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Abstract-In this paper, a novel approach to construct full 
diversity space-time codes from half-rate invertible linear binary 
codes is proposed. The proposed construction benefits from the 
bijective relation between information and redundancy bits to 
exploit the whole spatial diversity. It also uses the principle of 
separation between threads to guarantee the full spatial diversity. 
Thanks to such construction, we are able to design full diversity 
space-time codes from half-rate invertible linear binary codes 
whatever the modulation type. 

I. INTRODUCTION

Space-time coding for Multi-Input Multi-Output (MIMO) 
systems has attracted much attention in the last decade, 
mainly as a coding technique to combat fading in a MIMO 
environment. It enables to exploit the full spatial diversity 
in order to improve the reliability of a data transmission in 
wireless MIMO systems. Alamouti [1] has presented a simple 
transmission scheme for two transmit antennas (nt = 2),
which provides the whole spatial diversity. Based on the 
pairwise error probability, derived under the assumption of a 
Maximum Likelihood (ML) decoding at the receiver, Tarokh 
et al. have introduced some criteria [2] to exploit the whole 
spatial diversity and to maximize the space-time coding gain. 
Follow-on work by Tarokh et al. [3] has generalized for a large 
number of antennas (nt > 2) the transmit diversity technique
proposed by Alamouti. Due to their Orthogonal Designs 
(OD), these Orthogonal Space-Time Block Codes (OSTBCs) 
allow a ML decoder complexity linear with the number of 
transmit antennas. These designs and others that have same 
properties, referred to as Coordinate Interleaved Orthogonal 
designs (ClOD), are said to be single-symbol ML decodable 
linear Space-Time Block (STB) codes [4]. But unfortunately, 
the rate of such STB codes decay with the number of transmit 
antennas. Full rate and full diversity linear dispersion STB 
codes were developed as a solution to not only guarantee a 
maximum diversity advantage but also to maximize the mutual 
information between the transmitter and the receiver [5]-[7]. 
These codes suffer from a mandatory complexity, beyond ML 
decoding, which increases exponentially with the number of 
transmit antennas and the modulation efficiency. 

However, all the above approaches optimize the space­
time encoder and not the whole transmitter structure that 
inevitably includes an error-correcting code. A joint design 
of error correction coding, modulation and space-time scheme 

has been considered in [3] in order to construct the space­
time trellis codes (STTCs) that provide a substantial coding 
gain and a high diversity advantage. These codes have a better 
performance than STB codes, but since STTCs are based 
on trellis codes they have a high decoding complexity. An 
interesting method to systematically construct a family of full 
diversity STB codes from linear error correcting codes has 
been proposed in [8], [9]. These codes referred to, in this 
paper, as Space-Time Error Correcting Codes (STECCs) have 
an error correction feature at the center of their designs. An 
explicit construction of such STECCs was proposed in [10] 
and it was improved from a space-time design point of view 
in [11]. It has been proved in [12] that when forward error 
correcting (FEC) code is serially concatenated with such STB 
codes, the concatenated code can be formatted as a turbo 
product code, which enables the receiver to better exploit the 
channel diversity. This feature enhances that such STB codes 
are more suitable than others for a serial concatenation with 
FEC codes. 

For 2 transmit antennas, we present in this paper a system­
atic construction of full diversity STECCs built from a class of 
half-rate invertible linear binary codes. We recall that a half­
rate code is said to be invertible if, knowing only the parity­
check bits of a codeword, the corresponding information bits 
can be uniquely determined by an inversion process. Combin­
ing the binary rank criterion introduced by Hammons and the 
thread separation approach used in Threaded Algebraic Space­
Time (TAST) construction [6], we prove that a full diversity 
with a maximum rate, given according to the rate/diversity 
trade-off [8], can be ensured using half-rate invertible linear 
binary codes. 

The remainder of this paper is organized as follows. In 
section II, we recall the space-time design criteria for coherent 
block fading channels where the Channel State Information 
(CSI) is available only at the receiver. Moreover, we prove 
that the unified construction of ST codes, proposed by Lu 
& Kumar, is unable to ensure the full transmit diversity for 
a class of half-rate invertible linear error correcting codes. In 
section III, we propose a technique to construct ST codes from 
such linear error correcting codes, for 2 transmit antennas. 
In section IV, for the sake of self completeness we exhibit 
an iterative receiver, which can exploit the available channel 
diversity, based on the cooperation of an MMSE detector 
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(low complexity at the detection stage) and a turbo product 
decoder (good error rate performance). In section V, we 
present simulation results and finally we provide a conclusion 
in section V I. 

II. SYSTEM MODEL

A. Space-time design criteria

We consider a coherent system over an n, x nr non
frequency-selective block fading channel. Let T be the number 
of time slots for transmitting the space-time codeword Xn, xT, 
thus the nr x n, receiver signal may be written as

YnrXT = Hnrxn,Xn,xT +NnrXT (1) 

where H is the nr x n, channel matrix with independent and
identically distributed (i.i.d.) zero mean unit variance circularly 
symmetric complex Gaussian entries and N is assumed to be 
the nr x T i.i.d. zero mean circularly symmetric complex
Gaussian noise. 

Under a ML decoding assumption, the pairwise error prob­
ability of estimating a codeword X i=- X, at the receiver while
X has been sent, is upper bounded by 

(2) 

where �� represents the average signal-to-noise ratio per
A r 

transmitted bit, r = rank(X -X) and G = (II Aj)l/r. 
j=1 

Therefore, the famous space-time design criteria can be sum-
marized as follows: over all pairs of distinct codewords X and 
X (X i=- X), 

• Rank criterion: Maximize the transmit diversity gain r.
• Product distance criterion: Maximize the coding gain G.

These design criteria lead to a good performance in terms of 
Bit Error Rate (BER). From another viewpoint, it was shown 
in [2], [9] that the transmit diversity gain r and the modulation
symbol rate is governed by the following tradeoff 

R::;v(n,-r+l) (3) 

where v is the extension degree of the transmission symbol
set drawn from the modulation symbol set. Thus the maximum 
achievable rate obtained by a full transmit diversity ST code 
is equal to v modulation symbols per channel use (p.c.u.). 
For STECCs , we have v = 1, i.e., each transmit symbol is 
composed only from one modulation symbol. 

B. STECCs [8J

A STECC is a ST code constructed from a linear error
correcting code by arranging, according to a judicious map­
ping, the components of each error correcting codeword in 
the form of an n, x T matrix. Interesting from the implicit
relation between components of error correcting codewords, a 
full transmit diversity can be ensured. 

As the unified construction proposed by Lu & Kumar en­
compasses many STECC constructions, we recall briefly such 
a basic approach. For the sake of simplicity, we present this 

construction for Quadrature Amplitude Modulation (QAM), 
although it can be applied to other types of modulation. Let 
C[ be a linear binary (n, x T) matrix code, where the elements
of each codeword are spatially formatted into an n, x T matrix.
Moreover, we consider a linear error correcting code such 
that the binary rank criterion [8] is satisfied, i.e., every binary 
matrix C E C[ has full rank over the binary field IF = {O, I}. 
Each entry of the space-time error correcting codeword X can 
be written as 

U-l 
X

p,q = Ct L 2ue[C1'+2Cz]p,q 1::; p ::; n" 1::; q ::; T (4)
u=o 

where C¥, C�, i = A, e = i, Ct = 1 + i and mb = 2U
is the modulation efficiency. Xp,q is the (p, q)th component of
the matrix X, Therefore, the resulting STECC achieves a full 
transmit diversity. 

C. Can Lu & Kumar construction ensures a full diversity from
half-rate invertible linear binary codes or not?

According to the rate-diversity tradeoff (3), one can see 
that the maximum achievable rate for a full spatial diversity 
STECC is equal to one modulation symbol p.c.u. (lin, mod­
ulation symbol per antenna and time slot). Thus the optimal 
number of transmit antennas (optimal rate-diversity tradeoff) 
to design a full diversity STECC, based on half-rate invertible 
linear binary codes, is equal to n, = 2. Firstly, we investigate
the Lu & Kumar construction on such linear error correcting 
codes. Let C�(2k, k) be a half-rate invertible linear binary
code, with k its dimension. The binary matrix associated to
C� can be written as

C2xk = [ mPI ]
mP2 

(5) 

where m is a 1 x k vector consisting of information bits,
PI and P2 are k x k binary matrices that represent 2 linear
transformations. Then C2xk satisfy the binary rank criterion 
if and only if 

PI has full rank over IF
P2 has full rank over IF{ mPI = ° {:} m = 0, 

mP2 = ° {:} m = 0, 
m(PI EB P2) = ° {:} m = 0, (PI EB P2) has full rank over IF

(6) 
where EB stands for modulo 2 addition. Multipling by (pt}-1 
(the inverse exists as PI has full rank), we obtain 

C2XkPl
I 

= [ mp�Pll ] [ :p ] (7) 

where P can be defined such that GkX2k = [Ikxk PkXk] 
is a systematic generator matrix of C�(2k, k). Therefore,
taking into account a half-rate invertible linear binary code, 
whatever the spatial arrangement used to form a binary matrix 
C2xk associated to such a code the binary rank criterion 
is satisfied if and only if (I EB P) is of full rank over IF. 
Such constraint is a hard restriction on the class of half-rate 
invertible linear binary codes. In other words, this means that 
if C1X2k = [m mP] E C�, thus m must be different from mP
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for all m E JFk, m -I- 01 x k. Thus, as an explicit example,
for half-rate invertible linear binary codes that contain all-
1 codeword (e.g. Extended Hamming, Extended Golay code, 
... ), no spatial format can achieve the whole spatial diversity 
beyond the unified construction proposed by Lu & Kumar. 

Motivated to construct full transmit diversity STECC based 
on half-rate invertible linear binary codes and without any 
constraints or restriction on such codes, we propose in the 
next section an approach that allows to ensure the whole spatial 
diversity. Moreover, the proposed approach has high flexibility 
as it does not need to determine an appropriate space-time 
arrangement related to the employed error correcting code. 

III. 2 x T STECCs BASED ON HALF-RATE INVERTIBLE
LINEAR BINARY CODES 

In this section, we firstly describe the construction approach, 
then we prove that full transmit diversity can be achieved 
by such a construction. We consider codes such that their 
dimension is greater than 2 (k 2: 3) and their minimal
Hamming distances are equal or more than 3 (d�;�ming 2: 3).Let Cu E cy, 1 :S u :S mb and let S be the ring of
complex numbers that contains the constellation set whatever 
the modulation efficiency (for example for QAM, S is the 
Gaussian integer set Z[i]). In a systematic form a codeword
Cu E cy can be written as

Cu = [m� ... m� r� . . .  r� ] = [mu rJ (8) 
'"-v--' '""-v--' 
information redundancy 

Thus the STECC can be defined by the following map 

J.l: (c1,···, C"'b) E (cy)mb 
H X2xk E S2xk, T = k (9)

such that for q = 1, ... , N = ll£¥ J ,  where l z J stands for the
largest integer not greater than z, the entries of X2xk can be 
defined as 

where 

x =X 1,2q-l 2q-l 
X2,2q-1 = ¢qY2q-1

(m! , ... , m�) ModulatioI? XpES
(r! , . . .  ,r�) ModulatioI? Yp E S

(10) 

Moreover elements of £, = {¢1, ... , ¢ N} E eN satisfy the
following constraints { I ¢p 1= 1, p = 1, ... , N, to ensure an energy efficiency. 

¢l¢p tt s, V p, l = 1, ... , N in particular ¢� tt S.
¢l¢; tt S V p -I-l,p,l = 1, ... ,N. 

(11) 
To demonstrate that such a STECC can realize the full transmit 
diversity, we must verify that the rank of two different space­
time error correcting codewords is equal to n, = 2. 

Let X = J.l( c1 , • • •  ,crnb) be a space-time error correcting
codeword such that X -I-X � (c1,···, crnb ) -I-(c1, • • •  ,crnb ).
Thus, there exists at least u, 1 :S u :S mb' such that Cu -I-Cu 
or thanks to the bijection property of C�, we have

Cu -I-Cu {o} mu -I-mu and r u -I-( (12) 

In addition, since d�;�ming 2: 3 then either mu (resp. r u) 
differs from mu (resp. I-u) by two bits (resp. one bit) at
least or ru (resp. mu) differs from I-u (resp. mu) by two
bits (resp. one bit) at least. Thus there exists at least two 
different integers l and p, l, p E {I, . . .  , k} such that either
(XllYllX ) -I- (XllYllX ) or (XllYllY ) -I- (XllYllY ), i.e.,p p p p 
there exists at least one 2 x 2 sub-matrix M2X2 of the
difference matrix X -X, composed from two columns (or their
permutations) of the difference matrix, that can be defined as 
one of the following equations 

• if lP -l J 2 = 1 thus let l is the odd number, p is the even
number and p -I-l + 1[ Xl -X I ¢ � (X p -

. 
x p) 1

M2X2 = A.. ( , ) , 
'f/!¥ Yl -Yl Yp -Yp (13) 

• if lp -l J 2 = 1 thus let l is the odd number, p is the even
number and p = l + 1

• if l,p are odd

M _ [ Xl -Xl 2x2- ¢!¥(Yl-Yl) 

• if l, p are even

¢�(Xp -xp) ]
Yp -YP 

M [ ¢L(XI -xJ ¢� (xp -
. 
xp) ]

2x2 = 2 , , 
Yl -Yl Yp -Yp 

(14) 

(15) 

(16) 

where ¢o = I, l· J 2 denotes the modulo 2 operation and
either (Xl -XI)(YI -YI)(Xp -Xp) -I- 0 or (Xl -XJ(YI -
yJ(yP -Yp) -I-O. One can see that the sub-matrix M2x2 has
a nonzero determinant whatever the modulation type if the 
elements of £, satisfy the second and the third conditions of 
(11). Therefore, the minimum rank of X-X is equal to n, = 2. 

For QAM constellations, the modulation symbols belong 
to Z[i] thus a sufficient condition to ensure the full transmit
diversity of these STECCs can be rewritten as follows, V p =
I, ... ,N, ¢p = eiOp (I ¢p 1= 1) where

7r 7r 7r Bp E ]0: "4[U]"4 : 2[ (17)

In general, determined values of Bp, p = 1, ... , N can be
chosen subject to the maximization of the space-time coding 
gain. But as the STECC is constructed in the aim to be 
serially concatenaded with a FEC, the space-time coding gain 
is negligible with respect to the gain offered by the FEC 
code. Therefore, an optimization of such parameters does 
not provide a remarkable improvement in the performance, 
moreover optimum values can depend on the inner code used 
in the construction and the modulation order. 

In fact, these parameters can be viewed as rotation factors. 
It always guarantees that the two threads, which constitute a 
space-time codeword, belong to different algebraic sub-spaces. 
Such a technique, inspired from TAST construction, is very 
interesting as it does not induce any penalty on the complexity 
at the receiver. It extends the construction of full diversity 
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STECC to the class of half-rate invertible linear binary error 
correcting codes. In addition, it is clear that no constraint 
are imposed on the spatial arrangement of parity-check bits 
with respect to information bits. Indeed, this flexibility makes 
the construction not only extensible to those known in the 
litterature but also it is easier as no spatial arrangement must 
be found for redundancy bits with respect to information ones. 

IV. ITERATIVE RECEIVER STRUCTURE

Detection stage Decoding stage 

Fig. 1. MMSE interference canceller with SISO turbo product code decoding 
structure. 

This section deals with iterative decoding that can ex­
ploit performance of concatenated STECCs with a reasonable 
complexity. We describe a low complexity modified iterative 
receiver structure of the one presented in [12]. In our previous 
work, a maximum a posteriori (MAP) symbol detection on 
the observed signal Y at each time slot is performed taking 
into account a priori information provided by a Soft-Input 
Soft-Output (SISO) turbo product code decoder. Despite the 
BER improvement achieved by such an iterative receiver, 
unfortunately a MAP symbol detector involves a significant 
amount of computational complexity for high order modula­
tions and large numbers of transmit antennas. Motivated to 
reduce the complexity at the detection stage, we replace the 
MAP symbol detector by a linear detector optimized according 
to the minimum mean square error (MMSE) criterion (Figure 
1). No change is applied to the SISO decoder, which always 
works according to the turbo principle developed in [13]. It 
is based on the reliability information exchange between two 
elementary SISO decoders: the inner one, which exploits the 
error correcting code used in the construction of the space­
time code, and the MAP outer FEC decoder. The modification 
brought to the detection stage of the iterative receiver pre­
sented in [12] reduces its complexity without any degradation 
on the BER performance thanks to the reliability of the a priori 

information provided by the turbo product code decoder. 

V. SIMULATION RESULTS 

In this section, we present simulation results for uncoded 
and coded (i.e. concatenated) STECCs based on either the 
extended Hamming code or the extended Golay code. We 
assume a block Rayleigh flat fading channel constant over 

T time slots. Information symbols are carved from a 4-QAM 
constellation with Gray mapping. For the FEC code, we use 
the half-rate convolutional code CC(7,5)oct. 

At the receiver side, we fix nr = 2 receive antennas. For
uncoded STECCs based on the extended Hamming code, we 
apply a ML decoder. But as the complexity of such receiver 
becomes prohibitive for uncoded STECCs based on the ex­
tended Golay code, we resort to an iterative receiver structure 
to decode these space-time codes . To be more precise, we 
apply a MAP symbol detector on the signal observed at each 
time slot, then the soft extrinsic information of this detector 
is delivered to a SISO inner decoder of the Golay code. 
The soft extrinsic information of the last decoder, based on 
a sliding encoding window algorithm [14] is injected as a
priori information to the MAP symbol detector. This iterative 
procedure continues in such a way until the convergence of 
the receiver. 

For coded STECCs, a channel decoder based on the BCJR 
algorithm [15] is adopted to decode the convolutional code 
and for the extended Hamming code, a MAP inner decoder is 
employed . 

a: 
w 
'" 

8 
Eb/NO (dB) 

Fig. 2. Performance comparison of the proposed full diversity STECCs and 
the spatial multiplexing scheme, both are based on either the extended Ham­
ming code or the extended Golay code. 4>�amming = ei7r /5, 

4>�amming = 

ei27r /5. 4>�olay = eqi7r /25, q = 1, ... ,6 

In Figure 2, we compare the BER performance of the 
full diversity STECCs and the spatial multiplexing scheme, 
both are based on either the extended Hamming code or the 
extended Golay code. By spatial multiplexing scheme based 
on an inner code we refer to a transmission system where data 
streams are encoded by this inner code and are sent using the 
multiple transmit antennas without caring to provide a full 
transmit diversity. 

For STECCs based on the extended Hamming code, one 
can see that the diversity advantage, i.e. the asymptotic slope 
of BER versus signal-to-noise ratio, for the proposed code 
(diamond marked curve) is greater than the diversity advantage 
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realized by the spatial multiplexing scheme (triangle marked 
curve). This means that the transmit diversity is exploited by 
the proposed code as it was theoritically proved in section 
III. We note that, as space-time error correcting codewords 
are independent of each others, the BER performance remains 
the same for every T multiple of T. For T = T = 4 and
T = 3T = 12, a gain of 1 dB is achieved at a BER of 10-5. 

For STECCs based on the extended Golay code, the sub­
optimal iterative receiver can not fully exploit all the spatial 
diversity. Simulations show a gain offered by the proposed 
code (square marked curve) with respect to the spatial mul­
tiplexing scheme (circle marked curve). For T = 12 (resp. 
T = 4) a gain of 1 dB (resp. 0.2 dB) is achieved at a BER of
10-4 (resp. 2.10-5). For T = 4 < T, we note that STECCs
based on the Golay code also benefit from the time diversity,
which is not available for T = T = 12

II: 
W 
In 

10-� 2'------_-'1-----'-----'-1 ---'2----'-----'----' 
Eb/NO (dB) 

Fig. 3. Performance comparison of full diversity STECCs and the spatial 
multiplexing scheme, both are based on the extended Hamming code, and 
are serially concatenated with a convolutional code CC(7, 5)oct. 4 X 1018 
information bits. nr = 2. 4-QAM. ¢�amming = ei7r/5, ¢�amming = 
ei27r /5. 

In Figure 3, we show the BER performance of previous 
schemes based on the extended Hamming code in the case of 
a serial concatenation with a FEC code. The receiver presented 
in section IV, is adopted to decode these coded schemes. For 
T = 4 (roughly quasi fast fading channel), the coded full 
diversity STECC outperforms the coded multiplexing scheme 
by 0.9 dB at a BER=2.1O-5. For T = 1020 (slow fading 
channel), at a BER=1O-4 a gain of 1.2 dB is offered by the 
concatenated full diversity STECC with respect to the coded 
spatial mUltiplexing scheme. 

It is important to note that, based on a half-rate invertible 
linear binary code, the receiver complexity for the full diversity 
STECC is the same as for the spatial multiplexing scheme in 
the case of uncoded systems as well as for coded systems. 

V I. CONCLUSION 

In this paper, we highlight the construction of full diversity 
space-time codes based on half-rate invertible linear binary 
error correcting codes. We have developed an approach that 
benefits from the invertible property of the error correcting 
code to construct full diversity space-time codes for two 
transmit antennas whatever the modulation efficiency. We have 
shown also an iterative receiver structure with low complexity, 
which can exploit the performance of a system composed 
of such space-time codes when serially concatenated with a 
FEC code. Simulations have validated the gains offered by the 
proposed code with respect to spatial multiplexing scheme for 
a same complexity receiver structure. 
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