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ABSTRACT

The analysis of mobile networks spurred a lot of research

and recently focused on node encounters, or “contacts”, as

the contact process determines whether space-time path con-

necting far-flung nodes exist. But the contact process alone

yields an incomplete picture. People tend to gather at points

of interest and as a consequence, connected components (clus-

ters) arise. Nodes may be scattered across a large area, but

many practical scenarios feature sizable clusters, sometimes

comprising the majority of nodes. In this paper, we analyze

the distribution of cluster size in mobile networks. Specifi-

cally, we model stochastic coalescence (merging) and frag-

mentation (splitting) of clusters as a Markov chain and de-

rive analytically the exact stationary distribution of cluster

size. Moreover, we prove that as the number of nodes grows,

the clustering behavior converges to a mean field. The mean

field is obtained as a closed-form expression and is a sur-

prisingly good approximation for practical scenarios. What

is remarkable about this result is that the mean field trans-

lates a microscopic property — the parameters of the merge–

split process — to the cluster size distribution, an important

macroscopic property of the system. Thus, our model allows

characterizing systems of mobile nodes through the param-

eters of the merge–split process that yield the empirically

observed cluster size distribution. We validate the mean

field approximation and the exact distribution against ran-

dom walk simulation as well as real mobility traces with

sizes spanning three orders of magnitude and ranging from

conference visitors to taxicabs.

1. INTRODUCTION

Up to now, the analysis of mobile networks predominantly

modeled individual nodes; in particular research on delay-

tolerant networking (DTN) focused on characterizing the pro-

cess governing single-hop paths (“contacts”) and leverag-

ing the resulting “space-time paths” required for commu-

nication in a disconnected network. Those studies laid an

important foundation toward understanding the contact pro-

cess. Related work evaluating contact-based routing and for-

warding schemes reports promising results for novel appli-

cations specifically designed for those networks. In addi-

tion to space-time paths, we argue that multi-hops paths may

exist, especially if future mobile network scenarios become

larger and denser. Indeed, multi-hop paths might allow run-

ning some of the applications we use every day in a mobile

wireless network even though those applications are not de-

signed to be as delay-tolerant as those that have traditionally

been studied in the DTN community. We use the term par-

tial path to refer to a chain of connected nodes bridging part

of the gap between source and destination, as opposed to the

term full path, which is a path from source to destination.

Following those definitions, several questions arise natu-

rally: do partial paths exist? Continuum percolation theory

(see [8] and references therein) would have you believe oth-

erwise; its main result is that a phase transition occurs be-

tween the disconnected and the connected regime; i.e., if the

node density is below the percolation threshold, almost all

nodes are isolated; above the threshold, the network “per-

colates” and forms one giant connected component. But the

caveat is that this only applies if node distribution is uniform,

thus excluding the vast majority of real-world scenarios. In

delay-tolerant networking, studies of space-time paths [6,

10] as well as mobility models featuring clustering behav-

ior abound [22, 18, 20]; yet those works are concerned with

metrics of relevance to contact-based forwarding schemes

and largely skip over the existence of multi-hop paths.

In light of this situation, we argue that a methodology

specifically for modeling partially-connected scenarios is in

order. A major roadblock on the way toward modeling par-

tial paths is that by definition a path involves multiple nodes

and implies dependency between those nodes. Observing

that individual node positions are irrelevant for analyzing

existence and properties of partial paths, we could model

partial paths instead of nodes. Indeed, we can go even fur-

ther and model all partial paths that are lumped together in a

connected component (cluster) as a whole. According to this

approach, a network is described by the dynamics of cluster

creation and disappearance and the transient and stationary

distribution of the cardinality of those clusters.

We propose a model based on the concept of stochastic

coagulation and fragmentation in particle systems. More

specifically, we model a system of mobile nodes in analogy

to a system of particles in a solvent. In analogy to how those

globs of particles coalesce and fragment, we describe a sys-
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tem of N mobile nodes as a set of clusters; the state of the

system is represented by a vector in which every element

i = 1, 2, . . . represents the number of clusters of size i. As-

suming that N is constant, there are two primitive events

that can happen in this system. First, two clusters of sizes k

and l can merge into a new cluster of size k + l as described

by the merge process. Second, the inverse can happen as

well, i.e., a cluster of size k+ l splitting into two clusters ac-

cording to the split process. The merge and the split process

determine the stationary distribution of cluster size and thus,

whether the network is connected, disconnected, or partially

connected, the latter implying existence of partial paths.

We implement this model as a Markov process over the

finite state space of all partitions of N . Under certain con-

ditions, this process is reversible and thus its stationary dis-

tribution (corresponding to the distribution of cluster size) is

obtained in closed form. Furthermore, we prove that the be-

havior of the merge–split process converges to a mean field

for large numbers of nodes,N . The mean field is obtained in

closed form and even for realistic networks with finite num-

bers of nodes provides a very useful approximation.

While the focus of this paper is clearly on studying in

depth the merge–split model, we also aim to illustrate its use-

fulness to the extent space permits. The mean field approxi-

mation intuitively translates through a simple expression a

microscopic property—–the parameters of the merge-split

process—–to the cluster size distribution. Thus, our ana-

lysis allows characterizing systems of mobile nodes solely

by the merge/split parameters that yield the observed clus-

ter size distribution. The number of non-singleton clusters

indicates, how well contact-based or partial-paths-based al-

gorithms fit a given scenario.

The mean field approximation as well as the exact distri-

bution are validated against random walk simulation as well

as mobility traces. We use traces from conference visitors

and taxicabs in San Francisco and Shanghai. More specifi-

cally, we extract the merge and the split rate from these sce-

narios and then derive the cluster size distribution using both

our exact analytical solution and the mean field approxima-

tion. The exact result yields a remarkably precise prediction;

the mean field approximation by its nature mainly gives a re-

liable prediction of the shape of the distribution; in particular

it predicts whether giant components emerge.

There are several other applications of our model, such as

predicting the distribution of the time to forward messages

between nodes; we are currently working on those results

and they are to be published in a forthcoming paper. Below,

we summarize the contributions we present in this paper.

• We introduce a a merge–split process modeling the sta-

tionary distribution of cluster size in mobile networks;

• we prove convergence to a mean field behavior with

increasing number of nodes, thus providing a closed-

form expression to translate the microscopic behav-

ior (merge–split process with three parameters) to the

macroscopic behavior (cluster size distribution);

• we validate the predicted cluster size distribution (ex-

act derivation and mean field approximation) against

random walk mobility and three real-world traces.

In the next section, we introduce the merge–split model, we

prove its convergence to a mean field, and we outline calibra-

tion of the model with empirical data. We validate this model

and the calibration in Sec. 3, where we calibrate the model

with synthetic as well as three real-world mobility traces and

compare the predicted cluster size distribution with the em-

pirical one. Section 4 discusses our contributions vis-a-vis

related work and Sec. 5 concludes and outlines future work.

2. ANALYTIC FORMULATION

2.1 Finite size system formulation

We describe an arbitrary mobile network as a system of

N interacting nodes. At every time t, a node is in exactly

one cluster, i.e., it is member of a set of nodes connected by

a full path at time t. The state of the system is described

by the cluster size vector (νN (1, t), νN (2, t), . . . , νN (N, t))
with elements νN (i, t) representing the number of clusters

of size i at time t. We consider two primitive interactions

between these nodes.

1. Merge reaction: A cluster of k nodes merges with a

cluster of l nodes, yielding a cluster of k + l nodes:

Ck + Cl → Ck+l.

This reaction is also called coalescence and happens

at a rate ψN (k, l), which is assumed to be symmetric,

i.e., ψN (k, l) = ψN (l, k). A merge reaction of clusters

of sizes k and l has the following drift effect on the

cluster size vector: (. . . , νN (k, t) − 1, . . . , νN (l, t) −
1, . . . , νN (k + l, t) + 1, . . .).

2. Split reaction: A cluster of size l splits into two clus-

ters of sizes k, (k < l) and l − k:

Cl → Ck + Cl−k.

This reaction is also called fragmentation and happens

at a rate φN (l|k) and we assume φN (l|k) = φN (l|l −
k). A split reaction has the following drift effect on the

cluster size vector: (. . . , νN (l−k, t)+1, . . . , νN (k, t)+
1, . . . , νN (l, t)− 1, . . .).

We call such a process a merge–split process. These reac-

tions happens subject to the node conservation condition:

N
∑

k=1

kνN (k, t) = N, ∀t ≤ 0. (1)

This defines a Markov process over the finite state space

Ω = ΩN = {τ} of all partitions of N . A special case of

this process with only the merge reaction is called Marcus-

Lushnikov process [17, 16] and has gained attention from the
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mathematical community. The analogous process involving

only the split reaction is called fragmentation process and

has been studied extensively in the context of branching pro-

cesses. The problem we analyze here is a mix of these two

problems.

For ease of notation, we will drop indexN referring to the

total number of nodes in the forthcoming unless needed. As

we will see it is useful to define the following intensity ratio

function q(k, l), based on the ratio between merge and split

intensity, as:

q(k, l) =







ψ(k, l)

φ(k + l|l) , if ψ(k, l)φ(k + l|l) 6= 0

0, otherwise

(2)

The existence of a stationary equilibrium state is condi-

tioned on the reversibility of the Markov chain; a Markov

process Mt is said to be reversible with respect to a proba-

bility measure µ if for all t ≥ 0, the process Mµ
t , 0 ≤ s ≤ t

and Mµ
t−s, 0 ≤ s ≤ t, starting from the same initial distri-

bution µ, have the same finite dimensional distribution [13].

Reversibility is an important property of a Markov process;

if a reversible process is ergodic, its unique stationary distri-

bution is the reversible measure. The reversible measure can

be derived in general using the flow equilibrium equation of

the Markov chain, i.e., V (τ, ξ)µ(τ) = V (ξ, τ)µ(ξ), where

V (τ, ξ) is the total intensity of transitions from state τ to ξ.

The following theorem gives necessary and sufficient con-

ditions under which the process is reversible and will there-

fore converge to a stationary equilibrium state. Note that we

only include the intuition of the proofs of the theorems given

in the forthcoming due to lack of space; the complete proofs

are provided in [2].

THEOREM 1. [13] Suppose that q(k, l) > 0, for 2 < k+
l < N , then the merge–split Markov process is reversible if

and only if for some function a(k) > 0, k = 1, . . . , N , we

can rewrite q(k, l) as

q(k, l) =
a(k + l)

a(k)a(l)
.

Moreover a merge–split process will have a reversible dis-

tribution µ following the closed form formula derived as:

THEOREM 2. Suppose that q(k, l) follows the condition

given in Thm. 1, then the merge–split process defined above

is reversible with respect to the invariant measure µ = µN ∈
ΩN , given by

µN (τ) = CN
a(1)n1a(2)n2 . . . a(N)nN

n1!n2! . . . nN !
. (3)

where τ(t) = (n1, . . . , nN ) ∈ ΩN is an acceptable configu-

ration with nk clusters of size k. CN is a scaling coefficient

defined such that
∑

τ∈ΩN
µ(τ) = 1.

The proof of the theorem proceeds by validating that this dis-

tribution satisfies the flow equilibrium condition, V (τ, ξ)µ(τ) =

V (ξ, τ)µ(ξ), τ, ξ ∈ ΩN . In the forthcoming we will denote

cN =
1

CN
=

∑

τ∈ΩN

a(1)n1a(2)n2 . . . a(N)nN

n1!n2! . . . nN !
. (4)

The invariant measure gives the stationary state occupation

measure, i.e., the probability that the Markov chain is in state

τ in equilibrium. However, for our purpose, we are inter-

ested in knowing the statistics of nk(τ), i.e., the number of

clusters of size k in the configuration τ . The below statistics

are of interest:

νN (k) = E {nk(τ)} , k = 1, . . . N

ςN (k, l) = Cov {nk(τ), nl(τ)} , k 6= l = 1, . . . , N

σ2
N (k) = Var {nk(τ)} , k = 1, 2, . . . , N

The next theorem derives those statistics:

THEOREM 3. Let µN be given as in Thm. 2, then:

νN (k) = a(k)
cN−k

cN
,

ςN (k, l) = a(k)a(l)

(

cN−k−l

cN
− cN−kcN−l

c2N

)

, k 6= l,

σ2
N (k) = a2(k)

(

cN−2k

cN
−
c2N−k

c2N

)

+ a(k)
cN−k

cN
,

for k, l = 1, . . . , N , and c−m = 0, m = 1, . . ..

Theorem 3 gives a characterization of the distribution of

cluster sizes. The correlation between cluster sizes is result-

ing from the finite value of N and the constraint given in

(1). In order to complete the characterization, we need to

obtain the values {cm}. These values can be derived using

the series S(x) =
∑∞

i=1 a(i)x
i that is assumed to converge

for x ∈ DS = {x| |x| < RS}.

THEOREM 4. Under the assumption of convergence of

the series S(x) in DS

1. The values cn, n = 1, 2, . . . are the coeffients of the

Taylor expansion of the function g(x) = eS(x), i.e.,

g(x) = eS(x) =

∞
∑

n=0

cnx
n

where g(x) converges over Dg = DS .

2. The radius of convergence of the Taylor series of g(x)
and S(x) are equal, i.e.,

lim
n→∞

cn

cn+1
= lim

n→∞

an

an+1
= R.

3. The values cn can be derived by the recurrence rela-

tion: c0 = 1, c1 = a(1),

(n+1)cn+1 =

n
∑

k=0

(k + 1)a(k + 1)cn−k, n = 1, 2, . . .
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The above theorem gives a simple and efficient method to

derive the value of cN that are used to compute the distribu-

tion of cluster size based on theorem 3. The method can be

summarized as:

1. Write the series S(x) and obtain the function that it

converges to.

2. By deriving the function g(x) = eS(x), find a recur-

rence equation relating the coefficient cn.

3. Using the recurrence equation, the values cn are ob-

tained, yielding the distribution of cluster sizes.

We thus have a complete theoretical characterization of the

distribution of cluster size for finite values of the number of

nodes.

2.2 Mean field analysis

The above analysis enables us to derive an analytic de-

scription of merge–split systems with finite number of nodes.

However, the procedure, even if straightforward, becomes

imprecise, when the number of nodesN becomes large. This

is because the values of cn grows almost exponentially, and

even for a 70 to 80 nodes, reach huge values close to 1071.

Doing addition as needed by the recurrence equation needed

for the exact derivation with such large values leads to errors

that propagates to all values. For this reason we need an ap-

proximation that is more amenable to calculation for systems

with more than 70 nodes as is needed in practice. Moreover

it does not give analytic insight into the large-scale behav-

ior of systems based on merge–split processes. In order to

deal with these two issues, we will present here an asymp-

totic analysis of merge–split processes, i.e., the limit process

when the number of nodes grows, N → ∞. The asymptotic

behavior of νN (k) is obtained through the next theorem:

THEOREM 5. Suppose that

R = lim
n→∞

cn

cn+1
,

then for fixed k, we have:

lim
N→∞

νN (k) = a(k)Rk, k = 1, 2, . . .

lim
N→∞

ςN (k, l) = 0, k 6= l = 1, 2, . . .

lim
N→∞

σ2
N (k, l) = a(k)Rk, k = 1, 2, . . .

This asymptotic behavior yields an interesting insight: it

proves the existence of a limit when the number of nodes di-

verges, and it shows that the correlation between the number

of clusters of different sizes vanishes with increasing num-

ber of nodes. This last property is called the propagation

of chaos in the literature as it means that the correlation be-

tween states vanishes when the number of nodes diverges.

However, the above theorem is difficult to apply to sys-

tems with finite number of nodes because the physical con-

ditions of the system change with the number of nodes. To

keep node density constant as the number of nodes diverges,

we proceed as follows. Assume that a finite system with n

nodes is evolving in a unit volume. To maintain the same

physical conditions, we let V (n) grow along with the num-

ber of nodes n diverging, ensuring that the node density re-

mains equal to N , i.e., we are analyzing ηN (k), the density

of clusters of size k, when the node density is equal to N :

lim
n→∞,n=N.V (n)

νn(k) = ηN (k),

where the constraint n = N.V (n) results from the node den-

sity being N and subscript N indicates this. By extension

η(k, t) is defined as the density at time t of clusters of size

k. We also define the merging rate per volume unit as

KN (k, l) = lim
n→∞,n=N.V (n)

ψn(k, l)

V (n)
.

Similarly we define the splitting rate per volume unit as

FN (k|l) = lim
n→∞,n=N.V (n)

φn(k|l)
V (n)

.

Again, we will drop index N when it is obvious from the

context. Recently, [3] proposed a methodical approach to

derive the mean field of a special class of processes where

the intensity of reactions in a system vanishes when the num-

ber of interacting nodes (N ) increases. For such processes,

the state occupation measure of the process converges to a

mean-field limit that is given as the solution of the drift equa-

tion of the state occupation measure. Unfortunately, the in-

tensity of the above merge–split process is not vanishing as

we assume that asymptotically the density of merge and split

reactions converge to F (k|l) > 0 and K(k, l) > 0. So the

framework defined in [3] is not applicable here and we have

to derive the mean-field directly. We will do this next.

Using the above notations and withThm. 5, which states

that the correlation between the number of clusters ςN (k, l) →
0 vanishes when N → ∞, one can write the Kolmogorov

forward equation of the Markov chain governing the merge–

split process with infinite number of nodes as:

∂η(m, t)

∂t
=

1

2

m−1
∑

l=1

K(l,m− l) · η(l, t)η(m− l, t)

−
∞
∑

l=1

K(m, l) · η(m, t)η(l, t)

+
∞
∑

k=m+1

F (k|m) · η(k, t)

− 1

2

m−1
∑

l=1

F (m|l) · η(m, t). (5)

We assume that the initial state η(m, 0), m = 1, . . . ,∞, sat-

isfies the node conservation condition, i.e.,
∑

k≥1 kη(k, 0) =
N , the density of nodes being equal to N .

As in the discrete case, there are two special cases of this

process. If one discards the split reaction, i.e., F (k|l) = 0
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for all k < l, one obtains a purely coalescent equation called

Smoluchowski equation [23]. Discarding the merge reac-

tion, i.e., K(k, l) = 0 for all k, l, yields a purely branching

process. The Smoluchowski equation has attracted an im-

portant and historical interest in the statistical physics com-

munity [9] because a considerable number of real world sce-

narios, e.g., polymer synthesis in chemistry, aerosol forma-

tion in atmospheric studies, or phase separation in liquid

mixtures, can be analyzed by solving it. More recently through

the seminal survey by D. J. Aldous [1], the problem garnered

increased interest in the mathematical community.

Now let us assume that cluster sizes are continuous, i.e.,

υ(x, t) being the density of clusters of size x at time t, x

being a continuous value. Then the Smoluchowski equation

(Kolmogorov forward equation) in (5) governing the merge–

split process turns into an integro-differential equation:

∂υ(x, t)

∂t
=

1

2

∫ x

0

K(y, x− y)υ(x− y, t)υ(y, t)dy

−
∫ ∞

0

K(x, y)υ(x, t)υ(y, t)dy

+

∫ ∞

0

F (x+ y|y) · υ(x+ y, t)dy

− 1

2

∫ x

0

F (x|y)υ(y, t)dy. (6)

We are interested in deriving, when it exists, the asymptotic

value υ(x) = limt→∞ υ(x, t). When such an asymptotic

value exists, it is the mean field approximation of the sta-

tionary distribution.

Fortunately, when the process is reversible, the stationary

solution of the above integro-differential equation has a sim-

ple form that is given in the next theorem.

THEOREM 6. The unique stationary solution υ(x) = υ(x,∞)
of (6) for a reversible Markov chain satisfying the node con-

servation condition is:

υ(x) = a(x)eλx, (7)

where λ is obtained subject to the node conservation condi-

tion (1),

∞
∑

k=1

kυ(k) = N, (8)

where N is the node density.

The next theorem shows the convergence of the system ofN

nodes to the mean field represented by the stationary solution

given in (6) for a large class of merge–split processes.

THEOREM 7. For all functions a(x) satisfying a(x) ∼
xαeγx when x→ ∞, we have:

lim
N→∞

νN (k)

υ(k)
= 1.

This theorem yields a surprisingly simple large-scale behav-

ior of the merge–split process that is called Mean Field Ap-

proximation (MFA). The MFA is of major interest as it pro-

vides a closed-form formula of the cluster size behavior re-

lating a(x), a microscopic parameter of the merge–split pro-

cess, and through it the intensity ratio q(x, y), to a macro-

scopic property of this process, the cluster size distribution

υ(k). This closed-form function gives insight into the prop-

erties of the cluster size distribution that cannot be inferred

easily by observing the exact distribution νN (k). In partic-

ular the MFA shows that the head of the distribution is con-

trolled by a(x), but the tail is determined by the exponents

γ and λ, thus depending on the(finite) number of nodes.

Nonetheless, note that the convergence to the MFA is asymp-

totic. In particular, for large k(N) < N , the convergence of

νN (k) to a(k)Rk is known to be slow; i.e., νN (k) and υ(k)
might differ considerably for large k(N) < N .

2.2.1 Case study

To show the convergence to the mean field and the above

described effects, we study two cases of interest: a(i) = β

and a(i) = β
i

.

Case 1: a(i) = β. This is the case where the merge and

split rates are constant and q(i, j) = 1
β

. The function S(x)
is derived as

S(x) =

∞
∑

i=1

βxi =
βx

1− x
,

with DS = (−1, 1) and g(x) = e
βx
1−x . By deriving g(x) we

have (1 − x2)g′(x) = βg(x), resulting in the below recur-

rence equations for n = 1, 2, . . .:

c0 = 1, c1 = β, (n+ 1)cn+1 = (2n+ β)cn − (n− 1)cn−1,

that leads to a monotonically increasing sequence cn, n >

0. Therefore νN (k) is monodically decreasing with k, 1 ≤
k < N (it might increase for k = N ).

Applying the mean-field formula given in Theorem 6, with

a(x) = β we obtain λ(N) = −
√

β
N

:

υ(x) = βe−
√

β
N

k, (9)

showing an exponential decrease of the number of clusters

with the cluster size. The asymptotic distribution predicted

by Thm. 5 is derived by noting that R = limk→∞
ak

ak+1
= 1

and limN→∞ νN (k) = β. Moreover limN→∞ λ(N) = 0,

showing that limN→∞υN (k) = limN→∞νN (k) = β.

In Fig. 1a we show the distribution of cluster sizes ob-

tained by the method described for finite number of nodes

for a 100 nodes scenario, as well as the MFA given in 6. This

demonstrates the remarkable quality of the mean field ap-

proximation, at least for small values of cluster sizes. Figure 1a

also shows the loss of precision of the MFA for large k for

finite value of N . These observations are in line with the

theoretical analysis that predicted the MFA to be looser for

large cluster sizes.

Case 2: a(i) = β
i

. In this case q(i, j) = ij
β(i+j) . Such

a function a(i) can be used when clusters merge with a rate

5
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Figure 1: Distribution of cluster sizes, ν100(k), for a sce-

nario of 100 nodes and several values of β.

proportional to the product of their size and split with a rate

proportional to their size. With this assumption, the function

S(x) is derived as

S(x) = β

∞
∑

i=1

xi

i
= −β log(1− x), DS = (−1, 1).

Consequently g(x) = 1
(1−x)β

. This results in

cn =
β(β + 1) . . . (β + n− 1)

n!
=

Γ(n+ β)

Γ(β)Γ(n+ 1)
, n = 0, 1, . . .

(10)

Applying Thm. 3 generates the statistics of cluster sizes in a

straightforward way. In particular for β = 1 we have cn = 1
resulting in νN (k) = β

k
, which is independent of N .

The MFA for a(x) = β
x

is obtained as

υ(x) =
β

x
e−

β
N

x (11)

and the asymptotic distribution predicted by Thm. 5 becomes

limN→∞ νN (k) = β
k

.

We show in Fig. 1b the distribution of cluster sizes ob-

tained for a 100 nodes scenario with a(i) = β
i

as well as

the relevant MFA. Here also the MFA results in a remark-

able approximation for small to moderate values of cluster

sizes. However the approximation becomes looser for large

cluster size because of the accumulation effect of finite N .

By comparing the figures 1a and 1b, it can be seen that large

size clusters are more frequent with a(i) = β
i

than when

a(i) = β. In particular, for β = 0.01 the distribution shows

on average 0.73 clusters with size 100 and on average 27%

of the nodes are in clusters with other sizes, i.e., the distribu-

tion is concentrated on a single cluster with 100 nodes.

Analysis of the correlation structure of the number of clus-

ters gives interesting insights for this case. We show in Fig. 2,

the correlation factor
ςN (k,l)

σN (k)σN (l) obtained through Thm. 3

for different values of β when a(i) = β
i

. For β ≤ 0.1, we

observe a relatively strong correlation between values νN (k)
and νN (N − k) (the values on the antidiagonal). Moreover,

there is also a strong correlation between νN (N) and all

other νN (k) (last row and column of the correlation factor

matrix). This means that there are frequent direct transition

from clusters of size k < N to cluster of size N . The cor-

relation on the antidiagonal can be interpreted as resulting

from this last fact; most transitions are CN → CN−k + Ck

and CN−k+Ck → CN , i.e., the number of clusters of size k

andN−k are expected to be almost equal and this confirmed

by observing the curves in Fig. 1b that shows an almost sym-

metric curve of νN (k). When β becomes closer to 1, other

transitions also appears. Nevertheless, when β < 1, these

reactions occur essentially for large cluster sizes.

For β > 1, the correlation structure changes and becomes

concentrated on the upper left triangle and for small cluster

sizes, which can be interpreted by observing that now most

transitions involve small clusters and rarely large ones.
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Figure 2: Correlation coefficient between number of

clusters
ς100(k,l)

σ100(k)σ100(l)
for 100 nodes obtained for a(i) = β

i

for different values of β, plotted with a logarithmic scale

2.3 Empirical fitting and parameters analysis

In practice we normally have access to microscopic infor-

mation about the merge and split rate that results from the

particular mobility pattern of a scenario. From these infor-

mation one can estimate the intensity ratio q̂(i, j), that can

be fitted to any functional form. However we saw previ-

ously that in order for the Markov process defined by the

merge–split reactions to be reversible we should be able to

find a function a(i) such that q(i, j) = a(i+j)
a(i)a(j) . Moreover,

Thm. 7, proving the convergence to the mean-field, suggests

an asymptotic convergence to a(i) = β eγi

iα
. Using such a

functional form for a(i) results in

q(i, j) =
iαjα

β(i+ j)α
,

showing that q(i, j) does not depend on γ. Therefore α and

β should be derived by fitting q(i, j); γ can be estimated by

applying the node conservation condition (1) on the exact

cluster size distribution νN (k), i.e., γ is chosen such that the

resulting distribution νN (k) satisfies (1).

The parameters α and β are derived by fitting empirically

derived values of intensity ratios to a function iαjα

β(i+j)α by a
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non-linear least-mean-square (LMS) technique. Frequently,

the number of observed merge and split events becomes very

small in particular for large cluster sizes, reducing their sta-

tistical value. A weighting equal to
√

m(i, j)s(i, j) (where

m(i, j) is the number of merge events observed between

clusters of size i and j and s(i, j) is the number of split

events of clusters of size i + j to two clusters of sizes i and

j, respectively) is applied to every measured intensity ratio.

Moreover, for some cases the dynamical range of measured

intensity ratio q(i, j), is very large, e.g., for small i and j,

q(i, j) ∼ 0.001 and for large i and j, q(i, j) ∼ 10. In such

cases we calibrate log q(i, j) to log iαjα

β(i+j)α .

Knowing α, β and γ, the exponent λ to be used in the

MFA can be obtained by solving the following equation:

β

N
∑

k=1

e(γ+λ)k

kα−1
= N (12)

The above fitting formulas give insight about the influence

of the parameter values on the shape of the cluster size distri-

bution. The curve of the cluster size distribution has two dis-

tinct parts: its head and its tail. The head of the distribution

contains two essential pieces of information: the number of

isolated nodes, i.e., nodes that are not connected to any other

nodes, and the slope of decrease of the distribution. Looking

at the MFA, we can see that for small values of cluster sizes

the distribution can be approximated as a polynomial with

exponent −α, and the number of isolated nodes is estimated

as equal to υ(1) = βeλ, where λ depends on the number

of nodes when α and β do not depend on it. The tail of the

distribution is governed partly by the number of nodes that

control directly γ and λ. Whenever λ+ γ becomes positive

we can expect to see a bump on the tail of the distribution.

This bump is the sign of emergence of a giant component (a

well known phenomenon in the context of percolation theory

[8]), as when N increases, the positiveness of the exponent

(γ + λ) will result in a greater number of large clusters.

The conditions under which such giant components emerge

are determined by the value of λ + γ that is controlled by

(12). This equation states that if β
∑N

k=1
1

kα−1 < N , (λ +
γ) > 0 and one can expect to observe a bump in the tail of

the distribution. For example when α = 1, β
∑N

k=1
1

kα−1 =
N and based on the value of β we have two qualitative be-

haviors: for β < 1, one observes a giant component, whereas

for β ≥ 1 no such component emerges. This is in line with

the analysis given in Sec. 2.2.1, where β = 1 was found to

be a boundary value for two types of behavior for the corre-

lation structure of the finite system of nodes 1. Indeed, the

smaller the value of β
∑N

k=1
1

kα−1 (i.e., the larger α and the

smaller β), the larger the exponent λ+γ will become and the

stronger the tail bump will be and the larger the giant compo-

nent. This last property helps understanding the meaning of

1A similar analysis with stronger analytic basis can be done for the
exponent γ alone (in place of λ + γ) and leads to mathematically
stronger results but is omitted due to space restrictions

the parameters and to interpret them in meaningful network

properties: a large α and a small β (compared to N ) means

that the system of N nodes behaves in its stationary state as

a small number (maybe even a single) giant component with

single nodes splitting off or merging with it; a small αmeans

that the network will remain an archipelago of disconnected

clusters that merge and split.

3. VALIDATION

To this point, the analysis provided was strictly analytic.

In this section we aim to validate that this mathematical ana-

lysis is of practical interest for predicting the behavior of re-

alistic mobile networks. We will do this by analyzing a vari-

ety of scenarios: three real world scenarios as well as a syn-

thetic random walk scenario. First, we will use the contact

trace from Infocom 2005 as an example of a realistic mobile

network and show that it can be described by a merge–split

model. In the second part we study the random walk sim-

ulation, which serves to relate scenario parameters such as

node density to the parameters of the merge-split process.

Finally, we will analyze two large-scale traces based on GPS

position traces from taxis in San Francisco and Shanghai to

show the applicability of our model to real-world scenarios

of hundreds and thousands of nodes.

3.1 Infocom 2005 contact data

In this subsection, we study the scenario described in [4].

In this experiment, 41 conference attendees of Infocom 2005

carried a small Bluetooth contact logger during the three

days of the conference. Based on the Bluetooth contacts

logged as tuples {device hardware address, contact start time,

contact end time}, the connectivity graph has been recon-

structed, allowing the merge and split rate function to be

estimated empirically and their intensity ratios (defined in

(2)) be derived. We plot the ratio q(i, j) of those values in

Fig. 3a: clearly, q(i, j) increases with cluster sizes; nonethe-

less, a large part of the rate function remains undefined (shown

with brown color relative to the NaN label in the figure) as

no merge and split involving these values has been observed.

Applying the weighted least-mean-squares fitting described

in Sec. 2.3 to the measured intensity ratio yields an estima-

tion of α̂ = 3.71± 0.1, β̂ = 16.73± 0.95 with a remarkable

R2 = 0.998 goodness of fit indicator. The value γ̂ = 0.83
is obtained by enforcing node conservation on the distribu-

tion νN (k). By enforcing node conservation on the MFA,

one can derive λ = −0.66, resulting in λ + γ = 0.17 and

therefore the emergence of a giant component. This can be

verified by noting that 16.73
∑41

k=1
1

k3.71 = 21.25 < 41. In

Fig. 3b, we plot the observed ratio q(i, j) against the pre-

dicted ratio q̂(i, j) = a(i+j)
a(i)a(j) , with a(x) = 16.73

x3.71e0.86x
.

In Fig. 4a, we compare the cluster size vector observed

over the entire trace with the distribution predictions intro-

duced previously, i.e., the exact derivation from Sec. 2.1, and

the MFA from Sec. 2.2. The two distributions predict the

empirical distribution with remarkable accuracy and the dif-
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Figure 4: Empirical cluster size vector for real-world sce-

narios with exact derivation and MFA

ference between the MFA and the exact derivation are in line

with the analysis provided previously. Note that even though

the number of nodes is quite small, the exact derivation still

yields a good prediction of the cluster size vector.

3.2 Synthetic random walk scenario

As a second scenario to validate our approach we used a

synthetic random walk scenario. For this purpose, we run an

extensive set of simulations with a simple home-grown mo-

bility simulator that models mobile nodes moving according

to the following random direction mobility model: at initial

time t = 0, N nodes are placed uniformly at random in a

square area. Then, each node is assigned a random direction

in [0, 2π). All nodes move in the assigned direction for l

units, then they pick a new direction at random. If the trajec-

tory of a node leads outside the simulation area it is reflected

at the closest border. A link between two nodes is up if their

Euclidean distance is less than the transmission range.

In Fig. 5, we plot the fitted values of α and β as a func-

tion of coverage (defined as the ratio between the area cov-

ered by the aggregated transmission range of all nodes and

the simulation area); note that the coverage increases with

the square of the transmission range. We observe that with
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Figure 5: Estimated values of parameters α and β as a

function of coverage for the random walk scenario

increasing coverage, α increases almost linearly and β de-

creases almost exponentially. Nevertheless, this holds only

for coverage values above 1, where giant components may

emerge. This observation is in line with what classical per-

colation theory predicts: giant components emerge only for

high coverage. The figure also give us a benchmark about

the value of α that one can expect to begin to observe large

clusters emergence. The results of the cluster size vector fit-

ting corresponding to the Infocom scenario is given in [2].

3.3 Taxicab Mobility Traces

We draw further statistics from two mobility traces based

on GPS (Global Positioning System) position reports from

taxicabs. Since our model is based on the adjacency ma-

trix and yields the cluster size distribution, those positions

reports cannot be used directly. Instead, in line with other re-

cent publications [5], we assume that these taxies are equipped

with some radio transmission technology (e.g., IEEE 802.11)

with a transmission range of 200 meters. This assumption

affects the cluster size distribution from our model as well

as the empirical one we compare it with in the same man-

ner. In particular, a link between two nodes now means that

those nodes are closer than 200m, yet this does not imply

that those nodes would actually be able to communicate, as

the range of wireless transmission depends on a great many

number of factors, none of which are provided by the traces
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we use. Further, since the GPS position reports contain a

few dozen outliers, we use an MAD (Median of the Absolute

Deviation) based filtering procedure [7] on the raw positions

and remove these outliers. In order to increase the temporal

resolution, we interpolate the position of cabs between re-

ported positions but only if they are no further apart than a

certain threshold in terms of distance and time. Therefore,

the set of active nodes changes considerably over time. To

reduce the effect of daily patterns, we limited the considered

time range to 8AM until 12PM.

3.4 San Francisco Taxicab Mobility Trace

The traces from the San Francisco Cabspotting project

have previously been studied in the context of DTN [20]; our

trace contains 11.2 million GPS positions from 517 cabs.

We applied the model calibration over this data set and ob-

tained estimates of α̂ = 4.437±0.004 and β̂ = 133.2±0.4,

γ̂ = 0.3648 with an R2 = 0.995. The MFA was calibrated

with a value λ̂ = −0.3258. The comparison of the empiri-

cal distribution of cluster sizes over the San Francisco taxis

and the comparison with the exact derivation and the MFA

are shown in Fig. 4b. This figure shows good agreement be-

tween the empirical distribution and the MFA. However, the

quality of the prediction of the tail of the exact distribution

degrades. This is to be expected as the number of nodes (be-

ing much larger than 70) yields cn values beyond the limit of

double precision floating point arithmetic. Indeed, for large

scenarios the MFA can be the more suitable approximation

as the figure shows. Of note, the San Francisco trace yields

a larger value of α than the simulation scenario (Sec. 3.2),

showing that in real scenarios nodes have a higher tendency

to gather and build large clusters. Interestingly this tendency

is even higher than for the Infocom scenario, where the ex-

ponent α is larger when the proportion of isolated nodes for

the two scenarios are between 25% to 35%. This can be ex-

plained by the fact that taxis frequently gather at hot spots

(train stations, restaurants, etc.), leading to a highly non-

uniform distribution ([20] studies hot spots in this trace).

3.5 Shanghai Taxicab Mobility Trace

The Shanghai taxicab traces were collected by the Traf-

fic Information Grid Team at Shanghai Jiaotong University

[11]. The data consists of GPS position reports from 4063

taxies in Shanghai. The hot spots in this trace are studied in

[14]. This trace contains even more nodes than the one from

San Francisco as we monitored 3340 taxis. Here also the cal-

ibration of the ratio of intensity function is done and leads to

α̂ = 3.602 ± 0.1 and β̂ = 1007 ± 3 with an R2 = 0.9823.

The other parameters are also obtained as γ̂ = 0.23 and

λ̂ = −0.2242. The comparison of the empirical distribution

of cluster sizes over the Shanghai taxis trace and the com-

parison with the exact derivation and the MFA are shown in

Fig. 4c. This figure shows very good agreement between the

empirical distribution and the MFA. Here also as expected

the exact derivation cannot give a good approximation as

the number of nodes leads to computational artefacts. For

this scenario, α is in the order of the Infocom scenario and

smaller than the San Francisco scenario. The effect of the

difference in α can be seen by observing that the bump in the

tail of the San Francisco scenario is more pronounced than

the one of the Shanghai scenario. The difference between

the two taxicab scenarios might come from the differences

in the gathering pattern of taxis and from the geographical

and topographical difference between these two cities.

4. RELATED WORK

While routing in mobile ad hoc networks (MANETs) is

based on the implicit assumption of connectivity, measure-

ments from real mobile wireless networks (e.g., [15, 12])

mooted this assumption to some extent. Due to the sparse

nature of the scenarios for which measurement results could

be obtained, those networks were found to be disconnected

for the majority of time and sparked a new line of research,

now with the opposite assumption of the network being dis-

connected. In those so-called delay-tolerant networks (DTN),

single-hop communication opportunities called contacts are

leveraged by forwarding algorithms to form over time so-

called space-time paths. Studying in particular those space-

time paths, [6] found a “small world” behavior in many mo-

bility traces; [10] observes a “path explosion” phenomenon.

At a more abstract level, clustering has been found to

be an important characteristic of mobile networks and algo-

rithms building upon this property have been proposed, most

of them complementing MANET routing with opportunistic

forwarding between clusters (e.g., [21, 18]). Furthermore,

there are mobility models explicitly aiming to yield “realis-

tic” clustering properties (e.g., [18, 22]), motivated by the

behavior of people.

Moreover, [20] studies mobility traces specifically in terms

of clustering behavior with a focus on the relationship be-

tween cluster size and lifetime and introduces a heteroge-

neous random walk mobility model. This model is partic-

ularly interesting because it on purpose yields node behav-

ior that makes them statistically indistinguishable and it also

models clustering as a feature of the scenario, rather than

as the result of some assumed social behavior of the nodes.

Our work is similar in that we also characterize clustering

without modeling any social behavior of nodes. Yet, instead

of studying mobility we opt to derive the cluster size dis-

tribution as a consequence of mobility, with the benefit of

obtaining simple, analytically tractable expressions.

In terms of methodology, [?] uses a similar mathematical

approach for analyzing a network running a gossip protocol

and they prove the emergence of a spatial mean field describ-

ing the age of the latest update received by mobile nodes .

Finally, the phenomenon of a phase transition for asymp-

totically large networks has been studied already in [19], and

more recently been applied to asymptotically large mobile

networks (see [8] and references therein).
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5. CONCLUSION AND FUTURE WORK

Beginning with the observation that many real world mo-

bile networks are partially connected, we develop a model

for predicting the cluster size distribution in general systems

of mobile nodes. The simple model we propose is of interest

in particular because it yields a closed form result. The clus-

ter size distribution is a metric that provides rich information

as to the existence of partial paths, which enable faster for-

warding schemes as opposed to purely contact-based algo-

rithms. We prove that for large numbers of nodes, the pro-

posed model converges to a mean field behavior, yielding a

simple, closed form expression that translates the measur-

able merge and split behavior of clusters in a given scenario

to the stationary cluster size distribution.

We validate the predictions from our model against a syn-

thetic random walk mobility model and also with several

real-world mobility traces ranging from tens to thousands

of nodes in size. Motivated by the remarkable prediction

quality for those traces, we believe that this model could be

useful for studying several other questions.

• We analyze the transient behavior of the merge–split

process, yielding further insight into the temporal char-

acteristics of a scenario;

• we derive an upper bound on the fraction of nodes

that can communicate in a disconnected network with

a given delay bound;

• for an individual node, we derive the distribution of the

size of its cluster after the subsequent merge event.

We hope that this paper serves as the basis of many more re-

sults furthering the understanding of the complex clustering

phenomena of mobile networks.
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