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On the hydrodynamical limit for a one dimensional

kinetic model of cell aggregation by chemotaxis

François James and Nicolas Vauchelet

Abstract. The hydrodynamic limit of a one dimensional kinetic
model describing chemotaxis is investigated. The limit system is
a conservation law coupled to an elliptic problem for which the
macroscopic velocity is possibly discontinuous. Therefore, we need
to work with measure-valued densities. After recalling a blow-up
result in finite time of regular solutions for the hydrodynamic
model, we establish a convergence result of the solutions of the ki-
netic model towards solutions of a problem limit defined thanks to
the flux. Numerical simulations illustrate this convergence result.
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1 Introduction

1.1 Modeling

Chemotaxis is a process in which a population of cells rearrange its struc-
tures, reacting to the presence of a chemical substance in the environment.
In the case of positive chemotaxis, cells migrate towards a concentration gra-
dient of chemoattractant, allowing them to aggregate. Since several years,
many attemps for describing chemotaxis from a Partial Differential Equa-
tions viewpoint have been considered. The population at the macroscopic
level is described by a coupled system on its density and the chemoattractant
concentration. The most famous Patlak, Keller and Segel model [18, 23] is



formed of parabolic or elliptic equations coupled through a drift term. Al-
though this model has been successfully used to describe aggregation of cells,
this macroscopic model has several shortcomings, for instance the detailed
individual movement of cells is not taken into account.

In the 80’s, experimental observations have shown that the motion of
bacteria (e.g. Escherichia Coli) is due to the alternance of ‘runs and tum-
bles’ [1, 14, 20, 22]. Therefore kinetic approaches for chemotaxis have been
proposed. The so-called Othmer-Dunbar-Alt model [20, 22, 24] describes
the dynamic of the distribution function f of cells at time t, position x and
velocity v and of the concentration of chemoattractant S :





∂tf + v · ∇xf =

∫

v′∈V
(T [S](v′ → v)f(v′)− T [S](v → v′)f(v)) dv′,

−∆S + S = ρ(t, x) :=

∫

v∈V
f(t, x, v) dv.

(1)

In this equation, V is the set of admissible velocities. The turning kernel
T [S](v′ → v) denotes the probability of cells to change their velocity from
v′ to v. Several works have been devoted to the mathematical study of this
kinetic system, under various assumptions on the turning kernel, see for
instance [11, 10, 13, 17]. Here we shall assume that the velocities of cells
have the same modulus c, so that V = Sc := {v | ‖v‖ = c}.

Derivation of macroscopic models from (1) has been investigated by sev-
eral authors. When the chemotactic orientation, or taxis, that is the weight
of the turning kernel, is small compared to the unbiased movement of cells,
the limit equations are of diffusion or drift-diffusion type. In [16, 21], the
authors show that the Patlak-Keller-Segel model can be obtained as a dif-
fusive limit for a given smooth chemoattractant concentration. A rigorous
proof for the case of a nonlinear coupling to an equation for the chemical
can be found in [11], leading to a drift-diffusion equation.

In this paper we focus on the opposite case, where taxis instead of undi-
rected movement is dominating. The model has been proposed in [12], and
we briefly recall how it is obtained. The limit problem is usually of hyper-
bolic type, see for instance [15]. Dominant taxis is reflected in the transport
model by the fact that the dominating part of the turning kernel depends
on the gradient of the chemoattractant. At this stage, two possible models
are encountered. On the one hand, we can assume that cells are able to
compare the present chemical concentrations to previous ones and thus to
respond to temporal gradients along their paths. The decision to change
direction and turn or to continue moving depends then on the concentration
profile of the chemical S along the trajectories of cells. Thus the turning
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kernel takes the form (independant on v)

T [S](v′ → v) = φ(∂tS + v′ · ∇xS). (2)

On the other hand, if cells are large enough, it can be assumed that they
are able to sense the gradient of the chemoattractant instantly so that we
can use instead the expression

T [S](v′ → v) = φ(v′ · ∇xS). (3)

Theoretical results as well as numerical simulations for models (1)–(2) and
(1)–(3) are proposed in [27].

The function φ in the preceding formulæ is the turning rate, obviously it
has to be positive and monotone. More precisely, for attractive chemotaxis,
the turning rate is smaller if cells swim in a favorable direction, that is
∂tS + v′ · ∇xS ≥ 0 (or v · ∇xS ≥ 0). Thus φ should be a nonincreasing
function. The converse holds true for repulsive chemotaxis. A simplified
model for this phenomenon is the following choice for φ: we fix a positive
parameter α, and take

φ ∈ C∞(R), φ′ ≤ 0, φ(x) =

{
φ0 if x < −α,
φ0/4 if x > α,

(4)

where φ0 is a given constant. Moreover, for the sake of clarity of the paper,
we will assume the following symmetry on φ: there exists an odd function
φ̃ such that

φ(x) = φ0
(5
8
+ φ̃(x)

)
, and φ̃(−x) = −φ̃(x). (5)

The turning kernel (2), compared to (3), makes drastic changes in the
behaviour of the solutions to the kinetic model (see [27]). Up to now we
cannot take it into account in the theory, so that we focus in the follow-
ing on the expression (3). As observed above, this can be considered as a
biologically relevant model.

In the turning kernel, a specific parameter quantifies the “memory” of
the bacteria. When this parameter is small, a specific asymptotic regime
leads to a macroscopic, hydrodynamic model. In order to introduce this
parameter, we rescale the system (1) by setting

x = x0x, t = t0t, v = v0v,

S(t, x) = S0S(t, x), f(t, x, v) = f0f(t, x, v), φ(z) = φ0φ(z),
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where φ0 is the typical value for the size of the turning kernel, v0 = c is
the typical speed, x0 = Lx is the characteristic length of the device and the
typical time is defined by t0 = x0/v0. Dropping the bars, the scaled version
of (1) reads

∂tf + v · ∇xf =
1

ε

∫

V

(
T [S](v′ → v)f(v′)− T [S](v → v′)f(v)

)
dv′,

−∆S + S = ρ,
(6)

where ε =
v0
φ0x0

≪ 1 is the parameter we are interested in: it corresponds

to the time interval of information sampling for the bacteria. The hydro-
dynamic limit corresponds to ǫ → 0, and we first recall formally how it is
obtained.

1.2 Formal hydrodynamic limit

We focus in this work on the one dimensional version of (6), so that the
transport takes place in x ∈ R and the set of velocity is V = {−c, c}. The
expression of the turning kernel simplifies in such a way that (6) with (3)
rewrites

∂tfε + v∂xfε =
1

ε
(φ(−v∂xSε)fε(−v)− φ(v∂xSε)fε(v)), v ∈ V. (7)

− ∂xxSε + Sε = ρε = fε(v) + fε(−v). (8)

We formally let ε go to 0 assuming that S and f admit a Hilbert expansion

fε = f0 + εf1 + · · · , Sε = S0 + εS1 + · · ·

Multiplying (7) by ε and taking ε = 0, we find

φ(−c∂xS0)f0(−c) = φ(c∂xS0)f0(c). (9)

Summing equations (7) for c and −c, we obtain :

∂t(fε(c) + fε(−c)) + c∂x(fε(c)− fε(−c)) = 0. (10)

Moreover, from equation (9) we deduce that

f0(c) − f0(−c) =
φ(−c∂xS0)− φ(c∂xS0)

φ(−c∂xS0) + φ(c∂xS0)
(f0(c) + f0(−c))
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The density at equilibrium is defined by ρ := f0(c) + f0(−c) =
∫
f0(v) dv.

Taking ε = 0 in (10) we finally obtain

∂tρ+ ∂x(a(∂xS0)ρ) = 0,

where a is defined by

a(∂xS0) = c
φ(−c∂xS0)− φ(c∂xS0)

φ(−c∂xS0) + φ(c∂xS0)
=

4

5
c (φ(−c∂xS0)− φ(c∂xS0)),

and we have used (5) for the last identity. Notice that a is actually a
macroscopic quantity, since we can rewrite

a(∂xS0) = −
4

5

∫

V

v φ(v∂xS0) dv,

so that this expression is independant of the sign of c.
We couple this equation with the limit of the elliptic problem (8) for

the chemoattractant concentration, so that, in summary, and dropping the
index 0, the formal hydrodynamic limit is the following system

∂tρ+ ∂x(a(∂xS)ρ) = 0, (11)

a(∂xS) =
4

5
c (φ(−c∂xS)− φ(c∂xS)), (12)

−∂xxS + S = ρ, (13)

complemented with the boundary conditions

ρ(t = 0, x) = ρini(x), lim
x→±∞

ρ(t, x) = 0, lim
x→±∞

S(t, x) = 0. (14)

The formal hydrodynamic limit from (7)–(8) to (11)–(12)–(13) has been
obtained in [12] and proved rigorously in the two-dimensional setting for a
given smooth S. The aim of this paper is to give an account of the problems
and open questions arising in the study of the whole coupled system.

1.3 Preliminary remarks

First notice that, even in this one dimensional framework, this study
leads to difficulties mainly due to the lack of uniform estimates for the
solutions to the kinetic model when ε goes to zero and consequently to the
very weak regularity of the solutions to the limit problem. Even though
existence of weak solutions to the kinetic model is ensured in a Lp setting,
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no uniform L∞ bounds can be expected. The reader is referred to [27] for
some numerical evidences of this phenomenon, which is the mathematical
translation of the concentration of bacteria. This is some kind of “blow-up
in infinite time”, which for ε = 0 leads to actual blow-up in finite time, and
creation of Dirac masses. Moreover the balanced distribution vanishing the
right hand side of (7) depends on Sε; thus the techniques developed e.g. in
[11] cannot be applied.

We turn now to formal considerations about the limit system, noticing
on the one hand that a solution of (13) has the explicit expression

S(t, x) = K ∗ ρ(t, .)(x), where K(x) =
1

2
e−|x|, (15)

so that the macroscopic conservation equation for ρ (11) can be rewritten

∂tρ+ ∂x(a(∂xK ∗ ρ)ρ) = 0. (16)

When a is the identity function, this is exactly the so-called aggregation
equation, which has been studied by several authors, see [2, 3, 4, 19] and
references therein. In particular, finite time blow-up is evidenced when the
kernel K is not smooth enough.

On the other hand, taking α = 0 in the definition of φ (4) and assum-
ing that the chemoattractant concentration is increasing for x < x0 and
decreasing for x > x0 (which is usually true when cells aggregate at the

position x0), we deduce that a(∂xS) = −
3

5
c sgn(x − x0) which presents a

singularity at x = x0. The conservation equation (11) becomes therefore a
linear conservation equation with a discontinuous compressive velocity field,
and it is well known that the solution is a Dirac mass. If α is positive, it
turns out that a Dirac mass appears as well, after a finite time.

In summary, we have to deal in the limit system with some kind of weakly
nonlinear conservation equation on the density ρ. Indeed on the one hand
the expected velocity field depends on ρ, but in a nonlocal way. On the
other hand, this equation behaves like linear equations with discontinuous
coefficients, in the sense that it admits measure-valued solutions. Therefore
a major difficulty in this study will be to define properly the velocity field
a = a(∂xS) and the product aρ.

The paper is organized as follows. In Section 2 we consider the aggregation-
like equation (16), and recall existence and uniqueness results as well as the
existence of a finite time for which L∞-weak solutions of (11)–(13) blow up.
In Section 3, we investigate the hydrodynamical limit of system (7)–(8) and
prove in particular that it gives rise to a somehow natural definition of the
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flux in the conservation equation. Some numerical simulations illustrating
this result are furnished in Section 4. Finally, we end this work with some
conclusions and remarks.

2 Aggregation-like equation

In this section, we consider the equation

{
∂tρ+ ∂x(a(∂xK ∗ ρ)ρ) = 0,

ρ(t = 0, ·) = ρini.
(17)

where K is given by (15). We assume that

0 < ρini ∈ L1 ∩ L∞(R). (18)

When a(x) ≡ x, this equation is the so-called aggregation equation (see e.g.
[2, 3, 4, 6, 19]). It is known that for singular ∂xK, solutions blow up in
finite time. More precisely, we show the blow-up in finite time of L∞ weak
solutions. Most of the results presented in this section are obtained thanks
to a straightforward adaptation of techniques developed in [2, 3, 6, 19].
Therefore some proofs are not detailed.

2.1 Existence and uniqueness of local L∞-weak solution

We prove in this section the local existence and uniqueness of a solution.

Theorem 2.1. Let ρini ∈ L1∩L∞(R). Then there exists a T > 0 such that

there exists a unique weak solution ρ to (17); moreover ρ ∈ C([0, T ];L1 ∩
L∞(R)).

The proof is an adaptation of results in [2, 3, 19]. We first recall the
definition of the characteristics for this system: X(s;x, t) is a solution of the
ODE

dX

ds
(s;x, t) = a(∂xK ∗ ρ)(s,X(s)), X(t;x, t) = x. (19)

Then we have the following representation of the solution of (17):

ρ(t, x) = ρini(X(0;x, t)) exp

(
−

∫ t

0
∂xa(∂xK ∗ ρ)(s,X(s − t;x, t)) ds

)
.

(20)
The proof of this theorem relies strongly on the following estimates:
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Proposition 2.1. Let ρini such as in (18) and let ρ be a solution of (17)
on [0, T ]. Then there exists T > 0 such that for all t ∈ [0, T ], there exists a

nonnegative constant C such that

‖ρ(t, ·)‖L1(R) + ‖ρ(t, ·)‖L∞(R) ≤ C,

where C only depends on ‖ρini‖L1(R) and ‖ρini‖L∞(R).

Proof. The L1 estimate is an easy consequence of the mass conservation.
Then,

|∂tρ+ a(∂xK ∗ ρ)∂xρ| = | − ∂x(a(∂xK ∗ ρ))ρ| ≤ 2‖a′‖∞|ρ|2.

Integrating along the characteristics curves, we get

‖ρ(t, ·)‖L∞ ≤ ‖ρini‖L∞ + 2‖a′‖∞

∫ t

0
‖ρ(s, ·)‖2L∞ ds.

We deduce that as long as 2‖a′‖∞‖ρini‖L∞t < 1,

‖ρ(t, ·)‖L∞ ≤
‖ρini‖L∞

1− 2‖a′‖∞‖ρini‖L∞t
.

We notice that T should satisfies the bound T < 1/(2‖a′‖∞‖ρini‖L∞). �

Proof of existence. We do not detail the proof of the existence of solution
which can be deduced thanks to an adaptation of [2, 3, 19], where the study
of an aggregation equation is proposed. We just recall the main argument
of the proof in the following steps :

1. We construct a family of approximating solutions (ρε) by solving (17)
with initial data ρini ∗ gε where gε is a mollifier.

2. We state uniform Lipschitz estimates in space and time on the se-
quences (a(∂xK ∗ ρε))ε and (Xε)ε and use the Arzelà-Ascoli Theorem
to extract converging subsequence.

3. We pass to the limit in the representation (20). �

Proof of uniqueness. The idea of this proof is to use the quantity S.
Since this idea will be developed for measure-valued solutions, we detail
this proof. Computations are done for regular solutions, nevertheless they
can be made rigorous by introducing a regularization and passing to the
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limit (see [2]). Let us consider two classical solutions ρ1 and ρ2. Denoting
ai = a(∂xK ∗ ρi) for i = 1, 2, we have

∂t(ρ1 − ρ2) + ∂x(a1(ρ1 − ρ2)) + ∂x(ρ2(a1 − a2)) = 0. (21)

Define S(t, x) := (∂xK ∗ (ρ1 − ρ2)(t, ·))(x) which solves the problem

− ∂xxS + S = ρ1 − ρ2, on R. (22)

We notice that when t = 0, we have S(0, x) = 0. From the weak formulation
of equation (21) with the test function S, we have

∫ t

0

∫

R

∂t(ρ1 − ρ2)S dxds = I + II (23)

where

I =

∫ t

0

∫

R

a1(ρ1 − ρ2)S dxds,

II =

∫ t

0

∫

R

ρ2(a1 − a2)S dxds.

For the term I, we have using (22) and integration by parts

I =

∫ t

0

∫

R

a1(−∂xxS+S)S dxds =
1

2

∫ t

0

∫

R

∂xa1 |∂xS|
2 dxds+

∫ t

0

∫

R

a1S
2 dxds,

Moreover,

∂xa1 = −
4

5
c(φ′(−c∂xS1) + φ′(c∂xS1))∂xxS1 ≤ max{

8

5
c‖φ′‖L∞S1, 0},

where we use the fact that φ is a nonincreasing positive function. From
the L∞-bound on S1, we deduce that there exists β ∈ L1([0, T ]) such that
∂xa1 ≤ β. Thus

I ≤
1

2

∫ t

0
β(s)

∫

R

|∂xS|
2 dxds+

∫ t

0

∫

R

a1S
2 dxds.

Then, the estimate |a1| ≤
3
5c gives

I ≤
1

2

∫ t

0
β(s)‖∂xS‖

2
L2 ds+

3

5
c

∫ t

0
‖S‖2L2 ds. (24)
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For the term II of (23), we have thanks to the Cauchy-Schwarz inequality

|II| =

∣∣∣∣
∫ t

0

∫

R

ρ2(a(∂xK ∗ ρ1)− a(∂xK ∗ ρ2))S dxds

∣∣∣∣

≤

∫ t

0
‖ρ2‖L∞‖a′‖∞‖∂xK ∗ (ρ1 − ρ2)‖L2‖S‖L2 ds.

Since ∂xS = ∂xK ∗ (ρ1 − ρ2), we obtain

|II| ≤
1

2

∫ t

0
‖ρ2‖L∞‖a′‖∞(‖∂xS‖

2
L2 + ‖S‖2L2) ds. (25)

Then, we notice that using (22) and thanks to an integration by parts the
left hand side of (23) can be rewritten

∫ t

0

∫

R

∂t(ρ1 − ρ2)S dxds =
1

2

∫

R

(|∂xS|
2 + S2) dx (26)

Finally, we deduce from (23), (24), (25) and (26),
∫

R

(|∂xS|
2 + S2) dx ≤

∫ t

0
‖ρ2‖L∞‖a′‖∞

(
β(s)‖∂xS‖

2
L2 +

3

5
c‖S‖2L2

)
ds.

Uniqueness follows from a Gronwall type argument. �

2.2 Blow-up in finite time

The blow-up of solutions of a one dimensional aggregation solution is pro-
posed for instance in [6] where it is proved by the method of characteristics
that aggregation of mass occurs. In [2, 3], the finite time blow-up is obtained
thanks to an energy estimate. We assume that the initial data is given sym-
metric with respect to 0 and positive. It is easy to show then that for all
t > 0, ρ(t, x) = ρ(t,−x). Moreover, for the sake of simplicity, we assume
that there exists δ > 0 such that supp(ρini) ⊂ [−δ, δ]. Then for all x > δ the
function Sini = K ∗ ρini satisfies ∂xS

ini(x) < 0, so that the characteristics
defined by (19) are inward. Thus for all t > 0, supp(ρ(t, ·)) ⊂ [−δ, δ].

The energy of the system is defined as

E(t) =
1

2

∫

R

(|∂xS|
2 + |S|2) dx =

1

2

∫

R

ρS dx, (27)

where the last formulation is obtained by integration by parts. On the one
hand, we have the obvious bound

E(t) ≤
1

2
‖ρ‖L1‖K ∗ ρ‖L∞ ≤

1

2
‖ρ‖2L1 . (28)
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On the other hand, using (17) we have

d

dt
E(t) =

∫

R

a(∂xS)∂xSρ dx.

Moreover ‖∂xS‖L∞ ≤ 1
2‖ρ

ini‖L1 . Since the function a is assumed to be regu-
lar, there exists ζ > 0 such that a(x)x ≥ ζ|x|2 for all x ∈ [−1

2‖ρ
ini‖L1 , 12‖ρ

ini‖L1 ].
Thus,

d

dt
E(t) ≥ ζ

∫

R

|∂xS|
2ρ dx. (29)

We now make use of the following result whose proof is given in [3]:

Proposition 2.2. There exists a constant C > 0 such that for all δ suffi-

ciently small, we have for any symmetric nonnegative function ρ in L1(R)
with a compact support in [−δ, δ],

∫

R

|∂xK ∗ ρ|2ρ dx ≥ C.

Then, from (29) there exists a constant C > 0 such that for all t > 0,

E(t)− E(0) ≥ Ct.

Therefore, with (28) we have proved

Theorem 2.2. Let ρ be a symmetric solution of (17) with symmetric,

positive initial data with compact support included in [−δ, δ]. For sufficiently

small δ, there exists a time T ∗ > 0 for which the solution ρ ceases to exist,

i.e.

lim
t→T ∗

‖ρ(t, .)‖Lp(R) = +∞, for p ∈ (1,∞).

3 Convergence for the kinetic model

In this section we investigate the convergence of a sequence of solutions to
the microscopic model (7)–(8). We are not able yet to obtain rigorously (11)–
(13). We actually prove that the whole sequence of solutions is convergent,
and that the macroscopic density satisfies a conservation equation with a
uniquely determined flux. More precisely, the main result of this section is
the following theorem. We introduce the macroscopic densities

ρε =

∫

V

fε dv, ρ =

∫

V

f dv.
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Theorem 3.1. Let T > 0 and let us assume that ρini is given in Mb(R).
Let (fε, Sε) be a solution to the kinetic–elliptic equation (7)–(8) with initial

data f iniε such that ρiniε :=
∫
V
f iniε dv = ηε∗ρ

ini where ηε is a mollifier. Then

as ε→ 0, the sequence converges to (ρ, S) in the following sense :

ρε ⇀ ρ in SM := C([0, T ];Mb(R)− σ(Mb, C0)),

Sε ⇀ S in C([0, T ];W 1,∞(R))− weak,

and (ρ, S) is the unique solution in the distribution sense of

{
∂tρ+ ∂xJ = 0,

−∂xxS + S = ρ,
(30)

complemented with initial data ρini and where

J = −∂x(A(∂xS)) + a(∂xS)S a.e.

Before turning to the proof of this result we notice that the problem (30)
is equivalent to

∂tS − ∂xK ∗ [∂x(A(∂xS)) + a(∂xS)S] = 0, in D′(R). (31)

This is obtained by taking the convolution with K of the first equation in
(30). This emphasizes the key role of S in the study of the limit.

3.1 Preliminary results

First we recall the following statement on the kinetic-elliptic problem.

Theorem 3.2. Let T > 0 and ε > 0. Assume f iniε ∈ C(R). Then problem

(7)–(8) complemented with initial data f iniε admits a unique weak solution

in C([0, T ] × R × V ) × C([0, T ];C2(R)). Moreover, we have the following

estimates uniform in ε > 0 :

∫

R

∫

V

|v|kfε dxdv = |v|k|ρini|(R) , k ∈ N. (32)

Proof. The proof of the existence can be found in [27]. The estimates (32)
rely on the conservation of the mass and on the fact that since v ∈ V = Sc,
|v| is constant. �

Then, we furnish a convergence result for a sequence of functions S.
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Lemma 3.1. Let (ρn)n∈N be a sequence of measures that converges weakly

towards ρ in SM. Let Sn(t, x) = (K ∗ ρn(t, ·))(x) and S(t, x) = (K ∗
ρ(t, ·))(x), where K is defined in (15). Then when n→ ∞ we have

∂xSn(t, x) −→ ∂xS(t, x) for a.e. t ∈ [0, T ], x ∈ R,
∂xSn(t, x) ⇀ ∂xS(t, x) in L∞w − ∗

Proof. We have that

∂xSn(t, x) =
(
∂xK ∗ ρn(t, ·)

)
(x) =

∫

R

1

2

x− y

|x− y|
e−|x−y| ρn(t, dy). (33)

Let ε > 0, we regularize the convolution kernel by introducing the following
functions :

φx,ε(y) =





1

2

x− y

|x− y|
e−|x−y|, on (−∞, x− ε] ∪ [x,+∞),

1

2

(
1 + e−ε

ε
(y − x) + 1

)
, on (x− ε, x).

ψx,ε(y) =





1

2

x− y

|x− y|
e−|x−y|, on (−∞, x] ∪ [x+ ε,+∞),

1

2

(
1 + e−ε

ε
(y − x)− 1

)
, on (x, x+ ε).

With this definition, we clearly have for all x, y in R

ψx,ε(y) ≤
1

2

x− y

|x− y|
e−|x−y| ≤ φx,ε(y). (34)

Moreover by definition of the weak convergence,

lim
n→+∞

∫

R

φx,ε(y) ρn(t, dy) =

∫

R

φx,ε(y) ρ(t, dy).

Then, from (33) and (34), we deduce

lim sup
n→+∞

∂xSn ≤

∫

R

φx,ε(y) ρ(t, dy).

Moreover,

∫

R

φx,ε(y) ρ(t, dy) = ∂xS +
1

2

∫ x

x−ε

(
1 +

1 + e−ε

ε
(y − x)− ey−x

)
ρ(t, dy)

≤ ∂xS +
1

2
(1− e−ε)|ρ(t, ·)|(R)

13



By the same token with ψx,ε, we obtain the estimate

∂xS −
1

2
(1− e−ε)|ρ(t, ·)|(R) ≤ lim inf

n→+∞
∂xSn

≤ lim sup
n→+∞

∂xSn ≤ ∂xS +
1

2
(1− e−ε)|ρ(t, ·)|(R).

Letting ε → 0, we get limn→+∞ ∂xSn(t, x) = ∂xS(t, x) for almost all t ∈
[0, T ] and x ∈ R. �

We turn now to the uniqueness of S, which is the key point to get the
uniqueness result in Theorem 3.1.

3.2 Uniqueness for S

In [2] (see proof of Theorem 2.1 too), the authors obtain the uniqueness
on the aggregation equation by introducing a quantity which appears here
naturally to be the potential S. They get an estimate that relies strongly on
the L∞ bound on the density whereas here it is only measure-valued with a
finite total variation. Therefore, we have to work in a weaker space, and we
use the fact that the function S defined by S = K ∗ ρ is a weak solution of
(31). We have the following result.

Proposition 3.1. Let S1 and S2 be two weak solutions of (31) in L∞([0, T ];B(R))∩
C([0, T ];W 1,1(R)) with initial data Sini

1 and Sini
2 respectively. Then there

exists a nonnegative constant C such that

‖S1 − S2‖L∞([0,T ];W 1,1(R)) ≤ C‖Sini
1 − Sini

2 ‖W 1,1(R).

Proof. We introduce a function A ∈ C∞(R) such that A′ = a. Now,
differentiating (31) and noticing that K satisfies −∂xxK +K = δ0, we get

∂t∂xS + ∂x(A(∂xS))− ∂xK ∗A(∂xS) +K ∗ (a(∂xS)S)− a(∂xS)S = 0. (35)

The definition of S, S(t, x) = (K ∗ ρ(t, ·))(x), implies that ∂xS belongs to
L∞(0, T ;BV (R)). Therefore equations (31)–(35) have a sense in their weak
formulation. Let S1 and S2 satisfy the weak formulations of (31)–(35) with
initial data Sini

1 and Sini
2 respectively. We denote by a1 = a(∂xS1) and

a2 = a(∂xS2). We deduce from (35) that

∂t∂x(S1 − S2) + ∂x(A(∂xS1)−A(∂xS2)) =

∂xK ∗ (A(∂xS1)−A(∂xS2)) + a1S1 − a2S2 −K ∗ (a1S1 − a2S2).

14



Multiplying this equation by sign(∂x(S1 − S2)), integrating with respect to
x and using the properties of the convolution product, we deduce

d

dt

∫

R

|∂x(S1 − S2)| dx ≤ ‖∂xK‖∞

∫

R

|A(∂xS1)−A(∂xS2)| dx+

+(1 + ‖K‖∞)

∫

R

|a1S1 − a2S2| dx.

The function a being regular, we deduce

d

dt

∫

R

|∂x(S1 − S2)| dx ≤ C0

∫

R

|∂x(S1 − S2)| dx+ C1

∫

R

|S1 − S2| dx. (36)

By the same token with equation (31), it leads to

d

dt

∫

R

|S1 − S2| dx ≤ C2

∫

R

|∂x(S1 − S2)| dx + C3

∫

R

|S1 − S2| dx. (37)

Summing (37) and (36), we deduce that there exists a nonnegative constant
C such that

d

dt
‖S1 − S2‖W 1,1(R) ≤ C‖S1 − S2‖W 1,1(R).

Applying the Gronwall Lemma allows to conclude the proof. �

3.3 Proof of Theorem 3.1

Let (fε, Sε) be a solution of (7)–(8). For fixed ε > 0, we have fε ∈

C([0, T ] × R × V ). We define the flux Jε :=

∫

V

vfε dv and the macroscopic

velocity

a(∂xSε) = −

∫
V
vφ(v∂xSε) dv∫

V
φ(v∂xSε) dv

=
4

5
v(φ(−v∂xSε)− φ(v∂xSε)).

We can rewrite the kinetic equation (7) as

∂tfε + v∂xfε =
1

ε
(φ(−v∂xSε)ρε −

5

4
fε).

Taking the zeroth and first order moments, we get

∂tρε + ∂xJε = 0, (38)

∂tJε + v2∂xρε =
1

ε

5

4
(a(∂xSε)ρε − Jε). (39)
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From (38), we deduce that

∀ t ∈ [0, T ], |ρε(t, ·)|(R) = |ρini|(R).

Therefore, for all t ∈ [0, T ] the sequence (ρε(t, ·))ε is relatively compact in
Mb(R)− σ(Mb(R), C0(R)). Moreover, there exists uε ∈ L∞([0, T ], BV (R))
such that ρε = ∂xuε. From (38), we get that ∂tuε = −Jε and with estimate
(32) for k = 1 we deduce that uε is bounded in Lip([0, T ], L1(R)). It implies
the equicontinuity in t of (ρε)ε. Thus the sequence (ρε)ε is relatively compact
in SM and we can extract a subsequence still denoted (ρε)ε that converges
towards ρ in SM.

We recall that Sε(t, x) = (K ∗ρε(t, ·))(x) where K(x) = 1
2e

−|x|. Denoting
S(t, x) := (K ∗ ρ(t, ·))(x), since ρ ∈ SM, we have S ∈ L∞([0, T ];BV (R)).
From Lemma 3.1, the sequence (∂xSε)ε converges in L∞w − ∗ and a.e. to
∂xS as ε goes to 0.

From (38)–(39), we have in the distribution sense

∂tρε + ∂x(a(∂xSε)ρε) = ∂x(a(∂xSε)ρε − Jε) =
4

5
ε∂x(∂tJε + v2∂xρε) = Rε.

(40)
Now, for all ψ ∈ C2

c ((0, T )× R), we deduce from (32)

∣∣∣∣
∫

(∂tJε + v2∂xρε)∂xψ dxdt

∣∣∣∣ ≤ |v||ρini|(R)‖∂t∂xψ‖L∞+|v|2|ρini|(R)‖∂xxψ‖L∞ .

This implies that the limit in the distribution sense of the right-hand side
Rε of (40) vanishes.

On the one hand, multiplying equation (8) by a(∂xSε) and introducing
the real-valued function A such that A′ = a, we get

a(∂xSε)ρε = −∂x(A(∂xSε)) + a(∂xSε)Sε, (41)

so that we can rewrite the conservation equation (40) as follows, in D′(R) :

∂tρε + ∂x (−∂xA(∂xSε) + a(∂xSε)Sε) =
4

5
ε∂x(∂tJε + v2∂xρε). (42)

Taking the limit ε→ 0 in the distribution sense of equation (42), we get
that in D′(R)

∂tρ+ ∂x (−∂xA(∂xS) + a(∂xS)S) = 0, (43)

where S(t, x) = (K ∗ ρ(t, ·))(x). We recall that we have chosen the initial
data such that ρiniε = ηε ∗ ρ

ini where ηε is a mollifier. Therefore ρiniε ⇀ ρini

in Mb(R)− σ(Mb(R), C0(R)).
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On the other hand, as noticed above, S satisfies (31) and (35) in the
distribution sense. Proposition 3.1 above asserts that S satisfying (31)–(35)
is unique. Thus ρ is unique since, if we assume that there exist ρ1 and
ρ2 satisfying (43) in the distribution sense, then by the uniqueness of the
solution of (31)–(35), we have that K ∗ ρ1 = K ∗ ρ2 which implies that
ρ1 = ρ2. Finally, thanks to the uniqueness, all the sequence ρε converges to
ρ in SM.

4 Numerical simulations

We illustrate the previous convergence result with some numerical sim-
ulations of the problem (7)–(8). We discretize the kinetic equation thanks
to a semi-lagrangian scheme and the elliptic equation for S is discretized
with P1 finite elements. We refer the reader to [27] for more details on the
numerical scheme. Notice that letting ǫ go to 0 in the simulations is very
difficult because of the high numerical diffusivity of the scheme.

We have chosen to present simulations with realistic numerical values.
For the bacteria Escherichia Coli the velocity is c = 20. 10−6 m.s−1 and the
density of cells is n0 = 1011 m−1. The domain is assumed to be an interval
of length x0 = 1 cm. The turning kernel is given by (3) with φ in (4). Due
to the large value of n0, the value of the parameter α should be very large to
have an influence; thus this parameter does not play a role in the dynamics
of bacteria and for the simulations we have fixed α = 1. We assume that
the initial concentration of cells is a Gaussian centered in the middle of the
domain. We run simulations with three different values for φ0 : φ0 = 0.05,
1 and 20 so that ε = v0/(φ0x0) takes the values 10−4, 2. 10−3 and 4. 10−2.

In Figures 1 and 2 we present evolution of the density of cells with respect
to the time and to ε. We observe the aggregation of cells in the center of
the domain which is the first step of the formation of a Dirac. As ε → 0,
the aggregation phenomenon is faster and the solution seems to converge to
a Dirac. We display the evolution of the gradient of the chemoattractant
concentration ∂xS in Figures 3 and 4. A singularity in the center of the
domain appears clearly.

5 Conclusion

In this work we have studied the convergence of a kinetic model of cells
aggregation by chemotaxis towards a hydrodynamic model which appears
to be a conservation law coupled to an elliptic equation. Although the limit
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Figure 1: Time evolution of the density ρ of bacteria for different values of
the parameters ε. Left : ε = 4. 10−2. Right : ε = 10−4.
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Figure 2: Density ρ of cells for different values of the parameters ε at time
t = 80 s. As ε becomes smaller the concentration effect is more important.

of the macroscopic quantity ρε and Sε have been obtained in Theorem 3.1,
this mathematical result is not completely satisfactory since the limit model
(30) does not allow to define a macroscopic velocity for the flux. Formally,
this macroscopic velocity is given by a(∂xS) defined by (12). However, since

18



0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

12

x (m)

∂ x S

 

 
t=0 s
t=16 s
t=48 s
t=80 s

Figure 3: Time dynamics of the gradient of potential ∂xS with ε = 10−4.
As time increases the derivative of the potential tends to become singular.

ρ is only measure-valued, ∂xS belongs to BV (R), hence we cannot give a
sense to the product a(∂xS)ρ.

A possible convenient setting to overcome this difficulty is the notion of
duality solutions, introduced by Bouchut and James [7]. In this framework,
we can solve the Cauchy problem for conservation equations in one dimen-
sion with a coefficient a that satisfies a one-sided Lipschitz condition. The
theory in higher dimensions is not complete [9], and Poupaud and Rascle
[26] (see also[5]) for another approach, which coincides with duality in the
1-d case. It is actually not difficult to prove that a defined in (12) is one-
sided Lipschitz. In fact, from ρ ≥ 0, we deduce that −∂xxS ≤ S. After
straightforward computation, we get

∂x(a(∂xS)) = −
4

5
c(φ′(−c∂xS) + φ′(c∂xS))∂xxS.

Therefore, φ being nonincreasing and smooth, we deduce

∂x(a(∂xS)) ≤ max{
8

5
c‖φ′‖L∞S, 0}.
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Figure 4: Gradient of the potential ∂xS for different values for ε at time
t = 80 s.

And the properties of the convolution lead to

‖S(t, ·)‖L∞ ≤
1

2
|ρ(t, ·)|(R) =

1

2
|ρini|(R).

Finally, a satisfies the OSL condition :

∃ β ∈ L1([0, T ]), ∂xa(t, ·) ≤ β(t) in the distribution sense.

However, we are not able to prove the uniqueness of the duality solutions
for the hydrodynamic problem. In fact, the uniqueness proof in Section 3.2
relies on the fact that the potential S satisfies equation (31) and thus on
the definition the flux J in (30). In the framework of duality solution, the
conservation equation is not a priori satisfied in the distribution sense. A
generalized flux that has a priori no link with J in (30) is then introduced.
The relation between these flux and therefore the passage from J to the
macroscopic velocity a is still an open question.
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