

The third defense consists on using automatic applica-

tions to increase the odds of detecting and isolating incom-

ing Spyware. Depending on the detection strategy, this auto-

matic software can be classified in two main categories: syn-

tactic signatures based analysis and semantic-aware anal-

ysis. Syntactic signatures based analysis intends to collect

as much information about suspicious applications as pos-

sible. It avoids moreover the execution of suspicious files.

Then, using this characterization, it determines whether the

file can be considered as Spyware. The main detection

mechanism basically compares the suspicious file towards

3



a database of characterizing signatures, generally seen as a

sequence of low-level instructions. This pattern-based sig-

nature database is generated by analyzing previously known

Spyware samples and, as a consequence, it must be regu-

larly updated by the users. As Moser et al. points in [10],

there are some evasion schemes based on some kind of ob-

fuscation, such as polymorphism or metamorphism, that can

be used by the Spyware authors to remain undetectable. To

do so, some kind of code mutation alter the files without

changing its behavior. So, every infection can be performed

by a different image, defeating pattern-based signatures de-

tection.

Semantic-aware analysis [3], on the other hand, can be

implemented by modeling the interaction of the suspicious

files and the system environment. This strategy can be seen

as a way to overcome the deficiencies of the previous strat-

egy, since any mutation of the executable image does not af-

fect the final behaviour of Spyware. This can be understood

if we consider that syntactic signatures does not take into

account the semantic of the instructions. Thus, this detec-

tion mechanism is also sometimes known as behavior-based

detection. According to [5], we can classify these strategies

in two categories depending how data collection to model

the behaviour is extracted, that is static or dynamic. In the

last years, several behavioural detection strategies has been

developed based on different algorithms, such as graph iso-

morphism, model checking or heuristics. We encourage the

reader to consult [5] for a taxonomy details. The combina-

tion of static and dynamic strategies can be merged to en-

hance the detection process [8]. However, these techniques

are not completely effective for the detection of today’s and

future generations of Spyware. First, because it is quixotic

to believe that we can build sets of signatures that are com-

plete enough to detect all kinds of Spyware [9]; and second,

because the strategy of determining whether a program ex-

hibits a specific malicious behavior independent of a suspi-

cious file is a undecidable problem [2].

4 Conclusions

We introduced in this paper the Spyware menace for

compromising the security and privacy of web browser

resources. This menace can especially harm web-based

applications, such as online education, health care, and

electronic banking. We surveyed some Spyware-based

techniques that can be used by malicious entities to infect a

system; and briefly introduced some prevention techniques.

We plan to analyze more in deep these techniques in a

forthcoming version of this paper.

Acknowledgments — We acknowledge the financial support re-

ceived from the Spanish Ministry of Science and Innovation and

the FEDER funds (grants TSI2006-03481, TSI2007-65406-C03-

03 E-AEGIS, and CONSOLIDER-INGENIO 2010 CSD2007-

00004 ARES).

References

[1] Cary, C., Wen, H. J., and Mahatanankoon, P. A viable

solution to enterprise development and systems inte-

gration: a case study of web services implementation.

International Journal of Management and Enterprise

Development, 1(2):164–175, Inderscience, 2004.

[2] Christodorescu, M., Jha, S., Seshia, S. A., Song, D.,

and Bryant, R. E., Semantics-Aware Malware De-

tection. IEEE Symposium on Security and Privacy

(S&P’05), pp.32-46, 2005.

[3] Egele M., Kruegel C., Kirda, E., Yin, H., and Song, H.,

Dynamic Spyware Analysis. USENIX Annual Techni-

cal Conference, Santa Clara, CA, June 2007.

[4] Embleton, S., Sparks, S., and Zou, C. SMM Rootk-

its: a New Breed of OS Independent Malware. In Se-

cureComm ’08: Proceedings of the 4th international

conference on Security and privacy in communication

netowrks, pages 1–12, New York, NY, USA, 2008.

ACM.

[5] Jacob, G., Debar, H., and Filiol, E. Behavioral De-

tection of Malware: From a Survey Towards an Es-

tablished Taxonomy. Journal in Computer Virology,

4(3):251–266, 2008.

[6] Garcia-Alfaro, J., Cuppens, F., Autrel, F., Castella-

Roca, J., Borrell, J., Navarro, G., and Ortega-Ruiz, J.

Protecting On-line Casinos against Fraudulent Player

Drop-out. IEEE International Conference on Informa-

tion Technology. IEEE Computer Society, April 2005.

[7] Hu, Q. and Dinev, T. Is Spyware an Internet Nuisance

or Public Menace?. Communications of the ACM,

SPECIAL ISSUE: Spyware, 48(8):61-66, 2005.

[8] Kirda, E., Kruegel, C., Banks, G., Vigna, G., and

Kemmerer, R. A., Behavior-Based Spyware Detec-

tion. USENIX Security ’06, Vancouver, Canada, Au-

gust 2006.

[9] Lee, Y. and Kozar, K.A. Investigating Factors Af-

fecting the Adoption of Anti-spyware Systems.. Com-

munications of the ACM, SPECIAL ISSUE: Spyware,

48(8):72-77, 2005.

[10] Moser, A., Kruegel C., and Kirda E. Limits of Static

Analysis for Malware Detection. Computer Secu-

rity Applications Conference, 2007. ACSAC 2007.

Twenty-Third Annual In Computer Security Applica-

tions Conference, 2007. ACSAC 2007. Twenty-Third

Annual (2007), pp. 421-430.

[11] Skoudis, E. and Zeltser, L. Malware: Fighting Mali-

cious Code. Prentice Hall PTR, 2004.

4


