On the hydrodynamical limit for a one dimensional kinetic model of cell aggregation by chemotaxis - Archive ouverte HAL
Article Dans Une Revue Rivista di Matematica della Università di Parma Année : 2012

On the hydrodynamical limit for a one dimensional kinetic model of cell aggregation by chemotaxis

Résumé

The hydrodynamic limit of a one dimensional kinetic model describing chemotaxis is investigated. The limit system is a conservation law coupled to an elliptic problem for which the macroscopic velocity is possibly discontinuous. Therefore, we need to work with measure-valued densities. After recalling a blow-up result in finite time of regular solutions for the hydrodynamic model, we establish a convergence result of the solutions of the kinetic model towards solutions of a problem limit defined thanks to the flux. Numerical simulations illustrate this convergence result.
Fichier principal
Vignette du fichier
proc-HAL.pdf (280.39 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00527338 , version 1 (18-10-2010)

Identifiants

Citer

Francois James, Nicolas Vauchelet. On the hydrodynamical limit for a one dimensional kinetic model of cell aggregation by chemotaxis. Rivista di Matematica della Università di Parma, 2012, 3 (1), pp.91-113. ⟨hal-00527338⟩
296 Consultations
137 Téléchargements

Altmetric

Partager

More