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A second gradient material resulting from the homogenization
of an heterogeneous linear elastic medium

C. Pideri and P. Seppecher

Laboratoire d’Analyse Non Ligaire Applig@ee, Universié de Toulon et du Var, BP 132 - 83957 La Garde Cedex, France

Homogenization may change fundamentally the constitutive laws of materials. We show how a
heterogeneous Cauchy continuum may lead to a non Cauchy continuum. We study the effective
properties of a linear elastic medium reinforced periodically with thin parallel fibers made up

of a much stronger linear elastic medium and we prove that, when thé tagefficients in the

fibers and the radius of the fibers have appropriate order of magnitude, the effective material
is a second gradient material, i.e. a material whose energy depends on the second gradient of
the displacement.

1 Introduction

Continuum mechanics is usually understood as a homogenized description of materials which are heteroge-
neous at the microscopic level. Then, it is natural to expect from any general theory of continuum mechanics
to be stable by homogenization procedures. We prove in this paper that the class of Cauchy continua does not
enjoy this stability property. Indeed, we show that the effective properties of some periodic elastic material
have to be described by a second gradient theory.

We consider a composite material made up of an elastic matrix reinforced with elastic fibers. Both materials
are isotropic linear elastic materials, the Lawoefficients in the fibers being larger than in the matrix. The
structure is periodic: we assume that the fibers are parallel cylinders with the circular section arranged along
a square lattice (see Fig. 1).

Homogenization procedure consists in studying the limit behaviour of the material when the period of the
structure tends to zero. What is the behaviour of the other physical quantities as the period tends to zero?
The effective properties of the material strongly depend on them: when the elasticity coefficients in the fibers
are of the same order of magnitude as in the matrix and when the radius of the fibers is of the same order of
magnitude as the period, the problem is a classic one in homogenization theory: the effective material is still
a linear elastic material whose coefficients can be expressed in terms of the geometry and of the elasticity
coefficients of the matrix and the fibers [18]. We study a different case: we want to describe a composite
medium reinforced by very thin and very rigid fibers. Then, it is natural to assume that the radius of the fibers
tends to zero faster than the period and that the elasticity coefficients in the fibers tend to infinity.

Let us now fix some notations: by convention, we choose the characteristic length of the domain as the
unit length. The period of the lattice is denoted oyWe study the limit=: — 0 and every quantity which is
not assumed to be constantsatends to zero, is indiced by For instance, the radius of the fibers is denoted
by r., the Lane coefficients in the fibers are denoted andy. while the Lang coefficients in the matrix
are denoted byg and o. Then our assumptions read

r
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This situation has already been studied by D. Caillerie [7] who, setting (r./¢)~%, u. = (r./)7?,
considered in two cases the limi, (. /c) — (0,0): (r./e — 0 thene — 0) and € — 0 thenr./c — 0). He
found that both cases lead to an elastic material but that the homogenized elasticity coefficients depend on
the limit procedure: the two limits — 0 and ¢./¢) — 0 do not commute. Here we Ierg, pe"tand A1

tend to zero together and assume that:

T . . .
lim ° =0, lim 2logtr.)=0, lim =pu1 >0 lim “° =0
e—0 € e—0 e—0 € 5
This particular scaling leads to a very different limit behaviour. We prove that the energy of the effective
material depends not only on the strain tensor (as a classical elastic material) but also on the second gradient

of the displacement. This result has been announced in [17].

Materials whose energy depends on the second gradient of the displacement cannot be considered as
Cauchy continua otherwise one would be led to a thermodynamic paradox [12]. This paradox can be removed
by extending the thermodynamical framework [12] but the fundamental point is that the Cauchy stress tensor is
not sufficient to describe internal forces [20]. External forces concentrate along any edge of the boundary and
the Cauchy theorem defining the Cauchy stress tensor cannot be applied [10, 11]. Moreover, a supplementary
boundary condition is needed to write well-posed problems, which is unusual and not intuitive [19]. The
simplest way to describe these media is to use the second gradient theory [13, 14] or to consider them
as Cosserat media [8]. Our result gives a new example of such a material together with a “microscopic”
interpretation of its special features.

We emphasize that, going to the limit, the differential order of the energy changes (as does the system
of partial differential equations associated with equilibrium). Such a change is not usual in homogenization
theory. It arises in rod or plate theories [1] but seems then to be connected with a change of dimension.
Our result shows that this is not necessary. Notice also that such a change in the differential order of the
energy can not arise when considering scalar problems (like thermal conductivity problems). Indeed, consider
a sequence of energies which are quadratic functions of the gradient of a scalar quatitgége energies
decrease when truncating and this property is preserved when going to the limit. Then, a representation
theorem for Dirichlet forms [6, 5] assures that the limit energy can be represented as the sum of a term
depending oru and Vu and a non-local term of the formf [, , K(x,y)(u(x) — u(y))?dxdy. In other
words, we can expect non-local effects but no increase of the differential order. Our result shows that this
argument cannot be extended to elasticity problems.

Non-local effects actually arise for some scalar singular perturbation problems [5, 4] and we should
probably have obtained non-local effects if assuming tifatog(r.)| converges to a finite positive value
instead of zero. We do not have non-local effects under our assumptions: the second gradient part of the limit
energy cannot be interpreted, as it is often done, as the limit of non-local interactions whose range is very
short.

Our study is variational. We identify thé&-limit Ey of the energyE. of our composite material. The
notion of I'-convergence corresponds to the intuitive notion of convergence of models: the result is obtained
without considering external forces, it remains valid in presence of body forces (for definition and properties
of I'-convergence, refer to [9]).

The limit energy is made explicit in Sect. 2 where we state precisely our result. Section 3 is devoted to
the more difficult part of the proof: considering a sequence of displacement fielJdsopverging to some,
we have to express the lower bound for the endfgfg.) in terms ofu. This needs an accurate description
of the asymptotic behaviour af. Especiallyu. has to be described at the scalenside the fibers: we need
a multiscale notion of convergence. However, we do not expect any periodicity with peritite classical
notions of multiscale convergence (as defined in [16] or [2]) are not convenient. In Subsect. 3.1, we develop
an adapted notion of double-scale convergence which describes the asymptotic behawiourtbg fibers,
that is in a set of scale. but with periodicitye. Section 4 is devoted to the end the proof: for any admissible
displacement fieldi we have to construct an approximating sequencevhose limit energy is not larger
thanEg(u). Such an approximation is obtained by choosing- u in the main part of the matrix, a rod-like
displacement field in the fibers and a suitable interpolation in transition layers around each fiber.
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2 The main result
2.1 Notations and Geometry

In R® we refer to a poink by its Cartesian coordinates; (X, X3). In the same way the coordinates of any
vectoru are denoted byuy, up, uz). The symmetric part of the gradient of(the strain tensor) is denoted by
e(u) := (Vu + Vu')/2. This tensor belongs to the set of 3-3 symmetric matrices which we denoté&by
The trace of a matriA is denoted by TH).

We use the summation convention, but, as we consider two and three dimensional spaces, we adopt the
following convention: a repeated Latin index is summed from 1 to 3 while a Greek index is summed from 1
to 2.

For every Borel seD andu € L1(D), we denote byD| the Lebesgue measure bBfand by{; udx the mean
value ofu on D: f; udx:= [D|~ [, udx.

X3 )
o 1 P
cn LTS TS 7 X2
LT e A /
= e e a0 L
:: T 1 |||||JI,
1 . .
T I R I I P fixed basis B
1 1 11 oAl o
[ [ (I I | I
[ [ 1 10 00 11
EEERPERIR /
E RPN NI
T I R A e N el ab
DL :::'/é/
CAT e /
ol 1 1 1
/’)c> =2l =2 = .
O o
j RN = = y’

Fig. 1. The composite material?
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Fig. 2. A period PP of the composite material

In order to describe the periodic structure of our composite material, we introduce two positive real
parameterg andr. (r. < ¢). Then we define the projectiqn:

P - R? — R?
X 1 X 1
0ax)— (2ECH + ) €D + )
€ 2 € 2
where Ef) denotes the integer part of a réahnd we define the periodic functiori by

Ve R® — R?

(X1, X2, Xa) F— I (X1, %) — Pe(Xe, %2)] -
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Next, we define the sets. and M., referred to as “the fibers” and “the matrix” respectively, by:
Fo={xeR¥: ly.x)| <1} , M.=R3\F. (1)

We assume that the composite material lies in the ozbe (0,1)% and we denote by# its "lower”
face:.72 = (0,1)* x {0}. On {2 the projectionp. ranges onto a finite set of points which we denote by
{xp; peZ2={1... 512}}. The domain? is the union of thes=2 parallelepiped®? := {x € 2 : p.(x) =
xP} which correspond to the periods pf.

The fiber contained in the perid®f (a circular cylinder of radius., see Fig. 2) is denoted 53 := F.NPP.
The total volume of the fibers contained §his [F. N 2| =", p |FP|=7rZe 2.

2.2 Elastic energy

We assume thdt. andM. consist of two different isotropic elastic materials: we define for every Borel set
D the matrix energy by

EM(D.u):= [ 7 (Tr(e(u)? + oe(v)] dx. @

where @\, 110) denote the (positive) elasticity Lancoefficients in the matrix. In the same way, we define
the fiber energy by

£ i= [ [ (Tre()? + e ox €
D
where @\, u.) denote the (positive) elasticity Lantoefficients in the fibers.

We assume perfect adhesion between the matrix and the fibers. Moreover, we assume that both materials
are fixed to the plangxs = 0}. Then, for any displacement € L?(12, R%), we define the total energy
E.(u) := E.(f2,u) of our composite material by

andu=0on.7 , 4)
+00 otherwise .

E™M. N 2,u)+E/(F. n2,u), if uecHY(N, R
E.(2,u) :=
2.3 Order of magnitude of the different parameters

In order to study thd -limit of E. ase tends to zero, we must specify our assumptions upon the behaviour
of r., \c and . ase tends to zero: we assume thratobeys the limit relations

im © =0, )
e—0 ¢
Iimog2 log(r.) =0 (6)
and thaty. and ). fulfill the limit conditions
TS
EIILn>0 c2 =M1 6]0, +OO[ ) (7)
lim A - e [0,+o . (8)
e—0 [t

Assumption (5) states that the fibers are much thinner than the period of the medium; it is one of our basic
assumptions. However, they cannot be too thin, otherwise the connection between the displacement fields in
the matrix and in the fibers disappears whetends to zero. This fact can be explained as follows: if the
radius of the fibers is infinitely smaller than the fibers behave like one-dimensional media and it is well
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known that a one-dimensional medium has no connection with a three-dimensional elastic medium. We will
see later that restriction (6) assures that the global displacement of each fiber coincides with the displacement
of the matrix where tends to zero. Note that assumption (6) is not very restrictive: any power.law?,

~ > 1 is admissible.

The energy of a bent rod is related to its curvature, that is to the second gradient of its displacement. As
our goal is to obtain second gradient effects, we expect each fiber to behave like a rod. The bending stiffness
of a unique fiber is" r4u 3\ +2u

47 N+ e
work of St. Venant [3]). Assumptions (7) and (8) state that this stiffness is of the ordg€r tife inverse of
the number £~2) of fibers.

° (refer to any textbook for mechanics of structures or to the pioneering

2.4 The main result

Our result states thaf. I'-converges in B(12, R®) to Ey defined by:

2 2
en@u+ [ [(%X‘:;>2+(%2X‘;§)2 o
Eou) = if u e HY(2, R3), gxlé € L2(2, R, @)
us=0 a.e.inf2,u= g)t‘s =0 a.e. on%,
+00 otherwise.
where 3042
K= 4 per i (10)

More precisely we have the following:

Theorem 1. i) Let u. be a sequence such that(B.) is bounded. Then_uis strongly relatively compact in
L2(2, R®).
ii) Moreover, for any sequence wonverging to u in_?(£2, R®), the following lower bound inequality holds:

lim irg)f E.(u.) > Ep(u). (11)

iii) Conversely, for every u i2(£2, R®), there exists an approximating sequencearuL2(£2, R®) such that

u. — uin L322, R%, limsupE.(u.) < Eo(u). (12)

e—0

Proof of assertion (i):It is clear from assumptions (5), (7) and (8) that and . tend to infinity. Then
there exists a positive real such thatE.(u) > ¢ [, e(u)? dx for everyu in HY(£2, R®). Due to Korn's
inequality, there exists a positive re@l such thate.(u) > C ||u[|i g rs)- The sequence. is then bounded
in H1(£2, R3): it is strongly relatively compact in4(£2, R®). O

The proofs of (ii) and (iii) are less straightforward. They are given in the following two sections.

3 Proof of the lower bound inequality
3.1 Preliminaries, double-scale convergence

Let us denote by, the unit disk of B and by~ the set of functionsz := C°(2 x Dy, R). We associate
to the sequence of setE (N {2) the following “double scale” convergence:

Definition: We say that a sequence im L?(£2, R) double scale converges toc L?({2 x D1, R) and we write
u.— v if and only if
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Vo e 7, ]{ PRECHEEIOLS fﬂ ]{) 0y) . y) . (13)

This definition is extended to vector field or tensor field sequences: we say that such sequences d.s.-converge
if and only if every component is d.s.-convergent.

Remark 1. For every functionb € &,
U—v = &(, ¥ () U()—dv . (14)

Indeed, for every) € &, the product) ¢ belongs toZ and the result is obtained by applying the definition
of the d.s.-convergence of with ¢ = ¢®.

Lemma 1. For every functionb € & we have

P(,Ye()— 2. (15)

Proof: For ¢ € &, let us compute the limit of—FEm »(X, Ye(x))dx. Using the Fubini theorem and changing
variables in each fiber we get

() = 22
fpmso(x,y(x» x=c2 3

peZ2

1
=F.ne 2y / / PO +1ya, XE + oYz, %), (v, y2)) dy s,

pe~z

£, oy 0 o

As the functiony is uniformly continuous o2 x Dy, we have the following uniform estimations:

|90((Xf Treys, Xg +1:Y2,%3), (Y1, Y2)) — W((Xf, Xg, X3), (Y1, ¥2))| = O(rz)

and

D (X5, %a), ¥) Lep (X) — (X, Y)

MISEZ

=0(e),

which implies

1
| /O 237 (P, X2, x5), ) dxs - /Q p(x,y) dx| = O(e).

pez

Hence

Iim][ (X, y-(x))dx = lim \Fsmgrlrfe*/ / ©(x,y) dy dx
N0 e—0 2 Jo,

e—0 E
=f ][ (%, y) dy dx.
2JD;

In other words, the constant function 1 d.s.-converges to itself. The lemma is proved by recalling Remark 1.
O

Lemma 2. Let u. be a sequence ib?(f2, R) such thatﬁzamﬂ u2(x) dx is bounded, then there exists a subse-
quence of i (still denoted by 1) and a functionv € L2(f2 x D1, R) such that

Ug—= v
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Proof: AssumeJCFEm u?(x)dx < M and consider the sequence of measutesn §2 x D; defined by
Ve 1= [Fe N 271U (X) by, x)(dy) dX. (16)

Since the sequenae ({2 x D;) is bounded, there exists a measursuch thaty. — v for some subsequence.
Moreover, for everyy € &/, we have

/ o y)dr. = [F. 1 2|t / (%, - (). ()X
2xD1 F.NQ

<({ ey o) v (f (el o) o) v

1/2
<mi2(fsyore)

FE

As ¢? € &, using Lemma 1, we have

1/2
imsup [ gx,y)dv. < MY2 (]{2 f (go(x,y»zdydx)

e—0 2xDq

/ 2. Y)dr < MY 2] 0] oy -
2xDq

The measure, as a linear functional, is bounded on the unit ball 6{{2 x D;, R): there exists a function

v € L?(2 x D1, R) such thatv = v dx dy. The convergence of the sequence of measurds the measure

vdx dyis clearly equivalent to the d.s.-convergenceupto v. O
Let us notice that Lemma 2 can obviously be extended to vector or matrix fields.

Lemma 3. Let u. be a bounded sequencehti(£2, R®). Then, there exists a constant C such thatsfemall
enough,

]{ rm(ug(x))zdx < C (||ue||Lzq2.ry — £%log(r2)) - (17)

Proof: Assume that|u,||? <M. Then

H(£2,R3)
E / (Vu.)2dx < M.
P

peA
In each periodP?, we use the cylindrical coordinates, defining by
UP(r, 0, X3) := U (X, +r1 COSH, X5 +T1 Sinb, x3) . (18)
Then, we have, for every; < p, < ¢/2,
1 p27 pp2 p\ 2
Z / / / <8us> rdrdfdxs < M.
pern o Jo o N OF

A simple one-dimensional minimization shows that

/ r (3U? 2 [UB(p2) — Ul (po)]?
p1

rdr > .
or ~ log(p2) — log(p1)

Hence L
3 / [02(p2,.56) — UE(pa, 0,3l < M 1ogi(”?)
0 0 1

peEA
Let us denote by the quantity
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1 p2rm
(W= [ [ @i, 19)

pe

The last inequality implies that, for evepy < p, < ¢/2,
P2
f(p1) < 2f(p2) +2M log(pl) :

As the ratior. /e tends to zero, we may assume, without loss of generality,rthat /4. Then, for every
p2 € [e/4,£/2], we can bound the mean value wf on F. N {2 by

e
]f ufdx = \FEHQ\‘l/ f(ryrar
F.N{$2 0

< [ P2
<|F.n 2 (2r f (p2) + 2Mr log(” )) dr
0

82 P2 1
< 2 (f (p2)rZ +MrZ (log((*) + 2))

€

IN

! (45 paf (02) + M2 (log( % ) + 1))
T r.” 2

and, taking the mean value of this last term fore [¢/4,¢/2], we get

2 1 2 2 1
uzdx < 16 [ f(r)rdr + Me“(log(e) — log(re) + )
FeNQ2 0 A 2

1 1
< 2 (36 By + Me0GC) ~ 050 + 5))

™
For ¢ sufficiently small,|log() + 1/2| < |log(r.)|. The lemma is proved by takinG = sup{16/x,2M /= }.
O

Lemma 4. Let u be a bounded sequencelit(£2, R®). Then

i) udx is bounded.
F.N$

i) If u. — uin L3(12, R®), then][ (U-(X) — u(x))?dx — O.
FeN$2
iii) If u. — u in L2(2, R®) and u— v, then

u(x) = v(X,y)dy, a.e.inf2. (20)

D1

Proof: Assertion (i) is a trivial consequence of Lemma 3 and assumption (6). Here it becomes clear how
assumption (6) connects the displacement in the fibers to the displacement in the matrix. Note that, at this
point, the boundedness ef log(r.) should be sufficient.

Assertion (ii) needs the convergengdog(r.) — 0. Then one simply must apply Lemma 3 to the sequence
(u. —u).

To prove assertion (iii), let us consider for amy> 0, a field ®, € C(£2, R® such that||®, —
ul|L20.re) < v. For anyp € C(£2, R%) we have

[ lim ][ .00~ 20000

e—0 E

1/2 1/2
< lim u-(x) — @, (x)|? dx lim ][ x)%dx) .
T e—0 < ]{;gﬁﬂ | ( ) ( )| ) 54»0( F.NQ (,0( ) )

=
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Applying Lemma 3 to the sequende. — &, | shows that this last term is bounded by the ndfm(x) —
2, (X)||L2(2,re) and therefore is of orded(v). Now, passing to the double scale limit, using the definition of
v and Lemma 1, we get

| 7[9 9{) 1 y)dy — 2,00) £ 6 < O0).

Assertion (iii) is proved by recalling that this inequality is valid for evety O

3.2 Limits of a sequence with bounded energy

Lemma 5. Let u be a sequence &f(£2, R®) with bounded energy. Then, up to a subsequence (still denoted
by w), there exist € L2(2 x D1, R®), w € L2 x D1, R) and x € L%({2 x D1,.#%) such that
U3 e(u:)

U-— v, —w, X - (22)
re le

Proof: AssumeE.(u.) < M, then the sequenae is bounded in F(£2, R®), Lemma 4 states that the sequence
ufdx is bounded and Lemma 2 implies the existence af L2(£2 x D1, R®) such thatu.— v. On the

F-N§2

other hand, ag. e(u.)’dx < M, we have

r4 1du
“82%][ (FE 2 < M
& F.nN e 8X3

Je.ne

As any sequence with bounded energy satistieg{xi,x2,0) = 0 a.e. on.2?, a simple one-dimensional
minimization shows that

1 2 rl
/ (85153)2(1)(3 > ’ / (u. S)de37 for ae. (xi,%).
0 X3 4 0

Hence,
4
Hele 7[ (“2ax< “m
F

52 NN I’E 71'3

U, . - .
As ugr;‘/s2 — 1, the sequenc?[ ( ) 3)zdx is bounded: the sequences/r. satisfies the assumptions
F.n e
of Lemma 2; the existence af is assured.
In the same way, from inequality. _[FEOQ gu.)?dx < M, we deduce
r4 e(u
”82%7/ SN2y .
€ Fone  Te

The sequence(u.)/r. verifies the assumptions of Lemma 2: the existencg of assured. O

Lemma 6. Consider a sequence with bounded energy and converging to some W32, R®), then

62U1
2
Ox3

62U2

ue HY(?,R% , ox2
3

e L2, R%, e L?(2,R%, u(x)=0ae in .

Moreover, there exists a subsequence (still denoted.pgnd q € L2(£2, R) such that

( e(u.)

5%uy 9%uy
)00 = 20N 00 (22)
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Proof: First, let us notice that the sequencds bounded in Fi(£2, R®). Then the limitu belongs to H(£2, R®).
Lemma 5 assures the existencevof L2(£2 x D1, R%), w € L2(2 x D1, R) and x € L%(£2 x Dy, .#4) such
that, up to a subsequence,

Us—= , %3—%0 and e(ru‘E)—uX )

The convergenca.s/r.— w immediately yieldsu.3— 0, i.e.v3 = 0. Using the relatiom(x) = JCDl v(X,y)dy
stated in Lemma 4, we get the identity = 0 a.e. in{2.

Consider now a tensor field € C°(£2 x D1,.#4). We have, using the definition of and the divergence
theorem,

= |i 1 . .
L wenenenayo=im [P @6 cy.00)ox.

. 1 Ju,j
=1 ij € ’
lim ]{ ot 0% () i (%, = (%)) dx
. 1 a@i' 1 6<)0io¢
:—Ilm][ uE»x[ ' (X, Y- (X)) +
ot i(X) o (X, Y= (x))

Loy o

- im {rlz fF . uw(x)a(;ﬂ; (x,y-(x)) dx
1 Opgi
+ = s Ye +
]i . (u 500 7 6..00)

le

U S(X) a()03a

090% v, ) o

U= 3(X) g }
5 A WL 23

Multiplying equation (23) byr? and passing to the limit — 0 gives

i ][ 0 500 299 (x,y.(x)) dx = 0,
F-NN aya

e—0

D5
F A ot ey dy oo,
8@5 _
(ond ) =0, (24)

where<> denotes the distribution bracket éhx D1. This last equation, valid for any field of a symmetric
plane matrix and whose support is includedfinx D;, is equivalent to the antisymmetry (in the sense of
distributions)

ovp _ vy vy _ Ov _

, = 0.
Y2 oy1 oyr  Oy2

Then (refer for instance to [15]) there exist three functionsc, andt in L?(f2, R) such that

vi(X,y) =C(X) —t(X)y2 ,  wvaAX,y) = Co(X) +t(X) Y1 .

Lemma 4 impliesc; = u; andc, = up. Hence

vi(X,y) = ua(X) —t(Xx)y2 . v2(X,y) = Up(X) +t(X) y1 . (25)

Now, consider the fieldg such thatps, = 0, Va, 5 € {1,2}. Multiplying equation (23) byr. and passing
to the limit gives
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Uc3(X) 034

. 8(,053
lim U 5(X X, Ve (X)) +
L st sy« 47000

e—0

dpp3 Ip3a ]
v5(X, X,Y) + w(X, X, dydx=0,
L4 [rooen 2o vutn o] oy
ov ow
(em)+ (g vaa) =0,

Ov,  Ow _

This last equation, valid for every functions, whose support is included if? x D;, implies that, in the
sense of distributions,

(x,yg(x»} dx=0,

Ov, Ow

+ =0
X3 o
which, using (25), becomes
ou; ot ow Ouo ot ow
— + Yo = , — — Y1 = .
OX3  OX3 oY1 OX3  OX3 oYz
The Schwarz theorem implies thét/dx; = 0; then
7((9U1 _ ow 7(9[.!2 _ ow
% Oy’ Xz Oy2
Therefore there exists a functienin L2(£2, R) such that
W) == Y SN 27)

Finally, considering matrix fieldg with a unique non vanishing componemds, equation (23) leads to

]1 ]1 Yaa(k.y) @aal,y) dx = — lim ]1 U3 00y 993 (4, (%)) dx
2JDy

e—0 F.N0 Ie 8){3
033
=— w(X, X,Y) dy dx
I e ey ay
(xss pa3) = ( O (28)
X33 ¥33 O ©33 ) -

Then ys3 = dw/0xs in the sense of distributions. Ag belongs to B(f2 x D1,.#4), Ow/0xz belongs to
L2(£2 x D1, R). This means, by using (27) th&tu,, /0xZ € L2(£2,R), q := 0s/0xs € L?(2,R) and

d%u,
Xss,y) = = 2 00 Y + 400 (29)

O

3.3 Lower bound for the energy

Let u. be a sequence with bounded energy converging to soine_2(£2, R®). We can assume without loss
of generality thate. (u.) converges to liminE.(u.). Then assertion (ii) of Theorem 1 will be proved if we
prove that for some subsequence (still denotedi)ywe have

Iimigf E.(u:) > Ep(u) .

First, let us recall that the sequenaeis bounded in H(£2, R®), then
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ue HY (2, R% . (30)

It is easy to get the lower bound for the energy outside the fibers: inde&d(wa$ is boundedEf (F. N 2,u.)
is also bounded. As the ratigg /. and o/ ). tend to zero, theE™(F. N 2, u.) tends to 0. Hence

lim igf E™(M. N 2,u.) =lim igf E™(2,u.) > E™(£2,u) . (31)
To estimate the energy in the fibers we use the lemmas stated in the preceeding subsections. Indeed we have

liminf Ef(F.N2,u.)

= limint {ﬂi? (T )
F-N$2

e—0 € le e le

o)y, , ¢ (Tr(e<u5»)2} ix

re 2 re (32)

> muq liminf [(
=0 Jr.ne

From Lemma 5, we know that, possibly passing to a subsequeficg/r. admits a double scale limj.
As we cannot pass to the limit directly in inequality (32), we write its dual form

e(u=(x))
le

liminf Eg (F-Nn2,u.) > sup{wul lim inf][ [ DX, Ye(X))—
e—0 ® =0 Jr.ne

B N e L

where the supremum is taken for every= C°(£2 x Dq,.#2). Then Remark 1 and Lemma 1 allow to pass
to the limit

lim inf Eg (Fen2,u;) > SUP{WM][ ][ [X(X,Y) (X, y)—
e—0 @ 2Jp,
Leoonre C et y)?| dy dx
4 42+ ) ’ '
As C°(§2 x Dy,.#0) is dense in B(2 x D1,.72), we get
lim inf E'(F. N 2,u.) > mu][ ][ [Xz(x,y) + i (Tr(X(x,y)))Z} dy dx .
£— (%} D1

It is easy to verify that, for every in 2,

/ 3W+2
2 2 2
M2+ M) = o MG (33)
Hence,
liminf EN(F. N 2,u) >« 3“27[][ 2 (x,y)dy dx (34)
M Eelre yUg) =2 'ul(€+]_) 5 D1X33 ,y)dy .
From Lemma 6, we know that ,
o4u
“ e L’(2,R 35
o ELR), (35)

and we can expresgss in terms of these second derivativesuof
T 30+2 82u 2
liminf Ef (F. N 2,u.) > ][][ X)— . S(X)Ya | dydx.
minf E( )Z gy, .. q(x) axg()y' y
Fora =1 or 2, we have

Yody =0, yidyzl, and yiy2dy=0.
D1 4 Dl

Dy



On a second gradient theory 253

Then we may deduce that

2 2 2 2
—_— L@ +2) [ a0 (P, (0
mIpFEF-N 2w = Tghgy 1, [0+ (g ) *lae ) |

which implies
82U2

.. k 82U1
liminf E/(F. N 2,u.) > ][ 24
minfEl(F. 0 2wy = 5 f [

2
5 o2 ) ] dx , (36)
wherek is defined by (10).

In order to obtain the boundary conditions, let us consider the extended denain(0, 1)2x] — 1,1[
and the extensions. "and U’ of u. andu on (2 defined by

U: :=u. on (2, d:=uonf,
d.:=G:=00on2\ 2.

The sequencEE(fZ, U.) is bounded andl.”converges taiin L2(£2, R%); thus the results of Lemma 6 can be
applied:u’ € HY(£2, R®) and 9?0, /0xZ € L?(2, R) which implies

3U1 _ (9U2
6x3 8X3

Assertion (ii) of Theorem 1 is proved by recalling (30), (31), (35), (36), and (37). O

u=0ae on.7 , =0ae on.72 . (37)

4 Proof of the upper bound inequality

Let us denote by the functional space

u u
{ue HY(2,R®), u3=0 ae. on 12, 0 eL?(2,R%, u= ou _ 0 ae on.7#},
X2 OX3
which is endowed with the norm
_ d%u
[[ullsz = [[ullho,re) + HastHLZ(n,RS) .

For anyu € L2(2, R®) such thatEy(u) < +oo, i.e., for anyu € .77, we have to construct an approximating
sequencel. in L2(2, R®) such that

u. — uin L(2,R® and limsuE.(u.) < Eo(u).
e—0
It is easy to verify that

2
ou —82:0ae. on.7}

T = o Hhu=_ =
7 = {u € C>*(2,R°),u e - 92

is dense in7. Then, we can restrict our study to a functiore T As Eq is continuous onZZ, the result
can be generalized t&7.

Let us choose a sequenBe such thatr, << R. << ¢, and let us divideM, in two parts by introducing
a transition layerC.

C.={xe2:1<|y.x)|<r*R}, B.:={xe:ly.x)|>rtR},
The part ofC. contained in a perio@? is denoted byCP := C. N PP
For everyp in 2, we define the functiom? € C>°((0, 1), R®) by
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vP(Xs) 1= ]/ UX) + oy, X5 + T2 Y, X3) dy dys (38)
Dy

and the functionw? € C>((0,1) x R% R®) by
/ [82 plyl y2+82p ]

why (%6, y) 1= vEy (x) + 12 20+1) | o2 2 oxz Y2
¢ 9Pl y5 — Y1 0%uf
ubgony) =t i [ i) (39)

wls(Xs,y) = —re a; Vo -
The functionw? may be interpreted as the rod-like displacement of the fitfewhose global displacement
is vP [3]. As u € .77, we haveu = du/dxs = §%u/0xZ = 0 on. 7. Therefore every fonctionP vanishes for
X3 = 0.
We define now the approximating sequenag) py setting
u(x) on B,

wB (X3, Y=(X)) on each fibefF?,

U (X) = (40)

~(r) wP(xs, (cosh,sind))  on each transition
+(1 —~(r)) ux) layerCpP,

where ¢, 6) denote the polar coordinates defined in each pefbdby x; = X} +r cost, x, = X} +r sing and
~ is the function defined by

log(r) — log(R:)
log(r.) — log(R:)

Notice that, by constructiony. belongs to H(£2, R®) and satisfiesi. = 0 on.%. Then
E.(u.) =E™B. N 2,u.)+E™C. N2, u.)+E (F. N 2,u.) . (41)

Moreover,u, tends tou in L2(£2, R®): indeedu. coincides withu on B, |2\ B:| — 0, and (i.) is uniformly
bounded orF, andC..

y(r) =

4.1 Estimation for the energy of in the matrix
As u.(x) := u(x) on B, we haveE™(B., u.) = E™(B.,u). As R./e — 0 one hag{2 \ B.| — 0. Moreover,
u € HY(12), thenE™(£2 \ B.,u) — 0 and
IimoEm(BE, u.) =E™(2,u) . (42)
E—>

4.2 Estimation for the energy of un the fibers

Let us estimate the energy of in each fiber=P: As u.(x) = wP(x, y-(x)) in F?, we have
0 9%P,
ell(ue) - eZZ(UE) =r. Z(E + 1) axg Yo

_ %P,
e33(ue) =TI Ox 2 Yo s

e12(u6) = ezl(ua) -
_ Y 83 Pl yl y2 53 p

e13(u€) e3l(u6) rs 4(€+1) |: 8x3 2 + a 3 YY:| ’

t [83 vl Y5 - Vi + &% 51 }

e3(U.) = ex(u.) =12 ae+1) | @ 2 3 y1y2
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Hence

1 2 2 2
3c+40+2 1 o“vP
fep —r4 + [te’
E(Fe ) =re /o /D [“g 20+1p o 1)2} { o2 y“} o
1 2 3,P \ 2 3,P \ 2 24212
+r8 / / fe ! 0 1) 4 0 '=2 ViTYe) gy
o Jo, | 8+1) OX3 OX3 2
Computing the integrals oB; and summing for all setB? we get
627”-6# 83 p 33 p
ENF-nQu)= ) { : 52/ ( 61 52
et 96(/ + 1) 8x3
2 Ae 2
+3£ A2+ 0 rdy, /1 0%P, . 821152 il
2(¢ + 1Y 4  J, X2 ox2
Passing to the limit — 0, we have

2 Ae
23€ +4€+2+N5 ﬂr?/”l’E_)k
200+ 1P 4 2

o P mr 2he

g+ 12

-0, e

wherek is defined by (10). Moreover, using the definition of the functioswe have

80P\ ? 92U, \ 2
2 e d :2][ (e d
Z/<a> T Jeloe ) 0

peA
) we ()
2 f4e - 2 (e
€ dxg=¢ dx .
,)EZ//O <6x3 2 Jrne \ 06
Hence ) )
. k 82U1 82U2
lim E/ (F. N 2,u.) = + . 4

4.3 Estimation for the energy of un the transition layer

Let M = sup, {supu, V2u, V3u)}. We restrict attention to a cylindeZP? and prove, in a first step,
that |Vu.| is bounded onCP. We use the cylindrical coordinates, ¢, x3) defined byx; = xP +r coss,
X = X§ +r5sind (on CP we haver € [r.,R.]).

Clearly, in view of the definition ofvP, there exists a positive redl; such that

p
1% b, (cosd, )| < Mar.

ou
<
, 89' < Mr and whence

10u. 1 .
|r 861; | = |(1—v(r))au(xf +1 COSH, X5 +1 5in6, x3) +

y(r) (x3 (cosh,sing))| <M +M . (44)

On the other hand, owing to the definition @f, there exists a positive redl, such that, for every € D;
andxz € [0, 1], |wP(xs,Y) — vP(X3)| < Mar.. From the definition of?, we have, for every >r.

[0P(x3) — u(XP +r1 cosd, xb +r sind, xs)| <2M r .
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Then, there exists a positive reédk such that, for every >r.,y € Dy, 6 € [0,27] andxz € [0, 1],
|wP(X3,y) — U(XD +1 cOSH, X5 +T sinb, x3)| < Mar .

Thus the following estimation fodu. /Jr can be derived
|8aur€ (X} +r1 cosd, x) +r1 sind, x3)|

= (1 — () g‘r‘ (<P + 1 cosh, X2+ siné, x3)

dy
dr (

+ 1 (wP(xs, (cos, sind) — u(x} +rcosd, x5 +rsind, xs)) |

-1

<M +Ms (45)

re
|09(RE)

Finally, it is easy to verify thaidwP /9xs| is bounded; then there exist4, such that

Ou,

| ox (xp +r cost, X} +r sing, x)|
3

=1 —~(r)) (;9)1(1 (X +r1 cosd, x) +r1 sind, x3)
3

ouwP .
+y(r) 8)(6 (X3, (cost, sind))| < My . (46)
3

The estimations (44), (45), (46) imply thau.| is bounded on each lay€&P, and thence on the s€t. As
|C:| tends to O, there follows lim suﬁE|Vu€|2dx =0and

limsupE™(C.,u.) = 0. (47)

Assertion (iii) of Theorem 1 is proved by the estimations (42), (43) and (47). O

5 Comments

Due to the properties af-convergence, our result is still valid when external body forces are present. Indeed,
a term [, f(x)u(x)dx can be added to botB. and E. In that way, we can solve non-trivial equilibrium
problems.

Our result states that the homogenized material is a second gradient material: it has a “three dimensional
bending stiffnessk. This is not so surprising: it is well know that elastic cylinders, when their radius tends
to zero, behave like rods (which are second gradient one-dimensional media): in a sense, we studied the
homogenized properties of a system of rods connected by an elastic matrix. However, it must be emphasized
that such a result could not be reached by considering directly an elastic matrix reinforced by one-dimensional
rods (there is no interaction between a one-dimensional and an elastic three-dimensional medium).

The limit energyEy contains a remaining classic elastic p&T,({2, u). One could consider, afterwards, the
limit (1o, Ao) — (0,0) in Eg and obtain an energy depending only on the second gradient of the displacement
(the bending stiffnesk does not depend om or Ap).

The particular features of second gradient materials, like the hyperstress tensor [13, 14], flux of interstitial
working [12, 10], edge forces [11], presence of a force distribution of order one with respect to the normal
derivative [19] can be interpreted in our particular case as limits of some microscopic elastic forces.

An open question raised by our study is the general condition for the change of differential order of
the energy when passing to the limit. We already pointed out that such a change was impossible for scalar
problems. Our feeling is that the properties of the kernel of the energy density (rigid motions in our case)
is essential: it leads to constraints verified by the limit of sequences with bounded energy (in our case
these constraints (27) are stated in the proof of Lemma 6). They may be some partial differential equations
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which increase the differential order of the energy. However, they also depend strongly on the geometry: for
instance, we do not yet know whether it is possible to find a limit energy depending on a higher gradient
of the displacement (third or higher order gradient material) by changing the distribution of the high rigidity
inclusions.

AcknowledgementsThis paper was initiated by enlightening discussions with M. Bellieud and G. Bo&ichtib studied non-local
effects for scalar problems in the same geometry [5, 4].
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