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Abstract. Commutative Replicated Data-Type (CRDT) is a new class of algo-
rithms that ensures scalable consistency of replicated data. It has been success-
fully applied to collaborative editing of texts without complex concurrency con-
trol.
In this paper, we present a CRDT to edit XML data. Compared to existing ap-
proaches for XML collaborative editing, our approach is more scalable and han-
dles all the XML editing aspects : elements, contents, attributes and undo. Indeed,
undo is recognized as an important feature for collaborative editing that allows
to overcome system complexity through error recovery or collaborative conflict
resolution.

Keywords: XML, Collaborative Editing, P2P, Group Undo, Scalability,Opti-
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1 Introduction

In large-scale infrastructures such as clouds or peer-to-peer networks, data are repli-
cated to ensure availability, efficiency and fault-tolerance. Since data are the heart of
the information systems, the consistency of the replicas isa key issue. Mechanisms to
ensure strong consistency levels – such as linear or atomic –do not scale, thus modern
large-scale infrastructures now rely on eventual consistency.

Commutative Replicated Data Types [12,16] (CRDT) is a promising new class of
algorithms used to build operation-based optimistic replication [14] mechanisms. It en-
sures eventual consistency of replicated data without complex concurrency control. It
has been successfully applied to scalable collaborative editing of textual document but
not yet on semi-structured data types. EXtensible Markup Language (XML) is used in
a wide range of information systems from semi-structured data storing to query. More-
over, XML is the standard format for exchanging data, allowing interoperability and
openness.

Collaborative editing (CE) provides several advantages such as obtaining different
viewpoints, reducing task completion time, and obtaining amore accurate final result.



Nowadays, collaborative editing becomes massive and part of our every day life. The
online encyclopedia Wikipedia users have produced 15 millions of articles in a few
years.

Undo has been recognized as an important feature of single and collaborative edi-
tors [2,3]. The undo feature provides a powerful way to recover from errors and van-
dalism acts or to manage edit conflicts. So, it helps the user to face the complexity of
the system. However, designing an undo feature is a non-trivial task. First, in collabo-
rative editing, this feature must allow to undo any operation – and not only the last one
– from any user. This is called global selective undo (or anyundo). Second, this undo
must be correct from the user’s point of view. The system mustreturn in a state such as
the undone operation has never been performed.

We propose to design an XML CRDT for collaborative editing. This CRDT handles
both aspects of XML trees : elements’ children and attributes. The order in the list of
the elements’ children are treated as in linear structure CRDT. Elements’ attributes are
treated using a last-writer-wins rule. Our undo is obtainedby keeping the previous value
given to attributes and operations applied on elements, andthen counting concurrent
undo and redo operations. A garbage collection mechanism ispresented to garbage old
operations.

2 State of the art

The Operational Transformation (OT) [13] approach is an operation-based replication
mechanism. OT relies on a generic integration algorithm anda set of transformation
functions specific to the type of replicated data. Some integration mechanism use states
vectors – or context vectors [15] in the presence of undo – to detect concurrency be-
tween operations; such mechanisms are not adapted to large-scale infrastructures. Ignat
et al. [4] propose to couples an integration mechanism that uses anti-entropy, with some
specific transformation functions [11] to obtain P2P XML collaboration. However, this
proposition replaces deleted elements by tombstones in theedited document to ensure
consistency, making the document eventually growing without limits and proposes no
undo.

Martin et al. [9] proposes an XML-tree reconciliation mechanism very similar to
a CRDT since concurrent operations commute without transformation. However, this
approach does not treat XML element’s attributes, which require a specific treatment,
since they are unique and unordered. Furthermore, it uses state vector that limits its
scalability and proposes no undo feature.

In the field of Data Management, some works give attention to XML replication.
Some of them [6,1] suppose the existence of some protocol to ensure consistency of
replicated content without defining it. Finally, [8] proposes a merging algorithm for
concurrent modifications that can only be used in a centralized context.

3 XML CRDT without undo

In a collaborative editor, to ensure scalability and high-responsiveness of local modifi-
cations, data must be replicated. This replication is optimistic since local modifications



are immediately executed. The replicas are allowed to diverge in the short time, but the
system must ensure eventual consistency. When the system isidle (i.e., all modifications
are delivered), the replicas must have the same content.

A Commutative Replicated Data Type(CRDT) [12] is a data typewhere all con-
current operations commute. In other words, whatever the delivery order of operations,
the resulting document is identical. As a result, a CRDT ensure eventual consistency as
proven in [12].

Thus, we see an XML collaborative editor as a set of network nodes that host a
set of replicas (up to one per node) of the shared XML document. Local modifications
are immediately executed and disseminated to all other replicas. We assume that every
replica will eventually receive every modification.

We consider an XML tree as anedge e with three elements :e.identi f ier the unique
identifier of the edge (a timestamp),e.children the children of the edge (a set of edge),
ande.attributes the attributes of the edge (a map string to value). The key of the map are
the attribute’s name (a string), and a valueav has two elements,av.value : the current
value of the attribute (a string),av.timestamp : the current timestamp of the attribute.
The basic operations that affect an XML tree are :

– Add(idp, id) : Adds a edge with identifierid under the edgeidp. This edge is empty,
it has no tag-name, child or attribute.

– Del(id) : Deletes the edge identified byid.
– SetAttr(id,attr,val, ts) : Sets the valueval with the timestampts to the attribute

attr of the edge identified byid. The deletion of an attribute is done by setting is
value to nil.

To allowAdd andDel operations to commute, we use a unique timestamp identifier.
Timestamp identifiers can be defined as follows: each replicais identified by a unique
identifiers and each operation generated by this site is identified by a clock hs (logical
clock or wall clock). An identifierid is a pair(hs : s). For instance(3 : 2) identifies the
operation 3 of the site number 2. The set of the identifiers is denoted byID. Thus, two
edges added concurrently at the same place in the tree have different identifiers.

To allow SetAttr operations to commute, we use a classical last-writer-winstech-
nique. We associate to each attribute a timestampts. A remoteSetAttr is applied if and
only if its timestamp is higher than the timestamp associated to the attribute. Times-
tamps are totally ordered. Letts1 = (h1 : s1) andts2 = (h2 : s2), we havets1 > ts2 if
and only ifh1 > h2, or h1 = h2 ands1 > s2. Clocks are loosely synchronized, i.e., when
a replica receives an operation with a timestamp(h2 : s2), it sets its own clockh1 to
max(h1,h2).

Special attributes. The special attributes @tag and @position contain the tag-name and
the position of an edge and cannot be nil. The position allowsto order the children of a
node. This position is not a basic number. Indeed, to ensure that the order among edges
is the same on all replicas, this position must beunique, totally ordered and dense.
Positions are dense if a replica can always generate a position between two arbitrary
positions. This position can be a priority string concatenated with an identifier [9], a
sequence of integers [17], or a bitstring concatenated withan identifier [12] all with
a lexicographic ordering. Finally, to model the textual edges we use another special



attribute @text. If this attribute has a valuev, whatever the value of other attributes, the
edge is considered as a textual edge with contentv.

Algorithms The functiondeliver(op, t) applies an operationop on an XML treet. The
functionfind(t, id) returns the edge identified byid. The functionfindFather(t, id) returns
the father of the edge identified byid.

deliver (Add(idp, id), t) :
edge p = find(idp, t), e = new edge(id);
if p 6= nil then p.children = p.children∪{e};

end
deliver (Del(id), t) :

edge p = findFather(id, t), e = find(id, p);
if p 6= nil then p.children = p.children\{e};

end
deliver (SetAttr(id,attr,val, ts), t) :

edge e = find(id, t);
if e 6= nil and (e.attributes[attr] = nil or e.attributes[attr].timestamp< ts) then

e.attributes[attr].value= val;
e.attributes[attr].timestamp= ts;

endif
end

4 XML CRDT with undo

Obtaining a correct undo from the user’s point of view is a non-trivial task. Let’s have
the following scenario 1. a user adds an element, 2. a user deletes this element, 3. the
add is undone, 4. the delete is undone concurrently by 2 different users. At the end, since
both operations add and delete are undone, the node must be invisible. And this must
be true on every replica and whatever the delivery order of operations. For instance,
usingDel to undoAdd leads to different results according to the reception orderof
the operations. The element is visible if an un-delete is received in last or not if it is a
un-add. Such a behavior violates eventual consistency.

To obtain a satisfying undo, we keep the information about every operations applied
to each edge. Then we count theeffect counter of an operation : one minus the number
of undo plus the number of redo. If this effect counter is greater than 0, the operation
has an effect. An element is visible if the add has an effect counter greater than 0, and
no delete with an effect counter greater than 0. The value of an attribute is determined
by the more recent value with an effect counter greater than 0. Thus, we need to keep
into the map of attributes, the list of values – including nilvalues – associated to an
effect counter. The list is ordered by the decreasing timestamp.

With undo, an edge attributee.attributes[attr] becomes an ordered list ofvalue v,
each value containing 3 elements :v.value a value of the attribute (a string),v.timestamp
the timestamp associated to this value, andv.e f f ect the effect counter of this value (a
integer).The list is ordered by the timestamp. The functionadd(l,v) adds a valuev in



the list l at its place according tov.timestamp. The functionget(l, ts) returns the value
associated tots in the list l. The special @add attribute has only one value associated
to the timestamp equal to the edge identifier. The special @del attribute stores the list
of timestamp of delete operations applied to the edge.

deliver (Add(idp, id), t) :
edge p = find(t, idp), e = new edge(id);
p.children = p.children∪{e}
add(e.attributes[@add], new value (nil, id,1));

end
deliver (Del(id, ts), t) :

edge e = find(t, id);
add(e.attributes[@del], new value (nil, ts,1));

end
deliver (SetAttr(id,attr,val, ts), t) :

edge e = find(t, id);
add(e.attributes[attr], new value (val, ts,1));

end

Undo of an operation is simply achieved by decrementing the corresponding effect
counter. When aRedo is delivered, theincrement function is called with a delta of+1.

deliver (Undo(Add(idp, id)), t) :
increment(t, id,@add, id,−1);

end
deliver (Undo(Del(id, ts)), t) :

increment(t, id,@del, ts,−1);
end
deliver (Undo(SetAttr(id,attr,val, ts)), t) :

increment(t, id,attr, ts,−1);
end
function increment(t, id,attr, ts,delta)

edge e = find(t, id);
value v = get(e.attributes[attr], ts);
v. effect += delta;

end

Exemple. Figure 1 presents the application of our functions on the introducing example.
On every replica, the add and del operations have an effect counter lesser or equal to 0.
Thus none of these operations have an effect on the XML tree and the edge is invisible.

Model to XML. As the model described above includes tombstones and operations
information, it cannot be used directly by applications. Indeed, applications must not
see a tombstones and only one value for each attribute. A nodeis visible if the effect
counter of the attribute @add is at least one, and if all values of the attribute @del
have an effect counter of at most 0. If the edge is a text, i.e.,the attribute @text has a



Replica 1 Replica 2 Replica 3
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(idp, [. . .],{(id,{}, [@add → (nil, id,1),
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undo(Del(id, ts))
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(idp, [. . .],{(id,{}, [@add → (nil, id,1),
@del → (nil, ts,0)])})

(idp, [. . .],{(id,{}, [@add → (nil, id,1),
@del → (nil, ts,0)])})

undo(Add(idp, id)) undo(Del(id, ts))

(idp, [. . .],{(id,{}, [@add → (nil, id,0),
@del → (nil, ts,0)])})

(idp, [. . .],{(id,{}, [@add → (nil, id,1),
@del → (nil, ts,−1)])})

undo(Del(id, ts)) undo(Add(idp, id))

(idp, [. . .],{(id,{}, [@add → (nil, id,0),
@del → (nil, ts,−1)])})

(idp, [. . .],{(id,{}, [@add → (nil, id,0),
@del → (nil, ts,−1)])})

Fig. 1. Concurrent undos with effect counters.

value, we write this value in the XML Document. If the edge is visible and is not a text,
we write the tag and the attributes corresponding to that edge. Therefore, we need to
compute the current value of the attributes which is the newest non-undone value of a
value list. Finally, the rendering function calls itself totreat the children of the edge.

Correctness. To ensure that our data type is a CRDT and thus that eventual consistency
is ensured, we must prove all our operations commutes. For a complete proof, please
see [10]. The only requirement to ensure consistency of the XML CRDT without undo
is to receive delete operation after insert of a node. With undo, this constraint is not
required to ensure consistency since a delete can be received before an insert. The delete
produces directly a tombstone.

5 Garbage collecting

Concerning the scalability in term of operations number, the XML CRDT without undo
requires tombstones for attributes as the Thomas Write Ruledefined in the RFC 677 [5].
The XML CRDT with undo requires to keep an information about every operation
applied to the XML document. This is not surprising since anyundo system must keep



a trace of an operation that can be undone, either in the document model or in a history
log.

However, a garbage collecting mechanism can be designed. Such a garbage collec-
tion is similar to the one already present in the RFC 667 [5]. Each replicai maintains
a vectorvi of the last clock timestamp received by all other replicas (including its own
clock). From this vector the replica computesmi the minimum of these clocks. This
minimum is sent regularly to the other replicas. It can be piggybacked to operation’s
messages or sent regularly in a specific message. From the minimum received (includ-
ing its own), each replica maintains another vectorVi. The minimum ofVi is Mi. The
point is that, if communication is FIFO, a replica knows thatevery replica has received
all potential messages with a timestamp less or equal toMi. Thus any tombstone with a
timestamp less or equal toMi can be safely removed. This mechanism can be directly
used in the XML CRDT without undo to remove old deleted attributes.

In the XML CRDT with undo, we only authorize to produce an undoof an operation
whose timestamp is greater thanmi. Thus operations with a timestamp lesser thanMi

will never see their effect modified. So, elements such as follows can be safely and
definitively purged :

– attribute valuev with v.timestamp < Mi andv.e f f ect ≤ 0
– attribute valuev with v.timestamp < Mi and there existsv′ with v.timestamp <

v′.timestamp < Mi andv′.e f f ect > 0
– attribute with no value or with every valuev such thatv.timestamp < Mi and

(v.e f f ect ≤ 0 or v.value = nil)
– edge with any delete valued with d.timestamp < Mi andd.e f f ect > 0 or with the

add valuea with a.timestamp < Mi anda.e f f ect ≤ 0.

Thus, the time and space complexity of the approach is greatly reduced to be pro-
portional to the size of the view. Moreover, differently to the RFC 677, replicas send
mi − k with k a global constant instead ofmi. Thus, even if the replicas are tightly syn-
chronized – havingmi very close to their own clock –, the replicas can always undo
the last operations. Also, the garbage collecting mechanism that can be adapted to the
other tombstone-based approach is much less scalable sincebased on a consensus-like
method [7].

6 Conclusion

We have presented a commutative replicated data type that supports XML collabora-
tive editing, including a global selective undo mechanism.Our commutative replicated
data type is designed to scale since the replicas number never impacts the execution
complexity. Obviously, the undo mechanism requires to keepinformation about the op-
erations we allow to undo. We presented a garbage collectionmechanism that allows to
purge the old operations information.

We still have much work to achieve on this topic. Firstly, we need to make exper-
iments to establish the actual scalability and efficiency ofthe approach in presence of
huge data. Secondly, we plan to study replication of XML datatyped with DTD or
XSD. This is a difficult task, never achieved in a scalable way.
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