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Abstract We characterize the closure with respect to Mosco or �-convergence of
the set of diffusion functionals in the one dimension case. As commonly accepted
we find this closure is a set of local Dirichlet forms. The difficulty is to identify
the right notion of locality. We compare different possible definitions. We give a
representation theorem for the elements of the considered closure.
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1 Introduction

We are interested in the characterization of the different limits which can be reached
by a sequence of diffusion functionals, i.e. of functionals of the kind

Fα(u) :=
∫

�

α(x)|∇u(x)|2 dx , (1.1)

where the positive diffusion coefficient α belongs, like its inverse, to L∞(�).
These functionals belong to the set of Dirichlet forms. As this set has been proved

[16] to be closed for the �-convergence, it is the natural framework of our study.
In dimension greater than two, well-known examples [14, 15, 18, 19] given by

homogenization theory show that the limit functional can be non isotropic: it is then
described by a diffusion matrix A(x) and the limit functional takes the form:∫

�

∇u(x) · A(x) · ∇u(x) dx . (1.2)
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It has been proved [17] that the limit of functionals Eq. 1.1 takes the form Eq. 1.2
when the sequence of diffusion coefficients (αn) and their inverses

(
α−1

n

)
are bounded

by a fixed real M. This is still true under weaker assumptions [8] but not in the
general case.

In dimension greater than three, examples have been given (cf. [2, 3, 8, 16]), [7, 10]
in which non local interactions arise at the limit. These interactions are represented
by a non-negative measure γ on � × � and the limit functional F contains the non-
local term or jumping term :

∫
�×�

(u(x) − u(y))2γ (dx dy). (1.3)

Other examples [17] have been given in which the limit functional contains a so-
called killing term of the form

∫
�

(u(x))2ν(dx), (1.4)

where ν is a non-negative measure on �. Let us notice immediately that we
only consider in this paper functionals which vanish on constant fields c, or in an
equivalent way, which are invariant when adding a constant :

∀c ∈ R, F(u + c) = F(u). (1.5)

We call “objective” the functionals which satisfy this property. Any limit of a
sequence of such functionals will inherit this property and we do not have to consider
killing terms.

Recently, it was proved [9, 11] that, in dimension greater than three, the closure of
the set of diffusion functionals coincides with the set of all objective Dirichlet forms.

In dimension two the characterization of the closure is still an open problem: very
recently some fundamental differences between the two dimension case and greater
dimension cases has been pointed out [6].

In the one dimension case it is a fact commonly accepted that any limit remains
local. The goal of this paper is to establish this fact rigorously. In the literature
there are many different ways for defining locality but we need to introduce a new
definition adapted to our purpose. At the end of this paper we discuss the relations
between the different notions of locality.

The paper is organized as follows: in Section 2 we describe the framework of
objective Dirichlet forms and of Mosco or �-convergence. We set precisely the
closure problem. We also give a simple example which shows the necessity of dealing
with non regular Dirichlet forms.

In Section 3 we propose a new definition of locality and we state our main results.
First we give a representation theorem for any local Dirichlet form. Then our main
result states that this locality property characterizes the closure of the set of diffusion
functionals. The proofs of these two theorems are rather long. There are splitted
in several parts. In Subsection 3.2 we establish some characterizing properties of
local Dirichlet forms. Subsection 3.3 is devoted to the proof of the representation
theorem : many steps are necessary, the longest one being the construction of the
underlying measure. Subsection 3.4 is devoted to the proof of the closure theorem.
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The major difficulty lies in the density result. The previous representation theorem
plays here a crucial role.

In Section 4 we discuss the different notions of locality which can be found in the
literature and we compare them by considering examples. These examples are based
on the existence of “essential partitions” of the interval (0, 1), that is, partitions such
that the intersection of any open interval with any piece of the partition has a non
vanishing Lebesgue measure. We show that all the considered notions of locality are
indeed different (and also different from the one we propose). We also prove that
none of them are closed for the Mosco-convergence.

2 Notations

As this paper is concerned only by the one dimension case, � denotes a bounded
open interval � := (0, 1) ⊂ R and L2(�) is the usual space of square integrable (class
of) functions with respect to the Lebesgue measure on �. Note that in this whole
paper, unless differently specified, the considered measure is the Lebesgue measure.
We recall that the support of u ∈ L2(�) is the smallest closed subset � of � such that
u(x) = 0 for almost every x ∈ � \ �.

Let us first, following [13] introduce the set of Dirichlet forms.

Definition 1 We call Dirichlet form any functional on L2(�) satisfying the following
property

i) F is non negative: it takes values in [0,+∞].
ii) F is quadratic: its domain D(F) := {u ∈ L2(�) : F(u) < +∞} is a linear sub-

space of L2(�) and there exists a positive semi-definite bi-linear form B such
that F(u) = B(u, u) for every u in D(F).

iii) F is lower semi-continuous: it satisfies, for any u ∈ L2(�) and any sequence (un)

converging to u :

lim inf
n→∞ F(un) ≥ F(u) . (2.1)

iv) F is Markovian: it satisfies for any u ∈ L2(�)

F(u) ≤ F(u), (2.2)

where u denotes the truncated function u := max(0, min(1, u)).

Remark 1 By proposition 11.9 of [12], Property (ii) is equivalent to the fact that, for
any u and v in L2(�) and any t ≥ 0,

F(u) ≥ 0, F(tu) ≤ t2 F(u), F(u + v) + F(u − v) ≤ 2F(u) + 2F(v). (2.3)

Remark 2 Note that Property (ii) ensures that the domain D(F) is non empty. In
the present definition of Dirichlet forms the domain D(F) is not necessarily dense
in L2(�). We emphasize that, unlike many authors (e.g. [5]), we do not assume
this density property. Indeed, as we will see later (see Example 1), this property is
not preserved when passing to the limit with respect to the considered convergence
of functionals.
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Definition 2 We call objective Dirichlet form any functional satisfying in addition to
properties (i)–(iv),

v) F is objective: it satisfies F(c) = 0 for any constant function c.

We denote Q the set of all objective Dirichlet forms.

Remark 3 Property (v) is equivalent to

∀u ∈ L2(�), ∀c ∈ R, F(u + c) = F(u) . (2.4)

To check this equivalence, it is enough to remark that, when F(u) is finite, the
quantity F(u + c) − F(u) − F(c) is linear in c and lower-bounded by −F(u).

Definition 3 We say that F ∈ Q is a diffusion form if there exists α ∈ L∞(�, R
+∗)

with α−1 ∈ L∞(�, R
+∗), such that

F(u) =
{∫

�
α(x)(u′(x))2 dx if u ∈ H1(�, R),

+∞ otherwise.
(2.5)

We denote D the set of all diffusion forms.

Definition 4 A sequence (Fn) in Q Mosco-converges to F if and only if it satisfies the
following two properties:

i) Lower-bound inequality : For any sequence (un) converging weakly to some u in
L2(�), the following lower-bound inequality holds :

lim inf
n→∞ Fn(un) ≥ F(u) . (2.6)

ii) Upper-bound inequality : For every u in L2(�), there exists an approximating
sequence (un) converging to u strongly in L2(�) such that

lim sup
n→∞

Fn(un) ≤ F(u). (2.7)

Definition 5 Let U be a subset of Q, we call Mosco-closure of U and denote U the set
of all possible Mosco-limits of all sequences in U.

Our goal is then to characterize D.

Remark 4 As the properties (i), (iii), (iv), (v) and also (ii) in the form Eq. 2.3 easily
pass to the limit, the set Q is closed for the Mosco-convergence: Q = Q. The set Q is
actually a good framework for our problem.

Remark 5 Mosco-convergence in the L2(�) topology is clearly a stronger notion
than �-convergence for the strong topology of L2(�) (refer to [12] for definition
and properties of �-convergence). Then the Mosco-closure of a set is contained in its
�-closure, i.e. in the set of all �-limits of all sequences in U. However, the previous
closure result remains true even if one uses the �-convergence in the strong topology
of L2(�) [16]. Therefore our results can be interpreted in terms of �-convergence for
the strong topology of L2(�).
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Though we will deal essentially with non regular Dirichlet forms, it is not useless
to introduce the set Qr of regular Dirichlet forms: let C0(�) (or C1

0(�)) denote the set
of continuous (resp. continuously differentiable) functions with compact support in
�. The form F is said to be regular if there exists a subset of D(F) ∩ C0(�) dense in

C0(�) for the uniform norm and in D(F) for the norm
√

‖u‖2
L2(�)

+ F(u). The Deny-

Beurling formula [4] states that any regular and objective Dirichlet form admits on
C1

0(�) the following representation (in which η is a non negative Radon measure on
� while γ is a symmetric non-negative Radon measure on � × � which does not
concentrate on the diagonal):

F(u) =
∫

�

(u′(x))2η(dx) +
∫

�×�

(u(x) − u(y))2γ (dx dy). (2.8)

One refers usually to the first term of this representation as the “diffusion term” or
“local term” and to the second one as the “jump term” or “non-local term”.

The set D of diffusion forms is clearly included in the set of regular forms. This is
not the case for the researched closure D. To illustrate this fact let us consider the
following simple example.

Example 1 Let us consider the sequence of diffusion functionals (Fn) in D
defined by

Fn(u) =
{∫

�
αn(x)(u′(x))2 dx if u ∈ H1(�, R),

+∞ otherwise.

where

αn(x) =
{

n−1 if x ∈ (
1
2 , 1

2 + 1
n

)
,

n otherwise.

We let the reader check that this sequence Mosco-converges to the functional F ∈ Q
defined by

F(u) =
{

(a − b)2 if u = a ∈ R, a.e. in
(
0, 1

2

)
, u = b ∈ R, a.e. in

(
1
2 , 1

)
,

+∞ otherwise.

In this example D(F) is a subspace of L2(�) of dimension 2. It is not a dense
subspace. The functional F which belongs to D is definitively not a regular
Dirichlet form.

3 Main Results

3.1 Statement of the Main Results

Recall that x ∈ � is called a Lebesgue point of u ∈ L1
	oc(�) if there is a real number,

let us call it ũ(x), such that

lim
ε→0

1

2ε

∫ x+ε

x−ε

|u(t) − ũ(x)|dt = 0. (3.1)
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The Lebesgue points of u are thus points where u does not oscillate too much, in an
average sense. As well known, almost every x ∈ � is a Lebesgue point of u.

Let us introduce a notion of locality which is suitable for characterizing the closure
of the set of diffusion forms.

Definition 6 For any F ∈ Q, any compact K ⊂ � and any open interval I ⊂ � we set

F(u, K) := inf{F(v); v = u a.e. on some open set O ⊃ K}, (3.2)

F(u, I) := sup{F(u, K); K compact, K ⊂ I}. (3.3)

We say that a form F ∈ Q is local if and only if, for any u ∈ L2(�), there exists a
Borel measure μu such that μu(I) = F(u, I), for any open interval I ⊂ � and such
that for any open set O ⊂ � and any Lebesgue point x of u,

μu(O) = μu(O \ {x})
The set of all such forms is denoted L.

The following theorem gives an integral representation for such local forms.

Theorem 1 Let F ∈ L. Then there exists a unique closed subset S of � and a unique
Radon measure μ on � \ S such that, for every u in the domain of F, the derivative
u′ of u in the sense of distributions in � \ S can be written u′ = ( du′

dμ

)
dμ with du′

dμ
in

L2
μ and

F(u) =
∫

�\S

(
du′

dμ

)2

dμ (3.4)

This representation theorem is a key point for the proof of our following main
result.

Theorem 2 The closure D of the set of diffusion functionals coincides with the set
of local Dirichlet forms L.

3.2 Characterization of Local Forms

The following proposition gives a criterion to decide whether a functional F belongs
to L or not. For each Lebesgue point x of u ∈ L1

	oc(�), define

u	
x := u1(0,x) + ũ(x)1(x,1) and ur

x := ũ(x)1(0,x) + u1(x,1). (3.5)

Proposition 1 A Dirichlet form F ∈ Q belongs to L if and only if

F(u) = F
(
u	

x

) + F
(
ur

x

)
, (3.6)

for every u ∈ L2(�) and every Lebesgue point x of u.

Proof Let F ∈ L, u ∈ L2(�) and x be a Lebesgue point of u. The functional v →
μv((s, t)) is quadratic and objective for every open interval (s, t) ⊂ � which implies
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that, if v = c a.e. in (s, t) for some constant c then μv((s, t)) = 0. Since x is also a
Lebesgue point for u	

x and ur
x, we have

F(u) = μu(�) = μu(� \ {x}) = μu((0, x)) + μu((x, 1))

= μu	
x
((0, x)) + μur

x
((x, 1)) = μu	

x
(� \ {x}) + μur

x
(� \ {x})

= μu	
x
(�) + μur

x
(�) = F

(
u	

x

) + F
(
ur

x

)

Conversely, assume that F ∈ Q is such that Eq. 3.6 holds. Let u ∈ L2(�) and x ∈ �

be a Lebesgue point of u. For each δ > 0, there are two Lebesgue points aδ ∈ (0, δ),
xδ ∈ (x − δ, x) of u such that

|ũ(aδ)| ≤ 1

δ

∫ δ

0
|u(t)|dt and |ũ(xδ) − ũ(x)| ≤ 1

δ

∫ x

x−δ

|u(t) − ũ(x)|dt.

This implies that there exist two sequences (an), (xn) of Lebesgue points of u such that
(an) decreases to 0, (xn) increases to x, limn an

(
ũ(an)

)2 = 0 and limn |ũ(xn)−ũ(x)|=0.
Then u	

xn
− u	

an
+ ũ(an) = u a.e. in (an, xn) and u	

xn
− u	

an
+ ũ(an) converges to u	

x with
respect to the L2(�) norm. Hence

F(u, (0, x)) ≥ lim inf
n

F
(
u	

xn
− u	

an
+ ũ(an)

) ≥ F
(
u	

x

) ≥ F (u, (0, x)) . (3.7)

In the same way, one can prove that F(u,�) = F(u) and F(u, (x, 1)) = F(ur
x). Then

for every Lebesgue points x < y of u,

F(u, (0, x)) = F
(
u	

x

)
, F(u, (x, y)) = F

(
u	

y − u	
x

)
, F(u, (y, 1)) = F

(
ur

y

)
. (3.8)

Define the subset Su of � by

Su := {x ∈ � : 0 ≤ s < x < t ≤ 1 =⇒ F(u, (s, t)) = +∞) } . (3.9)

Let I be any connected component of the open set � \ Su and x1 < ... < xn be n
Lebesgue points of u in I. By Eq. 3.8, we have

F(u, (x1, xn)) =
n−1∑
i=1

F(u, (xi, xi+1)) (3.10)

Then choose a Lebesgue point x of u in I and consider the non decreasing function
fI from I to R defined by fI(t) := F(u, (x, t)) if t ≥ x, fI(t) := −F(u, (t, x)) if t < x.
Thus fI(t) − fI(s) = F(u, (s, t)) for every Lebesgue points s < t of u.

Let now y ∈ I be any Lebesgue point of u and let us choose two sequences (sn)

and (tn) of Lebesgue points of u such that (sn) increases to y, (tn) decreases to y,
limn |ũ(sn) − ũ(y)| = 0 and limn |ũ(tn) − ũ(y)| = 0. Using Eq. 3.10 we obtain

F(u, (s1, y)) + F(u, (y, t1)) = F(u, (s1, sn)) + F(u, (sn, tn)) + F(u, (tn, t1)) < +∞.

Since lim infn F(u, (s1, sn)) ≥ F(u, (s1, y)), lim infn F(u, (tn, t1)) ≥ F(u, (y, t1)), we
get limn F(u, (sn, tn)) = 0. Then fI has no jump at any Lebesgue point of u. This
implies that there exists a unique Radon measure μI on I such that for every
Lebesgue points s < t ∈ I of u, μI((s, t)) = fI(t) − fI(s) = F(u, (s, t)). Then for every
s < t (Lebesgue points or not) such that [s, t] ⊂ I we have

μI((s, t)) = F(u, (s, t)). (3.11)
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Define the measure μu on the σ -field of Borel sets B ⊂ � by

μu(B) :=
{

+∞ if B ∩ Su �= ∅∑
I μI(B ∩ I) if B ∩ Su = ∅ (3.12)

where the sum is taken over all the connected components of � \ Su.
Now let us check that μu is suitable. If (s, t) ∩ Su �= ∅ then F(u, (s, t)) = +∞ which

implies μu((s, t)) = F(u, (s, t)). If (s, t) ∩ Su = ∅ then there exists a unique connected
component I of � \ Su such that (s, t) ⊂ I which implies (by Eq. 3.11) that μu((s, t)) =
F(u, (s, t)). Then for every (s, t) ⊂ �, we have

μu((s, t)) = F(u, (s, t)).

Let x ∈ � be a Lebesgue point of u. If x ∈ � \ Su then μu({x}) = μI({x}) = 0 where I
is the connected component of � \ Su containing x. If x ∈ Su then μu({x}) = +∞ and
μu(O) = +∞ for every open set O ⊂ � such that x ∈ O. Then F ∈ L. ��

The next proposition shows that minimization of any F in L can be achieved by
monotone functions. We do not know if this property characterizes the set L.

Proposition 2 If F ∈ L, u ∈ L2(�) and x < y are two Lebesgue points of u then
there exists v ∈ L2(�) satisfying (i) v = u a.e. in � \ [x, y], (ii) v is monotone in (x, y),
(iii) v ∈ [ũ(x), ũ(y)] a.e. in (x, y), (iv) F(v) ≤ F(u).

Proof Without loss of generality, let us assume that ũ(x) ≤ ũ(y). By induction,
we construct a sequence of subdivisions σ n: tn

0 = x < tn
1 < · · · < tn

2n = y with a step
size sn := supi |tn

i+1 − tn
i | tending to zero and an associated sequence of functions

(un) satisfying (a) un = u a.e. in � \ [x, y], (b) each tn
i is a Lebesgue point of un,

(c) ũ(tn
i ) ≤ un ≤ ũ

(
tn
i+1

)
in

(
tn
i , tn

i+1

)
, (d) F(un) ≤ F(u).

For n = 0 we consider the trivial subdivision x < y and the associated func-
tion u0 defined by u0 =: min

(
ũ(y), max

(
u, ũ(x)

))
in [x, y] and u0 := u in � \ [x, y].

Proposition 1 and Markov property ensure that F(u0) ≤ F(u).
Assume that (σ n, un) is suitable. We define σ n+1 by setting tn+1

2i := tn
i and by

choosing for tn+1
2i+1 a Lebesgue point of un in

(
2
3 tn

i + 1
3 tn

i+1,
1
3 tn

i + 2
3 tn

i+1

)
. For such a

couple (σ n, un) we denote

un+1 := u1�\[x,y] +
2n+1∑

1

ũn
(
tn+1
i

)
1(

tn+1
i−1 ,tn+1

i

)

un+1 := u1�\[x,y] +
2n+1∑

1

ũn
(
tn+1
i−1

)
1(

tn+1
i−1 ,tn+1

i

)

Then we define un+1 := min
(
un+1, max

(
u, un+1

))
.

Proposition 1 and Markov property ensure that F(un+1) ≤ F(un). On the other
hand, un and un are non decreasing in (x, y), un, un belongs to [ũ(x), ũ(y)] a.e. in
(x, y). Moreover

un ≤ un+1 ≤ un+1 ≤ un+1 ≤ un



Closure of the set of one dimensional diffusion functionals 343

a.e. in �, and

∥∥un+1 − un+1

∥∥
L1(�)

≤ 2

3

∥∥un − un

∥∥
L1(�)

.

Then un converges to some v ∈ L2(�) with v monotone in (x, z). Moreover v ∈
[ũ(x), ũ(y)] a.e. in (x, y), v = u a.e. in � \ [x, y] and F(v) ≤ lim infn F(un) ≤ F(u). ��

The characterization of L given by proposition 1 enables us to state the following
lower-semi-continuity result.

Proposition 3 Let F ∈ L and (un) be a sequence in L2(�) strongly converging to some
u. Then lim infn F(un, (s, t)) ≥ F(u, (s, t)) for every open interval (s, t) ⊂ �.

Proof Without loss of generality, assume that un converges to u a.e. in � and
lim infn F(un, (s, t)) = limn F(un, (s, t)) < +∞. Let s′ < t′ two points in (s, t). Choose
x ∈ (s, s′) and y ∈ (t′, t) such that x and y are Lebesgue points of u and of every un

and such that limn ũn(x) = ũ(x) and limn ũ(y) = ũ(y). We have

lim
n

‖
(
(un)

	

y − (un)
	

x

)
−

(
u	

y − u	
x

)
‖L2(�) = 0.

Hence

lim inf
n

F(un, (s, t)) ≥ lim inf
n

F
(
(un)

	

y − (un)
	

x

)
≥ F

(
u	

y − u	
x

)
≥ F(u, [s′, t′]).

The proposition is proved as the previous inequality holds for any [s′, t′] ⊂ (s, t). ��

3.3 Proof of the Representation Theorem

3.3.1 Construction of the Set S

Let us introduce the set S where, roughly speaking, the value of F(u) does not
provide any control on the variation of u.

Proposition 4 To any F ∈ Q, we associate the set

S := {x ∈ � : F(1(x,1)) = 0}. (3.13)

If F ∈ L, u ∈ L2(�), let μu be the measure associated to F and u by Definition 6 and
(s, t) an open interval of � such that μu(s, t) < +∞. Then

μu((s, t) ∩ S) = 0. (3.14)

Remark 6 Clearly � \ S is an open set. Indeed, if (xn) is a sequence in S converging
to some x ∈ �, we have limn ‖1(xn,1) − 1(x,1)‖L2(�) = 0. The lower semi-continuity of
F implies F

(
1(x,1)

) ≤ lim infn F
(
1(xn,1)

) ≤ 0. Thus x belongs to S. Proposition 4 shows
that energy never concentrates on S.

Proof of Proposition 4 Let x ∈ S. For every α, β ∈ R we have

F(α1(0,x) + β1(x,1)) = (β − α)2 F
(
1(x,1)

) = 0. (3.15)
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Let x ∈ S ∩ (s, t). Let (sn) and (tn) be two sequences in (s, t) of Lebesgue points of u
such that x − 1

n < sn < x < tn < x + 1
n and

|ũ(sn)| ≤ n
∫ x

x− 1
n

|u(t)|dt and |ũ(tn)| ≤ n
∫ x+ 1

n

x
|u(t)|dt

Jensen’s inequality implies that limn (x − sn)|ũ(sn)|2 = 0 = limn (tn − x)|ũ(tn)|2.
Define un := u1(0,sn) + ũ(sn)1(sn,x) + ũ(tn)1(x,tn) + u1(tn,b).

Since limn ||u − un||L2(�) = 0 we deduce from Proposition 3 that

μu
(
(s, t) \ {x}) = lim

n
μu((s, sn)) + μu((tn, t))

= lim
n

F(u, (s, sn)) + F(u, (tn, t))

= lim
n

F(un, (s, t))

≥ F(u, (s, t)) ≥ μu((s, t))

Since μu((s, t)) < +∞ we conclude that

∀x ∈ S ∩ (s, t) μu({x}) = 0. (3.16)

Let Sσ be the set of these x ∈ S such that S∩] x − ε, x + ε [= {x} for some ε > 0. Since
Sσ is at most countable, we deduce from Eq. 3.16 that

μu((s, t) ∩ Sσ ) = 0. (3.17)

Let h > 0 and consider a subdivision s = t0 < ... < tn+1 = t of (s, t) such that |ti −
ti−1| < h and t1, ..., tn are Lebesgue points of u. Denote Ii :=] ti, ti+1 [ and let J be
the set of these i ∈ {1, ..., n − 1} such that Ii ∩ (

S \ Sσ

) �= ∅. If i ∈ J then Ii contains
at least two points s1

i < s2
i of S. Define vh ∈ L2(�) by

vh(x) :=

⎧⎪⎨
⎪⎩

ũ(ti) if x ∈ (
ti, s1

i

)
,

ci if x ∈ [
s1

i , s2
i

]
,

ũ(ti+1) if x ∈ (
s2

i , ti+1
)
,

(3.18)

if x ∈ Ii for some i ∈ J, vh(x) := u(x) otherwise. Here ci is a real tuned in such a way
that

∫
Ii

u(t)dt = ∫
Ii

vh(t)dt.
As h tends to zero, the sequence (vh) converges to u in L2(�) then, by

Proposition 3, lim inf h↓0 F(vh, (s, t)) ≥ F(u, (s, t)). On the other hand, using Eq. 3.15
we have, for any i ∈ J, F(vh, Ii) = 0. As, for any i /∈ J, F(vh, Ii) = F(u, Ii), we have

μu
(
(s, t) ∩ (

S \ Sσ

)) ≤ F(u, I0) + F(u, In) +
∑
i∈J

F(u, Ii)

≤ F(u, (s, t)) − F(vh, (s, t)) + F(u, I0) + F(u, In).

Passing to the limsup as h tends to zero, we get

μu
(
(s, t) ∩ (

S \ Sσ

)) ≤ 0. (3.19)

Proof of Proposition 4 is completed recalling Eq. 3.17. ��
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3.3.2 Construction of the Measure μ

Proposition 5 Let s ≤ t in �. Let A(s, t) be the set of these u ∈ L2(�) such that u ≤ 0
a.e. in � ∩ (0, s) and u ≥ 1 a.e. in � ∩ (t, 1). For each F in Q, define

m(s, t) := inf{F(u) : u ∈ A(s, t)}. (3.20)

If F ∈ L then there exists a unique Radon measure μ on � \ S such that

μ([s, t]) = 1

m(s, t)

for every closed interval [s, t] ⊂ � \ S.

We need to state several properties for m(s, t) before proving Proposition 5.

Lemma 1 Let F ∈ L. Then

i) S := {x ∈ � : ∀s, t ∈ � (s < x < t =⇒ m(s, t) = 0) }.
ii) Let x ∈ �, for every sequences (sn) in (0, x) and (tn) in (x, 1) converging to x,

lim
n

m(sn, tn) = m(x, x).

iii) If [s, t] ⊂ � \ S then m(s, t) > 0.

Proof Point (i) is obvious. For each integer n, owing to the properties of Dirichlet
forms, there exists a minimizer un ∈ A(sn, tn) such that un = 0 a.e. in (0, sn), un = 1
a.e. in (tn, 1). and F(un) = m(sn, tn). Since limn ‖un − 1(x,1)‖L2(�) = 0 we have

m(x, x) ≥ lim supn m(sn, tn) ≥ lim infn m(sn, tn)

≥ lim infn F(un) ≥ F(1(x,1)) ≥ m(x, x).

Assume that [s, t] ⊂ � \ S and m(s, t) = 0. By Proposition 2 there is a non decreasing
u ∈ A(s, t) such that F(u) = 0. Owing to (i), for each x ∈ [ s, t ] there exist Lebesgue
points of u such that s′ < x < t′ et m(s′, t′) > 0. Since F(u) ≥ (

ũ(t′) − ũ(s′)
)2

m(s′, t′) ,
ũ(t′) = ũ(s′). Since u is non decreasing, u is constant in a neighborhood of [s, t] which
contradicts u ∈ A(s, t). ��

Lemma 2 Let F ∈L and I be a connected component of �\S. If s≤s′ < t′ ≤ t∈ I then

1

m(s, t)
≥ 1

m(s, s′)
+ 1

m(t′, t)
. (3.21)

Proof There exist u ∈ A(s, s′) and v ∈ A(t, t′) satisfying : u = 0 a.e. in (0, s), v = 0
a.e. in (0, t′), u = 1 a.e. in (s′, 1), v = 1 a.e. in (t, 1), F(u) = m(s, s′) and F(v) = m(t′, t).
Any x ∈ (s′, t′) is a Lebesgue point of the function w ∈ A(s, t) defined by

w :=
(

F(v)

F(u) + F(v)

)
u+

(
F(u)

F(u) + F(v)

)
v.
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Then m(s, t) ≤ F(w) and by Proposition 1,

F(w) = F
(
w	

x

) + F
(
wr

x

) = F(u)F(v)

F(u) + F(v)
= m(s, s′)m(t′, t)

m(s, s′) + m(t′, t)
,

which leads to Eq. 3.21. ��

Lemma 3 If F ∈ L then the set {x ∈ � \ S : m(x, x) < +∞} is at most countable.

Proof Let I be a connected component of � \ S, n be a positive integer and s < t in
I. If x1, .., xp are p elements of the set {x ∈ [s, t] : m(x, x) ≤ n} then Lemma 2 give us
the estimate

p ≤
p∑

i=1

n
m(xi, xi)

≤ n
m(s, t)

.

Thus {x ∈ [s, t] : m(x, x) ≤ n} is a finite set. ��

Lemma 4 Let F ∈ L and I be a connected component of � \ S. Then

i) for every s < t in I, there exists a Lebesgue measurable set I∗
(s,t) ⊂ (s, t) such that

|(s, t) \ I∗
(s,t)| = 0, m(x, x) = +∞ for every x ∈ I∗

(s,t) and

1

m(s, t)
= 1

m(s, x1)
+ 1

m(xn, t)
+

n−1∑
i=1

1

m(xi, xi+1)
(3.22)

for every x1 < ... < xn belonging to I∗
(s,t).

ii) there exists a Lebesgue measurable set I∗ ⊂ I such that |I \ I∗| = 0, m(x, x) =
+∞ for every x ∈ I∗ and

1

m(x1, xn)
=

n−1∑
i=1

1

m(xi, xi+1)
(3.23)

for every x1 < ... < xn belonging to I∗.

Proof Let s < t in I and w ∈ A(s, t) be such that F(w) = m(s, t). Define

I∗
(s,t) := {x ∈ (s, t) : m(x, x) = +∞, x is a Lebesgue point of w}.

By Lemma 3 |(s, t) \ I∗
(s,t)| = 0. Let x1, ..., xn ∈ I∗

(s,t) be such that x1 < ... < xn. Denote
x0 = s, xn+1 := t, mi := m(xi−1, xi) if 1 ≤ i ≤ n + 1, α1 := w̃(x1), αn+1 := 1 − w̃(xn)

and αi := w̃(xi) − w̃(xi−1), if 2 ≤ i ≤ n. Using Proposition 1, identity
∑n+1

i=1 αi = 1 and
Cauchy-Schwarz inequality, we obtain

F(w) = F
(
w	

x1

) + F
(
wr

xn

) +
n∑

i=2

F
(
w	

xi
− w	

xi−1

) ≥
n+1∑
i=1

(
αi

)2
mi ≥

(
n+1∑
i=1

1

mi

)−1

,

which leads to

1

m(s, t)
≤

n+1∑
i=1

1

m(xi−1, xi)
. (3.24)
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For each i ∈ {1, ..., n}, there is wi ∈ A(xi−1, xi) such that F(wi) = m(xi−1, xi). Let(
x(p)

i

)
be a sequence of Lebesgue points of wi increasing to xi. By Proposition 1

we have

m(xi−1, xi) = F
(
(wi)

	

x(p)

i

)
+ F

(
(wi)

r
x(p)

i

)

≥ (
w̃i

(
x(p)

i

))2
m

(
xi−1, x(p)

i

) + (
1 − w̃i

(
x(p)

i

))2
m

(
x(p)

i , xi
)

≥ m
(
xi−1, x(p)

i

)
m

(
x(p)

i , xi
)

m
(
xi−1, x(p)

i

) + m
(
x(p)

i , xi
) .

Using Lemma 2 we obtain

n+1∑
i=1

1

m(xi−1, xi)
= 1

m(xn, xn+1)
+

n∑
i=1

1

m(xi−1, xi)

≤ 1

m(xn, xn+1)
+

n∑
i=1

1

m
(
xi−1, x(p)

i

) +
n∑

i=1

1

m
(
x(p)

i , xi
)

≤ 1

m(s, t)
+

n∑
i=1

1

m
(
x(p)

i , xi
)

Using Lemma 1 and passing to the limit as p tends to ∞ in the above inequality,
we obtain

1

m(s, t)
≥

n+1∑
i=1

1

m(xi−1, xi)
(3.25)

which together with Eq. 3.24 leads to Eq. 3.22.
Since we also have

1

m(s, x1)
+ 1

m(x1, xn)
+ 1

m(xn, t)
= 1

m(s, t)

we obtain Eq. 3.23. The proof of Lemma 4 is completed by using sequences (sq), (tq)
such that (sq) decreases, (tq) increases, I :=⋃

q(sq, tq) and defining I∗ :=⋂
q I∗

(sq,tq).��

Proof of Proposition 5 Let I be any connected component of the open set � \ S and
I∗ be a Lebesgue measurable set as in point (ii) of Lemma 4. Choose x ∈ I∗ and
define fI from I to R by

fI(t) :=

⎧⎪⎨
⎪⎩

m(x, t)−1 if t > x,

0 if t = x,

−m(t, x)−1 if t < x.

Clearly fI is non decreasing, then there exists a unique Radon measure μI on I such
that fI(t+) − fI(s−) = μI([s, t]) for every s < t in I. By Lemma 1, fI has no jump
at any point of I∗ then Lemma 4 implies that μI([s, t]) = m(s, t)−1 if s, t in I∗. Let
x ∈ I and choose two sequences (sn) and (tn) in I∗ such that (sn) increases to x, (tn)
decreases to x. By Lemma 1

μI({x}) = lim
n

μI([sn, tn]) = lim
n

m(sn, tn)−1 = m(x, x)−1.
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Let s < t in I and I∗
(s,t) be a Lebesgue measurable set as in part (i) of Lemma 4. Choose

two sequences (sn) and (tn) in I∗
(s,t) ∩ I∗ such that (sn) decreases to s, (tn) increases to

t and sn < tn. We have

m(s, t)−1 = lim
n

m(s, sn)
−1 + m(sn, tn)−1 + m(tn, t)−1

= lim
n

m(s, sn)
−1 + μI([sn, tn]) + m(tn, t)−1

= m(s, s)−1 + μI((s, t)) + m(t, t)−1

= μI({s}) + μI((s, t)) + μI({t})
= μI([s, t])

In order to complete the proof of Proposition 5, we define the measure μ on the
σ -field of Borel sets B ⊂ � \ S by

μ(B) :=
∑

I

μI(B ∩ I).

where the sum is taken over all the connected components of � \ S. ��

3.3.3 Proof of Theorem 1

Lemma 5 Let F ∈ L, u ∈ L2(�) and (s, t) be an open interval of �. If F(u, (s, t)) <

+∞ then u ∈ BV	oc
(
(s, t) \ S

)
and there exists f ∈ L2

μ((s, t) \ S) such that

∫
�\S

u(x)ϕ′(x)dx = −
∫

�\S
ϕ f dμ

for every ϕ ∈ C∞
c ((s, t) \ S).

Proof Let I be a connected component of � \ S and h > 0 be such that [x − h, x +
h] ⊂ (s, t) \ S for every x belonging to the compact support of ϕ. There are x0 < x1 <

... < xn+1 in I ∩ (s, t) such that h = xi+1 − xi and (x0, xn+1) ⊃ I ∩ supportϕ. Denoting
Ui = h−1

∫ xi

xi−1
u(t)dt we have

∫
I
ϕ′(x)u(x)dx = ε(h) +

n+1∑
i=1

(
ϕ(xi) − ϕ(xi−1)

)
Ui

= ε(h) −
∑

i even

ϕ(xi)(Ui+1 − Ui
) −

∑
i odd

ϕ(xi)(Ui+1 − Ui
)

(3.26)

For each even i ∈ [1, n] choose ti ∈ (xi−1, xi) and ti+1 ∈ (xi, xi+1) which are Lebesgue
points of u, μ({ti}) = μ({ti+1}) = 0 and

(
ũ(ti+1) − ũ(ti)

)2 ≥ (
Ui+1 − Ui

)2
. For each odd

i ∈ [1, n] choose si ∈ (xi−1, xi) and si+1 ∈ (xi, xi+1) which are Lebesgue points of u,
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μ({si}) = μ({si+1}) = 0 and
(
ũ(si+1) − ũ(si)

)2 ≥ (
Ui+1 − Ui

)2. Using Cauchy-Schwarz
inequality we obtain

( ∑
i even

ϕ(xi)(Ui+1 − Ui)

)2

≤
∑

i even

ϕ(xi)
2μ

(] ti, ti+1 [)

×
∑

i even

(
ũ(ti+1) − ũ(ti)

)2
m(ti, ti+1).

then ( ∑
i even

ϕ(xi)(Ui+1 − Ui)

)2

≤ F(u, (s, t))
∑

i even

ϕ(xi)
2μ

(] ti, ti+1 [).

Similar estimate holds for odd i. Then passing to the limit in Eq. 3.26 as h ↓ 0
leads to ∣∣∣∣

∫
I
ϕ′(x)u(x)dx

∣∣∣∣
2

≤ 2F(u, (s, t)) ‖ϕ‖2
L2

μ(I),

which is enough to complete the proof. ��

Lemma 6 Let F ∈ L, u ∈ L2(�) and (s, t) be an open interval of �. If F(u, (s, t)) <

+∞ then

F(u, (s, t)) ≥
∫

(s,t)\S

(
du′

dμ

)2

dμ

where du′
dμ

denotes the derivative of u′ in the sense of Radon-Nikodym in (s, t) \ S.

Proof By Lemma 5, u ∈ BV	oc((s, t) \ S). Let [x, y] ⊂ (s, t) \ S such that μ({x}) =
μ({y}) = 0. This implies that x and y are Lebesgue points of u. Then we have

ũ(y) − ũ(x) =
∫

(x,y)

du′

dμ
dμ.

Let I be a connected component of � \ S, ϕ ∈ C∞
c ((s, t) \ S) and x0 < x1 < ... <

xn such that I ∩ support(ϕ) ⊂ [x0, xn] ⊂ I ∩ (s, t), and μ({xi}) = 0. Denoting h =
maxi{xi − xi−1} and choosing points si ∈ (xi−1, xi) we have

∫
I
ϕ

du′

dμ
dμ =

n∑
i=1

∫
(xi−1,xi)

ϕ
du′

dμ
dμ = ε(h) +

n∑
i=1

ϕ(si)
(
ũ(xi) − ũ(xi−1)

)
.

Using Cauchy-Schwarz inequality we obtain
(∫

I
ϕ

du′

dμ
dμ + ε(h)

)2

≤
n∑

i=1

ϕ(si)
2μ

([ xi−1, xi ]
)

×
n∑

i=1

(
ũ(xi) − ũ(xi−1)

)2
m(xi−1, xi)

≤ F(u, (s, t))
n∑

i=1

(ϕ(si))
2μ

([ xi−1, xi ]
)
.
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Then passing to the limit as h tends to 0 leads to
∣∣∣∣
∫

I
ϕ

du′

dμ
dμ

∣∣∣∣
2

≤ F(u, (s, t))‖ϕ‖2
L2

μ(I).

which is enough to complete the proof. ��

Lemma 7 Let F ∈ L, u ∈ L2(�) and (s, t) be an open interval of �. If F(u, (s, t)) <

+∞ then

F(u, (s, t)) ≤
∫

(s,t)\S

(
du′

dμ

)2

dμ

where du′
dμ

denotes the derivative of u′ in the sense of Radon-Nikodym in (s, t) \ S.

Proof Let I be a connected component of � \ S and [x, y] ∈ I ∩ (s, t) with μ({x}) =
μ({y}) = 0. Let x := x0 < ... < xn := y in I ∩ (s, t) be such that μ({xi}) = 0 and
denote h := max{xi − xi−1}. By Lemma 5, xi is a Lebesgue point of u. By Proposition
2, there exists ui such that (i) ui is monotone in (0, 1), (ii) ui = ũ(xi−1) a.e. in (0, xi−1),
(iii) ui = ũ(xi) a.e. in (xi, 1) and (iv) F(ui) = (

ũ(xi) − ũ(xi−1)
)2

m(xi−1, xi). By Jensen
inequality we have

F(ui) ≤
∫

(xi−1,xi)

(
du′

dμ

)2

dμ. (3.27)

Let uh ∈ L2(�) be such that uh := u a.e. in � \ [x0, xn] and uh := ui a.e in
(xi−1, xi). Since u ∈ BV[x, y] we have limh↓0 ‖u − uh‖L2(�) = 0. Then we deduce from
Proposition 3 and Eq. 3.27 that

μu((x, y)) = F(u, (x, y)) ≤ lim inf
h↓0

F(uh, (x, y))

≤ lim inf
h↓0

n∑
i=1

F(uh, [xi−1, xi])

≤ lim inf
h↓0

n∑
i=1

F(ui, [xi−1, xi])

≤ lim inf
h↓0

n∑
i=1

F(ui)

≤
∫

(x,y)

(
du′

dμ

)2

dμ

Using Proposition 4, the above inequality and Lemma 6 we conclude that

F(u, (s, t)) ≤ μu((s, t)) ≤ μu((s, t) \ S) ≤
∫

(s,t)\S

(
du′

dμ

)2

dμ ≤ F(u, (s, t)). ��

Proof of existence of (S, μ) in Theorem 1 is complete. Uniqueness is ensured by
the fact that, when F is a functional represented as in Eq. 3.4, then S has to satisfy
Eq. 3.13 and μ has to satisfy the condition of Proposition 5.
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3.4 Proof of the Closure Result

3.4.1 Locality is a Closed Notion

Proposition 6 The set L is closed.

Proof Let (Fn) be a sequence in L and F ∈ Q. Assume that, for any sequence
(un) converging strongly in L2(�) to some u, lim infn Fn(un) ≥ F(u). Assume also
that for any u ∈ L2(�) there exists (un) converging strongly to u and such that
lim supn Fn(un) ≤ F(u).

Let u ∈ L2(�) and x be a Lebesgue point of u. There exists a sequence (un)

in L2(�) such that limn ‖u − un‖L2(�) = 0, limn Fn(un) = F(u) and such that (un)

converges to u almost everywhere in �. Choose two sequences (sp) and (tp) in �,
such that (sp) increases to x, (tp) decreases to x, sp and tp are Lebesgue points of
u and of all un and such that limn ũn(sp) = ũ(sp), limn ũn(tp) = ũ(tp) and limp ũ(sp) =
limp ũ(tp) = ũ(x). As Fn belongs to L, we have by Proposition 1

Fn(un) = Fn

(
(un)

	

sp

)
+ Fn

(
(un)

	

tp
− (un)

	

sp

)
+ Fn

(
(un)

r
tp

)
.

The choice we made for the sequences (sp) and (tp) ensures that (un)
	

sp
converges

strongly to (u)
	

sp
, as n tends to infinity and that (u)

	

sp
converges strongly to (u)

	

x, as p

tends to infinity. The same holds for (un)
r
tp

. Then

F(u) ≥ lim inf
p

(
lim inf

n
Fn

(
(un)

	

sp

)
+ lim inf

n
Fn

(
(un)

r
tp

))

≥ lim inf
p

F
(
u	

sp

) + lim inf
p

F
(
ur

tp

)

≥ F
(
u	

x

) + F
(
ur

x

)
.

On the other hand, there exist (vn) and (wn) such that limn ‖u	
x − vn‖L2(�) = 0,

limn Fn(vn) = F
(
u	

x

)
and (vn) converges to u	

x almost everywhere in �, limn ‖ur
x −

wn‖L2(�) =0, limn Fn(wn)= F(ur
x) and (wn) converges to ur

x almost everywhere in �.
Choose two sequences (sp) and (tp) such that (sp) increases to x, (tp) decreases to

x, all sp and tp are Lebesgue points of u, vn and wn, limn ṽn(sp) = ũ(sp), limn w̃n(tp) =
ũ(tp) and limp ũ(sp) = limp ũ(tp) = ũ(x). We have

F
(
u	

x

) + F
(
ur

x

) = lim
n

(
Fn(vn) + Fn(wn)

)

≥ lim inf
p

(
lim inf

n

(
Fn

(
(vn)

	

sp

))
+ Fn

(
(wn)

r
tp

))

≥ lim inf
p

(
lim inf

n
Fn

(
(vn)

	

sp
+ (wn)

r
tp

))

≥ lim inf
p

F
(
u	

sp
+ ur

tp

)

≥ F
(
u	

x + ur
x

)
≥ F(u).

Proposition 1 then implies that F ∈ L. ��
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Remark 7 In fact we have proved a stronger result, namely: the set L is closed for
the �-convergence in the strong topology of L2(�).

3.4.2 Proof of the Density Result

Let F be a diffusion form as defined in Eq. 2.5. It is easy to check that u ∈ H1(�)

if and only if u	
x ∈ H1(�) and ur

x ∈ H1(�). We then deduce from Proposition 1 that
F ∈ L. In this particular case, the set S and the measure μ which, owing to Theorem
1, represent F are respectively the empty set and μ(dx) = α−1(x) dx. Hence D is a
subset of L.

Proposition 7 Let F ∈ L. Then there exists a sequence of diffusion forms (Fn) which
Mosco-converges to F.

Proof Let (S, μ) associated to F by Theorem 1. For any integer n and any i ∈
{1, . . . , n}, let us denote In

i the interval In
i := ( i−1

n , i
n ), sn

i := 2i−1
2n its center, hn

i the
function defined on (0, 1) by

hn
i (x) :=

⎧⎪⎨
⎪⎩

n(x − sn
i−1) if sn

i−1 < x ≤ sn
i ,

n(sn
i+1 − x) if sn

i < x < sn
i+1,

0 otherwise,

and αn
i the quantity defined by

1

αn
i

:=
{

n−1 + n
∫
�\S hn

i dμ if [ i−2
n , i+1

n ] ⊂ � \ S,

n3 otherwise.

Denoting αn the piecewise constant function αn := ∑n
i=1 αn

i 1In
i
, we define Fn ∈ D by

Fn(u) :=
{∫

�

(
u′(x)

)2
αn(x)dx if u ∈ H1(�),

+∞ otherwise.

Now let us prove that the sequence (Fn) Mosco converges to F. For any ϕ ∈
C∞

c (� \ S) and for n large enough, we have
∫

�

ϕ(x)

αn(x)
dx = 1

n

∫
�\S

ϕ(x)dx +
∑

i

∫
�

(
n

∫
In

i

ϕ(t)dt
)

hn
i (x)μ(dx).

Hence

lim
n

∫
�

ϕ(x)

αn(x)
dx =

∫
�\S

ϕ(x)μ(dx). (3.28)

Let (un) be a sequence converging to u with respect to the weak topology of L2(�)

and such that lim infn Fn(un) = M < +∞. By Cauchy-Schwarz inequality, we have,
for any ϕ ∈ C∞

c (� \ S),

∣∣∣∣
∫

�

un(x)ϕ′(x)dx

∣∣∣∣
2

≤ Fn(un)

∫
�

(
ϕ(x)

)2

αn(x)
dx
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Then, passing to the limit as n tends to infinity and using Eq. 3.28, we obtain
∣∣∣∣
∫

�

u(x)ϕ′(x)dx

∣∣∣∣
2

≤ M
∫

�\S

(
ϕ(x)

)2
μ(dx).

By Theorem 1, we deduce

F(u) =
∫

�\S

(
du′

dμ

)2

dμ ≤ M,

which proves the lower-bound inequality.
Let u ∈ L2(�) be such that F(u) < +∞. For any i ∈ {1, . . . , n}, let us denote mn

i :=
n

∫ sn
i+1

sn
i

u(t) dt. We have, when [ i−2
n , i+1

n ],

mn
i − mn

i−1 = n
∫ sn

i

sn
i−1

(
u

(
t + 1

n

)
− u(t)

)
dt = n

∫ sn
i

sn
i−1

(∫ t+ 1
n

t

du′

dμ
dμ

)
dt

=
∫ sn

i+1

sn
i−1

hn
i

du′

dμ
dμ =

∫
�\S

hn
i

du′

dμ
dμ.

Using Cauchy-Schwarz inequality, we obtain

(
mn

i − mn
i−1

)2 ≤
(∫

�

hn
i dμ

)(∫
�

hn
i

(
du′

dμ

)2

dμ

)
. (3.29)

Let un be the continuous function on [0, 1] which is affine on each In
i and satisfies

un(0) = mn
1 , un(1) = mn

n−1 and un
( i

n

) = mn
i for 1 ≤ i ≤ n − 1. We have limn ‖u −

un‖L2(�) = 0. Using Eq. 3.29, Theorem 1 and Jensen inequality, we obtain

Fn(un) =
n−1∑
i=2

n αn(si)
(
mn

i − mn
i−1

)2

≤
n−1∑
i=2

∫
�\S

hn
i

(
du′

dμ

)2

dμ + 1

n2

n−1∑
i=2

(mn
i − mn

i−1)
2

≤ F(u) + 4

n

∫
�

(
u(x)

)2
dx

The upper-bound inequality is obtained by passing to the limit. ��

Proof of Theorem 2 is concluded by collecting the closure result of Proposition 7
and the density result of Proposition 7.

4 About Locality

Owing to Deny-Beurling formula, it is quite clear what a local regular Dirichlet form
is: in the representation formula Eq. 2.8 the measure γ should vanish.

In this section we discuss the extension of this notion of locality to non regular
forms. Different criterions have been proposed in the literature which all coincide
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when applied to regular forms. We compare these different notions and we prove
that none of them are preserved when passing to the limit with respect to Mosco or
�-convergence.

Definition 7

i) We denote V the set of all forms F ∈ Q which satisfy: for any ϕ and ψ in C∞
o (R)

with disjoint supports and any u ∈ D(F),

F(ϕ ◦ u + ψ ◦ u) = F(ϕ ◦ u) + F(ψ ◦ u). (4.1)

ii) We denote S the set of all forms F ∈ Q which satisfy: for any u and v in L2(�)

with disjoint supports,

F(u + v) = F(u) + F(v). (4.2)

iii) We denote M the set of all forms F ∈ Q which satisfy: there exists a mapping
μ which associates to any u ∈ L2(�) a Borel measure μu such that

F(u) = μu(�) and μu(B) = μv(B) (4.3)

whenever u and v coincide on an open set O containing the Borel set B.
iv) We denote R the set of all forms F ∈ Q which satisfy: there exists a mapping μ

which associates to any u ∈ L2(�) a Borel measure μu such that, for every open
interval I ⊂ �,

μu(I) = F(u, I) (4.4)

where F(u, I) is defined by Eqs. 3.2–3.3.

Definition (i) can be found in [5] while definition (ii) can be found in [1] or [13].
There are closely related : indeed any u defines a new quadratic and Markovian
form ϕ �→ F(ϕ ◦ u). Definition (i) means that these new forms satisfy definition (ii).
Roughly speaking, definition (ii) forbids interactions between distant zones: indeed
as the supports of u and v are closed, assuming that there are disjoint means that
their distance is positive.

Definitions (iii) or (iv) like our Definition 6 associate to any function u ∈ L2(�)

an energy density (a measure) μu. Note that this measure is not necessarily finite on
compact sets. Definition (iii) simply asks that the measure μu depends in a “local
way” on u. The mapping μ corresponds to the functional introduced a priori in
definition 15.21 of [12] and the property, μu(B) = μv(B) whenever u and v coincide
on an open set O ⊂ B, is precisely the characterization of locality given in [12].
Definition (iv) is more precise: it asks μu to coincide on every open interval I to
the relaxed energy on I. In our definition 6 we ask, in addition, that μu does not
concentrate on the Lebesgue points of u.

The relations between these different notions of locality are made precise by the
following proposition.

Proposition 8

i) We have the following strict inclusions

D � L � R � M � S and D � V � S.

ii) R, M, V and S are not closed with respect to the Mosco convergence.
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All inclusions in point (i) are almost direct consequences of definitions. To check
that these inclusions are strict and to prove (ii) it is enough to consider suitable
examples.

In Example 1 we exhibited a functional F which is the limit of a sequence of
functionals in D. It belongs to L = D. We let the reader check that it does not belong
to V . This example proves that L is not included in V and that V is not closed.

The theory, established in the case of functionals G with dense domain [5], states
the existence of a measure σ u satisfying G(ϕ ◦ u) = ∫

R
ϕ′(t))2 σ u(dt) for every ϕ ∈

C1
c(R). Here it cannot be applied to F (the domain of F is not dense in L2(�)!).

Moreover, one can directly check that F cannot be represented in this way.
Proving the other assertions needs more sophisticated examples. To construct

these examples we need the following lemma

Lemma 8 Let n ∈ N and let {αi}1≤i≤n be a family of positive reals with
∑n

i=1 αi = 1.
Then there exists a partition {Ai}1≤i≤n of [0, 1] made by Borel sets Ai satisfying |Ai| =
αi and |Ai ∩ I| > 0 for every i and every non empty open interval I ⊂ [0, 1].

For lack of space, we skip the proof of this lemma which is obtained by an in-
duction argument. When n = 2 a construction analogous to the classical construction
of Cantor set is used. In the following we refer to partitions satisfying Lemma 8 as
essential partitions.

Example 2 Let A ⊂ � and GA be the functional defined by

GA(u) =
{

0 if u = a1A + b1�\A for some a, b ∈ R,

+∞ otherwise.

We let the reader check that, when {A, � \ A} is an essential partition, the functional
GA belongs to R \ L.

Example 3 Let {An, � \ An} be a sequence of essential partitions satisfying |An| =
(n + 1)−1. Let us define

Bn := 1

3
A1 ∪

(
1

3
+ 1

3
An

)
∪

(
2

3
+ 1

3
A1

)
(4.5)

and

B∞ := 1

3
A1 ∪

(
2

3
+ 1

3
A1

)
(4.6)

Note that {Bn, � \ Bn} is still an essential partition while it is not the case for
{B∞, � \ B∞}. We let the reader check that i) the sequence of functionals GBn Mosco
converges to GB∞ ii) the limit functional GB∞ does not belong to S . This example
proves that neither R, nor M, nor S are closed.

Example 4 Let {A, � \ A} be an essential partition. Define F by

F(u) :=
∫

�

(
(v′(x))2 + (w′(x))2 + (v(x) − w(x))2

)
dx, (4.7)
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if u = v1A + w1�\A a.e. in �, for some v, w in H1(�) and F(u) := +∞ otherwise.
We let the reader check that F belongs to M \ R.

Example 5 Let us consider an essential partition {A1, A2, A3} and the functional F
defined by

F(u) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∫
(0, 1

3 )×( 2
3 ,1)

(u2(x) − u2(y))2 dxdy, if u = u11A1 + u21A2 + u31A3 ,

u1 ∈ R, u2 ∈ L2(�), u3 ∈ R,

and (u1 ≤ u2 ≤ u3 or u3 ≤ u2 ≤ u1),

+∞, otherwise.

We let the reader check that F belongs to S \ M.
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