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Abstract

The skin is made of three main layers which are, from the top to the bottom: the epidermis, the dermis and the

hypodermis. We consider the dermis as made of a Stokes fluid interacting with a periodic network of elastic fibers,

assumed to obey the linearized elasticity law of behaviour. Above and below, the epidermis and the hypodermis

are elastic solids. As the dimension of the thickness is very small compared to the two others, we assume periodic

boundary conditions in those two planar directions. We study the 3d fluid-structure interaction system in a first

part, and in a second part, we make the characteric size of the periodic element of the network go to zero in order

to find an homogenized law for the whole skin. Starting from linear elastic materials, we find a viscoelastic law at

the limit.

Keywords: fluid-structure interaction, periodic unfolding, homogenization.
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Introduction

Understanding the mechanical behaviour of the skin is of great interest in a lot of medical domains (for example
surgery, imagery, anatomy, oncology) but also in less expected fields like cosmetics, sport clothes designing, or car
crash study. As skin is the most functional organ of our body, it is made of a lot of components (such as blood vessels,
collagen fibers, nerves) organised in a very complex multilayered structure, whose three main layers are, from the top
to the bottom: the epidermis, the dermis and the hypodermis.
The epidermis is a thin layer (about 0.1 mm) made of cells called keratinocytes, which move from its bottom to its
top and change of nature during this migration, to end up dying at the surface. The dermis is the main layer (some
mm of thickness, 15-20 % of the total body weight) which contains the blood vessels, the lymph vessels, the nerve
endings, the hair follicles, the hair muscles, the sebaceous glands and the sweat glands. It is a connective tissue made
of fibrin proteins (collagen, elastin and reticulin) and of a surrounding matrix of ground substance, an amorphous gel
which does not leak out from the skin, even under high pressure. The hypodermis is a fibrofatty layer (about 10 % of
the total body weight) whose thickness varies a lot, depending on the location on the body (between 1 to tens mm).
See [11] for more details.
A comprehensive experimental study of skin mechanics would require to analyse separately the in vivo behaviour of
each of those components, which is impossible, but also their interactions. Nevertheless, the macroscopic behaviour
has been widely studied by biomechanicians, which agree to describe the skin as a viscoelastic non-linear quasi-
incompressible material (see [11], [22]).
A very accurate description of the tissues has been made with use of the mixture theory, taking into account cells,
extracellular matrix, extracellular liquid, and possibly vascular or lymphatic network (see [4], [1]). This kind of
approach uses the volume ratio of each components, and recquires to be between the cellular and the tissue scale.
Here, we look for a macroscopic modeling of the mechanical behaviour of the tissue.
All the previous attempts to derive such a law at the macroscopic scale that would fit the experiments considered the
skin as a solid material. Here, we change the point of view and try a different approach from all the one listed by
Humphrey in [21], to consider the skin as a simple fluid-structure interaction system. Indeed, it is made of about 70 %
of water, mainly located in the ground substance (itself in the dermis). We want to study the behaviour of a sample of
skin, that we model as a tridimensionnal box. As it appears that the total thickness of the skin is neglectible compared
to its surfacic extension, we assume periodic boundary conditions on the lateral sides of this box (see schema que je
dois faire) to represent an infinite domain in the planar directions. Besides, this small thickness makes the in vivo
mechanical experiments on the skin difficult to realize: they require complex devices and small sollicitations, in order
to be sure that the underlying tissues are not involved in the measurements (if one pushes too heavily on a part of
the body, it is impossible to separate the contribution of the skin from the muscle’s one for example). Hence, we can
consider that our box of skin remain still during the study: the domain of interest does not move, and we choose the
framework of the small perturbations.
We make a simplifying assumption: both solid and fluid materials of the skin are isotrope and homogeneous. We
model the dermis as a periodic network of fibers assumed to obey the linearized law of elasticity (see [6] or [27] for
a general presentation of the linearized elasticity), interacting with a viscous incompressible Stokes fluid. Epidermis
and hypodermis are also modeled as linear elastic materials. The variables of interest are the structure displacement
field and the fluid velocity field. They are coupled by transmission conditions upon the velocity and the forces at
the fluid-structure interface. To make the study easier, we define a whole displacement as the solid displacement in
the solid, and the integral of the velocity in the fluid. In the class of the fluid-structure interaction problems, this
model is one of the simplest: everything is linear and the domain is not moving, but we could not require much more
complexity to go on with the homogenization step.
The paper is organized as follows: in the first section, we study this fluid-structure interaction system with help of
classical tools (see [25], [18]). We begin by deriving some a priori estimates for the fluid velocity and the structure
displacement, that we can express in terms of the total structure displacement field. Those estimates enable to
chose the right functional spaces in which we have to look for this displacement field. We give the weak formulation
of our fluid-structure interaction system. Then, we give the existence result. The main steps of its proof are the
following: build appropriate basis of the functional spaces. Those basis enable to define finite-dimensional spaces that
are Galerkin spaces for our problem, that reduce the system to ODEs in time, that have solutions. Then, one has to
proof the convergence of the finite-dimensional solutions to the global solution.
In the section 2, we consider the ε-dependent system. We rewrite the previous weak formulation with help of the
periodic unfolding operator first presented in [9]. Then, we use the strategy presented in [2]: from bounds on the
original fields, we deduce bounds on the unfolded fields; those bounds enable to state convergences of the unfolded
fields in appropriated spaces. We then pass to the limit in the weak formulation with use of well chosen test functions,
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in order to get the macroscopic and the microscopic behaviours. In the section 3, we make the study of the limit weak
formulation, in the Laplace domain to ease the manipulation of the time derivatives. We define correctors for our
microscopic problem, and fourth-order elasticity tensors with help of those correctors, in order to get a unified weak
formulation involving only macroscopic test functions. We finally come back in the time-domain, and find macroscopic
viscoelastic effects.
We use Einstein convention for summing, and the common Kronecker symbol δij = 1 if i = j, and 0 if i 6= j. Besides,
given two tensors of order 2 A and B, and a fourth-order tensor M , we will denote as follows the double contraction
of tensors

A : B = aijbklei ⊗ ej : ek ⊗ el = aijbklδjkδil = aijbji

A : M : B = aijmklrsbpqei ⊗ ej : ek ⊗ el ⊗ er ⊗ es : ep ⊗ eq = aijmklrsbpqδjkδilδspδrq = aijmjiqpbpq

Finally, given any vecto field v, we denote D(v) is symmetrized gradient. If there is any ambiguity concerning the
variable with respect to which it is taken, we will clear it by writing explicitely the macroscopic variable x or the
”microscopic” y

D(v) =
1

2
(∇v + (∇v)T ) Dx(v) =

1

2
(∇xv + (∇xv)

T ) or Dy(v) =
1

2
(∇yv + (∇yv)

T )

1 Preliminary study

In this section, the parameter ε, characteristic length of the periodic element of the network, is kept fixed and we
study the model of fluid-structure interaction system of interest.

1.1 Notations

The domain The study is tridimensional. The coordinates of a point x are:

x = (x1, x2, x3) ∈ R
3.

A box of skin Ω is considered. It is divided into three layers: the epidermis Ω+, upper layer of thickness e, the
hypodermis, Ω−, lower layer of thickness h and the dermis Ωd, middle layer of thickness L, as described by the
schematic view (Figure 1).

Ω = ]0, L[
2 × ]−h, L+ e[ ,

Ω+ = ]0, L[
2 × ]L,L+ e[ , Ωd = ]0, L[

3
, Ω− = ]0, L[

2 × ]−h, 0[ .

The first step of the modeling is to reduce the number of components of the model. Hence, we consider the epidermis
and the hypodermis in their entire part (and do not consider their components), and divide the dermis into the fibers
and the ground substance. The epidermis and the hypodermis are assumed to be solid materials, obeying the linearized
law of elasticity. The dermis is modeled as solid fibers interacting with the ground substance assumed to behave as a
Stokes incompressible fluid. The figure (1) gives an idea of this simplification.

The second step of the modeling is to assume that the network of fibers is periodically structured, and that the
characteristic size of this network (in every direction), denoted ε, is very small. The figure (2) describes this periodicity.
The part filled with fluid belongs to the dermis and is denoted Ωε

f . The solid part Ωε
s is made of the epidermis Ω+,

the hypodermis Ω− and the fibers, denoted Ωε
c to refer to the collagen. We denote

• Ω
ε

f ∩ Ω
ε

s = Σε the fluid-structure interface,

• Γ+ (resp Γ−) the top, (resp. the bottom), of the skin box,

• Γl, the lateral sides of this box,

• ∂Ω = Γl ∪ Γ+ ∪ Γ− the lateral side, the top and the bottom.
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The fields

• u is the fluid velocity,

• ϕ is the solid displacement,

• g is the surfacic force upon the solid,

• ff and fs are the volumic forces imposed upon the fluid, resp. the solid.

Remark 1 We decide to omit the dependency of the fields on the parameter ε in this first section, where ε is kept
fixed, to lighten the notations. This dependency is reminded with the domains (like Ωε

s or Ωε
f ).

1.2 The problem

Our problem lies in the category of the fluid-structure interaction ones, but is of the simplest kind: everything is
linear and the domain is not moving along the time. Nevetheless, it is satisfying from the modeling point of view: the
experiments made on the skin require very small displacement fields (in order to be sure of sollicitating only the skin,
and not the underlying tissues), and it seems reasonable to assume that the ground substance is not very turbulent
(and to neglect the non-linear term of the Navier-Stokes equations).

The equations For the sake of clarity, we assume that the solid material and the fluid have the same density ρ = 1,
but the study also holds when considering different densities. We look for two vector fields u and ϕ, and one scalar
field p such that

ut − div σf (u) = ff in Qε
f

div u = 0 in Qε
f

ϕtt − div σs(ϕ) = fs in Qε
s

with Qε
i =]0, T [×Ωε

i . We want those fields to be periodic over Γl. The transmission conditions over the fluid-
structure interface are

u = ϕt in ]0, T [×Σε and σs.ns = σf .nf in ]0, T [×Σε. (1)

The last condition expresses the continuity of the stress components. As we assumed that the solid is isotropic,
homogeneous and obeys the linearized law of elasticity, its constraints tensor writes:

σs = λ div (ϕ)I + 2µD(ϕ)

where λ and µ are the Lamé coefficients and I is the identity tensor (see [6] or [27] for more details). The fluid is
assumed to be newtonian, so its constraints tensor writes (see [18] for more details):

σf = −pI + νD(u)

in which ν is the dynamic viscosity of the fluid. Rewriting this system with the boundary and the initial conditions,
one obtains: 





ut − ν divD(u) + ∇p = ff a.e. in Qε
f ,

div u = 0 a.e. in Qε
f ,

ϕtt − div (λ div(ϕ)I + 2µD(ϕ)) = fs a.e. in Qε
s,

ϕ = 0 a.e. in ]0, T [×Γ−,

σs.n = g a.e. in ]0, T [×Γ+,

u, ϕ, p periodic a.e. in ]0, T [×Γl,

u(0, x) = 0 a.e. in Ωε
f ,

ϕ(0, x) = 0 a.e. in Ωε
s.

(2)

The external load g is supposed to be equal to zero at the initial and final times: g(x, 0) = g(x, T ) = 0. This aims
at modeling a whole experiment on the surface of the skin: at the initial time, we begin to apply a force on the top,
and the time at which we end it is T . The forces will be taken as regular as necessary. Existence and uniqueness are

4



proved [24] and in [14] in a slighty different context. We just have to adapt their result to our case, and namely prove
similar a priori estimates. The estimate of the pressure will be directly made from the weak formulation.
We adopt a classical formalism in fluid structure interaction study by considering a single velocity field and a single
displacement field for the whole structure. This is possible thanks to (1). Hence, we extend ϕ and u to the whole
domain Ω by setting:

u(t, x) = ϕt(t, x) a.e. in Ωε
s, ϕ(t, x) =

ˆ t

0

u(s, x)ds a.e. in Ωε
f . (3)

That enables us to think of the displacement field and the velocity field in the whole domain. We define, for any field
ψ ∈ H1(Ωε

s), the following notation:

Eε
s (ψ) = λ

ˆ

Ωε
s

(trD(ψ))
2

+ 2µ

ˆ

Ωε
s

D(ψ) : D(ψ),

doing so, the elastic energy of the solid domain writes

Eε
s (ϕ(t)) = Eε

s

(
ˆ t

0

u(s)ds

)
.

1.3 Weak formulation and main result

As usual, if the strong problem (2) has a solution (note that we do not say that it has one, but place ourselves in
the case where there is one. Linear PDEs do not all admit strong solutions, but this assumption enables to find the
appropriate energy spaces and the weak formulation).To establish the weak formulation, one has to multiply the fluid
and the solid equations by a velocity field v ∈ H1(Ω), v being null on the bottom and periodic on the lateral sides,
and then integrate over the fluid and solid domain, using the Green formula, the conditions (1) and

−
ˆ

Ωi

div σi · v =

ˆ

Ωε
i

σi : D(v) −
ˆ

∂Ωε
i

(σi · n) · v for i = s or f.

Using the fact that σs · n = σf · n over Σε, the periodicity over Γl, and the boundary conditions over Γ+ and Γ− we
get

ˆ

Ω

∂u

∂t
· v +

ˆ

Ωε
f

νD(u) : D(v) −
ˆ

Ωε
f

p div v+

ˆ

Ωε
s

λ div

(
ˆ t

0

u(s)ds

)
div v +

ˆ

Ωε
s

2µD

(
ˆ t

0

u(s)ds

)
: D(v) =

ˆ

Γ+

g · v +

ˆ

Ω

f · v

Now, we can precise the spaces for this weak formulation. We begin by extending all given pressure field defined
on Ωε

f on the whole domain Ω by taking it equal to zero in the solid domain. This enables to work with a domain that
does not depend on ε, which will be useful in the homogenization part. We set

W = {v ∈ H1(Ω; R3) periodic on Γl and null on Γ−}, (4)

Wdiv 0 = {v ∈W s.t. div v = 0 a.e. in Ωε
f},

P = {p ∈ L2(Ω) and p = 0 in Ωε
s},

Wf = {v ∈ H1(Ωε
f ; R3) periodic on Γl},

Ws = {v ∈ H1(Ωε
s; R

3) periodic on Γl and null on Γ−}.

Restrictions of functions belonging to W to the fluid, respectively the solid domain, lie in Wf , resp. Ws. We introduce
the following notations

af (u, v) = ν

ˆ

Ωε
f

D(u) : D(v), as(u, v) = µ

ˆ

Ωε
s

D(u) : D(v) + λ

ˆ

Ωε
s

div u div v.
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The weak formulation writes





find u ∈ L2((0, T );Wf ), ϕ ∈ L∞((0, T );Ws) and p ∈ H−1((0, T ); P) such that ∀ v ∈W

d

dt

(
ˆ

Ωε
f

u · v
)

+
d

dt

(
ˆ

Ωε
s

ϕt · v
)

+ af (u, v) + as (ϕ, v) −
ˆ

Ωε
f

p div v =

ˆ

Ω

f · v +

ˆ

Γ+

g · v,

ϕt = u on Σε,

div u = 0 a.e. in Ωε
f ,

u(0, x) = 0 a.e. in Ωε
f ,

ϕ(0, x) = 0 a.e. in Ωε
s.

(5)

Using the velocity field u, and the formula (3), and taking divergence free test functions, we get that this auxiliary
weak formulation can be written without the pressure






find u ∈ L∞(0, T ;L2(Ω; R3)) ∩H1(0, T ;W ∗) such that ∀ v ∈Wdiv 0

d

dt

(
ˆ

Ω

u · v
)

+ af (u, v) + as

(
ˆ t

0

u(s)ds, v

)
=

ˆ

Ω

f · v +

ˆ

Γ+

g · v,

u(0) = 0 in W ∗,
ˆ t

0

(u(s)|Ωε
f
)
∣∣∣
Σε

=

ˆ t

0

(u(s)|Ωε
s
)
∣∣∣
Σε
.

(6)

Under assumptions (22) (see below in Theorem 1), those formulations hold in H−1(0, T ). We have the following result:

Theorem 1 Assume that

f ∈ L2(0, T ;L2(Ω; R3)) and g ∈ H1
0 (0, T ;L2(Γ+; R3)).

Then, there exists a unique u ∈ L∞(0, T ;L2(Ω; R3)) ∩H1(0, T ;W ∗) which satisfies, considering (3)

u|Ωε
f
∈ L2(0, T ;Wf ), div u|Ωε

f
= 0, ϕ ∈ L∞(0, T ;W )

and (6). Moreover, there exists a constant C which does not depend on ε such that

‖ u ‖L∞(0,T ;L2(Ω;R3)) + ‖ u ‖L2(0,T ;H1(Ωε
f
;R3)) + ‖ ϕ ‖L∞(0,T ;H1(Ω;R3))) +‖p‖H−1(0,T ;L2(Ωd))

≤ C
(
‖ f ‖L2((0,T )×Ω;R3) + ‖ g ‖H1(0,T ;L2(Γ+;R3))

)
,

‖ u ‖H1(0,T ;W∗) ≤ C
(
‖ f ‖L2((0,T )×Ω;R3) + ‖ g ‖H1(0,T ;L2(Γ+;R3))

)

Proof. The proof of this theorem uses the classical tools presented, for example, in [24] or [25]. Let us sketch briefly
the main steps

• choose an orthonormalized basis of W , and define the finite-dimensional Galerkin spaces of approximation,

• in those spaces, reduce the weak auxiliary formulation to an ODE initial value problem, for which existence and
unicity hold,

• use the energy estimates to get weak convergences of the sequence of Galerkin approximations,

• prove that the limit satisfies the weak auxiliary formulation,

• prove the uniqueness by studying the difference between two solutions in the weak formulation.

Afterwards, we will get

u ∈ H−1(0, T ;Wdiv0) ∩ L∞(0, T ;L2(Ω; R3)) ∩H1(0, T ;W ∗),

D(u) ∈ L2(0, T ;L2(Ωε
f ; R9))

ϕ ∈ L∞(0, T ;H1(Ωε
s; R

3)) D(ϕ) ∈ L∞(0, T ;L2(Ωε
s; R

9)).

6



Moreover if we assume that

f ∈ Hk
0 (0, T ;L2(Ω; R3)) and g ∈ Hk+1

0 (0, T ;L2(Γ+; R3))

where k belongs to N
∗, then we will obtain

u ∈W k,∞(0, T ;L2(Ω; R3)) and ϕ ∈W k,∞(0, T ;H1(Ω; R3)).

A problem appears when considering the weak convergences of the Galerkin sequences: some of them hold in ε-
dependent spaces, and that could be annoying in the homogenization process. This is why we have to show that in
the a priori estimates of the problem (5), the constants do not depend on ε. This is what we do now.

We come back to the formulation (6). In this formulation we can not take v = u as test-field because u only belongs
to H−1(0, T ;Wdiv0). This is the reason why we now consider two sequences

(
fn

)
n∈N

and
(
gn

)
n∈N

satisfying

fn ∈ H1
0 (0, T ;L2(Ω; R3)), gn ∈ H2

0 (0, T ;L2(Γ+; R3)),

fn −→ f strongly in L2((0, T ) × Ω; R3), gn −→ g strongly in H1(0, T ;L2(Γ+; R3)). (7)

We denote un, ϕn and pn the corresponding solutions of the weak problem (5) (with fn and gn in the right hand side).
Now we have

un ∈W 1,∞(0, T ;L2(Ω; R3)) ∩ L2(0, T ;Wdiv0) and ϕn ∈W 1,∞(0, T ;H1(Ω; R3)).

So, now we can choose a field v ∈ L2(0, T ;Wdiv 0) in (6) (with fn and gn in the right hand side). We get

ˆ

Ω

∂un

∂t
· v +

ˆ

Ωε
f

νD(un) : D(v) +

ˆ

Ωε
s

λ div

(
ˆ t

0

un(s)ds

)
div v

+

ˆ

Ωε
s

2µD

(
ˆ t

0

un(s)ds

)
: D(v) =

ˆ

Γ+

gn · v +

ˆ

Ω

fn · v

Taking now v = un, leads to the following equality:

d

dt

(
ˆ

Ω

|un(t)|2
2

)
+

ˆ

Ωε
f

ν|D(un)|2 +
1

2

dEε
s (ϕn(t))

dt
=

ˆ

Γ+

gn · un +

ˆ

Ω

fn · un

We integrate in time this equation. The energy of the entire domain (both fluid and solid) at the initial time is null,
because nothing is moving, hence for almost every t ∈ (0, T )

ˆ

Ω

|un(t)|2
2

+

ˆ t

0

ˆ

Ωε
f

ν|D(un)|2 +
1

2
Eε

s (ϕn(t)) =

ˆ t

0

ˆ

Γ+

gn · un +

ˆ t

0

ˆ

Ω

fn · un (8)

The boundary integral can be transformed, thanks to the assumptions upon gn and (3)

ˆ t

0

ˆ

Γ+

gn · un =

ˆ

Γ+

gn(t) · ϕn(t) −
ˆ t

0

ˆ

Γ+

gn,t · ϕn

Now, we use three things to obtain the estimates: the Gronwall’s lemma and the two following inequalities:

ab ≤ r2

2
a2 +

1

2r2
b2 (9)

ˆ t

0

ˆ

Ωi

pq ≤
ˆ t

0

‖ p ‖L2(Ωi)‖ q ‖L2(Ωi) ≤
(
ˆ t

0

‖ p ‖2
L2(Ωi)

) 1
2
(
ˆ t

0

‖ q ‖2
L2(Ωi)

) 1
2

(10)

and denoting by LHS the left-hand side of (8):

LHS ≤
∣∣∣∣∣

ˆ

Γ+

gn(t) · ϕn(t)

∣∣∣∣∣+

∣∣∣∣∣

ˆ t

0

ˆ

Γ+

gn,t · ϕn

∣∣∣∣∣+
1

2

ˆ t

0

‖ un ‖2
L2(Ω) +

1

2

ˆ t

0

‖ fn ‖2
L2(Ω;R3)
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As |D(un)|2 ≥ 0, we can temporarily ignore this term, and get for almost every t ∈ (0, T )

ˆ

Ω

|un(t)|2
2

+
1

2
Eε

s (ϕn(t)) ≤
∣∣∣∣∣

ˆ

Γ+

gn(t) · ϕn(t)

∣∣∣∣∣+

∣∣∣∣∣

ˆ t

0

ˆ

Γ+

gn(s) · ϕn(s)

∣∣∣∣∣+
1

2

ˆ t

0

‖ un ‖2
L2(Ω;R3) +

1

2

ˆ t

0

‖ fn ‖2
L2(Ω;R3)

≤ r2

2
‖ ϕn(t) ‖2

L2(Γ+;R3) +
1

2r2
‖ gn(t) ‖2

L2(Γ+;R3) +

∣∣∣∣∣

ˆ t

0

ˆ

Γ+

gn,t · ϕn

∣∣∣∣∣

+
1

2

ˆ t

0

‖ un ‖2
L2(Ω;R3) +

1

2

ˆ t

0

‖ fn ‖2
L2(Ω;R3) (11)

At this step, thanks to the above inequalities (9) and (10), we have that

∣∣∣∣∣

ˆ t

0

(
ˆ

Γ+

gn,t(s) · ϕn(s)

)
ds

∣∣∣∣∣ ≤
1

2

ˆ t

0

‖ gn,t ‖2
L2(Γ+;R3) +

1

2

ˆ t

0

‖ ϕn(s) ‖2
L2(Γ+;R3) ds. (12)

The trace theorem applied to ϕn(t) that belongs to H1(Ω+; R3), gives

‖ ϕn(t) ‖2
L2(Γ+;R3) ≤ C0

(
‖ ϕn(t) ‖2

L2(Ω+;R3) + ‖ ∇ϕn(t) ‖2
L2(Ω+;R9)

)

where C0 depends only on Ω+. We have to bound the norm of ϕn(t) and its gradient over the domain Ω+. We are
going to make use of the two following inequalities

‖ ϕn(s) ‖2
L2(Ω+;R3)=

ˆ

Ω+

|ϕn(t)|2 =

ˆ

Ω+

∣∣∣∣
ˆ t

0

un(s)

∣∣∣∣
2

ds ≤
ˆ

Ω+

t

ˆ t

0

|un(s)|2 ds
ˆ t

0

‖ ϕn(s) ‖2
L2(Ω+;R3) ds ≤

ˆ t

0

ds

ˆ

Ω+

s

ˆ s

0

|un(r)|2 dr ≤
ˆ t

0

ds

ˆ

Ω+

s

ˆ t

0

|un(r)|2 dr ≤ T 2

2

ˆ t

0

‖ un(s) ‖2
L2(Ω+;R3)

and for the gradient, we use the Korn’s inequality for fields in H1(Ω+; R3), which writes (for a.e. t ∈ (0, T ))

‖ ∇ϕn(t) ‖2
L2(Ω+;R9) ≤ CK

[
‖ ϕn(t) ‖2

L2(Ω+;R3) + ‖ D(ϕn)(t) ‖2
L2(Ω+;R9)

]

≤ CK

[
‖ ϕn(t) ‖2

L2(Ω+;R3) +Eε
s (ϕn(t))

]

where CK only depends on Ω+. Finally

ˆ t

0

‖ ϕn(s) ‖2
L2(Γ+;R3) ds ≤ C0

(
ˆ t

0

‖ ϕn ‖2
L2(Ω+;R3) +

ˆ t

0

‖ ∇ϕn ‖2
L2(Ω+;R9)

)

≤ C

ˆ t

0

‖ un ‖2
L2(Ω+;R3) +C

ˆ t

0

Eε
s (ϕn(s))ds (13)

where the constant C depends on C0, CK and T . Considering (11), (12) and (13) we finally get

‖ un(t) ‖2
L2(Ω;R3) +Eε

s (ϕn(t)) ≤C1

(
ˆ t

0

Eε
s (ϕn(s)) +

ˆ t

0

‖ un ‖2
L2(Ω;R3)

)

+ C2

((
1 +

1

r2

)
‖ gn ‖2

H1(0,T ;L2(Γ+;R3) + ‖ fn ‖2
L2((0,T )×Ω;R3)

)

+ r2C0CKEε
s (ϕn(t))

where the constants C1 and C2 depend on C0, CK and T . We fix r =
1√

2C0CK

and get

1

2

[
‖ un(t) ‖2

L2(Ω;R3) +Eε
s (ϕn(t))

]

≤ C1

(
ˆ t

0

Eε
s (ϕn(s)) ds+

ˆ t

0

‖ un ‖2
L2(Ω;R3)

)
+ C3

(
‖ gn ‖2

H1(0,T ;L2(Γ+;R3)) + ‖ fn ‖2
L2((0,T )×Ω;R3)

)
.
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Then we use the Gronwall’s lemma under the following form:

0 ≤ h(t) ≤ a+ b

ˆ t

0

h(s)ds ⇒ h(t) ≤ a exp(bt).

We finally obtain

‖ un(t) ‖2
L2(Ω;R3) +Eε

s (ϕn(t)) ≤ C
(
‖ gn ‖2

H1(0,T ;L2(Γ+;R3)) + ‖ fn ‖2
L2((0,T )×Ω;R3)

)
.

where the constant does not depend on ε. Then, coming back to (8), we get

‖ un(t) ‖2
L2(Ω;R3) +

ˆ t

0

ˆ

Ωε
f

2ν|D(un)|2 + Eε
s (ϕn(t)) ≤ C

[
‖ fn ‖2

L2((0,T )×Ω;R3) + ‖ gn ‖2
H1(0,T ;L2(Γ+;R3))

]

Due to the strong convergences (7) we finally get

‖ u(t) ‖2
L2(Ω;R3) +

ˆ t

0

ˆ

Ωε
f

2ν|D(u)|2 + Eε
s (ϕ(t)) ≤ C

[
‖ f ‖2

L2((0,T )×Ω;R3)) + ‖ g ‖2
H1(0,T ;L2(Γ+;R3))

]
(14)

From the above estimate we have

||D(u)||L2(0,T ;L2(Ωε
f
;R9)) + ||D(ϕ)||L∞(0,T ;L2(Ωε

s;R9)) ≤ C
[
‖ f ‖L2((0,T )×Ω;R3) + ‖ g ‖H1(0,T ;L2(Γ+;R3))

]

and ||ϕ||W 1,∞(0,T ;L2(Ω;R3)) ≤ C
[
‖ f ‖L2((0,T )×Ω;R3) + ‖ g ‖H1(0,T ;L2(Γ+;R3))

]

We deduce that

||D(ϕ)||L∞(0,T ;L2(Ω;R9)) ≤ C
[
‖ f ‖L2((0,T )×Ω:R3) + ‖ g ‖H1(0,T ;L2(Γ+;R3))

]

and thanks to the strong convergences (7), we can state that the limit field u satisfies the weak formulation (6).
The Korn’s inequality for fields in H1(Ω; R3) gives the estimate of ϕ in L∞(0, T ;H1(Ω; R3)). Now, we can consider
functions whose divergence is not null in the fluid part in order to prove the existence of the pressure field.

In the above estimates the constant C does not depend on ε. Now, we can get the estimate of the pressure field
p ∈ H−1(0, T ;L2(Ω)). For any field q ∈ H1

0 (0, T ;L2(Ω)), such that q = 0 in Ωε
s (consistently with the convention given

before for the pressure fields), we define z by

{
∆z = q a.e. in Ω,

z periodic on ∂Ω.

From elliptic regularity, we get that

z ∈ H1
0 (0, T ;H2

per(Ω)) and ‖z‖H1
0
(0,T ;H2

per(Ω)) ≤ C‖q‖H1
0
(0,T ;L2(Ω)) (15)

where C depends only on Ωd. Let χ be an auxiliary regular function in D([−h, L + e]) such that χ(x3) = 1 in the
dermis, i.e. for x3 ∈ (0, L). We take v = χ∇z ∈ H1

0 (0, T ;W ) as a test function in (5).
We denote 〈, 〉(0,T ) the duality product between H1

0 (0, T ;L2(Ω)) and H−1(0, T ;L2(Ω)) and obtain, performing a formal
time integration (recall that we have p = 0 in Ωε

s and div(v) = q in Ωε
f )

〈 p, q 〉(0,T ) = −
ˆ T

0

ˆ

Ω

u · ∂(χ∇z)
∂t

+

ˆ T

0

ˆ

Ωε
f

νD(u) : D(χ∇z)

+

ˆ T

0

ˆ

Ωε
s

λ div (χ∇z) divϕ +

ˆ T

0

ˆ

Ωε
s

2µD(ϕ) : D(χ∇z) −
ˆ T

0

ˆ

Ωd

f · χ∇z −
ˆ T

0

ˆ

Γ+

g · χ∇z

The function z depends linearly on the pressure test field q, hence the right-hand side is a linear (and continuous)
form of q, which directly gives the existence and uniqueness of p in H−1(0, T ;L2(Ωε

f )). The extension by zero in the

solid part ensures the existence in H−1(0, T ;L2(Ω)). The function χ being regular, we get from (15) and from the
estimate (14)

〈 p, q 〉(0,T ) ≤ C‖q‖H1
0
(0,T ;L2(Ωd))

[
‖ u ‖L2(0,T ;H1(Ω)) + ‖ ϕ ‖L2(0,T ;H1(Ω)) + ‖ f ‖L2((0,T )×Ω) + ‖ g ‖L2((0,T )×Γ+)

]
,
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〈 p, q 〉(0,T ) ≤ C‖q‖H1
0
(0,T ;L2(Ωd))

[
‖ f ‖L2((0,T )×Ω) + ‖ g ‖L2((0,T )×Γ+)

]
,

as this inequality is valid for any q ∈ H1
0 (0, T ;L2(Ωd)), we can conclude that

‖p‖H−1(0,T ;L2(Ωd)) ≤ C
[
‖ f ‖L2((0,T )×Ω) + ‖ g ‖L2((0,T )×Γ+)

]

The constant does not depend on ε. The estimate of ut in L2((0, T ) ×W ∗) is an immediate consequence of the weak
formulation (6).

Remark 2 In fact, in Theorem 1 we proved that ϕ ∈ C1([0, T ];L2(Ω; R3)).

With a stronger assumption upon the forces, one obtains a better regularity upon the fields.

Theorem 2 Assume that
f ∈ H1

0 (0, T ;L2(Ω; R3)), g ∈ H2
0 (0, T ;L2(Γ+; R3)).

Then, there exists (u, ϕ, p) which possesses the regularity

u ∈W 1,∞(0, T ;L2(Ω; R3)) ∩H1(0, T ;Wf ), ϕ ∈W 1,∞(0, T ;H1(Ω; R3)) ∩W 2,∞(0, T ;L2(Ω; R3)),

p ∈ L2((0, T ) × Ω)

satisfies (5) with the initial conditions. Moreover, we have the following estimates

‖ p ‖L2((0,T )×Ω) ≤ C
[
‖ f ‖H1(0,T ;L2(Ω;R3)) + ‖ g ‖H2(0,T ;L2(Γ+;R3))

]

and
‖ ut ‖L∞(0,T ;L2(Ωε

f
;R3)) + ‖ ϕ ‖W 2,∞(0,T ;L2(Ω;R3)) + ‖ ut ‖L2(0,T ;Xf ) + ‖ ϕ ‖W 1,∞(0,T ;H1(Ω;R3))

≤ C
[
‖ f ‖H1(0,T ;L2(Ω;R3)) + ‖ g ‖H2(0,T ;L2(Γ+;R3))

] (16)

The constants do not depend on ε.

Proof: Let us sketch the main steps of the proof. The estimate (16) is obtained by differentiating the weak formulation
then taking the velocity field as test function and proceeding as in Theorem 1. For the bound upon the pressure, we
proceed exactly as in the previous proof, but instead of taking any scalar field q, we can consider directly the pressure
field. Hence, we define z by {

∆z = p a.e. in Ω,

z periodic on ∂Ω.

From elliptic regularity, we get that

z ∈ L2(0, T ;H2
per(Ω)) and ‖z‖L2(0,T ;H2

per(Ω)) ≤ C‖p‖L2(0,T ;L2(Ω))

Considering the same auxiliary regular function χ ∈ D([−h, L + e]) than above, we take as a test function v = χ∇z,
and use the same arguments than in the previous proof.

2 The asymptotic behaviour

In this part, the shape of the domain changes with ε, which is not kept fixed anymore.

2.1 The global framework

From now on the solution of problem (5) is denoted (uε, ϕε, pε). We recall the bound, obtained in Theorem 2, upon
the displacement field ϕε and upon the pressure field pε

‖ ϕε ‖W 2,∞(0,T ;L2(Ω;R3)) + ‖ ϕε ‖W 1,∞(0,T ;H1(Ω;R3)) ≤ C
[
‖ f ‖H1(0,T ;L2(Ω;R3)) + ‖ g ‖H2(0,T ;L2(Γ+;R3))

]

‖ pε ‖L2((0,T )×Ω) ≤ C
[
‖ f ‖H1(0,T ;L2(Ω;R3)) + ‖ g ‖H2(0,T ;L2(Γ+;R3))

]

From every bounded sequence we can extract a weakly converging sequence, still indexed by ε.
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Result 1 There exist ϕ0 ∈W 1,∞(0, T ;H1(Ω; R3)) ∩W 2,∞(0, T ;L2(Ω; R3) and p0 ∈ L2((0, T ) × Ω) such that

ϕε ∗
⇀ ϕ0 weakly- ∗ in W 2,∞(0, T ;L2(Ω; R3)) (17)

ϕε ∗
⇀ ϕ0 weakly- ∗ in W 1,∞(0, T ;H1(Ω; R3)) (18)

pε ⇀ p0 weakly in L2((0, T ) × Ω) (19)

Notice that p0 = 0 in (0, T ) × Ω±.

2.2 The unfolding operator

Notations Now, let S denotes the microscopic solid domain, and F the microscopic fluid domain. Their union forms
the unit cube Y = ]0, 1[

3
. Refer to [9] for any detail about the split of the domain. The figure (3) gives a view of

what could be such a cell. The intricate cylinders are the fibers, and the remaining part of the box is filled with fluid.
We denote by [t] the integer part of any real t, and by {t} ∈ (0, 1) its remaing part. Moreover, we assume that this
notation holds in R

3. Hence

for a.e. m ∈ R
3 m = [m] + {m} where [m] ∈ Z

3, {m} ∈ Y,

hence, for a.e. x ∈ Ω, x = ε
[x
ε

]
+ ε{x

ε
} where

[x
ε

]
∈ Z

3 and {x
ε
} ∈ Y

To ensure an easy split of our domain, we take ε = L
n
, and let n go to the infinity. No part of our results (Proposition

1 and Theorem 3) is changed if this split is not exact, because the reminders would disappear at the limit.

The unfolding operator Let us define the general operator.

T ε : L2(Ωd) → L2(Ωd × Y )

For almost every x ∈ Ωd, for almost every y = (y1, y2, y3) ∈ Y

T ε(v)(x, y) = v
(
ε
[x
ε

]
+ εy

)

Possibly the time will appear as a parameter in this definition. Here, we give the adaptation of the Lemma 5.1 of [2].

Result 2 We remind here the main properties of this operator.

1. For all function v and w in L2(Ωd), one has

ˆ

Ωd

vw dx =

ˆ

Ωd×Y

T ε(v)T ε(w) dxdy (20)

2. For all function v in L2(Ωd),
T ε(v) −→

ε→0
v strongly in L2(Ωd × Y )

3. If {vε}ε is a sequence of L2(Ωd) such that vε → v strongly in L2(Ωd), then

T ε(vε) −→
ε→0

v strongly in L2(Ωd × Y )

4. If {vε}ε is a sequence of L2(Ωd) such that T ε(vε) ⇀
ε→0

v̂ weakly in L2(Ωd × Y ), then

vε ⇀
ε→0

ˆ

Y

v̂(·, y)dy weakly in L2(Ωd)

5. For any v ∈ H1(Ωd),
∇y(T ε(v)) = εT ε(∇xv) a.e. in Ωd × Y

11



Let us remind the Theorem 3.5 in [9], written in the case p = 2.

Result 3 Let wε be a sequence converging weakly to some w in H1(Ωd). Up to a subsequence, there exists some ŵ in
L2(Ωd;H

1
per(Y ; R3)),

T ε(∇wε) ⇀ ∇w + ∇yŵ weakly in L2(Ωd × Y ; R9)

Moreover, ŵ can be chosen with a null average in Y .

We immediately adopt the following convention: all functions considered in H1
per(Y ; R3) will be taken of null

average in Y . We denote H1
per(Y ; R3) this space

∀ v ∈ H1
per(Y ; R3) we have

ˆ

Y

v = 0

and we define the space

H1,div 0
per (Y ; R3) = {v̂ ∈ H1

per(Y ; R3) s.t. divy(v̂) = 0 a.e. in F and

ˆ

Y

v̂ = 0}.

Unfolding our fields Thanks to (20) and to our previous estimates, we can give bounds on all our fields. Let us
remind that Y is the unit cube.

Result 4 From estimates in Theorem 2, there exists a constant c, that does not depend on ε such that

‖ T ε(ϕε) ‖H1(0,T ;L2(Ωd;H1(Y ;R3))) ≤ c

‖ T ε(ϕε) ‖W 2,∞(0,T ;L2(Ωd×Y ;R3))) ≤ c

‖ T ε(uε) ‖L2((0,T )×Ωd;H1(F ;R3))) ≤ c

‖ T ε(pε) ‖L2((0,T )×Ωd×Y ) ≤ c

we have also bounds for the derivatives

‖ ∇yT ε(ϕε) ‖H1(0,T ;L2(Ωd×Y ;R9)) ≤ c ε, ‖ ∇yT ε(uε) ‖L2((0,T )×Ωd×F ;R9)) ≤ c ε (21)

Now, up to a subsequence still denoted by ε we get

Result 5 The following convergences holds:

T ε(ϕε)
∗
⇀ ϕ0 weakly- ∗ in W 2,∞(0, T ;L2(Ωd × Y ; R3)), (22)

T ε(ϕε) ⇀ ϕ0 weakly in H1(0, T ;L2(Ωd;H
1(Y ; R3))), (23)

T ε(uε) ⇀ u0 weakly in L2((0, T ) × Ωd ×F ; R3)), (24)

T ε(pε) ⇀ p̂0 weakly in L2((0, T ) × Ωd × Y ). (25)

Thanks to (21), the limit unfolded fields ϕ0 and u0 do not depend on the local variable y. Besides, considering the
time derivatives of the convergences (18), (22), (23) and (24) one gets that

ϕ0
t = u0 a.e in (0, T ) × Ωd.

Moreover, there exists ϕ̂0 ∈ H1(0, T ;L2(Ω;H1
per(Y ; R3))) such that

T ε (∇xϕ
ε) ⇀

ε→0
∇xϕ

0 + ∇yϕ̂
0 weakly in H1(0, T ;L2(Ωd × Y ; R9)). (26)

The divergence-free condition div uε = 0 a.e. in Ωε
f can be integrated in time, considering the null initial conditions,

and then unfolded

divϕε = 0 a.e. in (0, T ) × Ωε
f div T ε(ϕε) = 0 a.e. in (0, T ) × Ωd ×F
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Then, at the limit, using (26), one gets

divx(ϕ0) + divy(ϕ̂0) = 0 a.e. in (0, T ) × Ωd ×F

About the pressure field p̂0 we have, from (4) in the Result 2

p̂0(t, x, y) = 0 for a.e. (t, x, y) ∈ (0, T ) × Ωd × S

and p0(t, x) =

ˆ

F

p̂0(t, x, y)dy for a.e. (t, x) ∈ (0, T ) × Ωd.
(27)

2.3 The unfolded limit problem

The weak formulation Let us write a first version of the weak formulation with the unfolded fields and the pressure.
We emphasize the parameter x in the derivation operators. We remind that our test functions are in W . We integrate
(5) in time so that for all v ∈W

ˆ

Ω

ϕε
t · v + 2ν

ˆ

Ωε
f

D(ϕε) : D(v) +

ˆ t

0

ˆ

Ω±

λ div(ϕε) div(v) +

ˆ t

0

ˆ

Ω±

2µD(ϕε) : D(v)

+

ˆ t

0

ˆ

Ωε
c

λ div(ϕε) div(v) +

ˆ t

0

ˆ

Ωε
c

2µD(ϕε) : D(v) −
ˆ t

0

ˆ

Ωε
f

pε div(v) =

ˆ t

0

ˆ

Ω

f · v +

ˆ t

0

ˆ

Γ+

g · v

where ± is used to denote the upper and lower solid part, namely the epidermis and the hypodermis. We can unfold
this formulation. As v ∈W ,

T ε(v) ∈ L2(Ωd;H
1(Y ; R3))

hence, for all v ∈W , we get, using (20)

ˆ

Ωd×Y

T ε (ϕε
t ) · T ε(v) +

ˆ

Ω±

ϕε
t .v + 2ν

ˆ

Ωd×F

T ε(Dx(ϕε)) : T ε(Dx(v))

+ λ

ˆ t

0

ˆ

Ωd×S

T ε(divx(ϕε))T ε(divx(v)) + λ

ˆ t

0

ˆ

Ω±

divx(ϕε) divx(v)

+ 2µ

ˆ t

0

ˆ

Ωd×S

T ε(Dx(ϕε)) : T ε(Dx(v)) + 2µ

ˆ t

0

ˆ

Ω±

Dx(ϕε) : Dx(v)

−
ˆ t

0

ˆ

Ωd×F

T ε(pε)T ε(divx(v)) =

ˆ t

0

ˆ

Ωd×Y

f · T ε(v) +

ˆ t

0

ˆ

Ω±

f · v +

ˆ t

0

ˆ

Γ+

g · v (28)

Now, there are two main steps to find the final weak formulation: take special test functions to find the macroscopic
and the microscopic behaviours.

First test function Let us consider a sequence of test functions vε(x) = v(x) defined for v ∈W

T ε(vε) →
ε→0

v strongly in L2(Ωd;H
1(Y ; R3))

T ε (∇xv
ε) →

ε→0
∇xv strongly in L2(Ωd × Y ; R9)

Considering the convergences (22) and (26), we make ε go to 0 in the weak formulation (28) to get

ˆ

Ωd×Y

ϕ0
t · v +

ˆ

Ω±

ϕ0
t · v + 2ν

ˆ

Ωd×F

(Dx(ϕ0) +Dy(ϕ̂0)) : Dx(v)

+ λ

ˆ t

0

ˆ

Ωd×S

(divx(ϕ0) + divy(ϕ̂0)) divx(v) + λ

ˆ t

0

ˆ

Ω±

divx(ϕ0) divx(v)

+ 2µ

ˆ t

0

ˆ

Ωd×S

(Dx(ϕ0) +Dy(ϕ̂0)) : Dx(v) + 2µ

ˆ t

0

ˆ

Ω±

Dx(ϕ0) : Dx(v)

−
ˆ t

0

ˆ

Ωd×F

p0 divx(v) =

ˆ t

0

ˆ

Ω

f · v +

ˆ t

0

ˆ

Γ+

g · v (29)
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As ϕ0 does not depend on y, and |Y | = 1, we can group the first two terms like this
ˆ

Ωd×Y

ϕ0
t · v +

ˆ

Ω±

ϕ0
t · v =

ˆ

Ω

ϕ0
t · v.

Second test function Now, let us take a local test function:

vε(x) = εψ(x)v̂
(
{x
ε
}
)

with ψ ∈ C∞
0 (Ωd; R

3) and v̂ ∈ H1
per(Y ), so that vε ∈W . We have

T ε(vε) →
ε→0

0 strongly in L2(Ωd;H1(Y ; R3))

T ε(∇xv
ε) →

ε→0
ψ∇y v̂ strongly in L2(Ωd × Y ; R9)

Thanks to the same convergences, we get at the limit

2ν

ˆ

Ωd×F

ψ(x)(Dx(ϕ0) +Dy(ϕ̂0)) : Dy(v̂) + λ

ˆ t

0

ˆ

Ωd×S

ψ(x)(divx ϕ
0 + divy ϕ̂

0) divy v̂

+ 2µ

ˆ t

0

ˆ

Ωd×S

ψ(x)(Dx(ϕ0) +Dy(ϕ̂0)) : Dy(v̂) −
ˆ t

0

ˆ

Ωd×F

ψ(x)p0 divy v̂ = 0 (30)

Since ψ is a general function in C∞
0 (Ωd; R

3), dense in L2(Ωd; R
3), and since v̂ ∈ H1

per(Y ; R3) we get that (30) holds
for v̂ ∈ L2(Ωd;H1

per(Y ; R3)). As the precedent form is continuous with respect to the L2 norm of ψ, one can generate
the tensorized space using product of functions belonging to L2(Ωd; R

3) and H1
per(Y ; R3).

If we want to prove existence and uniqueness of the fields ϕ0 and ϕ̂0 by using a similar Galerkin method that what is
done in [24], we need a weak formulation in appropriated spaces.

Proposition 1 The fields ϕ0 ∈ H1(0, T ;W ) , ϕ̂0 ∈ H1(0, T ;L2(Ω;H1
per(Y ; R3))) and p̂0 ∈ L2((0, T )×Ω× Y ) satisfy

∀ v ∈W, ∀ v̂ ∈ L2(Ωd;H1
per(Y ; R3))

ˆ

Ω

ϕ0
t · v + 2ν

ˆ

Ωd×F

(Dx(ϕ0) +Dy(ϕ̂0)) : (Dx(v) +Dy(v̂))

+ λ

ˆ t

0

ˆ

Ωd×S

(divx(ϕ0) + divy(ϕ̂0))(divx(v) + divy(v̂)) + λ

ˆ t

0

ˆ

Ω±

divx(ϕ0) divx(v)

+ 2µ

ˆ t

0

ˆ

Ωd×S

(Dx(ϕ0) +Dy(ϕ̂0)) : (Dx(v) +Dy(v̂)) + 2µ

ˆ t

0

ˆ

Ω±

Dx(ϕ0) : Dx(v)

−
ˆ t

0

ˆ

Ωd×F

p̂0(divx(v) + divy(v̂)) =

ˆ t

0

ˆ

Ω

f · v +

ˆ t

0

ˆ

Γ+

g · v (31)

and
divx ϕ

0 + divy ϕ̂
0 = 0 a.e in Ωd ×F .

Remark 3 We could prove existence and uniqueness with a Galerkin method (see [24] or [14]), in the same way as
in the Theorem 1. But as we will use Laplace transform later, we show it in the following section.

Convergence of the energy Taking v = ϕε
t in (28), and integrating once in time, we obtain that the energy of the

domain can be expressed as a function of unfolded fields. For a given t ∈ (0, T ) we set

Eε =

ˆ t

0

ˆ

Ωd×Y

|T ε (ϕε
t ) |2 +

ˆ t

0

ˆ

Ω±

|ϕε
t |2 + ν

ˆ

Ωd×F

|T ε(Dx(ϕε))|2 +

λ

2

ˆ t

0

ˆ

Ωd×S

T ε(divx(ϕε))2 +
λ

2

ˆ t

0

ˆ

Ω±

divx(ϕε)2 + µ

ˆ t

0

ˆ

Ωd×S

|T ε(Dx(ϕε))|2 + µ

ˆ t

0

ˆ

Ω±

|Dx(ϕε)|2

=

ˆ t

0

ˆ s

0

ˆ

Ωd×Y

f · T ε(ϕε
t ) +

ˆ t

0

ˆ s

0

ˆ

Ω±

f · ϕε
t +

ˆ t

0

ˆ s

0

ˆ

Γ+

g · ϕε
t (32)
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Considering the following functional, in which u and v are vector fields and A and B matrix fields

E(u, v,A,B) =

ˆ t

0

ˆ

Ωd×Y

|u|2 +

ˆ t

0

ˆ

Ω±

|v|2 + ν

ˆ

Ωd×F

A : A+

λ

2

ˆ t

0

ˆ

Ωd×S

(trA)2 +
λ

2

ˆ t

0

ˆ

Ω±

(trB)2 + µ

ˆ t

0

ˆ

Ωd×S

A : A + µ

ˆ t

0

ˆ

Ω±

B : B

we can write
Eε = E(T ε(ϕε

t ), ϕ
ε
t , T ε(Dx(ϕε)), Dx(ϕε)).

E is a convex and lower semi-continuous functional. Besides, the right hand side of (32) converges to
ˆ t

0

ˆ s

0

ˆ

Ω

f · ϕ0
t +

ˆ t

0

ˆ s

0

ˆ

Γ+

g · ϕ0
t

As the left hand side is a lower semi-continuous and convex functional of T ε(ϕε) and T ε(Dx(ϕε)) (which is defined
on a convex set) the weak convergences (22) and (26) and the corollary III.8 of [3] imply the following result:

for almost every t ∈ (0, T )

E0 ≤ lim
ε→0

inf Eε ≤ lim
ε→0

supEε ≤ lim
ε→0

sup

[
ˆ t

0

ˆ s

0

ˆ

Ωd×Y

f · T ε(ϕε
t ) +

ˆ t

0

ˆ s

0

ˆ

Ω±

f · ϕε
t +

ˆ t

0

ˆ s

0

ˆ

Γ+

g · ϕε
t

]

=

ˆ t

0

ˆ s

0

ˆ

Ω

f · ϕ0
t +

ˆ t

0

ˆ s

0

ˆ

Γ+

g · ϕ0
t

Besides
E0 = E(ϕ0

t , ϕ
0
t , Dx(ϕ0) +Dy(ϕ̂0), Dx(ϕ0)).

and thanks to the weak formulation given in Proposition 1, we get

ˆ t

0

ˆ s

0

ˆ

Ω

f · ϕ0
t +

ˆ t

0

ˆ s

0

ˆ

Γ+

g · ϕ0
t =

ˆ t

0

ˆ

Ω

|ϕ0
t |2 + ν

ˆ

Ωd×F

|Dx(ϕ0) +Dy(ϕ̂0)|2

+
λ

2

ˆ t

0

ˆ

Ωd×S

(divx(ϕ0) + divy(ϕ̂0))2 +
λ

2

ˆ t

0

ˆ

Ω±

divx(ϕ0)2

+ µ

ˆ t

0

ˆ

Ωd×S

|Dx(ϕ0) +Dy(ϕ̂0)|2 + µ

ˆ t

0

ˆ

Ω±

|Dx(ϕ0)|2

and the left hand side converges to the same limit. Hence, the energy strongly converges to this previous expression.
Considering the coercivity of the functional E, we deduce the following strong convergences: taking t = T in the
equalities above, we get

T ε(ϕε
t ) → ϕ0 strongly in L2((0, T ) × Ωd × Y ; R3),

T ε(Dx(ϕε)) → Dx(ϕ0) +Dy(ϕ̂0) strongly in L2((0, T ) × Ωd × S; R9),

Dx(ϕε) → Dx(ϕ0) strongly in L2((0, T ) × Ω±; R9),

and, for almost every t ∈ (0, T )

T ε(Dx(ϕε))(t) → Dx(ϕ0)(t) +Dy(ϕ̂0)(t) strongly in L2(Ωd ×F ; R9).

3 The mixed weak formulation

3.1 Existence and uniqueness

We look for ϕ0 and ϕ̂0, and moreover we will prove at this step existence and uniqueness for them. We are going to
work in the Laplace domain, so ξ denotes the usual variable for this transform. We define, for any function ψ regular
enough and for every ξ ∈ R

∗
+

L(ψ)(ξ) =

ˆ ∞

0

e−ξtψ(t)dt.
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If f is defined on (0, T ), we extend it by zero on [T,+∞[. If f is in L2(0, T ), L(f) is an analytic function with respect
to the variable ξ. We use the following notations:

Φ(ξ, x) = L
(
ˆ t

0

ϕ0(s, x)ds

)
Φ̂(ξ, x, y) = L

(
ˆ t

0

ϕ̂0(s, x, y)ds

)

F (ξ, x) = L
(
ˆ t

0

f(s, x)ds

)
G(ξ, x) = L

(
ˆ t

0

g(s, x)δΓ+
(x)ds

)

P (ξ, x, y) = L
(
ˆ t

0

p̂0(s, x, y)ds

)

where δΓ+
is to be taken in the distribution sense. We need the following spaces, where W is defined by (4):

X = W × L2(Ωd;H1
per(Y ; R3))

Xdiv 0 = {(v, v̂) ∈ X s.t. divx(v) + divy(v̂) = 0 a.e. in Ωd ×F}

and a scalar product defined on X by the following formula: for all V1 = (v1, v̂1) ∈ X and V2 = (v2, v̂2) ∈ X

(V1|V2) = ξ2
ˆ

Ω

v1 · v2 + λ

ˆ

Ω±

divx(v1) divx(v2) + λ

ˆ

Ωd×S

(divx(v1) + divy(v̂1))(divx(v2) + divy(v̂2))

+ 2µ

ˆ

Ω±

Dx(v1) : Dx(v2) + 2µ

ˆ

Ωd×S

[Dx(v1) +Dy(v̂1)] : [Dx(v2) +Dy(v̂2)]

+ 2νξ

ˆ

Ωd×F

[Dx(v1) +Dy(v̂1)] : [Dx(v2) +Dy(v̂2)]

Moreover, we denote as follows the canonical product of the space L2(Ω; R3) × L2(Ω × Y ; R3):

<V1, V2> =

ˆ

Ω

v1 · v2 +

ˆ

Ω×Y

v̂1 · v̂2.

Let us show that it is a scalar product. Indeed (V |V ) = 0 implies

v = 0 and Dy(v̂) = 0 in Ωd × Y

The second equation gives that v̂ = 0, because v̂ does not depend on y, and its mean value over the cell is null. As a
consequence, X endowed with this scalar product is an Hilbert space. In the Laplace domain, the weak formulation
(31) becomes

ξ2
ˆ

Ωd×Y

Φ · v + ξ2
ˆ

Ω±

Φ · v + 2νξ

ˆ

Ωd×F

(Dx(Φ) +Dy(Φ̂)) : (Dx(v) +Dy(v̂))

+ λ

ˆ

Ωd×S

(divx(Φ) + divy(Φ̂))(divx(v) + divy(v̂)) + λ

ˆ

Ω±

divx(Φ) divx(v)

+ 2µ

ˆ

Ωd×S

(Dx(Φ) +Dy(Φ̂)) : (Dx(v) +Dy(v̂)) + 2µ

ˆ

Ω±

Dx(Φ) : Dx(v)

−
ˆ

Ωd×F

P (divx(v) + divy(v̂)) =

ˆ

Ω

F · v +

ˆ

Γ+

G · v.

With our notations, this weak formulation rewrites




find (Φ, Φ̂) ∈ D(R∗

+;Xdiv 0) such that ∀ (v, v̂) ∈ Xdiv 0(
(Φ, Φ̂)|(v, v̂)

)
= <(F +G, 0), (v, v̂)>

(33)

We already know the existence of (Φ, Φ̂, P ), as Laplace transform of fields defined as weak limits. Hence, we just need
to prove uniqueness. Nevertheless, we are also going to prove existence. As a matter of fact, looking at (33) and using
Lax-Milgram, we have directly existence and uniqueness of the couple (Φ, Φ̂). We then remark that the linear form

(v, v̂) 7→
(
(Φ, Φ̂)|(v, v̂)

)
−<(F +G, 0), (v, v̂)>
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vanishes on Xdiv 0, but has no reason to vanish on X, and this is how we can show the existence of the pressure. We

begin by taking the microscopic test field v̂ = 0. The linear form v 7→
(
(Φ, Φ̂)|(v, 0)

)
− <(F + G, 0), (v, 0)> is well

defined and continuous on W , and the inf-sup lemma gives the existence of P̄ (ξ, .) ∈ L2(Ω), the macroscopic part of
the pressure. Taking test functions whose support is included in the upper or the lower part, the linear form vanishes,
showing that this pressure field is localized in the dermis part, and is uniquely determined by the null boundary
condition on ∂Ωd. Hence, we get that ∀ v ∈W , for all ξ ∈ R

∗
+

(
(Φ, Φ̂)|(v, 0)

)
−<(F +G, 0), (v, 0)> =

ˆ

Ωd

P̄ (ξ, x) divx(v) dx. (34)

Then, we take v = 0 in the weak formulation, and consider the linear form v̂ 7→
(
(Φ, Φ̂)|(0, v̂)

)
−<(F +G, 0), (0, v̂)>

on L2(Ωd;H
1
0 (F ; R3)). The inf-sup lemma enables to get the existence of P̃ (ξ, ., .) ∈ L2(Ωd ×F), the microscopic part

of the pressure, such that ∀ v̂ ∈ L2(Ωd;H
1
0 (F ; R3)), for all ξ ∈ R

∗
+

(
(Φ, Φ̂)|(0, v̂)

)
−<(F +G, 0), (0, v̂)> =

ˆ

Ωd×F

P̃ (ξ, x, y) divy(v̂) dxdy. (35)

To ensure uniqueness, we impose that for a.e. x ∈ Ωd and for all ξ ∈ R
∗
+,

ˆ

F

P̃ (ξ, x, y) dy = 0

and we extend P̃ in the solid part by setting

P̃ (ξ, x, y) = 0 in R
∗
+ × Ωd × S.

Now, we want to define the total pressure field P from P̄ and P̃ . First, notice that due to (27), P must satisfy

P (ξ, x, y) = 0 for a.e. (ξ, x, y) ∈ R
∗
+ × Ωd × S, (36)

and the pressure field is null in the epidermis Ω+ and the hypodermis Ω−. We want P to satisfy ∀ (v, v̂) ∈ X, for all
ξ ∈ R

∗
+ (

(Φ, Φ̂)|(v, v̂)
)
−<(F +G, 0), (v, v̂)> =

ˆ

Ωd×F

P (ξ, x, y) [divx(v) + divy(v̂)] dxdy

Now, summing (34) and (35), one gets that ∀ v ∈W , ∀ v̂ ∈ L2(Ωd;H
1
0 (F ; R3)) and for all ξ ∈ R

∗
+

(
(Φ, Φ̂)|(v, v̂)

)
−<(F +G, 0), (v, v̂)> =

ˆ

Ωd

P̄ (ξ, x) divx(v) dx+

ˆ

Ωd×F

P̃ (ξ, x, y) divy(v̂) dxdy.

Hence

P̄ (ξ, x) =

ˆ

Y

P (ξ, x, y)dy =

ˆ

F

P (ξ, x, y) dy.

P − P̄ is a microscopic pressure field P̂ that we can determine from P̄ and P̃ :

P (ξ, x, y) − P̄ (ξ, x) = P̂ (ξ, x, y) where P̄ (ξ, x) =

ˆ

Y

P (ξ, x, y)dy

The equality (36) implies
P̂ (ξ, x, y) = −P̄ (ξ, x) for a.e. (ξ, x, y) ∈ R

∗
+ × Ωd × S. (37)

Hence, for almost every (ξ, x) ∈ R
∗
+ × Ωd we get

0 =

ˆ

Y

P̂ (ξ, x, y)dy =

ˆ

S

P̂ (ξ, x, y)dy +

ˆ

F

P̂ (ξ, x, y)dy = −|S|P̄ (ξ, x) +

ˆ

F

P̂ (ξ, x, y)dy. (38)

The equalities (37) and (38) enable to find P̂ (ξ, ., .) in L2(Ωd × Y ; R) from P̃ and then P

P̂ (ξ, x, y) =






− P̄ (ξ, x) a.e. in R
∗
+ × Ωd × S,

P̃ (ξ, x, y) +
|S|
|F| P̄ (ξ, x) a.e. in R

∗
+ × Ωd ×F .

P (ξ, x, y) =






0 a.e. in R
∗
+ × Ωd × S,

P̃ (ξ, x, y) +

(
1 +

|S|
|F|

)
P̄ (ξ, x) a.e. in R

∗
+ × Ωd ×F .

Finally, we proved the existence of P (ξ, ., .) in L2(Ωd × Y ; R) for any ξ ∈ R
∗
+.
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3.2 The correctors

We introduce in this part correctors defined on the reference cell in order to express the microscopic displacement Φ̂
in terms of the macroscopic one Φ. We define the bilinear form Bl and the two linear applications R and S by:

Bl(û, v̂) = 2ν

ˆ

F

Dy(û) : Dy(v̂) +
2µ

ξ

ˆ

S

Dy(û) : Dy(v̂) +
λ

ξ

ˆ

S

divy(û) divy(v̂)

R(v̂) = − 2ν

ˆ

F

Dy(v̂) − 2µ

ξ

ˆ

S

Dy(v̂)

S(v̂) = − λ

ξ

ˆ

S

divy(v̂)

We take v = 0 in (33) to get the weak formulation defining Φ̂ in terms of Φ, with those new notations we get

∀ v̂ ∈ H1,div 0
per (Y ; R3), Bl(Φ̂, v̂) = Dx(Φ) : R(v̂) + divx(Φ)S(v̂)

As each kind of derivatives of Φ has to be decomposed, the following correctors must be introduced, (we remind the
notation δij = 1 if i = j, 0 otherwise)






find χij ∈ H1,div 0
per (Y ; R3) such that for all ξ ∈ R

∗
+, ∀ v̂ ∈ H1,div 0

per (Y ; R3)

Bl(χij , v̂) = bij : R(v̂) + δijS(v̂) where

bij =
1

2
(ei ⊗ ej + ej ⊗ ei)

(39)

doing so, we need an other corrector, to decompose the divergence terms. We introduce the function η defined by

∀ y ∈ Y, η(y) =
y

3
so that div η = 1 (40)

and we look for χ̂d = χd − η such that χd satisfies

{
find χd ∈ H1

per(Y ; R3) such that for all ξ ∈ R
∗
+, ∀ v̂ ∈ H1,div 0

per (Y ; R3)

Bl(χd, v̂) = Bl(η, v̂)
(41)

Note that divy(χ̂d) = −1 in F , and thanks to the definition of η, we also get that
ffl

Y
χ̂d = 0, and coming back to the

Laplace transform Φ̂ of the microscopic displacement ϕ̂0, we obtain the following result:

Proposition 2 The Laplace transform Φ̂ of the microscopic displacement ϕ̂0 can be expressed in terms of the partial
derivatives of the Laplace transform Φ of the macroscopic field ϕ0 as follows

Φ̂(ξ, x, y) = divx(Φ)(ξ, x)χ̂d(ξ, y) +Dx,ij(Φ)(ξ, x)χij(ξ, y) (42)

where χ̂d and the χij are defined by (39), (40) and (41).

If we come back to the general weak formulation (33), we get

∀ξ ∈ R
∗
+, ∀v ∈W, ∀v̂ ∈ L2(Ωd;H1

per(Y ; R3)),
ˆ

Ω

Φ · v + 2ν

ˆ

Ωd×F

(Dx(Φ) +Dy(Φ̂)) : (Dx(v) +Dy(v̂))

+
λ

ξ

ˆ

Ωd×S

(divx(Φ) + divy(Φ̂))(divx(v) + divy(v̂)) +
λ

ξ

ˆ

Ω±

divx(Φ) divx(v)

+
2µ

ξ

ˆ

Ωd×S

(Dx(Φ) +Dy(Φ̂)) : (Dx(v) +Dy(v̂)) +
2µ

ξ

ˆ

Ω±

Dx(Φ) : Dx(v)

−
ˆ

Ωd×F

P (divx(v) + divy(v̂)) =

ˆ

Ω

F · v +

ˆ

Ω+

G · v

(43)
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Replacing with the value of Φ̂ we just found in (42), it leads to

ˆ

Ω×Y

Φ · v +
λ

ξ

ˆ

Ω±

divx(Φ) divx(v) +
2µ

ξ

ˆ

Ω±

Dx(Φ) : Dx(v)

+ 2ν

ˆ

Ωd×F

(Dx(Φ) + divx(Φ)Dy(χ̂d) +Dx,ij(Φ)Dy(χij)) : (Dx(v) +Dy(v̂))

+
λ

ξ

ˆ

Ωd×S

(divx(Φ) + divx(Φ) divy(χ̂d) +Dx,ij(Φ) divy(χij))(divx(v) + divy(v̂))

+
2µ

ξ

ˆ

Ωd×S

(Dx(Φ) + divx(Φ)Dy(χ̂d) +Dx,ij(Φ)Dy(χij)) : (Dx(v) +Dy(v̂))

−
ˆ

Ωd×F

P (divx(v) + divy(v̂)) =

ˆ

Ω

F · v +

ˆ

Ω+

G · v

Now, we have to get rid of the pressure, and try to find a symmetric expression in the integrals, in order to get
the mechanical tensors in the fluid and the solid. For this purpose, we can choose special tests functions. If we choose
v̂ = −divx(v)+ something divergence free in the microscopic fluid domain, we satisfy

divx(v) + divy(v̂) = 0 a.e. in Ω ×F

Then, if we choose for the divergence free part Dx,ij(v)χij , we get the differential operator for Φ̂ and for v̂. So finally,
taking, for all v ∈W

v̂ = divx(v)χ̂d +Dx,ij(v)χij

with implicit summation over i and j, we get

ˆ

Ω

Φ · v +
λ

ξ

ˆ

Ω±

divx(Φ) divx(v) +
2µ

ξ

ˆ

Ω±

Dx(Φ) : Dx(v)

+ 2ν

ˆ

Ωd×F

(Dx(Φ) + divx(Φ)Dy(χ̂d) +Dx,ij(Φ)Dy(χij)) : (Dx(v) + divx(v)Dy(χ̂d) +Dx,ij(v)Dy(χij))

+
λ

ξ

ˆ

Ωd×S

(divx(Φ)(1 + divy(χ̂d)) +Dx,ij(Φ) divy(χij))(divx(v)(1 + divy(χ̂d)) +Dx,ij(v) divy(χij))

+
2µ

ξ

ˆ

Ωd×S

(Dx(Φ) + divx(Φ)Dy(χ̂d) +Dx,ij(Φ)Dy(χij)) : (Dx(v) + divx(v)Dy(χ̂d) +Dx,ij(v)Dy(χij))

=

ˆ

Ω

F · v +

ˆ

Ω+

G · v

The fourth-order tensors Now, let us find the structure of the fourth-order tensor A = Aijklei ⊗ ej ⊗ ek ⊗ el that
satisfies

Dx(Φ) : A = Dx(Φ) + divx(Φ)Dy(χ̂d) +Dx,ij(Φ)Dy(χij)

we decompose it into three terms: A = Id+B + C. Hence we have:

Dx(Φ) : B = Dx,pq(Φ)ep ⊗ eq : Bijklei ⊗ ej ⊗ ek ⊗ el = Dx,ji(Φ)Bijklek ⊗ el

= Dx,ii(Φ)Dy,kl(χ̂d)ek ⊗ el hence

Bijkl = δijDy,kl(χ̂d)

Dx(Φ) : C = Dx,ji(Φ)Cijklek ⊗ el = Dx,ji(Φ)Dy,kl(χji)ek ⊗ el hence

Cijkl = Dy,kl(χji)

now, considering the transpose of A, denoted AT in the sense of the tensors of order 2, namely such that b : A = At : bt,
we can easily see that (

AT
)
ijkl

= Alkij

one can write:
AT : Dx(v) = Dx(v) + divx(v)Dy(χ̂d) +Dx,ij(v)Dy(χij)
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M = AAt is a fourth order tensor, symmetric, whose each element is simply obtained by multiplying the two tensors.
Let us sum up:

Aijkl = δilδkjδij + δijDy,kl(χ̂d) +Dy,kl(χji)
(
AT
)
ijkl

= Alkij

Mijkl =
(
AAT

)
ijkl

= Aijqp

(
AT
)
pqkl

= AijqpAlkpq

From its structure, and using the fact that Aijkl = Ajikl = Aijlk, we get that M satisfies the symmetry properties of
a fourth order elasticity tensor, namely

Mijkl = Mjikl Mijkl = Mijlk Mijkl = Mklij (44)

We can proceed in the exact same way to find a second order tensor denoted R such that

Dx(Φ) : R = divx(Φ)(1 + divy(χ̂d)) +Dx,ij(Φ) divy(χij)

Hence, one deduce R from the following calculus:

Dx(Φ) : R = Dx,ij(Φ)Rji = Dx,ii(Φ) +Dx,ij(Φ) divy(χij)

In a similar way, we define the symmetric fourth order tensor N = R⊗RT

Rij = δij(1 + divy(χ̂d)) + divy(χji)

Nijkl = RijRlk

(b : R).(RT : b′) = b : R⊗RT : b′ = b : N : b′

We directly see that N has the same symmetries than the ones showed by (44).

3.3 The final formulation

Now, let us rewrite the variational formulation previously found: for all v ∈W

ˆ

Ω

Φ · v +
λ

ξ

ˆ

Ω±

divx(Φ) divx(v) +
2µ

ξ

ˆ

Ω±

Dx(Φ) : Dx(v)+

2ν

ˆ

Ωd×F

Dx(Φ) : M : Dx(v) +
λ

ξ

ˆ

Ωd×S

Dx(Φ) : N : Dx(v) +
2µ

ξ

ˆ

Ωd×S

Dx(Φ) : M : Dx(v)

=

ˆ

Ω

F · v +

ˆ

Ω+

G · v.

We can integrate over the micro domain the tensors to get the final week formulation.

Theorem 3 The following weak formulation in the Laplace domain is equivalent to the formulation (5)





find Φ ∈ D(R∗
+;W ) such that ∀ ξ ∈ R

∗
+, ∀ v ∈W

ˆ

Ω

Φ · v +
λ

ξ

ˆ

Ω±

divx(Φ) divx(v) +
2µ

ξ

ˆ

Ω±

Dx(Φ) : Dx(v)

+ 2ν

ˆ

Ωd

Dx(Φ) :

(
ˆ

F

M

)
: Dx(v) +

λ

ξ

ˆ

Ωd

Dx(Φ) :

(
ˆ

S

N

)
: Dx(v)

+
2µ

ξ

ˆ

Ωd

Dx(Φ) :

(
ˆ

S

M

)
: Dx(v) =

ˆ

Ω

F · v +

ˆ

Ω+

G · v

where M and N are fourth-order tensors defined by

Aijkl = δilδkjδij + δijDy,kl(χ̂d) +Dy,kl(χji) Rij = δij(1 + divy(χ̂d)) + divy(χji)

Mijkl = AijqpAlkpq Nijkl = RijRlk

and the correctors χij and χ̂d are defined by the proposition 2.
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Remark 4 To effectively inverse Laplace transform in the numerical implementation of this problem, we will look at
complex values of the parameters ξ. Hence, we will need a whole hermitian formalism, which is not difficult to adopt,
but is not necessary here.

Coercivity We get the coercivity of this problem by taking v = Φ and v̂ = Φ̂ in the formulation (43). This leads to

ˆ

Ω

Φ2 + 2ν

ˆ

Ωd×F

(Dx(Φ) +Dy(Φ̂))2 +
λ

ξ

ˆ

Ωd×S

(divx(Φ) + divy(Φ̂))2 +
λ

ξ

ˆ

Ω±

divx(Φ)2+

2µ

ξ

ˆ

Ωd×S

(Dx(Φ) +Dy(Φ̂))2 +
2µ

ξ

ˆ

Ω±

Dx(Φ)2 =

ˆ

Ω

F · Φ +

ˆ

Ω+

G · Φ

Denoting by T the bilinear form on W defined by

T (Ψ, v) =

ˆ

Ω

Ψ · v + 2ν

ˆ

Ωd×F

(Dx(Ψ) +Dy(Ψ̂)) : (Dx(v) +Dy(v̂))+

λ

ξ

ˆ

Ωd×S

(divx(Ψ) + divy(Ψ̂))(divx(v) + divy(v̂)) +
λ

ξ

ˆ

Ω±

divx(Ψ) divx(v)+

2µ

ξ

ˆ

Ωd×S

(Dx(Ψ) +Dy(Ψ̂)) : (Dx(v) +Dy(v̂)) +
2µ

ξ

ˆ

Ω±

Dx(Ψ) : Dx(v)

where

Ψ̂(ξ, x, y) = divx(Ψ)(ξ, x)χ̂d(ξ, y) +Dx,ij(Ψ)(ξ, x)χij(ξ, y),

and v̂(ξ, x, y) = divx(v)(ξ, x)χ̂d(ξ, y) +Dx,ij(v)(ξ, x)χij(ξ, y),
for a.e. (ξ, x, y) ∈ R

∗
+ × Ωd × Y.

We extend Ψ̂ and v̂ by setting Ψ̂ = v̂ = 0 almost everywhere in Ω± × Y like Φ̂. We set κξ = 2min{ν, µ
ξ
}, we get that

for all Ψ ∈W

T (Ψ,Ψ) ≥
ˆ

Ω

Ψ2 + κξ

ˆ

Ω×Y

(Dx(Ψ) +Dy(Ψ̂))2

=

ˆ

Ω

Ψ2 + κξ

ˆ

Ω

(Dx(Ψ))2 + κξ

ˆ

Ωd×Y

(Dy(Ψ̂))2.

The field Ψ = 0 on the bottom and Ψ̂ is periodic on Y with a vanishing mean value in almost every cell {x} × Y

(x ∈ Ωd). So applying twice the Korn’s inequality, which brings a constant C, we obtain

T (Ψ,Ψ) ≥ Cκξ ‖ Ψ ‖H1(Ω;R3) +Cκξ ‖ Ψ̂ ‖L2(Ω;H1(Y ;R3)) ≥ C
′ ‖ Ψ ‖H1(Ω;R3) .

We finally proved the coercivity of problem (3).

Coming back in the time domain If we transform (3) with time-dependent variables, we obtain time convolutions,
namely

find ϕ0 ∈ H1(0, T ;W ) s.t. for all v ∈W
ˆ

Ω

ϕ0
t · v + 2ν

ˆ

Ωd

(
ˆ T

0

Dx(ϕ0)(s) :

(
ˆ

F

M(t− s)

)
ds

)
: Dx(v)

+ λ

ˆ t

0

ˆ

Ω±

divx(ϕ0) divx(v) + λ

ˆ t

0

ds

ˆ

Ωd

(
ˆ T

0

Dx(ϕ0)(u) :

(
ˆ

S

N(s− u)

)
du

)
: Dx(v)

+ 2µ

ˆ t

0

ˆ

Ω±

Dx(ϕ0) : Dx(v) + 2µ

ˆ t

0

ds

ˆ

Ωd

(
ˆ T

0

Dx(ϕ0)(u) :

(
ˆ

S

M(s− u)

)
du

)
: Dx(v)

=

ˆ t

0

ˆ

Ω

f · v +

ˆ t

0

ˆ

Γ+

g · v
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We can see on this weak formulation that the behavior is unchanged in the upper and lower parts Ω+ and Ω−: the
mechanical law is the classical Hooke’s one. Nevertheless, in the dermis part Ωd, some viscoelastic effects appeared.
The characteristics of this viscoelasticity are contained in the fourth-order tensor M and N , whose definitions, based
on the correctors, is based on the microscopic domain, and more deeply on the fluid-structure interaction between the
fibers and the ground substance of the skin. This is in agreement with the viscoelasticity that can be macroscopically
observed during real experiments on the skin.
This work is being implemented with the software FreeFem++.

Remark 5 We can consider that the fluid and the solid has different densities, respectively ρs and ρf . Hence, the
latter equation writes

ˆ

Ω±

ρsϕ
0
t · v + |S|

ˆ

Ωd

ρsϕ
0
t .v + |F|

ˆ

Ωd

ρfϕ
0
t .v + 2ν

ˆ

Ωd

(
ˆ T

0

Dx(ϕ0)(s) :

(
ˆ

F

M(t− s)

)
ds

)
: Dx(v)

+ λ

ˆ t

0

ˆ

Ω±

divx(ϕ0) divx(v) + λ

ˆ t

0

ds

ˆ

Ωd

(
ˆ T

0

Dx(ϕ0)(u) :

(
ˆ

S

N(s− u)

)
du

)
: Dx(v)

+ 2µ

ˆ t

0

ˆ

Ω±

Dx(ϕ0) : Dx(v) + 2µ

ˆ t

0

ds

ˆ

Ωd

(
ˆ T

0

Dx(ϕ0)(u) :

(
ˆ

S

M(s− u)

)
du

)
: Dx(v)

=

ˆ t

0

ˆ

Ω±

ρsf · v + |S|
ˆ t

0

ˆ

Ωd

ρsf · v + |F|
ˆ t

0

ˆ

Ωd

ρff · v +

ˆ t

0

ˆ

Γ+

g · v.

Remark 6 The skin has a residual stress (which causes the Langer’s lines), which can theoretically be taken into
account in the equations. This stress is not very well known by biomechanicians themselves, and determining it is still
an important challenge. The general form of a residual stress is an additive term σ0 in the constraint tensor σ. In
the framework of the linearized isotropic elasticity, the behaviour law writes

σ = σ0 + λ div (ϕ)I + 2µD(ϕ).

The additional terms leads to a term that involves the symmetrized gradient of the test function, and can be bounded
by the original elastic energy of the system. Hence, the a priori estimates still hold, and the existence theorem are not
modified. The final law (3) writes with a simple additional term.
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Collagen fibers of the dermis

Skin’s surface

FLUID

Ω−

Ω+

Ωd

Figure 1: A first schematic representation of the skin: reduced number of components
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Periodic network of fibers

Cube of size ε

Figure 2: Our schematic representation of the skin: periodic network
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Figure 3: The microscopic domain: a possible reference cell Y
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