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Abstract. We study the asymptotic behavior of a non-linear elastic material lying in a thin neighborhood of a non-planar line
when the diameter of the section tends to zero. We first estimate the rigidity constant in such a domain then we prove the
convergence of the three-dimensional model to a one-dimensional model. This convergence is established in the framework of
Γ -convergence. The resulting model is the one classically used in mechanics. It corresponds to a non-extensional line subjected
to flexion and torsion. The torsion is an internal parameter which can eventually by eliminated but this elimination leads to a
non-local energy. Indeed the non-planar geometry of the line couples the flexion and torsion terms.

Keywords: beam, rod, non-linear elasticity, 3D–1D, Γ -convergence

1. Introduction

Thin elastic objects like beams or plates are of crucial importance in structural design for their low
weight and cost. Their properties and the link with the properties of the material they are made of, was a
constant subject of study for mechanicians. Approximations for the displacements at small scale which
are induced by a global displacement of the structure are well known from the pioneer works of Euler,
Bernoulli and Navier. The energy induced by such a global displacement can be estimated and then the
behavior of the structure is known. The mathematical justifications of these approximations are more
recent. A very wide literature is devoted to this subject. Here we are more particularly interested by the
so-called 3D–1D reduction, the limit object is one-dimensional (the reader can refer, for instance, to [2]
or [15] for a review of one-dimensional elastic models).

Non-planar thin objects like shells or curved rods are also important. Here we restrict our attention to
non-planar curved rods: the limit object is a one-dimensional non-planar curve. The mechanical appli-
cations are numerous: let us simply mention that helicoidal springs are nothing else but curved elastic
rods and that they are widely used in mechanisms.

The mathematical literature devoted to curved rods is much more restricted than to the straight ones.
This lack seems essentially due to the difficulty for obtaining fine a priori estimates in this complex
geometry. First works based on formal expansions are due to Jamal et al. [6] or Sanchez et al. [13].
Complete studies have been performed in the last years by Jurak et al. [7], by Griso [5] and by Pideri et
al. [14].

These studies, like besides the major part of the studies devoted to the straight case, are performed
in the framework of linear elasticity. The first reason is mathematical: a fundamental tool was missing
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for obtaining a priori estimates in the context of non-linear elasticity where Korn inequality is of no
help. This tool has been provided very recently by Friesecke, James and Muller [4]. The second reason
comes from mechanics: all theories for rods involves only the parameters (Lamé coefficients or Young
modulus) which describe the linear behavior of the material the rod is made of.

This is remarkable. Rods are weak structures: submitted to reasonable forces they move far from their
initial position. The classical approximation of small displacements is in general not valid, but the pa-
rameters which describe the global behavior can be efficiently computed in the linear framework. This
may seem a paradox. The point is that the rigidity constant is very small in thin domains: the displace-
ment can be large while its gradient remains close to a rotation. We are in a case of large displacement
but with small strain. Starting with a non-linear three-dimensional model of elasticity, we end up with a
non-linear model for a bending and torsion line but the material coefficients of this elastic line depend
only of the linear approximation of the starting model.

The study of straight rods in the non-linear case has recently been performed by Mora et al. [8] by
Mora [9] and by Pantz [12]. The way followed in [14] for estimating the Korn constant of a non-straight
rod and the way followed by Mora et al. for estimating the rigidity constant in a straight but non-linear
rod are very close: the idea is to use Korn (or Rigidity) inequality on small sections of the rod in order
to obtain a step by step estimate for the displacement. The present work is based on this observation.
A major part of it is devoted to the estimation of the rigidity constant on the considered domain. The
transcription of the method used by Mora and Muller is not straightforward as each small part of the rod
is no more similar to a fixed domain. The method used in [14] for estimating the Korn constant cannot
either be transcripted. Indeed the homogeneity property of Korn inequality is a crucial tool in [14] and
nothing similar can be used in the non-linear case.

We make here an intensive use of the paper by Mora and Muller [8]. We use similar assumptions and
try to use close notation. For sake of simplicity, we restrict our attention to homogeneous and isotropic
materials but further generalization to anisotropic materials like it is done in [8] does not present great
difficulties. Our method for proving the Γ -convergence result is also very close to the one called “refined
Γ -convergence and director theories” in this paper. We think that this method is the closest to the method
used by mechanicians and the most natural.

The major originality of our work lies in the application of the rigidity lemma in a special geometry: it
is a neighborhood of a regular non-planar curve (note that we do not try to write the weakest assumptions
for the regularity of the domain and that some of assumptions we make can probably be relaxed). We
do not restrict to circular sections: so we deal with a possible rotation of the section along the line.
Rotation relative to what basis? There is no canonical choice for such a basis. We emphasize that choice
of the Frenet basis is neither canonical neither even possible in general. Our choice has the only but
fundamental advantage that the basis is always well defined. As we desire to take into account a possible
rotation of the section with respect to this basis, there is no further difficulty to take also into account a
possible deformation of the section. That is what we do. The resulting geometry looks like Fig. 4.

We describe precisely this geometry together with the initial and resulting energies in Section 2.
The initial energy corresponds to a general three-dimensional hyperelastic material. We assume for

sake of simplicity that the material is homogeneous and isotropic but this assumption is not fundamental.
The scaling assumed for the energy defines the order of magnitude of the forces which may be applied
to the structure. Our choice is such that the structure resists with a finite energy to displacements the
order of magnitude of which is the length of the rod. In the case of straight rods the choice of the scaling
and its implications on the resulting model has been the subject of long debates but the case of straight
rods is quite special: one can consider a scaling which ensures that the structure resists with a finite
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energy to transverse displacements of order one (this is what is done in [8], leading to a bending–torsion
but inextensional model) or a scaling which ensures that the structure resists with a finite energy to
longitudinal displacements of order one (this is what is done in [1], leading to an extensional string
theory). Here we have no real choice: when the rod is curved this decomposition is not so simple and we
think it is quite unrealistic to take into account forces (as it is done in [5]) which lead to extensional and
bending displacements with the same order of magnitude.

The limit energy is similar to the one obtained in the straight case. It takes into account bending and
torsion. We write it, like mechanicians do, by invoking the rotation of the section as an internal para-
meter. This parameter can of course be eliminated. In the simplest case of homogeneous and isotropic
straight rods with circular section, this elimination is easy. The resulting energy is then a functional of
the displacement only. But in many cases, this elimination leads to a non-local functional. This due to a
bending–torsion coupling (which can result for instance from anisotropy [11]). In our case the coupling
is, even in the isotropic case, complete and it is due to the non-planar geometry of the rod.

At the end of Section 2 we state our main theorem while Sections 3 and 4 are devoted to the proof. In
Section 3 we study the application of the rigidity lemma of Frieseke et al. [4] to the considered domain.
We first prove (Lemma 1) that the rigidity constants of two almost similar domains are close. Then we
prove that the rigidity constant of the considered domain is of order ε−1 (Theorem 2). The situation
is not very different from the case of straight rods. The compactness result follows easily. Section 4 is
devoted to the proof of the Γ -convergence result.

2. The main result

2.1. Description of the beam

First let us define the mean line of the considered beam. Let L be a curve (a regular one-dimensional
manifold) in the physical space R

3 and let ϕ ∈ C3([0, �], R3) be a curvilinear parametrization of L.
For any x1 ∈ [0, �], we denote t(x1) := ϕ′(x1) the unit vector tangent to the curve. We complete

t(x1) in order to get an orthonormal basis (t, n, b)(x1). There are many choices for such a basis. The
Frenet basis is a classical choice. However, it is not defined when the curvature of L vanishes. Moreover
this choice is arbitrary: even when considering a beam with constant section, there is no reason for this
section to be constant in this particular basis. Here we consider the possibility of varying section so the
choice of the basis has no importance. Let us choose it in such a way that n′∧t = 0: the basis is then well
defined by a first-order differential equation as soon as n(0) is given (arbitrarily in the plane orthogonal
to t(0)). We can introduce the two functions τ , ξ in C1([0, �], R) such that

t′(x1) = τ (x1)n(x1) + ξ(x1)b(x1),

n′(x1) = −τ (x1)t(x1), (1)

b′(x1) = −ξ(x1)t(x1).

Note that the curvature of the line can be easily recognized as
√

τ 2 + ξ2 and the torsion of the line as
τξ′−ξτ ′

τ 2+ξ2 .
Now let us describe the section of the considered beam. Let ω be the “prototype section”: a piecewise

C1 domain in R
2. It is a bounded connected open set. Let C be the cylinder of R

3: C := [0, �] × ω and
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Fig. 1. The mean line L of the beam, a non-planar curve.

Fig. 2. The prototype section ω and the reference cylinder C.

Fig. 3. The reference domain Ω.

let y = (y2, y3) be a function in C2(C, R2) such that, for any x1, the mapping (x2, x3) → y(x1, x2, x3) is
a positive diffeomorphism from ω onto its image ωx1 . The domain ωx1 describes the rescaled section at
abscissa x1. We assume that 0 is the inertial center of ωx1 . For the convenience of notations we consider y
as a function from C to R

3 by setting y1(x1, x2, x3) := x1. Then the image of y is a domain in R
3 denoted

Ω that we call the reference domain. In Fig. 2 we represent a possible prototype section (a rectangle),
the corresponding reference cylinder C, while in Fig. 3 we represent the reference domain Ω. For this
figure we have assumed a particular choice of y. For any x1, the mapping (x2, x3) → y(x1, x2, x3) is a
similarity: for sake of simplicity of the drawing, we did not use the possibility of varying the shape of
the section but only its scaling and position. Note that the possibility of a rotating section shows that the
choice we made for the basis (t, n, b) has no importance.

The regularity assumptions we made for y ensures that ∇y is continuous on the compact C with a
positive determinant: there exist positive constants C1, C2 and C3 such that, for all x ∈ C,

∥∥∇y(x)
∥∥ � C1 (2)
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Fig. 4. The beam Ωε at rest.

and

C2 �
∣∣det

(
∇y(x)

)∣∣ � C3. (3)

As we desire to describe a thin non-planar beam, we have now to rescale the sections by introducing a
small parameter ε and to plug them along the line L. Throughout this paper ε denotes a sequence tending
to zero. Without loss of generality, we assume that ε is such that ε−1� is an integer. Then we denote Ψε

the function defined on Ω by

Ψε(y1, y2, y3) := ϕ(y1) + ε
(
y2n(y1) + y3b(y1)

)
(4)

and Φε the composition Φε := Ψε ◦ y. For ε sufficiently small, Ψε is a C2-diffeomorphism from Ω onto
its image denoted Ωε (cf. Fig. 4) (and Φε is a C2-diffeomorphism from C onto Ωε). In the sequel the
set Ωε will be refereed as “the beam” and we will use in it the parameterizations Ψε or Φε. In order to
simplify some expressions appearing in our computations we will use, when no confusion can arise, the
notation y for y(x) and x for Ψε(y) = Φε(x).

The geometry of the beam is then determined by the line L, a unit vector n(0) orthogonal to t(0), the
prototype section ω, the function y and the scaling parameter ε.

In Fig. 4 we represent the beam corresponding to the line L represented in Fig. 1, to the prototype
section represented in Fig. 2 (a rectangle) and to the particular choice of y represented in Fig. 3. Note
that the way the section “turns” around the mean line is a type of “torsion” of the beam which should
not be confused with the torsion of the line L nor with the mechanical torsion which can result from the
displacement of the beam. We emphasize the fact that, in Fig. 4, the beam is at rest.

The regularity assumptions we made for ϕ lead to the following estimates for ∇Ψε: there exist positive
constants C̃1, C̃2 and C̃3 such that, for any y ∈ Ω,∣∣∥∥∇Ψε(x)

∥∥ − 1
∣∣ � C̃1ε (5)

and

(1 − C̃2ε)ε2 �
∣∣det

(
∇Ψε(x)

)∣∣ � (1 + C̃3ε)ε2. (6)

Indeed
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∂1Ψε(y) =
(
1 − ετ (y1)y2 − εξ(y1)y3

)
t(y1),

∂2Ψε(y) = εn(y1), (7)

∂3Ψε(y) = εb(y1).

This leads also to estimates of the area of any section ωε
a := Φε({a} × ω) and of the volume of any part

of the beam defined by a < x1 < b. We have (possibly modifying the positive constants C2 and C3)

C2|ω|ε2 �
∣∣φε

(
{a} × ω

)∣∣ � C3|ω|ε2, (8)

C2(b − a)|ω|ε2 �
∣∣φε

(
[a, b] × ω

)∣∣ � C3(b − a)|ω|ε2. (9)

Note that, when the context allows no confusion, we denote indifferently | · | the two-dimensional or
three-dimensional Hausdorff measure.

2.2. Elastic energies

2.2.1. 3-D elastic energy
Our goal is to study the behavior of the beam Ωε in the framework of non-linear elasticity. A motion

of the beam is a function u belonging to the Sobolev space H1(Ωε, R3) which describes the position of
the deformed beam. We assume that the beam is fixed on its basis {x1 = 0}. So any motion u has to
satisfy u(x) = x when x1 = 0. The space of admissible motions u is denoted:

H1
b(Ωε) :=

{
u ∈ H1(Ωε, R3); u(x) = x when x1 = 0

}
.

The vector field u − Id is usually called the displacement field. It belongs to H1
0(Ωε) := {v ∈

H1(Ωε, R3); v(x) = 0 when x1 = 0}.
The elastic energy is a functional Eε on H1

b(Ωε) of the form

Eε(u) :=
1
ε4

∫
Ωε

W
(
∇u(x)

)
dx,

where the energy density W is regular, objective and non-degenerated: it satisfies [8]

W ∈ C0(
R

3×3, R
)
,

∀F ∈ R
3×3, ∀R ∈ SO(3), W (RF ) = W (F ),

W (Id) = 0, (10)

W is of class C2 in a neighborhood of Id,

∀F ∈ R
3×3, W (F ) � C

(
d
(
F , SO(3)

))2
.

This energy Eε is defined on H1
b(Ωε). It is naturally extended on L2(Ωε, R3) by setting Eε(u) := +∞ if

u does not belong to H1
b(Ωε).
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The scaling ε−4 is needed, as we will see later, to obtain a finite energy when passing to the limit.
From the mechanical point of view this scaling can be interpreted as a choice for the force unit (and
therefore for the energy unit) which is adapted to the weak rigidity of the rod we consider.

We denote

W �in(G) :=
1
2

∂2W

∂F 2
(Id)(G, G). (11)

When ∇u is close to Id then W �in(∇u − Id) is a good approximation for W (∇u): it is the linearized
elastic energy associated to W . It plays an important role in this study. The point is that a thin structure,
like the one we consider, allows for large displacements while the strain remains small. This explains
why the limit model for the rod is completely non-linear but depends only on the linearized part W �in of
the elastic energy W of the material the rod is made of.

We assume for sake of simplicity that the considered material is homogeneous and isotropic:

∀F ∈ R
3×3, ∀R ∈ SO(3), W (FR) = W (F ).

Then the linearized energy takes the form

W �in(∇(u − Id)
)

= µ‖e‖2 +
λ

2

(
tr(e)

)2
,

where e is linearized strain tensor (the symmetric part of ∇u − Id) and the Lamé coefficients, λ and µ,
satisfy µ > 0 and 3λ + 2µ > 0.

2.2.2. The limit one-dimensional model
The limit energy we obtain is the one classically used in mechanics for describing the motion of rods.

Let us describe it: it is a one-dimensional model for the line L. The motion of L is described by a vector
field u on L but the mechanical description is made easier by the introduction of an extra matrix-valued
field r on L. In mechanics, r is interpreted as the rotation of the section of the beam. The space of
admissible couples (u, r) is

Had :=
{

(u, r) ∈ H2(L, R3) × H1(L, SO(3)
)
; u′ = r · t along L;

u
(
ϕ(0)

)
= ϕ(0), r

(
ϕ(0)

)
= Id

}
. (12)

Here L is endowed with the one-dimensional Hausdorff measure and the derivatives are relative to the
curvilinear abscissa. The boundary conditions u(ϕ(0)) = ϕ(0), r(ϕ(0)) = Id are known as the “clamping
conditions”. For any (u, r) ∈ Had, the function r−1r′ belongs to L2(L, R3×3) and takes values among
skew-symmetric matrices. It is classical to associate to such a skew-symmetric matrix the vector1 ṙ such
that, for any V ∈ R

3, ṙ ∧ V = r−1r′ · V . The elastic energy F is characterized by a field of definite
positive symmetric matrices A and reads:

F(u, r) :=
1
2

∫
L

(A · ṙ) · ṙ dH1. (13)

1This vector is interpreted in rods theories as “the variation of the rotation vector of the sections”. Such an interpretation is
valid in linear elasticity. In the non-linear case considered here, the vector ṙ does not derive from any “rotation vector” (which
has no sense).
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The energy is defined on Had but we extend it on L2(L, R3 × SO(3)) by setting F(u, r) := +∞ when
(u, r) does not belong to the admissible space.

Note that the dependence upon u is hidden in the constraint u′ = r · t. Note also that this constraint
implies ‖u′‖ = 1: the line is non-extensional.

In terms of the motion of the line only, the energy reads

F̃(u) := min
r∈L2(L,SO(3))

F(u, r). (14)

Computing this infimum is in general very intricate and leads to a non-local functional. Here the coupling
between u and r is total. This coupling refereed in mechanics as the “flexion–torsion coupling” is due
both to the non-planar geometry of the line L and to the fact that the section is varying.

The matrix A defining F in (13) is related to the geometry of the section and to the material properties
by

A
(
ϕ(x1)

)
:= µJt ⊗ t + Y

(
I2n ⊗ n + I3b ⊗ b + I23(b ⊗ n + n ⊗ b)

)
, (15)

where Y is the Young modulus of the material Y := µ(3λ + 2µ)(λ + µ)−1, I2, I3, I23 are the inertial
moments of the section

I2(x1) :=
∫

ωx1

(y3)2 dy2 dy3, I3(x1) :=
∫

ωx1

(y2)2 dy2 dy3, (16)

I23(x1) := −
∫

ωx1

y2y3 dy2 dy3, (17)

and J is the solution of the classical problem for torsional rigidity:

J(x1) := min
{∫

ωx1

(
(∂3ψ + y2)2 + (∂2ψ − y3)2) dy2 dy3; ψ ∈ H1(ωx1 , R)

}
. (18)

The parameters J , I2, I3 and I23 depend only on the geometry of the rescaled section ωx1 . Finally, on
Had, F reads

F(u, r) =
1
2

∫
L

(
µJ(ṙ · t)2 + Y

(
I2(ṙ · n)2 + I3(ṙ · b)2 + 2I23(ṙ · n)(ṙ · b)

))
dH1. (19)

2.3. The main result

Let |ωε
x1
| denote the (two-dimensional) Hausdorff measure of the section ωε

x1
. For any f ∈ L2(Ωε, Rp),

we denote f̄ ∈ L2(L, Rp) its mean value on each section:

f̄
(
ϕ(x1)

)
:=

1
|ωε

x1
|

∫
ωε

x1

f dH2.

Our main theorem is the following
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Theorem 1.

(i) If (uε) is a sequence in L2(Ωε, R3) with a bounded energy (i.e., Eε(uε) < M ), then there exists a
subsequence still denoted (uε) such that (ūε,∇uε) converges weakly in L2(L, R3 × R

3×3).
(ii) For any sequence (uε) in L2(Ωε, R3) such that (ūε,∇uε) converges weakly to (u, r) in

L2(L, R3 × R
3×3), we have

lim inf Eε(uε) � F(u, r). (20)

(iii) For any (u, r) in L2(L, R3×R
3×3), there exists a sequence in L2(Ωε, R3), (uε) such that (ūε,∇uε)

converges to (u, r) in L2(L, R3 × R
3×3) and

lim sup Eε(uε) � F(u, r). (21)

One may prefer to reformulate the limit energy in terms of the motion of the line only. A trivial
consequence of Theorem 1 reads

Corollary 1.

(i) For any sequence (uε) in L2(Ωε, R3) such that ūε converges to u in L2(L, R3), we have

lim inf Eε(uε) � F̃(u). (22)

(ii) For any u in L2(L, R3), there exists a sequence (uε) in L2(Ωε, R3) such that ūε converges to u in
L2(L, R3) and

lim sup Eε(uε) � F̃(u). (23)

Remark 1. We have decided to formulate this theorem in terms of the actual displacement fields, those
which arise from the physical problem and are defined on Ωε and L. One may prefer to refer to a fixed
functional space. This is what is usually done in the study of straight beams [] and this is actually what
we will do in the proof. Formulating the theorem in a fixed functional space has an important advantage:
it can then be written in terms of Γ -convergence. A first disadvantage is that the choice of the fixed
functional space is somehow arbitrary and one could then wonder whether the theorem is still valid for a
different choice. A second disadvantage is the very intricate expression of the energy in the fixed space.

Remark 2. There is however a canonical way to reformulate the previous theorem in terms of
Γ -convergence. Indeed let us associate to any function u ∈ L2(Ωε, R3) the vector valued measure
|ωε

x1
|−1u(x)1Ωε(x) dx, where 1Ωε denotes the characteristic function of Ωε. In the same way let us asso-

ciate to any u ∈ L2(L, R3) the vector valued measure u dH1
|L, where H1 denotes the one-dimensional

Hausdorff measure. Let us endow the space of such vector valued measures with the weak* topology.
A slightly different version of the previous theorem states the relative compactness of sequences with
bounded energy and the Γ -convergence of Eε to F̃. Indeed it is easy to check that the convergence of uε

to u in the sense of these measures implies, when the energy is bounded, the convergence of ūε to u in
L2(L, R3).
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Remark 3. Let f be a continuous field of forces. A property of Γ -convergence (for details about the
definition and the properties of Γ -convergence the reader can refer to [3]) shows that Theorem 1 remains
valid when adding2 in Eε(uε) and F̃(u) respectively −ε−2

∫
Ωε

f ·uε and −
∫
L |ωx1 |f ·u. A second property

of Γ -convergence shows that a sequence of equilibrium displacements for the beam (i.e., of minimizers
of Eε(uε) − ε−2

∫
Ωε

f · uε) converges to an equilibrium solution for the line L (i.e., a minimizer of

F̃(u) −
∫
L |ωx1 |f · u).

3. Rigidity lemma and compactness

3.1. Uniform estimation of the rigidity constant

For any connected bounded Lipschitz domain D ⊂ R
3 we consider the Lebesgue space L2(D, R3×3)

of matrix valued functions and we denote dD the standard distance induced by the L2-norm. We denote
SD the subset of those functions which take values among rotations SD := L2(D, SO(3)) and we denote
sD ⊂ SD the subset of such functions which are constant.

In a remarkable paper [4] G. Friesecke, D. James and S. Muller proved a rigidity lemma which states
the existence of a positive constant K such that

∀v ∈ H1(D, R3), dD(∇v, sD) � KdD(∇v,SD). (24)

We denote by KD the rigidity constant: i.e., the smallest constant K which satisfies (24).
In order to estimate the asymptotic behavior of the rigidity constant KΩε when ε tends to zero, we

first compare the rigidity constant of two almost identical domains.

Lemma 1. Let D be a domain in R
N and (Dδ) be a sequence of such domains. Assume that, for

any δ > 0, there exists a C1-diffeomorphism Ψδ from D onto Dδ satisfying, at every point x ∈ D,
‖∇Ψδ(x) − Id‖ � δ. Then, for any K � KD, we have

KDδ
� K(1 + δ)

1 − 6δ − 2Kδ
(25)

which clearly implies

lim sup
δ→0

KDδ
� KD. (26)

Proof. Let vδ ∈ H1(Dδ, R3).
• Let rδ ∈ sDδ

such that dDδ
(∇vδ, sDδ

) = ‖∇vδ − rδ‖L2(Dδ) and let us define

wδ := r−1
δ ◦ vδ and w̄δ := wδ ◦ Ψδ + Id − Ψδ (27)

which belong respectively to H1(Dδ, R3) and H1(D, R3). Then we have

dDδ
(∇vδ, sDδ

) = dDδ
(∇wδ, sDδ

) = ‖∇wδ − Id‖L2(Dδ), (28)

dDδ
(∇vδ,SDδ

) = dDδ
(∇wδ,SDδ

). (29)

2Different choices of forces could be considered as in [10] to the price of a different formulation of the theorem.
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Moreover, defining ∇wδ by ∇wδ(x) = ∇wδ(Ψδ(x)), we have

(∇w̄δ − Id) = (∇wδ − Id)(∇Ψδ),

= (∇wδ − Id) + (∇wδ − Id)(∇Ψδ − Id). (30)

Using the assumption ‖∇Ψδ − Id‖ � δ which implies also that |det(∇Ψδ) − 1| �
√

3δ we get by
integration, change of variables and for δ sufficiently small, the following estimates:

‖∇w̄δ − Id‖L2(D) � (1 + 3δ)‖∇wδ − Id‖L2(Dδ), (31)

‖∇w̄δ − Id‖L2(D) � (1 − 3δ)‖∇wδ − Id‖L2(Dδ). (32)

• Now, let ρδ ∈ sD such that dD(∇w̄δ, sD) = ‖∇w̄δ − ρδ‖L2(D). We have

dD(∇w̄δ, sD) = ‖∇wδ∇Ψδ + Id −∇Ψδ − ρδ‖L2(D)

=
∥∥(∇wδ − ρδ) + (Id −∇Ψδ)(Id − ρδ) + (∇wδ − ρδ)

∥∥
L2(D).

By a change of variables, we get the inequality

dD(∇w̄δ, sD) � (1 − 3δ)‖∇wδ − ρδ‖L2(Dδ) − δ‖Id − ρδ‖L2(D). (33)

The definition of ρδ implies

‖∇w̄δ − ρδ‖L2(D) � ‖∇w̄δ − Id‖L2(D).

Using triangular inequality, we get

‖Id − ρδ‖L2(D) � 2‖∇w̄δ − Id‖L2(D).

From (28) and (31) we deduce, for δ sufficiently small,

‖Id − ρδ‖L2(D) � 3‖∇wδ − Id‖L2(Dδ) � 3dDδ
(∇wδ, sDδ

).

Then inequality (33) leads to

dD(∇w̄δ, sD) � (1 − 6δ)dDδ
(∇wδ, sDδ

). (34)

• Now, let Rδ ∈ SDδ
such that dDδ

(∇wδ,SDδ
) = ‖∇wδ − Rδ‖L2(Dδ). We have, for δ sufficiently

small,

dD(∇w̄δ,SD) � ‖∇w̄δ − Rδ ◦ Ψδ‖L2(D)

� ‖∇wδ∇Ψδ + Id −∇Ψδ − Rδ ◦ Ψδ‖L2(D)

�
∥∥∇wδ − Rδ ◦ Ψδ + (Id −∇wδ)(Id −∇Ψδ)

∥∥
L2(D)

� (1 + δ)‖∇wδ − Rδ‖L2(Dδ) + δ(1 + δ)‖∇wδ − Id‖L2(Dδ),
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and, using (28),

dD(∇w̄δ,SD) � (1 + δ)dDδ
(∇wδ,SDδ

) + 2δdDδ
(∇wδ, sDδ

). (35)

Applying the rigidity lemma (24) to D we get

dD(∇w̄δ, sD) � KD(1 + δ)dDδ
(∇wδ,SDδ

) + 2KDδdDδ
(∇wδ, sDδ

)

then, using (34),

(1 − 6δ)dDδ
(∇wδ, sDδ

) � KD(1 + δ)dDδ
(∇wδ,SDδ

) + 2KDδdDδ
(∇wδ, sDδ

),

dDδ
(∇wδ, sDδ

) � KD(1 + δ)
1 − 6δ − 2KDδ

dDδ
(∇wδ,SDδ

), (36)

KDδ
� KD(1 + δ)

1 − 6δ − 2KDδ
. (37)

If K is such that K � Kδ then

KDδ
� K(1 + δ)

1 − 6δ − 2Kδ
. (38)

Proof is concluded as the right-hand side of this inequality tends to K as δ tends to zero. �

As the rigidity inequality (24) is invariant when rescaling the domain and obviously invariant when
rotating it, we easily get the following corollary:

Corollary 2. Lemma 1 remains valid if we only assume that each domain Dδ is almost similar to D.
More precisely if there exist a sequence aδ satisfying limδ→0 δa−1

δ = 0, a rotation rδ and a diffeomor-
phism Ψδ from D onto Dδ satisfying, at every point x ∈ Dδ, ‖∇Ψδ(x) − aδrδ‖ � δ, then inequality (25)
still holds with δ replaced by δa−1

δ .

Indeed, denoting D̃δ := aδ
−1r−1

δ (Dδ), the diffeomorphism Ψ̃δ := aδ
−1r−1

δ ◦ Ψδ maps D on D̃δ and
satisfies ‖∇Ψ̃δ − Id‖ � δaδ

−1.
Now we can state a rigidity theorem for Ωε. Let us introduce a new notation: we denote SΩε the subset

of those functions r in SΩε which depend only on the x1 coordinate. This set can clearly be identify to
L2(L, SO(3)). In the same way, the set of such functions with bounded variations SΩε ∩ BV(Ωε) can be
identified with BV(L, SO(3)). We have

Theorem 2. There exists a constant K such that, for ε sufficiently small and for any u in H1(Ωε),

dΩε(∇u,SΩε) � KdΩε(∇u,SΩε), (39)

dΩε(∇u, sΩε) � K

ε
dΩε(∇u,SΩε). (40)
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Moreover, inequality (39) can be precised in the following way: there exists rε in SΩε ∩ BV(Ωε, SO(3))
such that

‖∇u − rε‖L2(Ωε) � KdΩε(∇u,SΩε), (41)

‖rε‖BV(Ωε) � KdΩε(∇u,SΩε). (42)

Proof. Recalling that ωz denotes the (rescaled) section at abscissa z, let us define Ωz := [0, 1]×ωz . Let
fz be the diffeomorphism from ω onto ωz defined by fz(x2, x3) := y(z, x2, x3). Then gδ := fz+δ ◦(fz)−1

is a diffeomorphism from ωz onto ωz+δ which induces a natural diffeomorphism from Ωz onto Ωz+δ.
Its satisfies

∇gδ − Id = (∇fz+δ −∇fz)(∇fz)−1

and so ‖∇gδ − Id‖ tends to zero as δ tends to zero. Lemma 1 ensures that lim supδ→0 KΩz+δ � KΩz :
the function z → KΩz is upper-semi-continuous. Therefore the rigidity constant KΩz is upper-bounded
by some positive real K for z in the compact [−�, �].

Now, for any z ∈ [−�, � − ε], let us consider the part Ωz
ε of Ωε defined by

Ωz
ε := Φε

(
[z, z + ε] × ω

)
. (43)

It is the image of Ωz by the mapping F z
ε :

F z
ε (u, v, w) := Φε

(
z + εu, f−1

z (v, w)
)
,

which can be rewritten

F z
ε (u, v, w) = ϕ(z + εu) + ε(gεu)2(v, w)n(z + εu) + ε(gεu)3(v, w)b(z + εu).

Let us check that the gradient of F z
ε is close to a similarity. We denote rz the rotation which transforms

the canonical basis (e1, e2, e3) in (t(z), n(z), b(z)). We have, for some constant C, by using the results (7),∥∥∂1F
z
ε − εrz · e1∥∥ =

∥∥ε∂1Φε
(
z + εu, f−1

z (v, w)
)
− εt(z)

∥∥ � Cε2.

It is easier to estimate the two other terms together: we have∥∥∂2F
z
ε − εrz · e2∥∥ +

∥∥∂3F
z
ε − εrz · e3∥∥

� ε
(
‖∇gεu − Id‖ +

∥∥n(z + εu) − n(z)
∥∥ +

∥∥b(z + εu) − b(z)
∥∥)

� Cε2.

Thus ‖∇F z
ε − εrz‖ � 2Cε2 and we can apply Corollary 2. As, for any z ∈ [−�, �], KΩz < K, then, for

ε sufficiently small,

∀z ∈ [−�, � − ε], KΩz
ε

� K(1 + 2Cε2)
1 − (6 + 2K)2Cε2

� 2K. (44)
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A similar reasoning shows, for Ω̃z
ε := Φε([z, z + 2ε] × ω), the existence of a positive constant K̃ such

that

∀z ∈ [−�, � − 2ε], K
Ω̃z

ε
< 2K̃. (45)

Let us now denote nε := �
ε (which was assumed to be an integer). For any integer i ∈ {0, . . . , nε − 1},

let us consider the set Ωiε
ε and introduce the rotation ri

ε such that ‖∇u − ri
ε‖L2(Ωiε

ε ) = dΩiε
ε

(∇u, sΩiε
ε

).
Note that for i < 0, we have ri

ε = Id. The function

rε :=
nε−1∑
i=0

ri
ε1Ωiε

ε

is a piecewise constant function which belongs to SΩε . Rigidity lemma applied to Ωiε
ε reads∫

Ωiε
ε

∥∥∇u − ri
ε

∥∥2
dx � 4K2(dΩiε

ε
(∇u,SΩiε

ε
)
)2

. (46)

By summing over i, we get

‖∇u − rε‖L2(Ωε) � 2KdΩε(∇u,SΩε). (47)

Inequality (39) is proved.
Now let us apply Rigidity lemma to Ω̃iε

ε = Ωiε
ε ∪Ω(i+1)ε

ε states the existence of a rotation r̃i
ε such that∫

Ω̃iε
ε

∥∥∇u − r̃i
ε

∥∥2
dx � 4K̃2(d

Ω̃iε
ε

(∇u,S
Ω̃iε

ε
)
)2

. (48)

Restricting the integral at the left-hand side of this inequality to Ωiε
ε and using (46) we get∫

Ωiε
ε

∥∥ri
ε − r̃i

ε

∥∥2
dx � 8K2(dΩiε

ε
(∇u,SΩiε

ε
)
)2 + 8K̃2(d

Ω̃iε
ε

(∇u,S
Ω̃iε

ε
)
)2

. (49)

The measure of Ωiε
ε was estimated in (9). Thus

∥∥ri
ε − r̃i

ε

∥∥2 � 8
C2|ω|ε3

(
K2(dΩiε

ε
(∇u,SΩiε

ε
)
)2 + K̃2(d

Ω̃iε
ε

(∇u,S
Ω̃iε

ε
)
)2)

. (50)

We get a similar estimate for ‖ri+1
ε − r̃i

ε‖2 by restricting the integral at the left-hand side of (48) to
Ω(i+1)ε

ε . Using the fact that(
d

Ω̃iε
ε

(∇u,S
Ω̃iε

ε
)
)2 =

(
dΩiε

ε
(∇u,SΩiε

ε
)
)2 +

(
d

Ω(i+1)ε
ε

(∇u,S
Ω(i+1)ε

ε
)
)2

we obtain

∥∥ri+1
ε − ri

ε

∥∥2 � 16
C2|ω|ε3

(
K2 + 2K̃2)(d

Ω̃iε
ε

(∇u,S
Ω̃iε

ε
)
)2

. (51)
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We get by summation, for any index i,

(
i∑

j=0

∥∥rj
ε − rj−1

ε

∥∥)2

� i
i∑

j=0

∥∥rj
ε − rj−1

ε

∥∥2

� nε
16(K2 + 2K̃2)

C2|ω|ε3

i∑
j=0

(
d

Ω̃jε
ε

(∇u,S
Ω̃jε

ε
)
)2

� nε
32(K2 + 2K̃2)

C2|ω|ε3

(
dΩε(∇u,SΩε)

)2

� �
32(K2 + 2K̃2)

C2|ω|ε4

(
dΩε(∇u,SΩε)

)2
. (52)

And so,

∥∥ri
ε − r0

ε

∥∥2 � �
32(K2 + 2K̃2)

C2|ω|ε4

(
dΩε(∇u,SΩε)

)2
. (53)

Multiplying by the volume |Ωiε
ε | and summing from i = 0 to nε − 1 leads to

∥∥rε − r0
ε

∥∥
L2(Ωε) � �

ε

√
32C3C

−1
2

(
K2 + 2K̃2

)
dΩε(∇u,SΩε). (54)

Proof of the second inequality is concluded using (47) and triangular inequality.
From (52), we can also deduce an estimate for the variations of rε. We have

‖rε‖BV(Ωε) =
nε∑
j=0

∣∣ωε
jε

∣∣∥∥rj
ε − rj−1

ε

∥∥
�

√
32�|ω|C2

3C−1
2

(
K2 + 2K̃2

)
dΩε(∇u,SΩε). (55)

Hence rε satisfies the two last inequalities of the theorem. �

Corollary 3. There exists a constant K such that, for ε sufficiently small and for any u in H1
b (Ωε),

‖u − Id‖H1(Ωε) � K

ε
dΩε(∇u,SΩε). (56)

Proof. In order to take easily into account the boundary condition, let us extend (without changing the
notations) the domain Ωε by considering suitable extensions of ϕ on [−�, �], of y and Φε on [−�, �]×ω.
We also extend any u ∈ H1

b(Ωε) by setting u = Id on the new part Ω̃ε := Φε([−�, 0] × ω]. Theorem 2
states the existence of r ∈ s

Ω̃ε
satisfying

∫
Ω̃ε∪Ωε

‖∇u − r‖2 dx � K2

ε2

(
d

Ω̃ε∪Ωε
(∇u,S

Ω̃ε∪Ωε
)
)2

.



48 C. Pideri and P. Seppecher / Asymptotics of a non-planar rod in non-linear elasticity

Using the fact that ∇u = Id on Ω̃ε, we have

d
Ω̃ε∪Ωε

(∇u,S
Ω̃ε∪Ωε

) = dΩε(∇u,SΩε).

Restricting the integral on the left-hand side on the previous inequality to Ω̃ε leads to

|Ω̃ε|‖Id − r‖2 � K2

ε2

(
dΩε(∇u,SΩε)

)2
.

Thus

‖Id − r‖2
L2(Ωε) � 2C3

C2

K2

ε2

(
dΩε(∇u,SΩε)

)2

and triangular inequality gives,

‖∇u − Id‖L2(Ωε) �
(√

2C3

C2
+ 1

)
K

ε
dΩε(∇u,SΩε).

The result will be obtained when checked that the Poincaré constant in H1
0(Ωε) is bounded by a constant

independent of ε. Indeed, let us use the change of variables Φε. Using estimations (5), (6) and the fact
that � is an obvious upper-bound for the Poincaré constant on H1

0(C),

‖u − Id‖2
L2(Ωε) � C2ε

2
∫

C

∥∥u
(
Φε(x)

)
− Id

∥∥2
ε2 dx

� C2�
2ε2

∫
C

∥∥∇(u ◦ Φε)(x) − Id
∥∥2

dx

� 2C2�
2ε2

∫
C

∥∥∇u
(
Φε(x)

)
− Id

∥∥2
dx

� 2C2

C3
�2

∫
Ωε

∥∥∇u(x) − Id
∥∥2

dx. �

3.2. Compactness

We use the notations defined in Theorem 1. Let us begin by a general remark:

Remark 4. If vε is a sequence in L2(Ωε, Rp) such that, for some constant M , ‖vε‖L2(Ωε) < εM , then
up to a subsequence, the sequences vε ◦ Ψε and v̄ε converges weakly respectively in L2(Ω) and L2(L).

Indeed, owing to estimation (5) the sequence vε ◦ Ψε is bounded in L2(Ω) and, up to a subsequence
converges weakly to some v0 in L2(Ω). Owing also to estimation (8), the sequence of functions y →
vε ◦ Ψε(y) det(∇Ψε(y))|ωε

y1
| is still bounded in L2(Ω). A subsequence converges weakly to some w0. It

is then easy to check that v̄ε converges weakly to the function x1 →
∫
ωy1

w0(y) dy2 dy3.
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Now, let uε be a sequence with bounded energy (Eε(uε) � M ). Owing to assumption (10), we have

Cε−4(dΩε(∇uε,SΩε)
)2 � Eε(uε) � M. (57)

Then Corollary 3 implies

‖∇uε − Id‖2
H1(Ωε) � ε2 M

K2C
.

Previous remark states that, up to a subsequence, uε := uε ◦Ψε and ∇uε ◦Ψε converge weakly in L2(Ω)
and then ūε and ∇uε converge weakly to some u and r in L2(L). Point (i) of Theorem 1 is proved.

4. Proof of the Γ -convergence result

4.1. Lowerbound

First, in order to take easily into account the boundary condition, we extend (without changing the
notations) the domain Ωε by considering suitable extensions of ϕ on [−�, �], of y and Φε on [−�, �]×ω.
We also extend any u ∈ H1

b(Ωε) by setting u = Id on the new part Ω̃ε := Φε([−�, 0] × ω]).
It is clear that it is enough to consider in the proof of point (ii) of Theorem 1 only sequences (uε) with

bounded energy (Eε(uε) � M ). Moreover we can restrict our attention to a subsequence (still denoted
(uε)) such that lim inf Eε(uε) = lim Eε(uε). The statements will then be proved, when proved for some
subsequence.

In Section 3.2 we did not write all the implications of the rigidity theorem. Under assumption (57),
Theorem 2 states also the existence of rε in SΩε such that

‖∇u − rε‖L2(Ωε) � K
√

MC−1ε2, (58)

‖rε‖BV(Ωε) � K
√

MC−1ε2. (59)

Inequality (59) implies that rε is bounded in BV(L) and then converges strongly in L2(L) to some
r which takes values in SO(3) (in an equivalent way rε := rε ◦ Ψε converges strongly in L2(Ω) to
r := r ◦ y). Inequality (58) implies that ∇uε ◦ Ψε − rε converges strongly to zero in L2(Ω). Therefore
∇uε ◦Ψε converges strongly in L2(Ω) to the function r := r◦y which depends only on the first variable.

We have ∇uε = (∇uε ◦ Ψε)∇Ψε, and from expression (7) we know that ∇Ψε converges uniformly on
Ω to t ⊗ e1. Passing to the limit, we get, in the sense of distributions on Ω,

∇u = (r · t) ⊗ e1.

Hence u depends only on the first variable, ∂1u = r · t, and finally, all along the line L,

u′ = r · t. (60)

From inequality (58) we deduce also that Gε := ε−1r−1
ε (∇uε − rε) satisfies

‖Gε‖ � K
√

MC−1ε
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and so, owing to Remark 4, that Gε := Gε ◦ Ψε converges weakly to some G in L2(Ω). We have
∇uε = rε(Id + εGε) and so

∇uε = rε (Id + εGε)∇Ψε.

Applying this equality to a basis vector ei and deriving with respect to the variable yj , we get for any
(i, j) ∈ {1, 2, 3}2,

∂j∂iuε = rε(Id + εGε) · ∂j∂iΨε + ∂j
(
rε(Id + εGε)

)
· ∂iΨε. (61)

This equality holds in the sense of distributions on Ω and the quantity has to be symmetric with respect
to i and j. For i = 1 and j ∈ {2, 3}, we get

∂j
(
rε(Id + εGε)

)
· ∂1Ψε = ∂1

(
rε(Id + εGε)

)
· ∂jΨε.

Hence, taking j = 2,

rε∂2(Gε) · ∂1Ψε =
(
r′ε + ε∂1(rεGε)

)
· n,

which gives, passing to the limit, r · ∂2(G) · t = r′ · n. Recalling the definition of ṙ (ṙ is the vector such
that ∀V , ṙ ∧ V = r−1r′ · V ),

∂2(G · t) = ṙ ∧ n. (62)

In the same way, taking j = 3 we get

∂3(G · t) = ṙ ∧ b. (63)

From these equalities, which hold in the sense of distributions, we deduce the following structure for
G · t:

(G · t)(y) = h(y1) + ṙ(y1) ∧
(
y2n(y1) + y3b(y1)

)
. (64)

Now let us define on Ω, w̃ε(y) := ε−1uε(y) − rε(y1) · (y2n(y1) + y3b(y1), on [0, �] w̄ε(y1) :=
|ωy1 |−1

∫
ωy1

w̃ε(y) dy2 dy3, and, on Ω, wε(y) = w̃ε(y) − w̄ε(y1). It is easy to check that

∂2wε = rεGε · n, ∂3wε = rεGε · b. (65)

Hence the gradient of wε with respect to the variables y2 and y3 is bounded in L2(Ω) and Poincaré
Wirtinger inequality applied to each section ωy1 ensures that wε is a bounded sequence in L2(Ω). So is
r−1
ε wε, a subsequence of which converges weakly to some w in L2(Ω). Passing to the limit in (65) leads

to

G · n = ∂2w, G · b = ∂3w. (66)

Note that, for almost all y1 ∈ [0, �], the function (y2, y3) → w(y1, y2, y3) belongs to H1(ωy1).
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Let Aε ⊂ Ω the set of points x where ‖Gε(x)‖ >
√

ε. Its measure tends to zero with ε and Gε(1−1Aε)
still converges to G. Let η > 0. From the definition of W �in, we know that, for ε sufficiently small,

‖Gε‖ <
√

ε ⇒ W (Id + εGε) � W �in(εGε)(1 − η).

Recalling that W (Id) = 0, and using the fact that the functional of linear elasticity is quadratic, positive
and so lower semi-continuous, we have

lim inf Eε(uε) = lim inf
(

1
ε4

∫
Ωε

W (Id + εGε) dx
)

� lim inf
(

1
ε2

(1 − C̃3ε)
∫

Ω
W (Id + εGε) dy

)

� lim inf
(

1
ε2

∫
Ω

W
(
Id + ε(1 − 1Aε)Gε

)
dy

)

� lim inf
(

(1 − η)
∫

Ω
W �in((1 − 1Aε)Gε

)
dy

)
� (1 − η)

∫
Ω

W �in(G) dy.

Then, passing to the limit η → 0,

lim inf Eε(uε) �
∫

Ω
W �in(G) dy. (67)

A simple minimization with respect to the components n · G · n, n · G · b and b · G · n of G shows that

W �in(G) � Y

2
(t · G · t)2 +

µ

2
(t · G · n + n · G · t)2 +

µ

2
(t · G · b + n · G · b)2, (68)

where Y is the combination of µ and λ defined in Section 2.2.2. Let us now integrate this expression
over a section ωy1 . For the first term, using (64), and the assumption that (y1, 0, 0) is the inertial center
of the section, we get∫

ωy1

(t · G · t)2 dy2 dy3 � I2(y1)(ṙ · n)2 + I3(y1)(ṙ · b)2 + I23(y1)(ṙ · b)(ṙ · n), (69)

where I2, I3 and I23 are the inertial moments or product defined in Section 2.2.2. For the last two terms,
we use (64) and (66) together. We have∫

ωy1

(
(t · G · n + n · G · t)2 + (t · G · b + n · G · b)2) dy2 dy3

= (t · ṙ)2
∫

ωy1

((
−y3 + ∂2(w · t)

)2 +
(
y2 + ∂3(w · t)

)2)
dy2 dy3

� (t · ṙ)2J(y1), (70)
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where J(y1) is the geometrical parameter defined by the ad hoc minimization problem in 2.2.2. Collect-
ing (67)–(70), we finally obtain

lim inf Eε(uε) � F(u, r).

Eq. (60) already proved that the constraint u′ = r · t is satisfied. The sequence of inequalities (67)–(70)
shows that all components of ṙ are bounded in L2(L, R3). Thus r−1r′ belongs to L2(L, R3×3) and so
does r′. Then r belongs to H1(L, SO(3)) and Eq. (60) shows that u belongs to H2(L, R3). The boundary
conditions are naturally imposed by the fact that u(ϕ(y1)) = ϕ(y1) and r(ϕ(y1)) = Id on the extended
part (y1 ∈ [−�, 0]). The regularity of u and r imposes u(ϕ(0)) = ϕ(0) and r(ϕ(0)) = Id. Hence (u, r)
belongs to the admissible space Had. Proof of the lower-bound inequality (point (ii) of Theorem 1) is
concluded.

4.2. Upperbound

As usual in Γ -convergence proofs, we restrict our attention when proving point (iii) of Theorem 1 to
a function u such that F̃(u) is finite. Let r such that F̃(u) = F(u, r). Using a density argument we also
restrict our attention to regular functions u and r. With the same argument we assume that r = Id in a
neighborhood of ϕ(0).

Using the curvilinear parametrization of L, we consider u := u ◦ ϕ and r := r ◦ ϕ which are defined
on [0, �]. We also consider the vector valued function ṙ defined by ∀V , ṙ(y1) ∧ V = r(y1)−1r′(y1) · V .
We introduce the function ψy1 , solution of the minimization problem (18) and we set ψ(y1, y2, y3) :=
ψy1(y2, y3). Then we define uε on Ωε by defining uε = uε ◦ Ψε on Ω:

uε(y) := u(y1) + εr · (y2n + y3b)

+ ε2(ṙ · t)ψ(y)r · t

+ ε2 −λ

2(λ + µ)

[
(ṙ · b)

y2
3 − y2

2

2
+ (ṙ · n)y2y3

]
r · n

+ ε2 −λ

2(λ + µ)

[
(ṙ · n)

y2
3 − y2

2

2
− (ṙ · b)y2y3

]
r · b. (71)

Let us estimate Gε := ε−1r−1(∇uε − r) or Gε := Gε ◦Ψε. We have (εGε + Id)∇Ψε = r−1∇uε. We can
explicit the partial derivatives of uε and use the expression (7) for the partial derivatives of Ψε. Defining
G by

G :=
[
−(ṙ · b)y2 + (ṙ · n)y3

](
t ⊗ t +

−λ

2(λ + µ)
(n ⊗ n + b ⊗ b)

)
+

[
(ṙ · n)y2 + (ṙ · b)y3

] −λ

2(λ + µ)
(n ⊗ b − b ⊗ n)

+ (ṙ · t)(−y3n ⊗ t + y2b ⊗ t + ∂2ψt ⊗ n + ∂3ψt ⊗ b)

we have

(εGε + Id) · (εn) = (εGε + Id)∇Ψε · e2
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= r−1∇uε · e2

= εn + ε2G · n.

Hence Gε · n = G · n. In the same way we get Gε · b = G · b. Computations are a bit more tricky in the
e1 direction: We have, using (7)

(εGε + Id)∇Ψε · e1 = (1 − ετy2 − εξy3)(εGε + Id) · t
= (1 − ετy2 − εξy3)t + εGε · t + O

(
ε2),

and on the other hand

(εGε + Id)∇Ψε · e1 = r−1∇uε · e1

= r−1(u′ + εr′ · (y2n + y3b) + εr · (−y2τt − y3ξt)
)
+ O

(
ε2).

Recalling that F(u, r) < +∞ implies r−1 · u′ = t, the comparison of the two last equalities leads to
Gε · t = G · t+O(ε). Then Gε converges uniformly to G. This implies also that (∇uε)◦Ψε−r converges
uniformly to zero. Let η > 0. For ε sufficiently small,

W (∇uε) = W
(
r−1∇uε

)
� (1 + η)W �in(r−1∇uε − Id

)
� ε2(1 + η)W �in(Gε).

Hence

Eε(uε) � 1
ε2

(1 + η)
∫

Ωε

W �in(Gε(x)
)

dx

� (1 + η)(1 + C̃3ε)
∫

Ω
W �in(Gε(y)

)
dy,

lim sup Eε(uε) � (1 + η)
∫

Ω
W �in(G(y)

)
dy

and passing to the limit η → 0,

lim sup Eε(uε) �
∫

Ω
W �in(G(y)

)
dy. (72)

Let us check now that the quantity
∫
Ω W �in(G(y)) dy coincides with the expression (19) for F(u, r).

Indeed, concerning the diagonal terms, we have

λ

2
(t·G·t + n·G·n + b·G·b)2 + µ

(
(t·G ·t)2 + (n·G·n)2 + (b·G·b)2)

=
µ(3λ + 2µ

2(λ + µ)

[
−(ṙ · b)y2 + (ṙ · n)y3

]2
.
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The integration of these terms over a section ωy1 gives the quantity

Y

2

[
I3(ṙ · b)2 + I2(ṙ · n)2 + 2I23(ṙ · b)(ṙ · n)

]
.

Concerning the non-diagonal terms, we have n · G · b + b · G · n = 0 and

(n · G · t + t · G · n)2 = (ṙ · t)2(−y3 + ∂2ψ)2,

(b · G · t + t · G · b)2 = (ṙ · t)2(y2 + ∂3ψ)2.

Taking into account the definition of ψ, the integration of these two last terms over a section ωy1 gives
the quantity J(ṙ · t)2. Finally the expression (19) for F(u, r) is recovered.

It is clear that uε belongs to H1
b(Ωε) and that ūε converges to u. We already noticed that (∇uε) ◦ Ψε

converges uniformly to r. Thus ∇uε converges to r. This concludes the proof of point (iii) of Theo-
rem 1. �
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