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Abstract—In this paper, we consider a broadcast application
for mobile terminals where the access points are connected
to the source via a fixed network. Random Linear Network
(RLN) coding is used in the fixed network to maximize its
transmission rate and a wireless connection is used between the
access points and the terminal. In order to reduce variations in
the transmission delay and offer more flexibility to the terminal,
we perform the network decoding in the terminal. We investigate
the error correction capability of RLN coding using the ordered
statistics decoding (OSD) algorithm. Taking into account the
forward error correcting (FEC) code used on the wireless link, a
product code is built by combining the FEC code and the RLN
code and turbo decoded in the terminal. The proposed scheme
efficiency is analyzed through its simulated and theoretical
performance under additive white Gaussian noise (AWGN) and
non frequency-selective block Rayleigh fading channels.

Index Terms—Broadcast, network coding, random linear code,
ordered statistics, block turbo code, error correction

I. INTRODUCTION

In broadcast applications, the network coding [1] is studied
for its advantages over traditional store-and-forward strategy.
Linear network coding [1][2] resides in that the intermediate
node can linearly combine its received packets (on a finite
field) into one packet of the same length and send it to the
following node. Each packet generated by the intermediate
nodes will record in its header the information about the com-
bination. By retrieving header information at the destination,
we can establish the reverse operation (network decoding) to
regenerate the original packets. This new strategy benefits from
the correlation of different data flux heading to different sinks
during the transmission. Different data flux can be fused and
refined in an optimized way so that it will ease the passage
of data through network bottlenecks. So the throughput of
the network is improved and both energy and bandwidth are
economized. According to [2], it is sufficient to apply linear
combinations over a Galois field (GF) to achieve the capacity
of the error-free broadcast networks. Later, the random linear
network (RLN) coding was proposed in [3] where the linear
combination coefficients are chosen randomly, uniformly and
independently over a GF with large enough cardinal. This
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randomness approach guarantees us a capacity-achieving con-
figuration of network coding with a high probability that its
reverse operation exists. More detailed discussion on network
coding theory can be referred to [4].

In broadcast networks, the packets sent to a particular
destination will travel through different routes and different
delays will be introduced. Suppose that RLN coding is applied,
then every packet received by the destination is a random
linear combination of original packets. The destination needs
to wait for at least K linearly independent packets before the
network decoding. In this paper, we investigate a compromise
between transmission delay and error rate performance. Fig. 1
illustrates the network where the source node S sends K
packets to Access Points (AP) by broadcasting in an error-
free fixed network. The RLN coding is applied between S and
APs to exploit the network redundancy. The end user T is
attached to AP via a wireless channel, in which, the FEC
code is used for improving transmission reliability.

The GF cardinal is supposed to be sufficiently large, so
AP can accomplish network decoding with high probability
as long as it has received at least K independent packets. A
straightforward solution is to let AP do the network decoding.
After getting the original packets, the AP encodes them with
a FEC code and sends them to T. The system error rate
performance is then determined by the FEC code. Its drawback
is that the packet delay in the broadcast network can differ a
lot [5] and each AP has to wait for K independent packets
before network decoding and wireless transmission. Another
problem happens when T moves from AP1 to AP2 during
the wireless transmission. It will only receive M packets
(M < K) from AP1. In order to recover all K original
packets, T has to resort to AP2 either by indicating the
(K−M) missing packet numbers through signaling channel or
with some central control unit over the APs to let AP2 know
the missing packets. This solution suffers from additional cost.

In this paper, we consider another solution with high flexi-
bility when the end user switches AP during the transmission.
The AP starts the wireless transmission of the network coded
packets (after FEC encoding) as soon as they are received at
AP. If T changes its connected AP, it simply continues to
receive further network coded packets from a new AP without
additional signaling nor central control. It is at T where we



decode both the channel and network codes. This solution is
not tightly restricted by the packet delay in broadcast network
so the transmission efficiency will be improved.

The remainder of the paper is organized as follows. In
Section II, we describe the system setup and the coding
scheme. In Section III, we study the error correction
performance of RLN code and we introduce the ordered
statistics decoding (OSD) [6]. In Section IV, we describe how
to use the OSD in a turbo decoding algorithm. In Section
V, the system frame error rate (FER) under AWGN and
non frequency-selective block Rayleigh fading channels is
analyzed. In Section VI, we conclude this paper.

II. SYSTEM DESCRIPTION

The system setup is depicted in Fig. 1. An error-free net-
work connects the source S and the Access Points (AP) and
RLN coding is applied in this fixed network. Without loss of
generality, we suppose there are at least N disjoint paths from
S to each AP. The end user T is connected to an AP via a
wireless channel and can switch AP during the transmission.

Fig. 1. One-source multicast network structure using network coding

For each transmission, S maps data into K packets of
length K ′ denoted by x1, x2,. . ., xK ,K < N on GF(q)
and sends them out. The network nodes perform RLN coding
with coefficients chosen randomly and uniformly over the
data symbol alphabet GF(q). So, the output packet of an
intermediate node is a random linear GF(q)-combination of
its received packets. Each AP receives N packets of length
K ′. For a particular AP, we denote y1, y2, . . ., yN its
received packets and we define matrices X and Y whose rows
are respectively transmitted and received packets. The linear
combinations from S to AP can be modeled by an N × K
transfer matrix F as described in [2]. The transfer equation is:

Y = F ·X. (1)

According to [3], if the cardinal basis of GF(q) tends to
infinity, the probability that the RLN coding yields a solution
tends to 1. Then the network decoding is:

X̂ = (FTF)−1FTY, (2)

where FT denotes the transpose of F and F−1 its inverse.
After detecting the original data, the AP transmits them

to T using traditional wireless protocols (e.g. Wi-Fi). This

straightforward solution mentioned in Section I has the draw-
back that the transmission delay is determined by the longest
route in the broadcast network. Since transmission delay is a
major system concern, we consider an alternative solution.

Suppose T is initially connected to AP1. After AP1 has
received several network coded packets, instead of waiting for
the others, it encodes them using a FEC code. We consider a
linear FEC code defined on GF(q) (binary dimension K ′m,
binary length N ′m) where m = log2(q). The resulting
codewords are sent to T immediately. When T moves to
AP2, it just continues to receive FEC coded packets from
AP2. We assume a BPSK transmission and zi is the BPSK
modulated FEC codeword. Supposing an AWGN channel, let
bi denote a N ′m-length vector with independent identically
distributed (i.i.d) zero mean Gaussian components, and let ri
be the i-th packet of length N ′m received by the end user T:

ri = zi + bi. (3)

By stacking successively all the received packets ri (i =
1 . . . N ), we build the received matrix R of dimension N ×
N ′m. In the same way, we build the transmitted GF(q) matrix
Z of dimension N ×N ′ whose rows are the FEC codewords
zi (i = 1 . . . N ) converted to GF(q).

The row vectors of matrix Z are the FEC codewords. We
denote the i-th column vector of X by xc

i and its i-th row
vector by xr

i . We consider a systematic FEC code whose
redundancy comes first so that the last K ′ columns of Z are
the result of network coding in (1) that remains unchanged
during FEC encoding. For simplicity, we continue to use Y
to represent these columns of Z. From (1):

(yc
i )

T = (xc
i )

T · FT. (4)

So the column code of Y can be modeled as a FEC code
whose generator matrix is FT. We name this code as the RLN
code. Providing the RLN code can be made systematic, a two-
dimensional product code can be built by serial concatenation
of the systematic RLN code and the systematic FEC code.

To transform FT into its systematic form, we only need to
apply the row elementary operation and column permutation
on FT. It leads to a permutation of the column codeword
elements (a row permutation on Z). So at the end user side,
after arranging the rows of R according to the permutation
applied to Z, we will get a product codeword, whose row
code is the systematic FEC code used at APs and its column
code is a random linear block code whose generator matrix
is the systematic form of FT. This permutation is invertible
after decoding. In the following, for the sake of simplicity,
we keep the notations R, Z and FT to denote the resulting
matrices after the systematic transformation.

III. ORDERED STATISTICS DECODING (OSD) AND
RANDOM LINEAR NETWORK CODE

Some researchers have studied the error correction capabil-
ity of network coding in erroneous networks. Refs. [7]-[10]
introduce different theories about the error-control in Network



Coding. These emerging theories analyze the problem within
the vector space domain and they handle the network code
through hard decoding approach and the reliability information
is not exploited.

In this paper, we investigate the soft decoding of RLN code.
For soft decoding, we use the log-likelihood ratio (LLR) as a
measure of the reliability. Under AWGN channel and BPSK
modulation assumption, the decoder input is:

LLRij
in = ln

Pr{zij = +1/rij}
Pr{zij = −1/rij}

. (5)

As described in Section II, the network coding transfer
matrix F is updated for each transmission of a data matrix X.
The corresponding RLN code doesn’t have a fixed minimum
Hamming distance. Decoding this kind of code with ordinary
decoding methods is not efficient due to its variable generator
matrix. So we propose to use the soft ordered statistics
decoding (OSD) algorithm. It was proposed in [6] to decode a
binary linear block code depending on the reliability measure.
Here is a brief review.

The linear codeword is symbol-to-binary converted (system-
atic or not) with binary code length and code dimension equal
to Nb and Kb, respectively. We reorder the bits of received
codeword c1 according to their reliabilities in decreasing order
and get c2. The reordering defines a permutation function λ1

to be applied on the columns of generator matrix G, resulting
in matrix G′. We find the first Kb independent columns with
highest associated reliabilities in G′ and put them as the first
Kb columns of a matrix G” of dimension Kb ×Nb. The re-
maining (Nb−Kb) columns of G′ complete G”. This selection
defines a permutation function λ2 to be used on c2 getting a
sequence c3. The first Kb components of c3 are called its most
reliable independent (MRI) bits. With the MRI bits as message
part and the corresponding systematic generator matrix G”,
we get a hard decision codeword â. Its corresponding original
codeword can be obtained by applying permutation λ1

−1λ2
−1.

The order-l reprocessing aims at making all possible changes
of i bits (1 ≤ i ≤ l) among the Kb MRI bits and re-encoding
them into candidate codewords with the generator matrix G”.
Finally, we choose the most probable one as the decoding
result.

The OSD is compatible with the variable generator matrix
of RLN code without much additional complexity. Here is an
example of order-1 OSD to decode a RLN code of dimension
5 and code length form 7, 8 to 9 on GF(8). In Table I, we
build a statistics by generating a large number of such random
codes and classify them according to their minimum Hamming
distances (dmin).

TABLE I
MINIMUM DISTANCE DISTRIBUTION OF RANDOM CODE (N,5) ON GF(8)

Min distance (bit) 1 2 3 4 5
Code(7,5) 10.5% 77.1% 12.4% 0 0
Code(8,5) 1.53% 24% 68.07% 6.4% 0
Code(9,5) 0.2% 4.5% 32.2% 60.2% 2.9%

We shall now calculate the union bound of the FER as:

FER|dmin=k 6 1

2

n∑
d=k

W̄d|dmin=k · erfc

(√
dRa

Eb

N0

)
. (6)

FER =

max(dmin)∑
dmin=1

(FER|dmin=k) · Pr (dmin = k) , (7)

where FER|dmin=k is the average FER in condition that all
the codes tested satisfy dmin = k and W̄d is the average
multiplicity of codewords with weight d. erfc(x) is the com-
plementary error function and Ra is the code rate. The bounds
and simulated FER of the RLN codes are illustrated in Fig. 2.

Fig. 2. Union bounds / FER simulated of OSD(1) on GF(8) in AWGN
channel with BPSK modulation

We observe that the order-1 OSD successfully decodes
such random codes as the simulated FER reaches its union
bounds (in the three cases, both curves are superposed for
FER less than 4 × 10−3). Moreover, simulated results match
with Table I : with each unity increase of code length, the
percent of dmin = 1 has decreased by a factor of about 10,
resulting in an improvement of the error rates. dmin = 1 is to
be avoided as it means no error correction capability.

IV. ITERATIVE DECODING AT DESTINATION

Since we can piece together the received packets into a
product code, we will apply turbo decoding at the end user.
The turbo decoder receives a noisy BPSK modulated N×N ′m
matrix R corresponding to the product codeword whose row
code is a linear block FEC code and its column code is a
RLN code. The Soft-in-Soft-out (SISO) decoding is performed
iteratively on R using the Chase-Pyndiah algorithm [12]
reinforced by the OSD for the RLN code. For the i-th row
of R: rri = (ri1, ri2, . . . , rin) where n = N ′m, the Chase
algorithm [11] generates a subset Ω1 of the most probable row
codewords. Within Ω1, the most probable codeword is noted
d = (d1, d2, . . . , dn), dk ∈ {±1}. We define the competing
codeword c(j) = (c1, c2, . . . , cn), ck ∈ {±1}, for a specific



position j as the most probable codeword in Ω1 with c
(j)
j ̸= dj .

Then the soft output LLR of the decision dj is calculated as:

LLRij
out =

⟨LLRi
in,d⟩ − ⟨LLRi

in, c(j)⟩
2

· dj , (8)

where ⟨a,b⟩ =
∑
k

akbk is the correlation between two vectors

a and b. The extrinsic information is obtained by:

Wij = LLRij
out − LLRij

in. (9)

If there is no competing codeword c(j) in Ω1, then we use:

Wij = β × dj , (10)

where β is a constant to be optimized through simulations.
For the columns of R, we use the SISO OSD [13]. The

order-1 reprocessing is used to generate the candidate column
codeword subset Ω2 to find the competing codeword. The rest
of the column decoding procedure is the same as the row one.

We update the input LLR every half iteration by:

LLRin(m+ 1) = LLRin(0) + α(m+ 1) ·W(m), (11)

where the LLRin(0) is the channel output LLR and W(m)
is the extrinsic information obtained at the previous iteration.
At the first iteration, W(0) is set to zero. α(m) is a scaling
factor increasing with the iteration step m.

V. SIMULATION RESULTS

For each transmission of a data matrix X, the matrix F
is constructed randomly. T will test if F has full rank. An
additional packet will be requested until having K independent
ones. The more packets are received by T, the more probable
F is invertible. Another interest of increasing the packets
received by T is to improve the dmin distribution of the RLN
code as shown in Table I and Fig. 2.

We investigate the performance of our solution on AWGN
and non frequency-selective block Rayleigh fading channels
using BPSK modulation. At destination, we suppose per-
fect synchronization, no intersymbol interference (ISI), perfect
channel information and knowledge of the transfer matrix F.
Our simulation is based on GF(32). The FEC code is the
Reed-Solomon (RS) code(31, 29). Different sizes of generator
matrix FT with K = 5, N = 7, 8 or 9 are tested.

The Chase algorithm considers the 4 least reliable bits
whose indices compose the subset Θ. For an 8-iteration turbo
decoding, we use the following scaling factor α and reliability
factor β for the different half-iterations:

α = {0, 0.1, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45,

0.5, 0.55, 0.6, 0.65, 0.7, 0.9, 1.0, 1.0}.

β = min

∑
j∈Θ

|rinj |, 5

 .

|rinj | is the reliability of the j-th least reliable input binary
component. For the order-1 reprocessed OSD, we choose the

competing codeword among the 6 most probable codewords
in Ω2 to eliminate possible pseudo-competing codewords.

Here, we consider the FER without the error propagation
due to network decoding that will influence the BER. Fig. 3
plots the FER in AWGN channel. The curve “RS(31, 29) soft”
is the reference representing the soft decoding of RS(31, 29)
using Chase algorithm with 16 test patterns. It can be viewed
as the straightforward solution where network decoding is
applied at AP before transmitting all the RS encoded original
packets to T. As pointed out in Section II, this solution will
suffer from long delays. For the proposed (7, 5) network code
based scheme, the SNR gain is equal to 2dB for a FER of
10−2 and increases with the number of packets received by
T: 2.5dB (resp. 2.75dB) for N = 8 (resp. N = 9).

Fig. 3. Proposed scheme performance on AWGN channel, BPSK / GF(32)

In Fig. 3, we observe an error floor phenomenon for our
proposed solution especially for high SNR. We analyze it using
Fig. 4 where we consider only the case of RLN code (7, 5).
The curve “Turbo (7, 5) dmin = 1” (resp. “Turbo (7, 5) dmin >
1”) is the FER of our proposed solution when the RLN code
has dmin = 1 (resp. dmin > 1). The overall average FER curve
for RLN code (7, 5) with all possible minimum distances is
the one with diamond marks.

Based on statistics tests, we estimate p = Pr(dmin = 1) ≈
6.8 × 10−3 for the RLN code (7, 5) on GF(32), and use the
approximation of the FER given in (12):

FER =

max(dmin)∑
dmin=1

(FER|dmin=k) · Pr (dmin = k)

= FER|dmin=1 · p+ FER|dmin>1 · (1− p).

(12)

The condition dmin refers to the minimum Hamming distance
of the random component code in the product code. Since
erfc(

√
x) decreases exponentially with x, from (6) and (12),

at low SNR where FER|dmin=1 ≈ 1 and FER|dmin>1 ≫ p:

FER ≈ 1 · p+ FER|dmin>1 ≈ FER|dmin>1. (13)

It corresponds to the superposition of the overall FER curve
and the curve “Turbo (7, 5) dmin > 1” below 3.5dB in Fig. 4.



At high SNR, FER|dmin=1 cannot be approximated by 1 and
FER|dmin>1 becomes negligible compared to p ·FER|dmin=1:

FER ≈ p·FER|dmin=1+FER|dmin>1 ≈ p·FER|dmin=1. (14)

The factor p in (14) corresponds to the vertical gap at high
SNR in Fig. 4 between the overall average FER curve and the
“Turbo (7, 5) dmin = 1” curve. This factor causes the error
floor effect. If it was possible to eliminate the configuration
dmin = 1, the error floor effect would disappear as shown by
the curve with pentagrams. But since the network coding is
randomly generated by the network nodes, there is no evident
solution. An intermediate solution is to check if the network
configuration leads to a RLN code with dmin = 1 and request
additional packets if necessary. We observe that the percent
of RLN code (7,5) having dmin = 1 decreases with the Galois
field cardinal q (10% for q = 8 against 0.7% for q = 32 and
0.17% for q = 64). It may be interesting to deeply investigate
the influence of q over dmin.

Fig. 4. Proposed scheme performance on AWGN channel, with a (7,5)
network code, BPSK and GF(32)

Fig. 5 plots the FER for a flat Rayleigh block fading
channel. Each row of the product code is attenuated with an
independent Rayleigh coefficient. At 10−2, the coding gain
compared to the AP network decoding solution is about 8dB
with a RLN code (7, 5). There is an average improvement of
2.5dB per additional received packet.

VI. CONCLUSION

In this paper, we propose a flexible transmission scheme for
the broadcast network where network coding is applied. As
the random linear network code can be modeled as a random
linear block FEC code, it can be softly decoded by the ordered
statistics decoding algorithm. Simulations proved that, the
more coded packets collected from the network, the better
the error correction performance. Increasing the received
packet number ameliorates the minimum Hamming distance
distribution of the resulting random code. The error floor

Fig. 5. Proposed scheme performance on Rayleigh block fading channel
with BPSK and GF(32)

effect is analyzed using the union bounds and one possible
solution is to avoid the network coding configurations leading
to a minimum Hamming distance of 1.
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