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Abstract.

Over almost three decades an unsettled controversy developed about the validity of

quasilinear (QL) theory for describing the weak warm beam–plasma instability in the

chaotic saturation regime. This work deals both analytically and numerically with this

issue. It is shown analytically that there is no mode coupling in the saturation regime of

the instability where a plateau is present in the tail of the particle distribution function.

This invalidates several analytical works trying to prove or to contradict the validity

of quasilinear estimates in the strongly nonlinear regime of the weak warm beam–

plasma instability. Self-consistent numerical simulations of the weak warm beam–

plasma instability within the Vlasov–wave description show that QL theory remains

valid in the strong chaotic diffusion regime. However there is a non-QL regime before

saturation, which confirms another analytical work and contradicts a later one, but

confirms a previous numerical simulation. [18 October 2010]
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1. Introduction

Wave–particle interaction is an important phenomenon in plasma physics. It stands at

the root of wave heating, of numerous instabilities, and of some regimes of anomalous

transport in magnetically confined plasmas. Wave–particle interaction, described by

Vlasov–Maxwell equations or “simply” by one-dimensional Vlasov–Poisson equations, is

already so complex that Landau damping was fully recognized only after its experimental

discovery in 1964 [44], even though it was discovered on an analytical basis in 1946

[37]. As to nonlinear description, the situation is worse and has led to a controversy

recalled below about the validity of the quasilinear (QL) equations for describing the

saturation of the weak warm beam–plasma instability. Furthermore QL estimates are

quite frequently used for modelling in different branches of plasma physics, such as laser–

plasma interaction or magnetized plasma turbulence. Since the QL approximation is

ubiquitous, in particular in kinetic or gyrokinetic descriptions, it is important to assess

its validity at least for the simplest problem of kinetic turbulence, i.e. the saturation of

the weak warm beam–plasma instability. We now sketch this problem (see [26] for an

intuitive introduction and chapter 7 of [21] for a more exhaustive one).

1.1. Formulation of the problem

We consider a two-dimensional distribution function of particles in (x, v) space

which is initially given for a one-dimensional spatially uniform beam–plasma system.

This beam corresponds to a bump on the tail of the electron velocity distribution

function. Langmuir waves are destabilized by the inversion of the electron population

corresponding to the positive slope interval of the distribution. They first grow linearly,

but when the electron dynamics becomes chaotic enough in their range of phase

velocities, the bump is eroded and eventually a plateau in the distribution function

builds up. Simultaneously, there is a transfer of momentum from the particles to the

waves, generating a turbulent spectrum of Langmuir waves. This scenario was first

predicted on a theoretical basis [55, 16] by considering the wave–particle interaction as

perturbative and neglecting all mode couplings in the Vlasov equation, except for their

effect on the space averaged distribution function f . This led to the set of QL equations

coupling f(t, v) and the waves field power spectrum ψ(t, v), which is related (see (20))

to the (k-density of the) Poynting vector of the waves electric field:

∂tf = ∂v(DQL(t, v)∂vf), (1)

∂tψ = 2γL(t, v)ψ, (2)

where

γL(t, v) =
π

2

η

1 + η

ω3
p

k2
∂vf(t, v) (3)

is the Landau growth rate computed with the instantaneous velocity distribution, while

DQL(t, v) = π
η

1 + η

ψ(t, v)

k2
(4)
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is the QL diffusion coefficient. In these formulæ, ωp is the plasma frequency, and

η = nb/np denotes the ratio of the beam density nb (the tail particle distribution

function) to plasma density np (the bulk particle distribution function). Note that phase

velocity v and wavenumber k are linked by v = ω/k and the Bohm-Gross dispersion

relation D(k, ω) = 0 viz.

ω2/ω2
p = 1 + 3k2λ2

D, (5)

with kλD ≪ 1 where λD is the Debye length. We focus on one-dimensional dynamics

with periodic boundary conditions, so that the wave spectrum is discrete.

1.2. Some controversial issues

Later on, the QL scenario was confirmed experimentally [50], but with poor accuracy for

γL and DQL in the saturation regime. However the quasi-ballistic assumption underlying

QL calculations is incorrect in the saturation regime [1], as is recalled now. If at time

t0 velocity diffuses with a diffusion coefficient DQL assumed to be independent of time

for the moment, a particle velocity and position are stochastic processes, for which we

denote by 〈·〉 the expectations with respect to the law of the random noise. In particular,

〈∆v2〉 ≃ 2DQL(t− t0) with ∆v(t) = v(t)− v(t0). Consequently particle positions spread

as 〈k2∆x2〉 = 2
3
k2DQL(t − t0)

3 for ∆x(t) =
∫ t

t0
∆v(τ)dτ . Therefore, positions spread

over a typical wavelength of the turbulent wave spectrum when 〈k2∆x2〉 ≃ 4π2, which

occurs for a time ∼ t0 + τspread with τspread =
(

6π2k−2DQL
−1
)1/3 ≃ 4τD, where

τD = (k2DQL)−1/3 (6)

is called the Dupree time [17], its reciprocal being the resonance-broadening frequency.

In order to describe completely the classical regime, noted regime L(inear) in this

work, where the original QL approximation is valid, we need to introduce other time

scales. Let ∆vspec be the phase velocity width of the wave spectrum and ∆vϕ be the

typical phase velocity mismatch between neighbouring waves. For a typical wave number

k, we then define the wave autocorrelation time τac = (k∆vspec)
−1, viz. the time needed

for a resonant particle to resolve the finite frequency width of the wave spectrum, and

the discretization time τdiscr = (k∆vϕ)−1, viz. the time it takes a resonant particle to

resolve the separate Doppler frequencies of the modes. Particles released at time t0
have their velocity spread ∆v that grows linearly with time for t below t0 + τac, and

〈∆v2〉 grows quadratically, since all waves act with an almost constant force on the

particle orbit during this time interval. Therefore there is no diffusion. For time beyond

τdiscr, the dynamics feels the discreteness of the wave spectrum, and the perturbative

motion, if physically relevant because τspread ≫ τdiscr, is no longer diffusive but may be

quasi-periodic. We now define the dimensionless parameters

µ = (γLτD)−1 , KD = τac/τD , B = τD/τdiscr , (7)

where KD is called the Kubo number. For a small enough initial amplitude of the

waves and a correspondingly small enough ∆vϕ, the initial QL regime (regime L) is
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characterised by µ≪ 1, KD ≪ 1 and B ≪ 1. The parameter B is linked to the Chirikov

resonance overlap parameter sov = 2∆vtrap/∆vϕ by the relation B = 8π−1/3s
−4/3
ov where

∆vtrap is the typical trapping width of a wave. Therefore B ≪ 1 means sov ≫ 1. The

condition µ ≪ 1 cannot be satisfied during the whole saturation regime of the beam-

plasma instability since the plateau formation means ultimately a vanishing slope of

f(t, v) and a vanishing γL(t, v). Therefore there is a crossover to the strongly nonlinear

regime µ≫ 1. Indeed strong mode coupling is seen both numerically and experimentally

(see [15, 12, 38, 41] and references therein). However, though the QL assumption ceases

to hold, the central question about the validity of QL equations remains unsolved in

the strong nonlinear regime, denoted SNL and characterized by µ ≫ 1, KD ≪ 1 and

B ≪ 1.

From a theoretical point of view, the validity of quasilinear theory was questioned

by Adam et al. [1] when accounting for nonlinear wave coupling. The importance of

this coupling was denied by Galeev et al. [35]. In 1983, Laval and Pesme predicted

an increase of the growth rate and diffusion coefficient with respect to their QL values

when µ increases [38], and claimed the inconsistency of quasilinear theory due to mode

coupling [39]. They proposed a model predicting a renormalization by a factor 2.2 of the

quasilinear growth rate and diffusion coefficient on the basis of a “turbulent trapping”

Ansatz (derived from a clump-theory-like approach [17]) in the nonlinear regime µ≫ 1

[40], an improved version of their previous claim [1]. Aimed at checking this prediction,

a first experiment reached a weakly nonlinear regime where mode coupling was strong,

but no renormalization was found [54]. The difficulty of dealing analytically with

strongly nonlinear regimes of the Vlasov–Poisson system motivated a new mechanical

approach, which was further encouraged by progress in the understanding of low-

dimensional Hamiltonian chaos [21]. The experiment of Tsunoda et al. [54] further

fuelled the ongoing controversy which produced about twenty analytical, numerical and

experimental works over two decades. In particular, Liang and Diamond [42, 43] stated

the turbulent trapping model to be inconsistent because momentum conservation is

violated. They proposed a derivation of the quasilinear equations in the µ ≫ 1 regime

by using the theory of two-point correlation functions initially proposed by Boutros-

Ghali and Dupree [11]. Shapiro and Sagdeev [51], investigating the four-wave coupling,

asserted that quasilinear theory works if the particle distribution function and the wave

spectrum are averaged over a width in velocity defined by 〈∆v2〉 ≃ 2DQLτD = 2∆v2
D

where

∆vD = (DQL/k)
1/3 = k/τD (8)

is called the Dupree width. References [28, 21] derived quasilinear equations in the

µ≫ 1 regime, by extending the technique for the non self-consistent case thanks to the

slow effect of one particle on a given wave [28].

As yet no consensus has been reached [41, 21]. Experiments and numerical

simulations have not yet described the strongly nonlinear regime in an accurate way

but are compatible with weak renormalization effects in the intermediate (nonlinear)
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regime, denoted INL, where µ & 1, KD ≪ 1 and B ≪ 1 [12, 15, 36, 41].‡

1.3. Position of this work

The numerical part of this paper presents complete self-consistent simulations in the

Vlasovian framework, starting from regime L to reach regime SNL by passing through

regime INL. Before seeing whether self-consistent quasilinear theory is still valid in

regime SNL, let us understand why QL equations still hold in the case of non-self-

consistent dynamics with wave spectra like those in regime SNL under some assumptions

on the wave spectrum that we will describe further. To understand particle diffusion, it is

useful to consider first the case of diffusion in a prescribed set of M ≫ 2 Langmuir waves

with random phases and a smooth amplitude spectrum as defined by the hamiltonian

Hnsc(t, x, v) =
v2

2
−

M
∑

m=1

Am cos(kmx− ωmt+ ϕm). (9)

If the wave spectrum is broad, classical perturbation theory predicts [21, 27, 28, 29, 30]

〈∆v2〉 = 2DQLt and 〈k2∆x2〉 = 2
3
k2DQLt

3 for τac ≪ t ≪ τpert = min(τD, τdiscr) where

the bracket notation denotes averages over the random phases ϕm. This calculation

defines DQL over a time scale where the spreading of orbits is negligible, and thus chaos

is unimportant. Therefore diffusion is due to the randomness of the field, not to the

dynamical chaos: this diffusion is stochastic but not chaotic. Note that τspread ≃ 4τD
bounds the time over which the dependence of the orbits over M phases is small.

According to the value of the overlap parameter sov, several scenarios have been

observed numerically for t > τpert [13, 21]. At small sov, i.e. for B ≫ 1, there is no

large-scale chaos and the dynamics first feels the discreteness of the wave spectrum.

For t > τdiscr this dynamics proves to be quasi-periodic and 〈∆v2〉 saturates; thus the

motion is no longer diffusive, which confirms that the initial QL diffusion is not chaotic

over large velocity scales. At large sov, i.e. for B ≪ 1, the dynamics feels first the

chaotic spreading of the orbits. Then, for t > τspread the dynamics remains diffusive

with a diffusion coefficient keeping the QL value. For intermediate values of sov, where

chaos is widespread, the diffusion coefficient D becomes supra-quasilinear for large time:

D ≃ 2.3DQL for sov ≃ 2.2 [13]. There is a quasilinear non-chaotic diffusion up to time

t = τpert and a chaotic non-quasilinear one after τpert [4, 21, 28]. The existence of this

intermediate regime shows that QL estimates for the diffusion coefficient at large sov do

‡ Related work [45, 46] (see also references therein and the physically insightful, well referenced

introduction) by Mouhot and Villani, on Landau damping in a nonlinear context, has brought the

long awaited mathematical proof of (nonlinear) Landau damping in infinite time with exponential

decay, for any interaction not more singular than Coulomb or Newton, including the limit case. As a

corollary, they obtain new stability results for homogeneous equilibria of the nonlinear Vlasov–Poisson

equation, under analytic perturbations. In particular they show the convergence, in the weak topology

in infinite time with exponential rate of convergence, of small enough analytic perturbations towards

spatially homogeneous analytic equilibrium profiles which cannot be described in terms of conservation

laws and initial datum alone.
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not correspond to a trivial extension of the initial QL regime. Something similar might

occur for the regime SNL of the self-consistent case.

As recalled in Appendix A, the origin of chaotic diffusion can be understood as

the result of locality in the velocity of the wave-particle interaction. The existence

of a diffusion over time τQL ≫ τspread enables the rigorous extension of the validity

of quasilinear theory up to the time when orbits hit the Kolmogorov-Arnold-Moser

(KAM) boundaries of the chaotic domain, provided that all the phases ϕm are drawn

independently from a uniform distribution on the circle, and the velocity distribution

f remains “smooth” (almost constant) over the velocity range ∆vspec (no trapping

structure) or equivalently the wave spectrum must not be peaked in this velocity (or

wavenumber) range [21]: nearby waves may have strongly inhomogeneous amplitudes,

but the spectrum should be smooth when averaged over a Dupree width ∆vD (8) (or

rather a resonance box width, which is about five times larger, see Appendix A). Indeed

mode coupling (e.g. modulational instability) can cause the turbulent wave spectrum to

become peakier in k-space (or velocity space) when it grows; and thus it can generate

spatial non-uniformity of the velocity distribution function such as small trapping

structures (hole vs hump). In order to show that quasilinear theory remains valid in the

chaotic regime SNL to describe the nonlinear self-consistent wave-particle interaction,

we will show that, when the plateau is formed in the velocity distribution function,

mode coupling becomes negligible, and the dynamics lands in the non-self-consistent

stage where the wave spectrum meets the assumptions on which QL estimates rest : the

independence of phases and a non-peaked amplitude spectrum. To sum up, the final

stage of the nonlinear self-consistent waves-particles evolution must satisfy the following

three assumptions: a broad enough plateau regime is well settled (negligible mode-

coupling for waves whose phase velocity belongs to the plateau), the wave spectrum

phases are uniformly distributed and independent, the variations of the wave spectrum

amplitude are not peaked in velocity.

1.4. Structure of this paper

This paper is organized as follows. Section 2.1 introduces the Vlasov–wave description

of the wave-particle interaction. Section 2.2 shows analytically that, if the tail particle

distribution displays a plateau, the waves whose phase velocity belongs to the plateau

feel a negligible mode-coupling in the limit where the plateau is broad enough. Section

2.3 invalidates previous works attempting to prove or to contradict the validity of

quasilinear theory in the saturation regime.

Section 3 describes the numerical scheme to approximate the Vlasov–wave models

introduced in section 2.1, and section 4 determines the simulation parameters. Finally

sections 5 and 6 present self-consistent simulations within the Vlasov–wave description,

where the dynamics go from regime L to regime SNL in which QL estimates remain

right and accurate.
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2. Theoretical framework : description of wave-particle self-consistent

dynamics

The difficulty to describe the nonlinear regime of the Vlasov–Poisson system of

equations, and the progress in the chaotic dynamics of Hamiltonian systems with a

finite number of degrees of freedom, were an incentive to tackle the description of

the saturation regime with the so-called self-consistent Hamiltonian that describes the

one-dimensional self-consistent evolution, in a plasma with spatial periodicity L, of M

Langmuir waves with N particles (the beam) in the tail of the electron distribution

function per length L [21].

2.1. Self-consistent model

A rigorous classical mechanics calculation [21] allows to reduce the original N∗-body

problem of N∗ ≫ 1 electrostatically coupled particles in a one-dimensional periodic

system to a field–particle interaction problem incorporating N resonant particles and

M harmonic oscillators defining the field, namely the M Langmuir waves due to the

collective vibrations of the bulk (non-resonant particles), assuming N +M ≪ N∗.

In the absence of tail particles, the Langmuir waves are the collective motions

(eigenmodes) of a plasma (without resonant particles) with a density np and with a

plasma frequency ωp. Wave m has pulsation ωm related to the wavenumber km through

the Bohm-Gross dispersion relation (5). The interaction of these M waves with the N

resonant particles is described by the self-consistent Hamiltonian

HN,M
sc =

N
∑

n=1

v2
n

2
+

M
∑

m=1

ωm
X2

m + Y 2
m

2
+ ε̃

N
∑

n=1

M
∑

m=1

βm

km

(Ym sin(kmxn) −Xm cos(kmxn)) (10)

where (xn, vn) are the conjugate position and velocity (in fact momentum with mass

normalized to unity) of particle n, (Xm, Ym) are the conjugate generalized coordinate

and momentum of the harmonic oscillator corresponding to Langmuir wave m, βm =

[∂ωD(km, ωm)]−1/2 ≃ 1/
√

2, and

ε̃ = ωp

√

2η

(1 + η)N

is the coupling coefficient where η = nb/np = N/N∗. Hamiltonian HN,M
sc is made

up of free particle terms, harmonic oscillator terms and coupling terms. Waves and

particles are described on an equal footing: they inter-act. The Hamiltonian (10) is the

generalization to M > 1 waves [24, 25] of the self-consistent dynamics introduced with

M = 1 for describing the saturation of the cold beam–plasma instability by Onishchenko

et al. [49] and O’Neil et al. [48]. It was recast in a Hamiltonian form by Mynick and

Kaufman [47] and derived using symplectic formalism by Tennyson et al. [53]. Finally,

the Hamiltonian (10) was derived directly for any M from a mechanical description of

the plasma as an N -body system [2]. This Hamiltonian (10) generates the evolution
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equations

ẋn = vn, (11)

v̇n = ε̃Re
(

M
∑

m=1

iβmZmeikmxn

)

, (12)

Żn = − iωmZm + iε̃
βm

km

N
∑

n=1

e−ikmxn , (13)

where the dot denotes time derivative, Re denotes the real part and Zm = Xm + iYm.

Eq. (12) makes clear the link between Zm and the electric field of wave m.

In order to keep some symmetry in the description of waves and particles, but

getting rid of granularity effects due to the discrete description of particles (like

spontaneous emission of waves by particles which can add difficulty from the numerical

point of view [15], non commutativity of infinite time and infinite number of particles

limits [33]), it is easier to work with the so-called Vlasov–wave model which is obtained

as a mean-field limit (large-N limit) of the dynamics defined by the Hamiltonian HN,M
sc

[34, 22] in analogy to that performed by Neunzert, Dobrushin, Spohn and others for

their elegant and short derivation of the Vlasov equation [52]. If we define the Radon

measure (also called the empirical measure) σN
t as

σN
t (dxdv) =

L

N

N
∑

n=1

δ(x− xn(t)) ⊗ δ(v − vn(t))dxdv,

and introduce the change of variable

ζm = ZmeiωmtN−1/2, (14)

where (xn(t), vn(t), Zn(t)) is the solution of the ordinary differential system (11)-(13)

then it can be shown [34, 22] that the measure σN
t converges weakly (for the topology

induced by the dual bounded-Lipschitz distance) as N → ∞ to an absolutely continuous

measure µt := σ∞
t with density f(t, x, v) provided it converges at t = 0, and that the

couple (f, {ζm}) satisfies the following Vlasov–wave (partial differential) equations

∂tf + v∂xf + εRe
(

i
M
∑

m=1

βmζmei(kmx−ωmt)
)

∂vf = 0, (15)

and

ζ̇m = iε
βm

km

1

L

∫

Λ

e−i(kmx−ωmt)f(t, x, v)dvdx, (16)

where ε =
√

2η/(1 + η), with ωp normalized to unity and Λ = [0, L] ×❘.

System (15)-(16) preserves three constants of motion, namely the number of

particles, hence the normalization of f (chosen such that
∫

f(t, x, v)dv = O(1) for a

typical x)
∫

Λ

f(t, x, v)dvdx = L, (17)
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the rescaled total momentum
∫

Λ

vf(t, x, v)dvdx+ L

M
∑

m=1

km
|ζm|2

2
= LP, (18)

and the rescaled total energy
∫

Λ

(

v2

2
− εRe

(

M
∑

m=1

βm

km

ζmei(kmx−ωmt)
)

)

f(t, x, v)dvdx+ L

M
∑

m=1

ωm
|ζm|2

2
= LH . (19)

Beside these “mechanical” constants of the motion, the Vlasov–wave system preserves

the usual integral (Casimir) invariants of Vlasov equations like

CΘ[f ] = L−1

∫

Λ

Θ(f(t, x, v))dvdx,

for any regular enough function Θ : [0,+∞[→ ❘. In contrast to (17)-(19), the Casimir

invariants do not exist for the singular measures σN ; their conservation reflects the fact

that, for any wave field (ζ), the dynamics (11)-(12) defines an area-preserving flow in

(x, v) space.

In the dense wave spectrum limit, the power spectrum ψ of the waves, as in (2),

appears through ψ(vm)∆vm = km|ζm|2/2, where ∆vm is the difference in phase velocity

between wave m and its first neighbour. Thus
∑

{m |u0≤vm<u1}

km|ζm|2/2 ≃
∫ u1

u0

ψ(v)dv (20)

for any u0, u1. We then define the waves total momentum Pw :=
∑M

m=1 km|ζm|2/2 ≃
∫

❘
ψ(v)dv and waves energy Hw :=

∑M
m=1 ωm|ζm|2/2 ≃

∫

❘
vψ(v)dv.

If the dense spectrum limit is approximated by QL equations (1)-(2), these

equations preserve the analogues of (17)-(19), with vanishing coupling energy, and satisfy

an H-theorem at the expense of Casimir invariants [21].

2.2. Dynamics when the distribution is a plateau

We now consider [31] the extreme regime SNL where the dynamics defined by (15)-(16)

starts at time t = 0 with (i) a spectrum of Langmuir waves where all nearby waves are in

resonance overlap and (ii) a particle velocity distribution function which is a single broad

water bag with a height f0 over a velocity range including the overlap domain. Both

boundaries of the water bag are KAM tori related to the wave field. We first analyse a

simplistic description of this dynamics, which will be useful to derive a more accurate one

hereafter: (i) The initial condition corresponds to an almost spatially uniform plateau

which is kept invariant by the dynamics; (ii) therefore there is no source term for the

waves in (16), which keep constant complex amplitudes; (iii) hence the particle dynamics

is the one defined by a prescribed spectrum of waves, which preserves the initial plateau.

Clumps of particles may experience a strong turbulent trapping, but the distribution

function is unaffected by this granular effect.
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Actually KAM tori, bounding the chaotic domain defined by a prescribed spectrum

of waves, experience a sloshing motion due to the waves. This brings a small spatial

modulation to the particle density which provides a source term for the Langmuir waves

in (16). However, if the plateau is broad, the evolution of the wave spectrum is slow,

which brings only a small change to the previous simplistic picture. This slow evolution

suggests introducing an adiabatic description of the true dynamics.§
To be specific, we consider the case where the waves phase velocities range over

an interval [u0, u1], the nearest KAM tori have velocities va and vb and the water bag

is bounded by KAM tori with velocities [v0, v1], with v0 . va . u0 < u1 . vb . v1

(with typically sov ≪ |u1 − u0|/∆vϕ). Therefore the plateau width at any position

is about ∆vplat = v1 − v0, which is essentially equal to the chaotic domain width

∆vKAM = vb − va and to the wave spectrum width ∆vspec = u1 − u0. Moreover,

assume that the wave numbers are all of comparable order of magnitude, typically k.

Particles with velocity v experience the oscillations of a wave m at relative frequencies

Ωm = ωm − kmv, and for a particle or a wave with velocity v the nearest KAM velocity

defines Ωmin = kmin(vb − v, v − va) ; we denote by ∆vedge = min(v1 − u1, u0 − v0)

the relative velocity of the typical edges of the plateau with respect to the extremal

wave velocities. The resonance overlap in the wave spectrum is characterized by the

small parameter 1/sov ∼ δΩ/(kεζ∗)
1/2 ≪ 1, where δΩ ≃ k∆vϕ is the Doppler frequency

detuning of two nearby waves and ζ∗ is the typical modulus of a wave amplitude.

We now formalize this adiabatic description. Let ζm(t) be the value of ζm at time t

in the self-consistent dynamics. Consider the non self-consistent dynamics D(t0) defined

by the self-consistent spectrum of Langmuir waves frozen at time t0, as defined by (15)

where the ζm’s are substituted with the ζm(t0)’s. The chaotic domain C(t0) in single-

particle (Boltzmann or µ) phase space (x, v) defined by this frozen wave spectrum is

bounded above and below in v by two KAM tori, respectively Ta(t0) and Tb(t0). The

initial particle distribution function f(x, v, 0) is assumed to be uniform on C(0) ; let f0

be this uniform value. During the adiabatic evolution corresponding to the true self-

consistent dynamics, f(x, v, t) stays uniform on C(t) and keeps the value f0. We are left

with the calculation of the modulation of the width of a single water bag with height

f0. The modulation of this width is given by that of KAM tori Ta(t0) and Tb(t0), which

may be computed by perturbation theory in the typical amplitude ζ∗ of the Langmuir

waves.

Since mode-mode coupling is a four-wave process, the first nonvanishing

contribution to (16) is of order ζ3
∗ ; we estimate it in Appendix B. For waves

with phase velocities further than O(∆vedge) from the edges of the plateau this

§ These KAM tori are associated with a prescribed spectrum of waves, for which each particle evolves

under a 1.5 degrees of freedom hamiltonian (9). For the self-consistent evolution of waves and particles

in the N + M ≫ 1 degrees of freedom dynamics of (10), phase space is 2(N + M)-dimensional and

near-integrable behaviour is described by Nekhoroshev’s theorem. The KAM tori no longer bound

the motion on large scales, but Arnold diffusion may occur on long time scales. Note that even the

“familiar” Landau damping (in its nonlinear guise) is akin to a weak KAM behaviour in the infinite

dimensional phase space of the Vlasov–Poisson partial differential equation [45, 46].
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dominant contribution to ζ̇m(t) scales like a sum of ε4β4|ζ|3k/[(v1 − v0)Ω
4
min] and

ε4β4|ζ|3/(8v1(v1 − v0)Ω
2
minδΩ). Therefore, in the limit of a broad plateau (∆vplat → ∞)

with a fixed discretization δΩ, ζ̇m will vanish when we consider waves in a central

range. If we consider waves near the extremal phase velocity in a moderately wider

plateau, the edges must still be Ωmin/k away from these waves, which scales at worst

like (εβζ∗)
2/3, which still leaves terms not worse than ζ

5/3
∗ /δΩ and ζ

1/3
∗ . In the seemingly

more dangerous limit δΩ → 0, the wave evolutions will not depart from adiabaticity

before the time scale δΩ−1 ∼ τdiscr, which tends to infinity. This justifies a posteriori

our previous adiabatic approximation for all waves.

As a result the plateau dynamics (further than Ωmin/k from its boundaries) is almost

the same as in a prescribed field of Langmuir waves. Therefore the chaotic motion of

particles is almost unchanged due to the nonlinear coupling of Langmuir waves.

2.3. Inconsistency of several models

We have just shown that self-consistency vanishes in the plateau regime of the bump-

on-tail instability if the plateau is broad enough, because the particle transport only

rearranges particles without changing f itself within the plateau, depriving waves from

this source. This means that the diffusion coefficient D(v) of particles with momentum

v is that found for the dynamics of particles in a prescribed spectrum of Langmuir

waves. Let DQL(v) be the quasilinear value of this coefficient. In the resonance overlap

regime D/DQL may cover a large range of values [13, 21, 20]. In particular D ≃ DQL is

obtained for random phases of the waves and strong resonance overlap [13, 21, 20, 23].

We stress that strong resonance overlap alone is not enough to provide D ≃ DQL.

Let γL be the maximum Landau growth rate of Langmuir waves for the

instantaneous value of f . As τspread ≃ 4(k2D)−1/3 is the time after which the ballistic

approximation fails for particles diffusing with the maximum instantaneous D due

to a spectrum of Langmuir waves with typical wavenumber k, the plateau regime

corresponds to γLτspread = 0. Since D/DQL may cover a large range of values in this

regime, γLτspread ≪ 1 does not imply per se any renormalization or non-renormalization

of D/DQL, nor of γ/γL by wave-particle momentum conservation. This contradicts

previous works using γLτspread ≪ 1 to try and prove the validity of quasilinear theory

[42, 43, 28, 21] and the “turbulent trapping” Ansatz aiming at the contrary [40]. The

value of D/DQL in the plateau regime of the bump-on-tail instability depends on the

kind of wave spectrum the beam–plasma system reaches during the regime INL of the

instability, and not only on condition γLτspread ≪ 1, as assumed by these works. The

following numerical simulation using the Vlasov–wave model attempts to uncover this

spectrum.
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3. Numerical approximation of the Vlasov–wave equation

Note that the system (15)-(16) admits a unique global regular classical solution, since

it is easy to show that the force field is regular for any finite M . Therefore the use of

high-order numerical scheme to approximate the system (15)-(16) is relevant.

In this section we describe the scheme for the numerical approximation of the above

introduced Vlasov–wave model (15)-(16). Here we use a semi-Lagrangian scheme with

an (x, v)-area-preserving integrator in time obtained by decomposing the dynamics in

integrable Hamiltonian steps. A natural and simple choice is the Strang time-splitting

strategy also known as the centred leapfrog symplectic integrator. Roughly speaking,

this intensively used scheme (see [14, 32, 7, 8, 9, 10] and references therein) consists

in splitting the full transport operator into two easily integrable transport operators –

one in the physical space, the second one in the velocity or momentum space – and

solving them successively in a right order to get high-order approximation in time

of the complete transport operator. Moreover B-spline interpolation of high order is

used to reconstruct the distribution function on the (x, v)-space mesh and interpolate

its values at the origins of the characteristic curves set. Such a Eulerian algorithm,

usually named Vlasov code, has the advantages to provide an excellent resolution all

over the (x, v) space including very low density regions, since convergence and a priori

high-order accuracy properties of these schemes are well controlled and understood. In

addition, conservation of the constants of motion can be ensured with a good accuracy

by semi-Lagrangian schemes. Recently, mathematical proofs of convergence and a priori

high-order error estimates (very high-order accuracy) of these schemes were obtained in

a series of papers [7, 8, 9, 3].

Let Mh be a discretization of the µ-space (x, v), with Nx × Nv mesh points with

steps ∆x and ∆v, and fn
h an approximation of f at time tn on Mh. The general

algorithm to compute fn+1
h for tn+1 = tn + ∆t consists in three steps.

1) Half time advection in physical space. This step consists in solving the equation

∂tf + v∂xf = 0, t ∈ [tn, tn+1/2], with f(tn) = fn
h . (21)

To solve (21) we integrate its associated characteristic curves equation

dX

dt
(t) = V (t)

on the time interval [tn, tn+1/2] with tn+1/2 = tn + ∆t/2. We then get

Xn −Xn+1/2 =

∫ tn

tn+1/2

V (t)dt =

∫ tn

tn+1/2

V (tn)dt+ O(∆t2) ≃ −V n∆t/2,

where (Xn+1/2, V n) ∈ Mh and Xn is the origin of the characteristic curve we look

for. Therefore the new distribution function f ⋆
h is such that

f ⋆
h(x, v) := f̃

n+1/2
h (Xn+1/2, V n) = fn

h (Xn, V n), ∀(x, v) ∈ Mh.

As (Xn, V n) is generally not in Mh, it is interpolated using a B-spline.
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2) Time advection in velocity space. This step consists in solving the equation

∂tf + F (t, x, {ζm})∂vf = 0, t ∈ [tn, tn+1], with f(tn) = f ⋆
h , (22)

where F is the factor of ∂vf in (15). To solve (22) we integrate its characteristics

equation (12), viz.

dV

dt
(t) = F (t,X(t), {ζm(t)})

on the time interval [tn, tn+1]. We then get

V n+1 − V n =

∫ tn+1

tn
F (t,X(t), {ζm(t)})dt

=

∫ tn+1

tn
F (tn+1/2, X(tn+1/2), {ζm(tn+1/2)})dt+ O(∆t3)

≃ F (tn+1/2, Xn+1/2, {ζn+1/2
m })∆t,

where (Xn+1/2, V n+1) ∈ Mh and V n is the origin of the characteristic curve we look

for. Therefore the new distribution function f ⋆⋆
h is such that

f ⋆⋆
h (x, v) := f̂

n+1/2
h (Xn+1/2, V n+1) = f ⋆

h(Xn+1/2, V n), ∀(x, v) ∈ Mh.

There remains to compute a “good” approximation of {ζn+1/2
m }, consistent with

this step. To this purpose we integrate the wave equation (16) on the time interval

[tn, tn+1] and, using mid-point quadrature rule‖, we obtain for all m ∈ [1,M ]:

ζn+1/2
m − ζn−1/2

m := ζm(tn+1/2) − ζm(tn−1/2)

= iε
βm

km

1

L

∫ tn+1/2

tn−1/2

∫

Λ

e−i(kmx−ωmt)f(t, x, v)dvdxdt

≃ iε
βm

km

∆t∆v
∆x

L
eiωmtn

Nx
∑

q=1

Nv
∑

p=1

f(tn, xq, vp)e
−ikmxq + O(∆t3)

≃ iε
βm

km

∆t∆v
∆x

L
eiωmtn

Nx
∑

q=1

Nv
∑

p=1

fn
h (xq, vp)e

−ikmxq

≃ iε
βm

km

∆t eiωmtn ∆x

L

Nx
∑

q=1

ρn
h(xq)e

−ikmxq

≃ iε
βm

km

∆t eiωmtnFh(ρ
n
h, km),

where ρn
h(·) =

∑Nv

p=1 f
n
h (·, vp)∆v and Fh(·, k) denotes the discrete Fourier transform

at wave number k.

3) Half time advection in physical space. This step (formally identical to step 1) solves

the equation

∂tf + v∂xf = 0 t ∈ [tn+1/2, tn+1], with f(tn+1/2) = f ⋆⋆
h ,

‖ It is accurate to second order and a good approximation to a more expensive three-substeps fully

symplectic integrator which would also require splitting (23) in three corresponding substeps.
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by convecting f along the characteristic, using

Xn+1 −Xn+1/2 =

∫ tn+1

tn+1/2

V (t)dt =

∫ tn+1

tn+1/2

V (tn+1)dt+ O(∆t2) ≃ V n+1∆t/2,

where (Xn+1, V n+1) ∈ Mh and Xn+1/2 is the origin of the characteristic curve we

look for. Therefore the new distribution function is such that

fn+1
h (x, v) = fn+1

h (Xn+1, V n+1) = f ⋆⋆
h (Xn+1/2, V n+1), ∀(x, v) ∈ Mh.

Putting together steps 1 and 3 shows that the time-discretized dynamics works in the

classical leap-frog way where velocity is advanced at times tn, while the position is

advanced at times tn+1/2. The algorithm is reversible within the accuracy of the spline

interpolation (which prevents step 3 from being exactly the adjoint of step 1).

4. Self-consistent simulations parameters

In the next sections we present self-consistent simulations of the Vlasov–wave system

(15)-(16). In order to construct relevant test cases to assess the validity of quasilinear

theory we must estimate some physical parameters. Moreover, since the plateau

formation in the strong chaotic regime could take a very long time, we need to optimize

the values of the physical and numerical parameters; hence a priori estimates for these

parameters are required. They are based on momentum conservation since we can

clearly separate the two contributions of the waves and particles. In contrast, the use of

energy conservation is not appropriate because it involves a third term, associated with

the wave-particle coupling, which is more difficult to estimate a priori.

Since kmλD ≪ 1, using the Bohm-Gross relation we deduce that ωm ≃ ωp = 1.

Therefore the phase velocity range of interest will be vϕ ∈ [u0, u1] = [k−1
max, k

−1
min], with a

width ∆vspec = u1 − u0. From the (x, v)-area conservation and the normalization of the

distribution function, the height of the particle velocity distribution function plateau in

the long-time asymptotic regime is approximately (u1 − u0)
−1 (to first approximation,

neglecting the particles which might be outside the wave velocity range as they are

weakly perturbed by the waves). We assume

km =
2π

L
(ν0 +m), with m ∈ [1,M ],

so that vϕ,m = ωp/km = 1/km which implies

u0 =
ν0 + 1

M − 1
∆vspec ≃

ν0

M
∆vspec ,

u1 =
L

2π(ν0 + 1)
≃
(

1 +
ν0

M

)

∆vspec ,

L = 2π(ν0 +M)u0 ≃ 2π
(

1 +
ν0

M

)

ν0∆vspec ,

2πM

L
=
(

1 +
ν0

M

)−1

u−1
0 ≃

((

1 +
ν0

M

) ν0

M
∆vspec

)−1

,
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where we assumed ν0 ≫ 1 and M ≫ 1. Using momentum conservation (18), assuming

that the initial (resp. final) distribution function f0 (resp. f∞) is homogeneous in space,

and neglecting ψ(0, v) we obtain

P∞
w − P0

w =

∫ u1

u0

v(f0 − f∞)dv =

∫ u1

u0

ψ(∞, v)dv

=
M
∑

m=1

ψ(∞, vm)∆vm =
M
∑

m=1

km
|ζm(∞)|2

2

=

∫ kmax

kmin

Ψ(∞, k)dk =
M
∑

m=1

Ψ(∞, km)∆km (23)

where we used (20) and Ψ(t, k) = ψ(t, v)|dv/dk| to express the power spectrum of

waves with respect to wavenumber. Equation (23) can also be obtained by integrating

the conservation law

∂tν(t, v) = 0 (24)

with

ν(t, v) = f(t, v) − ∂vψ(t, v)

(which follows [21] from QL equations (1)-(4)) with the initial condition ∂vψ(0, v) = 0

and the boundary condition ψ(t, u0) = ψ(t, u1) = 0.

4.1. Estimates of physical parameters

We first estimate a mean value (denoted by 〈a〉 = M−1
∑

m am for any variable a) of the

wave power spectrum at the final time where the plateau regime is well settled. Since

∆km = km+1 − km = 2π/L, we have P∞
w − P0

w ≃ (1 + ν0

M
)−1ν−1

0 ∆v−1
spec

∑M
m=1 Ψ(∞, km)

and thus

〈Ψ(∞)〉 ≃
(

1 +
ν0

M

) ν0

M
∆vspec(P

∞
w − P0

w). (25)

SinceDQL(t, vm) ≃ πηβ2
m|ζm|2(km∆vm)−1 = 2πηβ2

mk
−2
m ψ(t, vm) ≃ πηΨ(t, km), using

(25) we obtain for the QL diffusion coefficient

〈DQL(∞)〉 ≃ πη
(

1 +
ν0

M

) ν0

M
∆vspec(P

∞
w − P0

w) (26)

which determines the characteristic time τD (6).

Then we estimate the Kubo-like number. As K−1
D,m estimates the number of velocity

diffusion widths through the wave spectrum at saturation, we shall test the condition

K−1
D,m ≫ 1. Using (26) obtains

K−1
D ≃ 〈K−1

D,m〉 = ∆vspec〈(km/DQL,m)1/3〉 ≃ ∆vspec〈k1/3
m 〉〈DQL,m〉−1/3,

where, for α 6= −1,

〈kα
m〉 ≃

L

2πM

∫ kmax

kmin

kαdk =
L

2πM

kα+1
max − kα+1

min

α+ 1

≃ L

2(1 + α)πM∆vspec

(

( ν0

M

)−(α+1)

−
(

1 +
ν0

M

)−(α+1)
)

.
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We also estimate the parameter B−1. From ∆vϕ, m ≃ 2π/(Lk2
m) (as km varies

linearly with m) we obtain B−1
m = ∆vD, m/(∆vϕ, m) = D

1/3
QL, mk

5/3
m L/(2π) and

B−1 ≃ 〈B−1
m 〉 =

L

2π
〈k5/3

m D
1/3
QL,m〉 ≃

L

2π
〈DQL,m〉1/3〈k5/3

m 〉 .

The parameter Bm (relevant to the strong overlap regime of many waves) is related to the

more familiar Chirikov resonance overlap parameter sov, m = (512/π)1/4B−3/4
m ≃ 3.6B−3/4

m

(more appropriate for few waves overlapping moderately). Again,

sov = 〈sovm〉 ≃ 8
√
πL−3/4〈DQL,m〉−1/4〈k−5/4

m 〉 .
Finally note that µ ≪ 1 at the beginning of the instability and µ ≫ 1 in the

saturation phase. To ensure that µ ≪ 1 at the beginning, it is equivalent to guarantee

that we have an initial linear regime where wave m grows exponentially with the Landau

growth rate

γL, m = γL(0, vm) =
π

2

η

1 + η
v2

m ∂vf0(vm).

In order to ensure that µ ≫ 1 at the end of the simulation we verify that the plateau

regime settled in, with a final distribution function f almost constant in velocity.

Although these estimates are crude (〈ab〉 ∼ 〈a〉〈b〉), they capture the relevant scaling

powers for the subsequent discussion.

4.2. Estimates of numerical parameters

We now estimate the numerical parameters of the simulations. Our mesh Mh is a

regular cartesian grid spanning [0, L]× [vmin, vmax]. Boundary conditions are periodic in

space x, while the range [vmin, vmax] must contain both the whole spectrum of wave phase

velocities [u0, u1] and the support of the particle distribution function during the whole

simulation. Thus vmin < u0 < u1 < vmax in such a way that f(t, x, vmin) = f(t, x, vmax) =

0 for all (t, x). In terms of section 2.2 we thus need vmin < v0 < v1 < vmax. We might

estimate vmin ≤ u0 − nKAMsov∆vϕ and vmax ≥ u1 + nKAMsov∆vϕ for some real positive

nKAM > 2.

Let us define ∆x (resp. ∆v) as the space discretization step (resp. the velocity

discretization step) for the mesh Mh. We set ∆x as the ratio of the shortest length

2π/kmax we need to resolve to nδx with nδx ≥ 1 a positive real number. Similarly we

set ∆v as the ratio of a typical phase velocity difference ∆vϕ = 〈∆vϕ,m〉 ≃ ∆vspec/M to

n∆vϕ with n∆vϕ ≥ 1 a positive real number. So we obtain

∆x =
2π

nδxkmax

≃ 2π

nδx

ν0

M
∆vspec, Nx =

L

∆x
≃ nδx(ν0 +M),

and

∆v =
∆vϕ

n∆vϕ

≃ ∆vspec

Mn∆vϕ

, Nv =
∆vspec

∆v
≃ n∆vϕM.

Next we estimate the time step ∆t. There are two ways for estimating this

parameter and we will see that they give equivalent results. From purely numerical
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considerations we can estimate ∆t by setting the Courant-Friedrichs-Lewy (CFL)-like

condition ∆x ∼ vmax∆t. By taking vmax = u1 we obtain

∆t = u−1
1 ∆x ≃ 2π

nδx

ν0

M

(

1 +
ν0

M

)−1

. (27)

We must stress that semi-Lagrangian schemes are unconditionally stable and therefore

no CFL condition is required to ensure the stability of the scheme. Nevertheless, in

order to guarantee accurate numerical results, in practice we have to ensure that the

numerical and physical velocity of waves are of the same order, which leads to the

CFL-like condition (27).

From physical considerations the time step ∆t must be chosen such that phase

Φm = kmx − ωmt of wave m does not vary too much over time ∆t. In practice

this condition is required so that the discretized force field which appears in the

Vlasov–wave equations (15)-(16) is sufficiently well sampled. Therefore we must have

max ∆Φm = 2π/nΦ with nΦ ≥ 1 a positive real number, with

max |∆Φm| = ∆tmax
∣

∣

∣
km

∆x

∆t
− ωm

∣

∣

∣
= ∆tmax |kmv − ωm|

= ∆t|kmaxvmax − 1| = ∆t|kmaxu1 − 1| ≃ ∆t
( ν0

M

)−1

.

As a consequence we get

∆t ≃ 2π

nΦ

ν0

M
. (28)

The time step estimates (27) and (28) are equivalent provided that ν0/M ≪ 1, which

will be the case. Finally we can estimate the final time Tend as

Tend ∝ max{〈γL(0)〉−1, Tdif},
where

Tdif =
〈∆v2

spec〉
2〈DQL(∞)〉 ≃ ∆vspec

(

2πη
(

1 +
ν0

M

) ν0

M
(P∞

w − P0
w)
)−1

,

while we take

〈γL(0)〉 =
π

2

η

1 + η
(u1 − u0)

−1

∫ u1

u0

v2∂vf0(v)dv ≃ π

3

η

1 + η

u3
1 − u3

0

(u1 − u0)3
,

for an initial triangular distribution function, and 〈γL(0)〉 as a prescribed constant for

an initial hyperbolic distribution function (see the next sections). The number of time

iterations is set to NT = Tend/∆t.

4.3. Asymptotic estimates for all the parameters

Finally we find the asymptotic expression for the parameters defined in sections 4.1 and

4.2 when we consider ν0/M ≪ 1 and u1 = 1 which implies ∆vspec =
(

1 + ν0

M

)−1 ≃ 1.

We obtain (up to factors close to unity, such as π1/3)

〈Ψ(∞)〉 ≃
( ν0

M

)

(P∞
w − P0

w),
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〈DQL(∞)〉 ≃ πη〈Ψ(∞)〉 ≃ πη
( ν0

M

)

(P∞
w − P0

w),

K−1
D ≃ 1/∆vD ≃ η−1/3

( ν0

M

)−2/3

(P∞
w − P0

w)−1/3,

B−1 ≃ η1/3
( ν0

M

)−4/3

ν0(P
∞
w − P0

w)1/3,

Nx ≃
( ν0

M

)−1

ν0 nδx = Mnδx,

Nv ≃
( ν0

M

)−1

ν0 n∆vϕ = Mn∆vϕ ,

∆t ≃ 2π

nΦ

( ν0

M

)

,

Tend ≃ max
{

〈γL(0)〉−1, Tdif

}

≃ max
{

η−1, 〈DQL(∞)〉−1
}

.

We first note that, given the wavenumbers km and the dispersion relation, the ratio

τac/τdiscr = ∆vϕ/∆vspec = 1/M is independent of the waves and particles evolutions,

and we need a large ratio to allow observations of intermediate scales like τD or ∆vD.

Constraint η ≪ 1 is also desired to ensure that µ ≪ 1 initially, and that both γL/ωp

and DQL are small when ∂vf and ψ are of the order of unity.

From these asymptotic values we observe that conditions η ≪ 1 and ν0/M ≪ 1

work towards ensuring a small value for the Kubo number KD and the Dupree width

∆vD (which means several resonance boxes in the wave velocity range, see Appendix A).

On the other hand, conditions η ≫ 1, ν0 ≫ 1 and ν0/M ≪ 1 favour a strong resonance

overlap parameter so that B−1 ≫ 1.

Therefore we choose η, ν0 and M , under the constraints η ≪ 1 and ν0/M ≪ 1, such

that KD and ∆vD are sufficiently small while ν0/M . η1/4 is small enough and ν0 ≫ 1

is large enough to balance the small value of η in the estimate for B and so ensure a

small value for this latter parameter.

5. Hyperbolic case

Following Doxas and Cary [15] we choose an initial distribution function f0 such that

the Landau growth rate is uniform in velocity. This choice is interesting for several

reasons. It enables: (i) a simple validation of the numerical description of the linear

regime; (ii) all waves (with various phase velocities) to enter more or less together

into the nonlinear regime by choosing initial amplitudes provided by the saturation

amplitude predicted by QL theory, downscaled by a (small) factor ǫζ0 independent from

the velocity; (iii) continuity with the work [15]. Since

γL(0, v) =
π

2

η

1 + η
v2 ∂vf0(v),

we obtain for all v ∈ [u0, u1],

f0(v) = C1 + C2

(

1 − u0

v

)

,
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where

C2 =
2γL(1 + η)

ηπu0

, and C1 =
1 + C2

[

u0 ln(u1

u0
) − u1 + u0

]

u1 − u0

.

From momentum conservation we get

P∞
w − P0

w = (u1 − u0)

(

u0 + u1

2
(C1 + C2) − C2u0

)

− u0 + u1

2
.

We initialize the wave amplitudes by setting

|ζm| = ǫζ0

√

2ψ∞(vm)
∆vm

km

, (29)

where, for all v ∈ [u0, u1],

ψ∞(v) =

∫ v

u0

(f∞(ξ) − f0(ξ))dξ =

(

1

u1 − u0

− C1 − C2

)

(v − u0) + C2u0 ln

(

v

u0

)

, (30)

with ǫζ0 a sufficiently small positive real number such that an initial linear regime with

an exponential growth of waves could exist. Equation (30) is obtained by integrating

conservation law (24) with initial condition ∂vψ(0, v) = 0 and boundary condition

ψ(t, u0) = 0.

Therefore we choose an initial wave spectrum {ζm} = {(Re ζm, Im ζm)} =

{(|ζm| cosϕm, |ζm| sinϕm)}, such that wave amplitudes |ζm| are given by (29) and phases

ϕm are given by independent uniformly distributed real-valued random variables on

the circle (i.e. with 1/(2π) for probability density). The physical parameters of the

simulations are ωp = 1, ν0 = 75, M = 450, γL(0) = 10−3, η = 2.55 × 10−3, Tend = 104

(≃ 2 max{〈γL(0)〉−1, Tdif}), Lx = 152π, vmin = 0 and vmax = 8/7. The numerical

parameters of the simulations are Nx = 2112 (nδx ≃ 4), Nv = 768 (n∆vϕ ≃ 1),

∆t = 0.25 (nΦ ≃ 4) and ǫζ0 = exp(−8). Using the coarse estimates of section 4.2

we get the estimates for the plateau regime K−1
D ≃ 30, sov ≃ 50 (or B−1 ≃ 36) and

∆vD ≃ 3. × 10−2. Finally we have u0 = 0.145, u1 = 1, kmin = 1, kmax ≃ 6.91, and

∆v−1
spec ≃ 1.17.

In contrast with [15] we do not impose a dense wave spectrum, with sov ≫ 1, at

initial time : sov,m(0) ≃ sov(Tend)
√
ǫζ0 ≃ 50 exp(−4) ≃ 1. Besides, our initial wave

amplitudes are not tuned to imply a v-independent DQL, but rather to fit the wave

power spectrum in the plateau regime, as predicted by QL equations. The reason for

this difference is that we do not focus specifically on regime INL to monitor γ/γL but

rather on regime SNL reached in the plateau, where we want to compute D/DQL for

µ→ ∞. However, we use the INL behaviour to benchmark our simulation with respect

to [15].

Table 1 sums up the parameter values used here (noted B.E.E.B.) and in [15] (noted

D.C.) for the hyperbolic test case. The first three lines recall fixed parameters. The

subsequent lines compare physical quantities γ, µ, sov, KD at specific times in regime

INL, at which the current wave growth rate γ differs most from the Landau growth

rate (two points S1 and S2 are considered for B.E.E.B. depending on the definition of

average rates).
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Figure 1. Relative error on conservation laws.

5.1. Validation of the linear and nonlinear regimes

This section is devoted to the code validation in the linear and nonlinear regimes. All

figures refer to a single, typical realization of the dynamics.

We observe in figure 1 that mass is conserved with a relative error less than 0.25% up

to time 1.6×104ω−1
p . The conservation of the L1-norm, which measures the importance

of negative values in the distribution function, is very good since up to time 1.9×104ω−1
p

it is preserved with a relative error less than 0.4%. The conservation laws of momentum

and energy are well respected, since momentum is conserved with a relative error less

than 0.42% up to time 1.58×104ω−1
p , while energy is conserved with a relative error less

than 0.7% up to time 1.73× 104ω−1
p . Figures 2 show the shares of the total momentum

and energy between wave, particle and coupling terms. Wave-particle coupling energy

remains negligible, which supports the strong randomness of the microscopic dynamics

in the nonlinear regimes. In figure 2-(a) we observe that momentum transfer from

particles to waves is about 1/6 of the total momentum.

Next we benchmark our simulation by checking the initial regime L. Since every

wave grows exponentially in the linear stage with the same growth rate by construction,

we can compare directly this theoretical growth rate with the growth rate of the waves

total energy Hw. Figure 3 shows that the theoretical growth rate of the waves coincides

perfectly with the numerical one until time t = 2000ω−1
p , which means that the system

actually starts with an initial linear stage characterized by µ ≪ 1 with a duration of

2000ω−1
p = 2/γL(0). This observation of the waves total energy, and of its growth rate

γ(t) := (2Hw)−1 d
dt

Hw, will be confirmed below, by the analysis of the growth of all waves

individually in figure 5.

From time t = 2000ω−1
p to t = 7000ω−1

p we observe an intermediate regime where the

wave growth rates depart from Landau’s linear approximation (see figures 3, 4-(a) and

5): as noted by [15], mode coupling is present, and this intermediate stage corresponds

to the transition regime INL, where parameter µ increases from a small value to a value

of the order of unity or larger, and sov increases from a moderate value to a large one.

Because the particle velocity distribution function does not flatten at the same rate at
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Here the energy growth rate is γ(t) = (2Ew(t))−1dEw(t)/dt, where Ew(t) =
∑M

m=10 |ζ(t, vm)|2 (with v10 ≃ 0.9). Two average Landau growth rates are

plotted, viz. γL,1(t) = (
∑M

m=10 ∆vm)−1
∑M

m=10 γL(t, vm)∆vm and γL,2(t) =

(
∑M

m=10 |ζ(t, vm)|2)−1
∑M

m=10 γL(t, vm)|ζ(t, vm)|2.
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Test case B.E.E.B. S1 B.E.E.B. S2 D.C.

M 450 450 584

γ0 10−3 10−3 6.25 × 10−5

η 2.55 × 10−3 2.55 × 10−3 4.1 × 10−6

max γ/γL,1 1.29 1.36 1.32

µ 22 56 39

sov 12 20 14

K−1
D 1950 660 94

Table 1. Comparaison of physical parameters at time where γ/γL is maximum

between our test case (B.E.E.B.) and test case of [15] (D.C.).

all velocities, the Landau growth rate depends on v, and we monitor two average rates,

viz. a crude average γL,1(t) = (
∑M

m=10 ∆vm)−1
∑M

m=10 γL(t, vm)∆vm and an intensity-

based average γL,2(t) = (
∑M

m=10 |ζ(t, vm)|2)−1
∑M

m=10 γL(t, vm)|ζ(t, vm)|2, discarding the

contribution of waves too close to the “plateau” edge (which we saw in section 2.2 to

possibly behave differently from the bulk of the wave spectrum, and which are affected

here by the steepening of f , see figure 6). Both average rates behave similarly, and we

shall not dwell on their differences as our simulations were tailored to assess a possible

renormalization of the diffusion coefficient in the plateau regime. During the beginning

of this regime the perturbative calculation of [38] makes likely the occurrence of an

enhanced growth rate. What is striking is the growth rate enhancement¶ by a factor

greater than 1.2 over the interval t ∈ [4000ω−1
p , 7000ω−1

p ], with a maximum factor 1.36

at time t = 6731ω−1
p (µ ≃ 56, sov ≃ 20), confirming the saturation value emerging in

[15] (see table 1). This enhancement contradicts the analytical argument for the validity

of quasilinear theory in [51], since our numerical calculation involves the averages over

a Dupree width. Actually, assessing [51] does not even require such an average, as the

wave intensities are a smooth function of velocity for this run in this time range. This

enhanced growth rate by 1.36 may be related to the enhanced particle transport (by

up to 2.3 ≃ 1.363, see the scaling τD ∼ D−1/3) in a given wave field (9) with smooth

intensity and random phases [13, 20].

We next observe a nonlinear saturation stage from time t = 7000ω−1
p to time

t = 2 × 104ω−1
p , where the plateau is set up by time t = 8400ω−1

p , in figures 3, 5,

and 6.

In figures 4, we observe that for relatively large values of µ, typically µ ≃ 56, the

ratio γ/γL is around 1.36 (see table 1). In [42, 43] the authors obtain an analytical

formula (equation (38) in [43]) for such a renormalization factor γren which scales like

γren = 1 + AγL/ωp in the regime where µ ≫ 1, with a factor A of the order of unity.

Of course this asymptotic expression of γren holds in the plateau regime since in this

¶ The small decrease of γ for 2000 < ωpt < 3000 (with γ/γ0 ∼ 0.95, µ ≃ 2.1 and sov ≃ 2.2) remains

tolerable in our benchmarking, as [15] also obtains γ/γ0 ∼ 0.98 with µ ≃ 2.2 and sov ≃ 14 .
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case γL ≃ 0. Nevertheless equation (38) in [43] is not compatible with the result of

figures 4 since in the regime where µ ≫ 1, there exists an intermediate stage (regime

INL) where we observe an enhancement of the growth rate with a factor around 1.36.

This enhancement is significantly smaller than the turbulent trapping estimate which

may be as large as 2. Yet a more detailed inspection in figure 5 of the growth rate

γ(t, v) = 1
2
ψ−1dψ/dt = |ζ|−1d|ζ|/dt shows that the ratio 1.2 . . . 1.36 merely reflects an

average behaviour, and that actually the wave intensities burst quite violently but also

quite independently from each other during this time range.

Finally, figure 4-(a) shows that after a period where the enhancement factor

increases to its maximum value 1.36, there exists a second stage where this factor

decreases, which means that the enhancement process breaks down after a certain time

in the INL regime. This result contradicts the hypothesis of [43], according to which the

enhanced growth rate or the enhanced diffusivity could be the result of an artificial effect

caused by imposing periodic boundary conditions in numerical simulations. Therefore

periodicity does not seem here to impact artificially the enhancement of nonlinear effects

(furthermore, if it had such an impact, the argument would also apply in the plateau

regime – which it clearly does not, see below).

Note that when the plateau is settled, say for times t > 8000ω−1
p , both γ and γL

are small, so that their ratio becomes numerically less meaningful.

5.2. Transition from stochastic to chaotic diffusion

After discussing the global aspects of the Vlasov–wave system evolution, we turn to

more detailed behaviour, resolved in velocity v.

From figures 6-(b) and 6-(c) we observe that the space-averaged distribution

function evolves from the hyperbolic shape to the plateau one between time t ≃ 4800ω−1
p

and time t ≃ 8400ω−1
p ; figure 6-(c) shows that the plateau appears near the center of

the velocity distribution and erodes the higher values of f causing the increase in the

wave growth rate for faster phase velocities. Simultaneously the growth rate of every

wave falls from a strictly positive value to a vanishing one (see figure 5). This means

that the plateau regime is reached by time t ≃ 8400ω−1
p , as confirmed by figure 7.

In figures 8 and 10 we analyse the velocity profiles of wave spectrum intensity (30)

and quasilinear diffusion coefficient. The smooth curves are the theoretical predictions

(4) obtained by integrating the conservation law (24) with initial condition ∂vψ(0, v) = 0

and boundary condition ψ(t, u0) = 0. We compare this prediction with the result of a

single realization of initial data (figures 9 and 11), and with the average spectrum for

a statistical ensemble comprising R = 210 realizations of the same Vlasov–wave test

case where random initial phases are drawn independently from a uniform distribution

on the circle (figures 8 and 10). In the sequel the bracket notation 〈·〉R means that

averaging over a statistical ensemble of R realizations has been performed. In figures 8-

(b) and 10-(b) the “avg” index means that we carried out a floating average of five wave
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(a) γL(t, v)

(b) γ(t, v)

Figure 5. Time evolution of growth rates. (a) γL given by (3) from the current f(t, v);

(b) individual wave growth rate measured from wave intensity evolution.

half-widths, viz. we set (with Lavg = 5)

DQL,avg(vm) =

Lavg
∑

ℓ=−Lavg

DQL(vm)∆vϕ,m+ℓ

vϕ,m+Lavg+1 − vϕ,m−Lavg

. (31)

From figures 8 and 10 in the plateau regime, we observe quite a good agreement

between the QL prediction of the wave spectrum (resp. diffusion coefficient) and the one

obtained by self-consistent simulations of the Vlasov–wave model.

In order to verify that we are in regime SNL where chaotic diffusion applies, we

need to look at the value of the Kubo parameter KD, of the Chirikov resonance overlap

parameter sov (or B−1) and of parameter µ. From figures 12 we notice that at the middle

of the phase velocity range of the wave spectrum, i.e. for vc = (u0 +u1)/2 ≃ 0.57, and at

time T = 104ω−1
p in the plateau regime, we have 〈sov〉R(T, vc) ≃ 22, 〈K−1

D 〉R(T, vc) ≃ 21,

and 〈µ〉R(T, vc) ≃ 4900. These values confirm that the system is in regime SNL.
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Figure 6. x-averaged velocity distribution function.

As expected from section 2.3, once the plateau regime has been reached (see figures 5

and 6) the time dependence of the amplitude spectrum is weak (see figure 7). Therefore

we may neglect this dependence and consider that the self-consistent dynamics can

be approximated by the non-self-consistent one, generated by (9). Indeed when the

distribution function has reached the plateau shape both in velocity and in position,

the Fourier coefficients in (16) are almost zero (because f is constant), bringing time

variation of the waves to rest: the Vlasov equation lands on the non-self-consistent
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Figure 9. Typical wave intensity spectrum for a single realization.

configuration. The works on Hamiltonian chaotic dynamics (9), recalled in the

introduction and more precisely in Appendix A, show that QL estimates hold if the

wave spectrum satisfies two sufficient assumptions.

The first one requires the wave amplitude spectrum not to have holes larger than

the order of a width ∆vD. From figures 8 (resp. figures 10), we observe that the typical

amplitudes of the waves (resp. diffusion coefficient) are smooth enough with respect to

their velocity (or wavenumber).

Even if nearby waves seem to have strongly inhomogeneous amplitude values (resp.

diffusion coefficients) with respect to velocity in figure 9-(a) (resp. figure 11-(a)), once

averaged over a velocity width corresponding to a floating average (31) with Lavg = 5,

wave spectrum amplitudes (resp. diffusion coefficients) appear smooth with respect to

velocity in figure 9-(b) (resp. figure 11-(b)). Our floating average is very conservative:

it should really be performed with the v-dependent range Lavg,D(t, v) = ∆vD/∆vϕ =

τdiscr/τD = B−1, which is of the order of 22 near the middle of the wave spectrum (see

figures 12). Therefore the first requirement, namely the absence of holes larger than the

order of a width ∆vD, is satisfied.

The second requirement on the wave spectrum is randomness of the final phase.

Figure 13 shows the phases at t = 104 ω−1
p for a single, typical run, with random initial
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Figure 10. Ensemble averaged quasilinear diffusion coefficient.

phases uniformly distributed on the circle: the wave evolution does not generate strong

phase correlations between waves, and waves with neighbouring velocities have quite

independent phases. In figures 14 we observe that the final phases appear to be drawn

independently from a uniform distribution on the circle as was the case at initial time.

Therefore the numerical wave spectrum fulfils the conditions leading to QL estimates.

Finally, we assess the validity of the QL diffusive model for particle motion in

the plateau regime, by observing the spreading of N = 20 test particles for each of

the R = 210 realizations of the wave complex envelopes ζm(t0) at t0 = 8800ω−1
p . These

particle motions are obtained by direct integration of their equations of motion (11)-(12)

with fixed ζm, using a reversible symplectic second order code. The resulting statistics

are displayed in terms of the even moments of the “test” particles released at t0 with

velocity vc = (u0 + u1)/2 at independent (uniformly distributed) random positions in

the wave spectrum; an estimate for the numerical accuracy of the test particle motion

is provided by the standard deviations of the moments.

In figures 15 these moments are compared with those of the solution to the

Fokker-Planck equation (1) for velocity diffusion, using the velocity-dependent diffusion

constant DQL displayed in figure 10-(a), with initial data a Dirac distribution at velocity

vc. To allow for a direct observation of the velocity distribution departure from
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Figure 11. Typical quasilinear diffusion coefficient for a single realization.

gaussianity, we plot the moment roots 〈|∆v(t)|2k/(1 · 3 . . . (2k − 1))〉1/k, which would

coincide with the second moment if the distribution were gaussian [20]. In these figures,

time is normalized with the discretization time τdiscr associated with velocity vc, and

∆v(t) is normalized so that, for pure diffusion over an infinite domain with constant

DQL, all plots would condense to a single straight line with unit slope.

We may consider the agreement with quasilinear predictions as satisfactory, given

that there is no adjustable parameter in the modelling and that the spreading width

(over which the diffusion approximation is expected to hold possibly) is not very small

in comparison to the total wave spectrum width ∆vspec: the drawback of the large ratio

∆vD/∆vϕ = τdiscr/τD = B−1 (for the given ratio ∆vspec/∆vϕ of the wave spectrum) is

that diffusing particles may reach the plateau boundary soon, ceasing then to contribute

to the growth of the moments, and undergo there (influenced by KAM-like boundaries)

a motion which may depart from the diffusive QL approximation further than near the

centre of the plateau. There is thus no compelling indication for rejecting the simple

quasilinear model (1), with coefficient DQL(v), when describing particle transport in the

plateau regime of the full Vlasov–waves system.
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Figure 12. Physical parameters.
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6. Triangular case

In this section we consider a triangular initial distribution function f0, which has the

advantage of yielding more easily a large number of spreading widths ∆vD over the

plateau width ∆vspec at the expense of a larger computation time though. We performed

fewer runs (R = 13) and discuss them here to stress the genericity of the behaviours

observed above in the saturation regime.

The triangle vertices are (u0, 0), (u1, 2/∆vspec) and (u1, 0), defining the initial

distribution f0(v) = 2(v − u0)/∆v
2
spec for all v ∈ [u0, u1] and 0 elsewhere. Momentum

conservation yields

P∞
w − P0

w =
∆vspec

6
. (32)

We choose an initial wave spectrum ({|ζm|}, {ϕm}) such that the wave amplitude |ζm|
is given by (29) with

ψ∞(v) =

∫ v

u0

(f∞(ξ) − f0(ξ))dξ =
(u1 − v)(v − u0)

(u1 − u0)2
(33)

and phases ϕm are given by independent uniformly distributed random variables on the

real circle. The physical parameters of the simulations are ωp = 1, ν0 = 200, M = 1200,

η = 10−5, Tend = 9 × 105 (≃ 2 max{〈γL(0)〉−1, Tdif}), Lx = 402π, vmin = 0.09 and

vmax = 1.1. The numerical parameters of the simulations are Nx = 5632 (nδx ≃ 4),

Nv = 1408 (n∆vϕ ≃ 1), ∆t = 0.25 (nΦ ≃ 4) and ǫζ0 = exp(−4.5). The coarse

estimates of section 4.2 yield for the plateau K−1
D ≃ 144, sov ≃ 32 (or B−1 ≃ 20)

and ∆vD ≃ 6.1 × 10−3. Finally we have u0 = 0.144, u1 = 1, kmin = 1, kmax = 6.97, and

1/(u1 − u0) = 1.17.

6.1. Validation of the linear and nonlinear regimes

We first validate the code in the linear and nonlinear regimes. Figures 16 show that the

mass and the L1-norm (undistinguishable in the figure) are conserved with a relative

error less than 0.05% up to time 9 × 105ω−1
p . Total momentum and energy are well
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Figure 14. Distribution of the phase of the wave spectrum.

preserved, respectively with a relative error less than 0.08% and 0.06% up to the

final time 9 × 105ω−1
p . Figures 17 show the distribution of the total momentum and

energy between wave, particle and coupling terms. In figure 17-(a) we observe that

momentum transfer from particles to waves is about 1/5 of the total momentum (which

is of the order of QL estimate (32)) while figure 17-(b) indicates an energy transfer of

about the quarter of the total energy. Wave-particle coupling energy remains negligible,

which supports again the strong randomness picture of the microscopic dynamics in the
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Figure 15. Even moments of the particle velocity deviation. (FP) : Fokker-Planck

equation. (PT) : motion of 20 test particles in R = 210 realizations of the wave complex

amplitudes ζm(T ).
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nonlinear regimes.

Since the initial distribution function is affine in velocity, the Landau growth rate

of the waves varies quadratically with the velocity. From figure 18-(a), we observe a first

regime from time t = 0 to t = 1250ω−1
p where the logarithm of the waves total energy

appears to vary linearly with time. More significantly, as the growth rates depend on

velocity, figure 18-(c) indicates a linear stage, where every wave m grows exponentially

with its prescribed rate, up to time t = 1250ω−1
p .

We next observe a second regime for time t > 1250ω−1
p , where the faster waves no

longer grow at the initial Landau rate, which indicates mode coupling processes (INL

regime), followed by a nonlinear saturation regime from time t = 1.5 × 105ω−1
p to time

t = 9 × 105ω−1
p at which the plateau regime is settled (see figures 18-(b) and 19).

6.2. Transition from stochastic to chaotic diffusion

In figures 19-(c) and (d) we observe that the space-averaged distribution function evolves

from the triangular shape to the plateau one between times t = 5.4 × 104ω−1
p and

t = 9 × 105ω−1
p . Simultaneously, during the same time period, the growth rates of the

waves fall from a strictly positive value to a null one (see figures 19-(a) and (b)). In

contrast to the hyperbolic case where the saturation of all waves and the vanishing of

their growth rate γ occurred around the same time, here we observe the propagation of

a front going from high velocity values to smaller ones. This front displays a hyperbolic-

like profile in time (see figure 19-(a)), due to the v2 variation of γL, making slower waves

grow more slowly. The plateau regime is well settled at time t = 9 × 105ω−1
p .

For this trianglar initial profile, the self-consistent wave spectrum is obtained

by averaging over 13 realizations of the same Vlasov–wave test case where random

initial phases are drawn independently from a uniform distribution on the circle. From

figures 20 and 22, in the plateau regime we observe a rather good agreement of the QL

prediction for the wave intensity spectrum (33) and for the diffusion coefficient with the

ones obtained by self-consistent simulations of the Vlasov–wave model. These results
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Figure 17. Distribution of momentum and energy.

yield again some support in favour of the validity of the quasilinear theory. The relative

lack of accuracy of results presented in figures 20-(a) and 22-(a) is due to our rough

statistics with only 13 realizations. However figures 20-(b) and 22-(b) give an idea of

what figures 20-(a) and 22-(a) would approach if we would consider a larger statistical

ensemble.

In order to assess whether regime SNL, where strong chaotic diffusion holds, has

been reached at the end of the simulation, we measure the parameters KD, sov (or B−1)

and µ. From figures 24 we notice that at the middle of the phase velocity range of the

wave spectrum, i.e. for vc = (u0+u1)/2 ≃ 0.57, and at time T = 9×105ω−1
p in the plateau

regime, we have 〈sov〉R(T, vc) ≃ 15, 〈K−1
D 〉R(T, vc) ≃ 112, 〈µ〉R(T, vc) ≃ 1.16 × 105 and

〈∆vD〉R(T, vc) ≃ 10−2 which corresponds to a range of wave velocities about 100 times

as wide as the velocity diffusion width. These parameter values confirm that the system

is in regime SNL of strong chaotic diffusion.

Since the plateau regime is well settled at time t = 9× 105ω−1
p (see figures 19), the

amplitude spectrum variations are sufficiently small and thus negligible (see figure 25).

We may again consider that the self-consistent dynamics can be approximated by the

non-self-consistent one. In order that QL estimates should hold in regime SNL, the

wave spectrum has to be smooth enough over the Dupree width, and the phases should
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Figure 18. Growth of waves in linear and INL regimes.

be random. In figure 21-(a) (resp. figure 23-(a)) we observe for a single realization that

the velocity dependence of the wave spectrum intensity (resp. diffusion coefficient) is

very noisy, but when averaged over a velocity width corresponding to a floating average

(31) with Lavg = 5, wave spectrum intensities (resp. diffusion coefficients) describe a

smooth function with respect to velocity, see figure 21-(b) (resp. figure 23-(b)). This is

a conservative test, since at the middle of the phase velocity range of the wave spectrum,

the ratio Lavg,D(t, v) = ∆vD/∆vϕ = B−1 is about 12 (see figures 24). Figures 20 and 22
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Figure 20. Ensemble averaged wave power spectrum.

show that the average amplitudes of the waves and corresponding diffusion coefficients

are quite smooth with respect to their velocity. The spectrum generated by our self-

consistent simulations thus fulfils the first hypothesis about the absence of holes larger

than the order of a width ∆vD.

From figures 27 we observe that the final phases are drawn independently from

a uniform distribution on the circle as was the case at initial time, which satisfies the

second requirement. Even for a single, typical run, with random initial phases uniformly

distributed on the circle, figure 26 shows roughly that the final phases of waves with

nearby velocities are uncorrelated. Therefore the wave spectrum fulfils the assumptions

which lead to QL estimates [21].

Again we test the validity of the QL diffusion model with the direct integration

of the particle equations of motion. We follow N = 100 test particles in R = 13

realizations of the wave data (ζm) at T = 9 × 105ω−1
p and compare even moments of

their velocity distribution with the corresponding moments of the solution to the Fokker-

Planck equation with QL diffusion coefficient. Figures 28 show that the agreement is

very good up to times exceeding the discretisation time τdiscr. This is much longer

than for the hyperbolic initial particle velocity distribution, clearly thanks to the wave

spectrum here allowing for more waves to act incoherently on the particles. The Fokker–
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Figure 21. Typical wave power spectrum for a single realization.

Planck equation (1) definitely accounts for the motion of particles in the plateau wave

spectrum.

7. Conclusion

The validity of quasilinear theory for describing the weak warm beam–plasma instability

in the chaotic saturation regime was considered in this work both analytically and

numerically. It was shown intuitively and analytically that there is no mode coupling

in the saturation regime of the instability, where a plateau is present in the tail of the

particle distribution function. This contradicts previous analytical works attempting

to prove the validity of quasilinear theory in the strongly nonlinear regime of the weak

warm beam–plasma instability [42, 43, 28, 21] and the “turbulent trapping” Ansatz

aiming at the contrary [40].

Then this work described a series of self-consistent simulations of the weak warm

beam–plasma instability within the Vlasov–wave description. They confirmed the

occurrence of an enhanced growth rate in the intermediate nonlinear regime already

shown in [15], and consistent with the perturbative calculation of [38]. This enhancement

contradicts the analytical arguments for validity of quasilinear theory in [51]. However
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Figure 22. Ensemble averaged quasilinear diffusion coefficient.

the wave growth rate was shown to relax toward its quasilinear value when going into

regime SNL. They also showed that QL theory remains valid in the strong chaotic

diffusion regime (regime SNL). In particular, the QL diffusive approximation for particle

motion in the saturated wave spectrum was shown to hold over time scales up to the

order of the beam spreading through the wave spectrum. This work also confirmed

the relevance of the diffusive model for particle motion in regime SNL by comparing

the statistics of direct integration of the equations of motion with the statistics of the

diffusion model. Thus both the mode growth rates in regime INL and the particle

diffusion process in the plateau regime SNL remain rather close to the QL predictions.

In conclusion, the main argument for a possible renormalization of the quasilinear

growth rate and diffusion coefficient in the strongly nonlinear regime of the weak warm

beam–plasma instability was discarded on an analytical and intuitive basis, and a

thorough numerical simulation was consistent with the quasilinear prediction in this

regime. Together with the refutation of other analytical works, this brings an important

milestone to the quasilinear controversy. However a rigorous and intuitive description

of the whole saturation is still awaited.
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Figure 23. Typical quasilinear diffusion coefficient for a single realization.
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Appendix A. Time scales for diffusion and velocity resonance boxes

This appendix makes more precise the discussion in section 1 about diffusive transport

in the dynamics defined by Hamiltonian (9). Physically, the larger the velocity of a

particle in a wave frame, the smaller the influence of the wave on the particle. Even

in the chaotic regime, strongly enough non-resonant waves may be treated through

perturbations theory [4, 5, 6, 21]. Put briefly, the interaction is local in velocity.

This idea of locality was already present in the resonance broadening concept

introduced by Dupree [17]. A more complete analysis [21, 4, 5, 6] shows that for strong

resonance overlap (sov ≫ 1 or B ≪ 1), only waves with a phase velocity within the
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range (called resonance box) centered on the particle velocity of width 2∆vbox with

∆vbox ≃ 4.6∆vD contribute to chaotic transport of the particle. Note that parameter

B can be rewritten as the ratio B = 4.6∆vϕ/∆vbox, so that 4.6B−1 can be viewed as

the typical number of waves in a resonance box. We can also introduce the parameter

Kbox = ∆vbox/∆vspec which is equivalent to the Kubo number KD and is associated with

the competition between stochastic and deterministic time-scales in stochastic processes.

Finally we can introduce the time τbox = (2∆vbox)
2/(2DQL) ≃ 11τspread ≃ 40τD which is

the typical time it takes for a resonant particle to wander through a resonance box.

Since large scale chaos makes the orbit unconfined in velocity, it visits a sequence

of resonance boxes of width 2∆vbox, where the wave random phases are independent.

Hence, the velocity undergoes a series of independent increments, which lead to a

diffusion by a central limit effect. Therefore if we note Nbox = ∆vspec/(2∆vbox) ≃
(9KD)−1, we see that the regime of strong chaotic diffusion, regime SNL, is in fact

characterized by the conditions µ ≫ 1 (slow wave evolution), B ≪ 1 (strong chaos by

strong resonance overlap) and Nbox & 3 (wide diffusion range). It is also important to

notice that a random initial position alone does not impose a Gaussian statistics to the
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Figure 27. Distribution of the phases of the wave spectrum.

velocity: wave phase randomness is essential [4, 5, 6, 21].

The wave phase randomness of course underlies the original QL theory, as it

essentially implies that, for short times, the particle is subject to an uncorrelated force

field, physically a white noise. Considering this picture as a perturbation to ballistic

motion of the particle leads first to the traditional requirement 〈k2∆x2〉 . 4π2 of the

original QL estimates, which applies only for t . τspread and forces the orbit to have a

weak dependence on all M ≫ 2 phases simultaneously. However, if the orbit merely

has a weak dependence on any Nϕ = 2 phases, all other phases been fixed (which

is less stringent than the previous condition of type Nϕ = M), formal integration of

the equation of motion reveals that 〈∆v2〉 take its QL value over times beyond τspread

[4, 5, 6, 21], as is recalled now.

Actually, linear theory enables one to compute rigorously the small variation of

the orbit when any two phases are varied [27, 28, 29, 21]. Indeed, since the particle

initial position is the same for all realizations of the wave phases, the initial mismatch

between two realizations of the orbit is initially small and can also be computed by

linear theory. This calculation shows that D = DQL for t . τQL = τspread| lnB| for

strong resonance overlap (and in particular for a continuous spectrum B → 0). In this

regime, τQL ≫ τspread, which means that the QL estimate for the diffusion coefficient
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Figure 28. Even moments of the particle velocity deviation. (FP) : Fokker-Planck

equation. (PT) : motion of 100 test particles in R = 13 realizations of the wave
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is correct for times much larger than τspread. Moreover as τQL ≫ τbox & τspread for

B ≪ 1, there is an overlap between the initial non-chaotic QL regime and the final

chaotic diffusion one. This confirms that a small value of B (strong resonance overlap)

is required for the transition from regime L to regime SNL.

The time scale over which QL estimates hold can still be stretched significantly

using a different viewpoint. Indeed, if the waves are random, their superposition is

essentially an approximation to white noise for times t > τac ∼ (k∆vspec)
−1. However,

this white noise is approximated using a discrete wave spectrum, which allows for echo

at a period 2πτdiscr = 2π/(k∆vϕ). Therefore, one can also prove that for a time span

0 < t . τdiscr the particle velocity essentially undergoes a brownian diffusion. For longer

times, the strong overlap limit B → 0 implies that the particle motion “forgets” its

initial sampling of the wave spectrum, which enables one to prove the validity of QL

estimates for large t/τdiscr through an ergodic theorem using martingale properties of

the dynamics [19, 20, 23].

Appendix B. Mode-mode coupling in the wide plateau regime

In this appendix we calculate the modulation of the particle velocity near the plateau

edge and the resulting feedback on waves, considered in section 2.2. This problem

can be treated perturbatively, as the edge particles move quite regularly, with velocity

v(t) > vb or v(t) < va, and are coupled to waves with phase velocity vϕ ∈ [u0, u1] ⊂
[va, vb]. Therefore the particles stay away from resonances ; typically one finds this

∆vedge ≈ vb−u1 ∼ (εβζ∗)
c with c = 1

2
for a single wave model and c = 2

3
for a resonance

box scaling [5].

The water bag distribution, with height f0, is fully described by its two boundaries,

where by assumptions the particles move regularly with velocities near v0 and v1.

The M waves modulate these boundaries, so that at time t their equations read

v = v−(t, x) = v0 + δv−(t, x) and v = v+(t, x) = v1 + δv+(t, x). Here x is a mere label

on the position axis, and f0 = 1/(v1 − v0). The wave deformation θm = ζm(t) − ζm(0),

which must be small over the time scale of interest, is generated by

θ̇m(t) = εi
βm

kmL

∫ L

0

∫ v1+δv+(t,x)

v0+δv
−

(t,x)

e−ikmx+iωmtf0 dvdx

= εi
βm

kmL

∫ L

0

v1 + δv+(t, x) − v0 − δv−(t, x)

v1 − v0

e−ikmx+iωmt dx

= εi
βm

kmL

∫ L

0

δv+(t, x) − δv−(t, x)

v1 − v0

e−ikmx+iωmt dx (B.1)

which is O(εβmk
−1
m L−1

∫ L

0
(|δv+|+ |δv−|)dx/∆vplat). The dominant contribution to (B.1)

in an ε expansion is thus determined by the lowest order approximation to the km Fourier

mode of the modulations δv±(t, x), which we now estimate.

Since particles on the boundaries follow characteristics of the Vlasov equation, we

now describe the faster boundary in terms of particle positions x0 at time t0. We
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compute the correction s(t) = x(t) − x0 − v1t, w(t) = v(t) − v1 by integrating the

characteristic equations in the form

ṡ = w , (B.2)

ẇ = Re
∑

m

iεβmζm(t)ei(kmx−ωmt) (B.3)

=
∑

m

i

2
ε[αmei(kms+Ωmt) − α∗

me−i(kms+Ωmt)] (B.4)

where Ωm = kmv1 − ωm and αm = βmζmeikmx0 . To dominant order in ε, we may treat

ζm(t) as a constant, ζm.

By the adiabatic assumption, s must be uniformly small over the time interval of

interest, and we Taylor expand the exponentials with respect to s(t) =
∑3

j=1 ε
jsj+O(ε4),

so that

s1(t) = S1 +W1t−
∑

ℓ

i

2
Ω−2

ℓ (αℓe
iΩℓt − α∗

ℓe
−iΩℓt) (B.5)

where constants S1, W1 are arbitrary. They depend on x0, but the KAM requirement

for the boundary mean velocity being v1 is met by letting both of them vanish (W1 = 0

eliminates secular behaviour, and S1 = 0 ensures that the boundary is labeled uniformly

by x0, on the average). This in turn leads to the second order approximation,

s̈2 =
∑

p

i

2
[αpe

iΩpt + α∗
pe

−iΩpt]ikps1 (B.6)

so that

s2(t) = S2 +W2t+
∑

p

∑

ℓ

i

4
Ω−2

ℓ kp

[(1 − δℓp)(Ωℓ − Ωp)
−2(α∗

pαℓe
i(Ωℓ−Ωp)t − αpα

∗
ℓe

i(Ωp−Ωℓ)t)

+ (Ωℓ + Ωp)
−2(αpαℓe

i(Ωℓ+Ωp)t − α∗
pα

∗
ℓe

−i(Ωℓ+Ωp)t)] (B.7)

where again we set W2 = 0, S2 = 0, and δℓp is the Kronecker symbol. The equation for

the third order velocity correction follows,

ẇ3 =
∑

q

i

2
[αqe

iΩqt(ikqs2 −
1

2
k2

qs
2
1) + α∗

qe
−iΩqt(ikqs2 +

1

2
k2

qs
2
1)] . (B.8)

Its solution, with W3 = 0 as for the lower orders, reads

w3 =
1

16

∑

q,p,ℓ

k2
qΩ

−2
p Ω−2

ℓ

(

Wqpℓ +Wq,−p,−ℓ +W−q,p,−ℓ +W−q,−p,ℓ

)

− 1

8

∑

q,p,ℓ

kqkpΩ
−2
ℓ (Ωp + Ωℓ)

−2
(

Wqpℓ +Wq,−p,−ℓ

)

− 1

8

∑

q,p,ℓ

kqkpΩ
−2
ℓ (Ωp − Ωℓ)

−2(1 − δpℓ)
(

W−q,p,−ℓ −W−q,−p,ℓ

)

(B.9)

where

Wqpℓ = (Ωq + Ωp + Ωℓ)
−1(αqαpαℓe

i(Ωq+Ωp+Ωℓ)t + α∗
qα

∗
pα

∗
ℓe

−i(Ωq+Ωp+Ωℓ)t)
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Wq,−p,−ℓ = (Ωq − Ωp − Ωℓ)
−1(αqα

∗
pα

∗
ℓe

i(Ωq−Ωp−Ωℓ)t + α∗
qαpαℓe

−i(Ωq−Ωp−Ωℓ)t)

W−q,p,−ℓ = (−Ωq + Ωp − Ωℓ)
−1(α∗

qαpα
∗
ℓe

i(−Ωq+Ωp−Ωℓ)t + αqα
∗
pαℓe

i(Ωq−Ωp+Ωℓ)t)

W−q,−p,ℓ = (−Ωq − Ωp + Ωℓ)
−1(α∗

qα
∗
pαℓe

i(−Ωq−Ωp+Ωℓ)t + αqαpα
∗
ℓe

i(Ωq+Ωp−Ωℓ)t) (B.10)

To compute the δv+ contribution to (B.1) we only need the km spatial Fourier

component in w, as δv+(t, x) = w(t, x0) = w(t, x − v1t − s). Thus, to dominant order,

e−ikmxδv+(t, x) = e−ikmx0−ikmv1tw(t, x0 − v1t)+O(kmsw), and in the integral this change

of variable yields dx = dx0 + ds(x0). The ds integral is O(ε) smaller than the dx0

integral, hence it is negligible. Therefore we estimate now

σm = εi
βm

kmL

∫ L

0

δv+(t, x)

v1 − v0

e−ikmx+iωmt dx

≃ εi
βm

kmL

∫ L

0

w(t, x0)

v1 − v0

e−ikmx0−iΩmt dx0 (B.11)

The space dependence of w, due to αp = βpζpe
ikpx0 , implies that w1 contributes to σm

only through the ℓ = m spatial component. This contribution σm,1 = O(ε2) does not

oscillate as its time dependence fullfils the resonance condition Ωℓ = Ωm because of the

specific dispersion relation, ωm = ωp, km = (m + ν0)2πL
−1. However, it involves no

other wave than m, and does not couple waves nonlinearly.

The w2 contribution to σm oscillates in time, because any waves ℓ, p, meeting the

spatial resonance condition km = cℓkℓ + cpkp (imposed by the space integral over x0) for

some cℓ, cp ∈ {−1, 1}, will verify cℓΩℓ +cpΩp = kmv1− (cℓ +cp)ωp = Ωm +(1−cℓ−cp)ωp.

Hence they cannot meet the time-resonance condition Ωm = cℓΩp + cpΩℓ.

Most terms in w3 also generate time-oscillating terms in σm, but some waves ℓ, p, q

do fullfil the non-oscillation condition Ωm = Ωp+Ωq−Ωℓ, and these triplets automatically

meet the spatial resonance condition km = kp +kq −kℓ. These four-wave coupling terms

occur in a degenerate form, as any pair p, q ∈ ❩ defines a resonant partner ℓ = p+q−m.

The four-wave coupling terms in σ add up to

σres
m =

ε4βm

16km(v1 − v0)

∑

p,q,ℓ

βpβqβℓ Cpq ζ
∗
ℓ ζpζq (B.12)

with

Cpq = − (k2
ℓ Ω

−2
p Ω−2

q + k2
qΩ

−2
ℓ Ω−2

p + k2
pΩ

−2
q Ω−2

ℓ ) + 2kℓkpΩ
−2
q (Ωp + Ωq)

−2

+ 2(1 − δℓp)C
′
pℓkq (B.13)

where ℓ = p+ q −m and

C ′
pℓ = (Ωℓ − Ωp)

−2(kℓΩ
−2
p − kpΩ

−2
ℓ )

= (Ωℓ − Ωp)
−1v−1

1 Ω−2
ℓ Ω−2

p (Ω2
ℓ + ΩℓΩp + Ω2

p + Ωp(Ωℓ + Ωp)) (B.14)

In the four-wave coupling coefficient Cpq all terms are order unity in the limit of a dense

spectrum, except those contributing to C ′
pq. In the latter terms the worst divergence

scales like (Ωp+1 − Ωp)
−1 = L/(2πv1), for ℓ = p ± 1, coupling waves with nearest

wavenumbers (and nearly equal phase velocities). The other terms are milder, and the

resulting, harmonic-like truncated series with coefficients (Ωp+1 − Ωp)
−1 will typically

involve wave envelope factors ζ∗ℓ ζpζq with incoherent phases, ensuring its convergence.
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Therefore, with all k’s having comparable scales, the four-wave coupling term scales

like a sum of ε4β4|ζ|3/[v1(v1 − v0)Ω
2
minδΩ] and ε4β4|ζ|3k/[(v1 − v0)Ω

4
min]. A similar

argument applies to the slower boundary particles, with average velocity v0 > 0.
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