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ON THE DISTRIBUTION OF MULTIPLES OF REAL NUMBERS

TANGUY RIVOAL

1. Introduction

We note the integer part of a real number α by bαc, its fractional part by {α} and the
nearest integer to α by bαe, with the convention that it is bαc if α ∈ Z+ 1

2
. The distance

of α to Z is ||α|| :=
∣∣α− bαe

∣∣, whose value does not depend of the above convention.
The two main objects studied in this paper are the following sequences of continuous

functions of α:

Fn(α) :=
n∑

k=1

∣∣∣∣kα− bknαe
n

∣∣∣∣ =
1

n

n∑

k=1

||nkα||,

whose value is approximately 1
4

(and understanding the word “approximately” is the aim
of the present work), and its weighted average

Gs,N(α) :=
N∑

n=1

1

ns
Fn(α).

A priori, α and s can be any real numbers but restriction will be made later.
In a certain sense, Fn(α) and Gs,N(α) are tools to measure how far the (multi)set{{α}, {2α}, . . . , {nα}} is from being equal to a subset of

{
0
n
, 1

n
, . . . , n−1

n

}
. This is a prob-

lem related to uniform distribution of the sequence ({nα})n and rational approximations
of α. Before going into the core of the paper in Section 1.2, we set a few definitions and
recall some basic facts.

1.1. Lagrange constants and other diophantine statistics. We will occasionaly use
the notion of Lagrange constant L(α) of an irrational number α. It is defined (1) as

L(α) := lim supq→+∞
1

q||qα|| . The smallest value of L(α) is
√

5 and is achieved at
√

5−1
2

and

numbers equivalent to it (in the sense of continued fractions, see below). The next smallest
value

√
8 is achieved at

√
2 and numbers equivalent to it, etc. Furthermore, the lim sup

defining L(α) is achieved along the subsequence (qn)n of the denominators of the continued
fraction of α. The set of values of L(α) is the Lagrange spectrum, which was studied a
lot in the literature. See [7] for a survey of its properties. That the minimal value of L is
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1In the literature, Lagrange constants are also defined as L̂(α) := lim infq→+∞ q||qα||. This does not

change much to the theory because L̂(α) = 1/L(α).
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achieved at
√

5+1
2

supports the claim that this number (and its equivalents) is the “most
irrational number”.

Moreover, L(α) = +∞ if and only if, in the continued fraction [a0, a1, a2, . . .] of α, the
sequence of the partial quotients (an)n is unbounded; this is due to the inequality

∣∣α− pn

qn

∣∣ ≤
1

an+1q2
n
. In particular, L(α) is finite for α in a set of measure 0. The irrationality exponent

m(α), another classical diophantine statistic defined in Section 1.3, is equal to 2 almost
surely and therefore does not really distinguish irrational numbers. Discrepancy theory
leads to two other interesting statistics. Starting from the star-discrepancy D∗

N(α) :=
sup0≤x<1

(
1
N

#
{
1 ≤ n ≤ N : {nα} ∈ [0, x)

}− x
)

of the sequence of fractional part ({nα})n,
the quantity

S∗(α) := lim sup
N→+∞

N

log(N)
D∗

N(α)

has been shown to fill the ray
[
S∗(

√
2),∞]

by Baxa [2]. A similar result is not yet known

for the discrepancy DN(α) := sup0≤x<y<1

(
1
N

#
{
1 ≤ n ≤ N : {nα} ∈ [x, y)

}− (y − x)
)
, al-

though it is expected that the corresponding quantity S(α) fills the ray
[
S(

√
5+1
2

),∞]
.

However, S∗(α) and S(α) are finite if and only if
∑n

j=1 aj = O(n), which corresponds to a

set of measure 0 because
∑n

j=1 aj À n log(n) almost surely. In the context of irregularities

of distribution of ({nα})n, we can also mention the “dispersion constant” of Niederre-

iter [18] and the similar one of Jager-De Jong [12], both of which are minimal at
√

5−1
2

(and
its equivalents) and finite for a given irrational number α if and only if (an)n is bounded.

All the above mentioned functions present the particularity to be equal to a certain con-
stant almost everywhere. We will show that Gs,N(α) enables to distinguish in a subtile way
more irrational numbers (where the meaning of “more” depends on s) and that extremality

properties around
√

5−1
2

seem to be also present.

1.2. Description of Fn(α) and Gs,N(α). The behavior of Fn(α) strongly depends on the
(ir)rationality of α and also on whether or not n is a denominator of a convergent of α. The
function Gs,N(α) smoothens the dependence on n. In this respect, since 0 ≤ Fn(α) ≤ 1

2
, it

is clear that the sequence (Gs,N(α))N≥1 converges as N → +∞ for any real number α and
any s > 1. We will no longer consider this case because it gives too much weight to the
first values of (Fn(α))n≥1 whereas we seek average results.

We will first study the sequence (Fn(α))n≥1 whose behavior is not easy to understand,
despite what is shown by Figure 1. We will show in Theorem 4 in Section 2 that, in
particular, (Fn(α))n≥1 tends to be periodic when α is rational. When α is irrational, we
will obtain lower and upper bounds for the lim inf and lim sup of Fn(α), in particular

lim infn Fn(α) ≤ (
2L(α)

)−1
. We also observe that each function Fn(α) is 1-periodic in α

and satisfies the equation Fn(1 − α) = Fn(α); these two properties are also inherited by
Gs,N(α) and the limiting cases studied in the paper, the first one justifying that we limit
ourselves to the case α ∈ [0, 1].

We will investigate in much more details the behavior of the sequence (Gs,N(α))N≥1. We
will focus on the case s ≤ 1 and in fact our results will be proved in the case s ∈ (0, 1]. See
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Figure 1. Graph of F144

Theorem 2, (v), for the case s ≤ 0, which leads to results of a different nature that will
not be investigated in depth. We set HN(s) := 1 + 1

2s + · · ·+ 1
Ns and note HN for HN(1).

When 0 ≤ s < 1, HN(s) = N1−s

1−s
+O(1) whereas HN = log(N) +O(1) as N → +∞.

We will show that, given s ∈ (0, 1] and a rational number α, 1
HN (s)

Gs,N(α) converges

to a rational number < 1
4

that depends on the denominator of α and not on s. On the

other hand, that sequence converges to 1
4

for almost all irrational numbers α, including for
example the real irrational algebraic numbers, the numbers e and π – only conjecturally
for the latter when s < 1. This does not seem to be the kind of result that helps to classify
irrational numbers.

However, our most stricking results will concern the remainder

Gs,N(α) := Gs,N(α)− 1

4
HN(s) =

N∑
n=1

1

ns

(
Fn(α)− 1

4

)
,

when α is irrational. We will show that the sequence converges also almost surely as
N → +∞ to a function Gs(α) for (2) any given s ∈ (0, 1]. (For the definition of the
diophantine notions used from now on, see Section 1.3.) One of our results will be that
the sequence (G1,N(α))N≥1 converges for all irrational numbers with finite m(α) exponent
and diverges for all rational numbers, leaving mainly open the question of convergence or
divergence of (G1,N(α))N≥1 for the rather sparse set of Liouville numbers. For s ∈ (0, 1),
we will show that (Gs,N(α))N≥1 diverges for all rational numbers and that it converges,
resp. diverges, for all irrational numbers α with m(α) < 1 + 1

1−s
, resp. m(α) > 2 + 4

1−s
.

Figure 2 illustrates the case s = 1. It should be taken with precautions because our
estimate for the speed of convergence of (G1,N(α))N≥1 to G1(α) is not uniform on R \ Q.

Nonetheless, it is quite surprising to observe that G1,200

(√
5−1
2

) ≈ 0.2169 seems to be very

close to the maximum of G1,200. We don’t know if in the limit, G1

(√
5−1
2

)
coincides with

2Although this is not the point of view adopted in this paper, we can consider Gs(α) as the Dirichlet series∑∞
n=1

1
ns

(
Fn(α)− 1

4

)
of the variable s, α being a parameter: our results will show the great dependence

of the abscissa of convergence on the diophantine properties of α, mainly m(α).
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Figure 2. “Bear’s pawprint” graph of G1,200 and the constant G1,200

(√
5−1
2

)

the maximum of G1 but this is definitely an interesting problem to solve. The last section
of the paper will present more graphs and numerical datas.

1.3. The results. We denote by (pn/qn)n≥0 the sequence of convergents of an irrational
number α. Its partial quotients (an)n≥0 are such that qn+1 = an+1qn + qn−1. Let us define
a family As, s ∈ (0, 1], of sets of irrational numbers α ∈ [0, 1] such that, for s ∈ (0, 1),

∑
m

q1−s
m+1

qm

< ∞

and, for s = 1,
∑
m

log
(
max(qm+1/qm, qm)

)

qm

< ∞.

We recall that an irrational number α is said to have a finite irrationality exponent µ(α) ≥ 2
is there exists a constant c(α) > 0 such that (3)

∣∣∣α− p

q

∣∣∣ ≥ 1

c(α)qµ(α)

for all integers p, q with q ≥ 1. (In fact, c(α) ≥ 1 because of the case q = 1 and p = bαc.)
We denote by m(α) the irrationality exponent of α, defined as the infinimum of all possible
µ(α), regardless of the value of c(α). By definition, Liouville numbers are precisely those
irrational numbers which don’t have a finite irrationality exponent; they are not only
irrational but also transcendental.

We first state a lemma, whose proof is postponed to Section 3.

3When we will talk about an irrationality exponent for an irrational number α, one should understand
a couple (µ(α), c(α)).
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Lemma 1. (i) The set A1 contains all irrational numbers with a finite irrationality expo-
nent. Some Liouville numbers belong to A1, some do not.

(ii) For any s ∈ (0, 1), the set As contains all irrational numbers with m(α) < 1 + 1
1−s

but no real number whose irrationality exponent m(α) is > 1 + 1
1−s

. In particular, it does

not contain any Liouville number. Some irrational numbers with m(α) = 1 + 1
1−s

belong
to As, some do not.

(iii) The sets As all have measure 1.

Set

Φs(α) :=
∞∑

n=1

1

ns+1

n∑
m=1

cos
(
2mnπα

)
=

∞∑
n=1

cos
(
πn(n + 1)α

)
sin

(
πn2α

)

ns+1 sin
(
πnα

)

and

Φs,N(α) :=
N∑

n=1

cos
(
πn(n + 1)α

)
sin

(
πn2α

)

ns+1 sin
(
πnα

)

the N -th partial sum. We discard the case s > 1 because the series trivially converges for
any α (as is clear from the first expression for Φs(α)). The reason to consider Φs(α) is due
to the relation

Gs,N(α) = − 2

π2

∞∑

k=0

Φs,N

(
(2k + 1)α

)

(2k + 1)2
, (1.1)

which will be proved later. Hence, Φs,N is a brick in the study of Gs,N and this explain
why we study it first in Theorem 1. Given some non-zero integers a and b, we denote the
greatest common divisor of a and b by gcd(a, b).

We can now state our main results.

Theorem 1. Let us fix s ∈ (0, 1].
(i) For any rational number a/b with gcd(a, b) = 1, b ≥ 1, we have

lim
N→+∞

1

HN(s)
Φs,N

(a

b

)
=

1

b
.

In particular,

lim
N→+∞

Φs,N

(a

b

)
= +∞.

(ii) If α ∈ As, then the series Φs(α) converges absolutely.

(iii) The sequence (Φs,N)N≥1 converges to Φs almost surely and in L2(0, 1).

(iv) If s ∈ (0, 1) and if the irrational number α has an irrationality exponent µ(α) >
2 + 4

1−s
, then for any ε > 0,

lim sup
N→+∞

Φs,N(α)

HN(s)1− 3−s
µ(α)(1−s)

−ε
= +∞.

This also holds if α is a Liouville number by setting 1/µ(α) = 0.
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If s = 1, there exists a dense set of Liouville numbers α such that, for any ε > 0,

lim sup
N→+∞

Φ1,N(α)

H1−ε
N

= +∞.

In all these cases, the sequence (Φs,N(α))N≥1 does not converge.

(v) For any real numbers α and s ≤ 0, the sequence (Φs,N(α))N≥1 does not converge.

Remarks 1. a) For s ∈ (0, 1), the result in (iv) is probably not optimal and in particular
one may expect the divergence of the series Φs(α) for all α such that m(α) > 1 + 1

1−s
.

Nonetheless, for Liouville numbers (where one sets 1/µ(α) = 0), it is essentially best
possible, even when s = 1, because |Φs,N(α)| ≤ HN(s) for any real numbers α and s.

b) Item (iv) is interesting because, together with (ii), it shows that the convergence
holds in case s = 1 for a lot more irrational numbers (i.e. all but some Liouville numbers)
than it does for other values of s ∈ (0, 1). The same dichotomy is also obtained in items
(ii) and (iv) of Theorem 2 below for the functions Gs.

c) We will use the identity
∫ 1

0

Φs(α)2 dα =
1

2

∞∑
m=1

∞∑
n=1

gcd(m,n)

(mn)s+1
,

which will be a consequence of the proof of (iii) where, in particular, the convergence of
the double series will be proved.

d) Item (v) is a consequence of the identity

lim sup
n→+∞

1

n

n∑
m=1

cos(2πmnα) =
L(α)

2π
sin

( 2π

L(α)

)
6= 0,

which will be proved in Lemma 6.

The results of Theorem 1, as well as the methods of proof, will be useful to understand the
behavior of Gs,N(α), which we now describe. We recall that Gs,N(α) = Gs,N(α)− 1

4
HN(s).

Theorem 2. (i) Let us fix s ∈ (0, 1]. For any rational number a/b with gcd(a, b) = 1,
b ≥ 1, we have

lim
N→+∞

1

HN(s)
Gs,N

(a

b

)
=

1

4
− 2

π2

∞∑

k=0

gcd(b, 2k + 1)

b(2k + 1)2

=
1

4
− 1

4b

∏
p≥3

p|b

(
(pvp(b)+1 − 1)(p + 1)− 1

pvp(b)+2

)
.

This limit is a rational number < 1
4
. In particular,

lim
N→+∞

Gs,N

(a

b

)
= −∞.
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(ii) For any s ∈ (0, 1) and any α ∈ As with m(α) < 1 + 1
1−s

, or for s = 1 and any α
with finite m(α), we have

lim
N→+∞

Gs,N(α) = − 2

π2

∞∑

k=0

Φs

(
(2k + 1)α

)

(2k + 1)2
=: Gs(α),

where the series Gs(α) converges absolutely.

(iii) The sequence (Gs,N)N≥1 converges to Gs almost surely and in L2(0, 1).

(iv) For any s ∈ (0, 1), if the irrational number α has an irrationality exponent µ(α) >
2 + 4

1−s
(in particular, if it is a Liouville number), then for any ε > 0,

lim inf
N→+∞

Gs,N(α)

HN(s)1− 3−s
µ(α)(1−s)

−ε
= −∞.

This also holds if α is a Liouville number by setting 1/µ(α) = 0.
For s = 1, there exists a dense set of Liouville numbers such that, for any ε > 0,

lim inf
N→+∞

G1,N(α)

H1−ε
N

= −∞.

In all these cases, the sequence (Gs,N(α))N≥1 does not converge.

(v) For any real numbers α and s ≤ 0, the sequence (Gs,N(α))N≥1 does not converge.

Remark 2. To appreciate these results, it is useful to have in mind the trivial bound

|Gs,N(α)| ≤ 1

4
HN(s),

which holds for any real numbers α and s.

We will also prove the following theorem, which is of independent interest. It provides
examples of Fourier series that converge almost everywhere but at no rational point. For
s ∈ (0, 1], we define Bs as the set of irrational numbers in [0, 1] such that

∑
n qn+1/q

s+1
n

is convergent. This set is of measure 1 and contains all the irrational numbers with irra-
tionality exponent < s + 2 and no numbers with irrationality exponent > s + 2; we always
have Bs ⊆ As.

Theorem 3. Let us fix s ∈ (0, 1].
(i) The Fourier series of Φs is given by

S(Φs)(α) :=
∞∑

k=1

( ∑

n|k, n≥
√

k

1

ns+1

)
cos(2πkα).

The series S(Φs)(α) converges almost surely. More precisely, it is equal to Φs(α) for all
α ∈ Bs. It also converges to Φs in L2(0, 1).
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(ii) The series S(Φs) converges for no rational number. More precisely, let Ss,N denote
the N-th partial sum of S(Φs). Then, for any rational number a/b with gcd(a, b) = 1,
b ≥ 1, we have

lim
N→+∞

1

Hb√Nc(s)
Ss,N

(a

b

)
=

2

b(1 + s)
.

(iii) There exists a dense set of Liouville numbers on which S(Φs) does not converge.

The initial impulse to prove these results is given by the Fourier series of the function
||α||, which converges normally on R:

||α|| = 1

4
− 2

π2

∞∑

k=0

cos(2(2k + 1)πα)

(2k + 1)2
. (1.2)

Its form already explains (1.1).
We conclude this Introduction by mentioning related results. Setting

F̂n(α) :=
1

n

n∑
m=1

(
{nmα} − 1

2

)2

,

the Fourier expansion

(
{α} − 1

2

)2

=
1

12
− 1

π2

∞∑

k=1

cos(2πkα)

k2

implies that
N∑

n=1

1

ns

(
F̂n(α)− 1

12

)
= − 1

π2

∞∑

k=1

Φs,N(kα)

k2
.

Results very similar to those obtained for Fn(α) can be proved for F̂n(α) and extremal

properties around
√

5−1
2

and 3−√5
2

can be observed as well.
It is also possible to partially generalise our results to the sequence ({jα+β})1≤j≤n. For

this, one starts from the identity

N∑
n=1

1

ns

(
1

n

n∑
m=1

||mnα + nβ|| − 1

4

)
= − 2

π2

∞∑

k=0

Φs,N

(
(2k + 1)α, β

)

(2k + 1)2
,

where

Φs,N(α, β) =
N∑

n=1

cos(πn(nα + α + 2β)) sin(πn2α)

ns+1 sin(πnα)
.

By the methods of the paper, it is easy to prove that the convergence of Φs,N(α, β) occurs
at least for any α ∈ As and any real number β; indeed, in the proofs of the above theorems,
we will simply bound | cos(πn(nα+α)| by 1 (when β = 0) and it does not change anything
if instead we bound | cos(πn(nα+α+2β)| by 1. However, it is no longer true that there is
divergence at all rational numbers. For example, Φ1,N(0, 1

2
) tends to log(1/2) as N → +∞.

Furthermore, extremality properties around
√

5−1
2

and 3−√5
2

seem to fade away when β 6= 0.
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2. Properties of (Fn(α))n≥1

In this section, we prove a few results concerning the sequence (Fn(α))n≥1. A more
exhaustive study would be interesting.

Theorem 4. (i) The sequence (Fn)n≥1 converges to 1
4

in L2(0, 1).

(ii) For any rational number a/b with gcd(a, b) = 1, we have

Fn

(a

b

)
=

1

4
− 2

π2

∞∑

`=0
b|n(2`+1)

1

(2` + 1)2
+O

( b

n

)
,

where the implicit constant is absolute. In particular,

lim inf
n→+∞

Fn

(a

b

)
= 0 and lim sup

n→+∞
Fn

(a

b

)
≤ 1

4
.

(iii) For any irrational number α and any ε > 0, there exist infinitely many n such that
qn||qnα|| ≤ 1

L(α)−ε
and simultaneously

Fqn(α) =
qn + 1

2
||qnα||.

(iv) Set

λ(α) :=
2

π2

∞∑

k=0

1

(2k + 1)2
· L

(
(2k + 1)α

)

2π
· sin

( 2π

L
(
(2k + 1)α

)
)
,

which is ≤ 1
4

with equality if and only if L(α) = +∞. Then, for any irrational number α,
we have

1

4
− λ(α) ≤ lim inf

n→+∞
Fn(α) ≤ 1

2L(α)

and
1

4
≤ lim sup

n→+∞
Fn(α) ≤ 1

4
+ λ(α),

where we also assume that m(α) is finite to get the lower bound 1
4
.

Remarks 3. a) Since the sequence n 7→ ∑∞
`=0

b|n(2`+1)

1
(2`+1)2

is positive and periodic of period b,

we see that Fn(a/b) oscillates nearly periodically without converging. The lim supn Fn(a/b)
can be < 1

4
but it can also be equal to 1

4
(consider F2m+1(a/b) when b is even, for example).

b) For irrational numbers α, we always have lim infn Fn(α) = 1
2
√

5
< 1

4
and the lim inf

is 0 when L(α) = +∞, i.e. for almost all real numbers. Concerning the lim sup, numerical
experiments suggest that

lim sup
n

Fn(α) = lim
n→+∞

F2qn(α) >
1

4
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if α is equivalent to
√

5+1
2

. It seems plausible that lim supn Fn(α) > 1
4

fo any irrational
number α.

c) Given α, the value of L
(
(2k + 1)α

)
is not a simple function of L(α) and it is not

easy to compute λ(α). However, the bounds
√

5 ≤ L
(
(2k + 1)α

) ≤ (2k + 1)L(α) and the

decreasing of x 7→ sin(x)/x on [0, 2π/
√

5] imply that

0 ≤ λ(α) ≤ L(α)

2π3

∞∑

k=0

1

2k + 1
· sin

( 2π

(2k + 1)L(α)

)
.

For example, λ
(√

5−1
2

) ≤ 0.06708.

Proof of Theorem 4. We will use various properties of continued fractions in the the sequel.
The reader is refered to Kintchine’s classical book [13] on this subject.

(i) Using the Fourier expansion (1.2) of ||α||, we find that, for any real number α,

Fn(α)− 1

4
=

1

n

n∑

k=1

(
||knα|| − 1

4

)

= − 2

π2n

n∑

k=1

∞∑

`=0

cos
(
2(2` + 1)knπα

)

(2` + 1)2

= − 2

π2n

∞∑

`=0

1

(2` + 1)2

n∑

k=1

cos
(
2(2` + 1)knπα

)

= − 2

π2n

∞∑

`=0

1

(2` + 1)2

cos
(
(2` + 1)n(n + 1)πα

)
sin

(
(2` + 1)n2πα

)

sin
(
(2` + 1)nπα

) ,

with standard conventions when sin
(
(2` + 1)nπα

)
= 0.

In the sequel, || · ||2 denotes the norm in L2(0, 1), without any possibility of confusion
with the distance to Z already denoted by || · ||. Set un(α) :=

∑n
k=1 cos

(
2knπα

)
. We claim

that ||un(α)||2 =
√

n/2. Indeed,

∫ 1

0

un(α)2 dα =
n∑

k=1

n∑

`=1

∫ 1

0

cos
(
2knπα

)
cos

(
2`nπα

)
dα =

1

2

∑

1≤k=`≤n

1 =
n

2
.

Moreover by 1-periodicity of un(α), we also have ||un((2`+1)α)||2 =
√

n/2 for any integer
` ≥ 0.
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Hence,
∣∣∣∣
∣∣∣∣Fn(α)− 1

4

∣∣∣∣
∣∣∣∣
2

≤ 2

π2n

∞∑

`=0

1

(2` + 1)2
||un((2` + 1)α)||2

≤ 2||un(α)||2
π2n

∞∑

`=0

1

(2` + 1)2

≤ 1

4n
||un(α)||2 ¿ 1√

n
.

It follows that (Fn)n≥1 converges to 1
4

in L2(0, 1).

(ii) Let us fix a rational number a/b, with gcd(a, b) = 1 and b ≥ 1; in particular, 0 is
represented as 0/1. We start again with the Fourier series (1.2):

Fn

(a

b

)
− 1

4
= − 2

π2

∞∑

`=0

1

(2` + 1)2

1

n

n∑

k=1

cos
(
2π(2` + 1)kn

a

b

)
.

In order to use the periodicity of cos, we write k = rb + j with 1 ≤ j ≤ b and r ≥ 0, so
that

n∑

k=1

cos
(
2(2` + 1)πkn

a

b

)
=

b∑
j=1

∑
r≥0

rb+j≤n

cos
(
2π(2` + 1)(rb + j)n

a

b

)

=
b∑

j=1

cos
(
2π(2` + 1)jn

a

b

) ∑
r≥0

rb+j≤n

1

=
b∑

j=1

cos
(
2π(2` + 1)jn

a

b

) ⌊
n− j

b
+ 1

⌋

=
n

b

b∑
j=1

cos
(
2π(2` + 1)jn

a

b

)
+O(b),

where the constant in the O is absolute.
Hence,

Fn

(a

b

)
− 1

4
= − 2

π2

∞∑

`=0

1

(2` + 1)2

1

b

b∑
j=1

cos
(
2π(2` + 1)jn

a

b

)
+O

(
b

n

)

= − 2

π2

∞∑

`=0
b|n(2`+1)

1

(2` + 1)2
+O

(
b

n

)
,
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where we have used the fact that, for any integer k and any rational u/v, with gcd(u, v) = 1
and v ≥ 1,

v∑
j=1

cos
(
2π

jku

v

)
=

{
0 if v - k
v if v | k.

(2.1)

The estimates for the lim inf and lim sup follow from the two obvious facts:

Fbn

(a

b

)
= 0

and

Fn

(a

b

)
≤ 1

4
+O

( b

n

)

respectively.

(iii) By definition, L(α) = lim sup
q→+∞

1

q||qα|| , hence for any ε, there exist infinitely many

positive integers bn (depending on α and ε) such that

bn||bnα|| ≤ 1

L(α)− ε
.

(Without loss of generality, we can even assume that an := bbnαe and bn are coprime.)
Since L(α) ≥ √

5 for any irrational number α, we can choose ε small enough such that
L(α) > 2 + ε (and thus bn||bnα|| < 1

2
, which implies that an/bn are convergents to α by a

classical property of continued fractions).
Now, for any integer k ∈ {1, 2, . . . , bn}, we have

|kbnα− kan| = k|bnα− an| ≤ k

bn(L(α)− ε)
≤ 1

L(α)− ε
<

1

2
.

This forces that kan = bkbnαe and therefore

Fbn =
1

bn

bn∑

k=1

||bnkα|| = 1

bn

bn∑

k=1

|kbnα− kbn| = ||bnα||
bn

bn∑

k=1

k =
bn + 1

2
||bnα||,

as claimed.

(iv) For any ε > 0 such that L(α) > 2 + ε, we have

lim inf
n→+∞

Fn(α) ≤ lim inf
n→+∞

Fbn(α) = lim inf
n→+∞

bn + 1

2
||bnα|| = 1

2
lim inf
n→+∞

bn||bnα|| ≤ 1

2(L(α)− ε)
.

Since lim inf
n→+∞

Fn(α) does not depend on ε, we get that

lim inf
n→+∞

Fn(α) ≤ 1

2L(α)
.
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If we now assume that α has a finite irrationality exponent, then α ∈ A1 and by Theo-
rem 2, (4) the series

∞∑
n=1

Fn(α)− 1
4

n

is convergent. Let us assume that lim supn Fn(α) < 1
4
. Then there exists a constant c > 0

such that
Fn(α)− 1

4

n
< − c

n
for all large enough n and the above series cannot converge. This

contradiction proves that

lim sup
n

Fn(α) ≥ 1

4
.

It remains to prove the two bounds involving λ(α). We have
∣∣∣∣Fn(α)− 1

4

∣∣∣∣ ≤
2

π2

∞∑

k=0

1

(2k + 1)2

∣∣∣∣∣
cos

(
(2k + 1)n(n + 1)πα

)
sin

(
(2k + 1)n2πα

)

n sin
(
(2k + 1)nπα

)
∣∣∣∣∣ .

We will prove in Lemma 6 of Section 5.5 that, (5) for any k,

lim sup
n→+∞

∣∣∣∣∣
cos

(
(2k + 1)n(n + 1)πα

)
sin

(
(2k + 1)n2πα

)

n sin
(
(2k + 1)nπα

)
∣∣∣∣∣

≤ L
(
(2k + 1)α

)

2π
· sin

( 2π

L
(
(2k + 1)α

)
)
.

Hence, by the reverse Fatou’s Lemma, we obtain that

lim sup
n→+∞

∣∣∣∣Fn(α)− 1

4

∣∣∣∣ ≤ λ(α).

It follows that

lim sup
n→+∞

Fn(α) ≤ 1

4
+ λ(α)

and

lim inf
n→+∞

Fn(α) ≥ 1

4
− λ(α).

This finishes the proof of Theorem 4. ¤

3. Proof of Lemma 1

(i) Let α be an irrational number with a finite irrationality exponent µ(α) ≥ 2, so that
∣∣∣α− p

q

∣∣∣ ≥ 1

c(α)qµ(α)

4Item (iv) of Theorem 4 will not be used in the proof of Theorem 2.
5Again, item (iv) will not be used in the proof of this lemma.
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for all integers p, q with q ≥ 1. In particular, if p/q = pn/qn is the n-th convergent of α,
classical properties of continued fractions imply that

1

c(α)q
µ(α)
n

≤
∣∣∣α− pn

qn

∣∣∣ ≤ 1

qnqn+1

.

Thus, qn+1 ≤ c(α)q
µ(α)−1
n . Moreover, it is known that qn ≥ 2(n−1)/2 for all n ≥ 2 and all

irrational number α.
It follows that both series

∑
n

log
(
max(qn+1/qn, qn)

)

qn

¿
∑

n

log(qn)

qn

are convergent (at geometric rate).

The real number β whose partial quotients are an = 2(n−1)!2 is a Liouville number and
the inequalities 2n!2qn ≤ qn+1 ≤ 2n!2+1qn ensure that β ∈ A1. On the other hand, the
number κ =

∑∞
n=1 1/bn with bn+1 = 2bn , b1 = 1, is also a Liouville number but it has

infinitely many convergents such that qn+1 = 2qn , so that κ 6∈ A1.

(ii) Similarly as above, we prove that

∑
n

q1−s
n+1

qn

¿
∑

n

1

q
1−(1−s)(µ(α)−1)
n

and both series are convergent (at geometric rate) when µ(α) < 1 + 1
1−s

.

The convergence of the series
∑

m q1−s
m+1/qm implies that qm+1 = o

(
q

1
1−s
m

)
and this in turn

implies that a member of As cannot have m(α) > 1 + 1
1−s

, hence cannot be a Liouville
number. Examples of continued fractions can be contructed that have exact irrationality
exponent 1 + 1

1−s
for which the series

∑
m q1−s

m+1/qm converges or not.

(iii) Almost all real numbers have m(α) = 2. Hence, for any s ∈ (0, 1], almost all real
numbers belong to As.

4. Some diophantine estimates

In this section, we will prove side results needed to prove Theorems 1 and 2. They are
interesting for themselves and that’s why we prove them separetely. We have stated them
completely explicitely because they will be used for numerical computation. But the value
of the constants is not essential for the proofs of Theorem 1, 2 and 3, for we only need to
know on what they depend.

The sets As have been defined in the Introduction.

Proposition 1. (i) Let us fix s ∈ (0, 1]. For any irrational number α ∈ As, the series
∞∑

n=1

||n2α||
ns+1||nα|| (4.1)

is convergent. In particular, it converges almost everywhere.
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(ii) For any irrational number α ∈ As, we have the following estimate for the speed of
convergence: for any integer m ≥ 2,

∞∑
n=qm

||n2α||
ns+1||nα|| ≤





2
(
1 + ζ(s + 1)

)

1− s

∞∑

k=m

1 + q1−s
k+1

qk

if 0 < s < 1

2
(
1 + ζ(2)

) ∞∑

k=m

1 + log
(
max(qk+1/qk, qk)

)

qk

if s = 1.

(iii) If α ∈ As (for some s ∈ (0, 1)) and α has an irrationality exponent µ(α) < 1+ 1
1−s

,
then for any m ≥ 6, we have

∞∑
n=qm

||n2α||
ns+1||nα|| ≤

2
(
1 + ζ(s + 1)

)

(1− s)q
1−(µ(α)−1)(1−s)
m

(
3(1 + c(α)1−s) log(qm)

+
c(α)1−s

1−√2
(µ(α)−1)(1−s)−1

)
. (4.2)

(iv) If α ∈ A1 has a finite irrationality exponent µ(α), then for any m ≥ 6, we have

∞∑
n=qm

||n2α||
n2||nα|| ≤ 2(1 + ζ(2))

(
3(1 + log c(α))

log(qm)

qm

+ 5(µ(α)− 1)
log(qm)2

qm

)
(4.3)

Remark 4. The series (4.1) also converges for all real number α ∈ [0, 1] when s > 1, a
result that follows immediately from Lemma 2. It is interesting to compare the upper
bounds obtained in (ii) with the following ones, due to Kruse [14]: for any s ≥ 0 and any
irrationnal number α, we have

q`−1∑
n=qm

1

ns+1||nα|| ¿
`−1∑

k=m

qk+1

qs+1
k

. (4.4)

The upper bound in (4.4) (which is optimal) displays the influence of our term ||n2α||, in
particular when s = 1.

A few lemmas will be necessary for the proof.

Lemma 2. For any real number α ∈ [0, 1] and any integer n ≥ 0, we have

||n2α||
||nα|| ≤

n

2bn||nα||c+ 1
.

Proof. Let j be an integer such that 0 ≤ j ≤ n. The function Dn(α) := ||nα||
||α|| is increasing

on [ j
n
, j+1/2

n
] and decreasing on [ j+1/2

n
, j+1

n
].

Since Dn(j/n) = Dn((j + 1)/n) = 0, we deduce that for all α ∈ [ j
n
, j+1

n
[, we have

0 ≤ Dn(α) ≤ Dn

(j + 1/2

n

)
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Figure 3. D15 and its upper bound

If α ≤ 1/2, ||α|| = α whereas if α > 1/2, ||α|| = 1− α, whence after a moment of thought

Dn

(j + 1/2

n

)
=

n

2bn||α||c+ 1

for any α ∈ [ j
n
, j+1

n
[.

We note that the right-hand side of the previous formula does not explicitly use the
variable j. Therefore, we have shown that for any α ∈ [0, 1], we have

0 ≤ Dn(α) ≤ n

2bn||α||c+ 1
. (4.5)

See Figure 3 for an illustration of this upper bound. This formula enables to bound not
only Dn(α) for α ∈ [0, 1] but also for all α ∈ R because ||α|| and Dn(α) are 1-periodic.
Therefore, the upper bound (4.5) holds for any real number α and the lemma follows when
replacing α by nα. ¤
Lemma 3. For any α ∈ [0, 1] and any integer N such that qm ≤ N < qm+1, with m ≥ 2,
we have

N∑

k=qm

||k2α||
ks+1||kα|| ≤





2
(
1 + ζ(2)

) · 1 + log
(
max(qm+1/qm, qm)

)

qm

if s = 1

2(1 + ζ(1 + s))

1− s
· 1 + q1−s

m+1

qm

if 0 < s < 1.

Proof. By Lemma 2, it is enough to show that the same bound holds for the sum

RN :=
N∑

k=qm

1

ks
(
2bk||kα||c+ 1

) .
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Since

0 ≤ 1

2bk||kα||c+ 1
≤ 1

k||kα|| , (4.6)

it is tempting to bound RN by
N∑

k=qm

1

ks+1||kα||
and then use Kruse’s bound (4.4). But then we would lose the benefit of the inequalities

0 ≤ 1

2bk||kα||c+ 1
≤ 1 (4.7)

because the quantity 1/||kα|| can take very large values. We will consider three cases: in
the first one, (4.6) will be enough while for the remaining two, (4.7) will be used.

To study RN , we adapt Kruse’s ideas and cut the sum RN in three parts : k 6≡ 0, qm−1[qm],
k ≡ 0[qm] and k ≡ qm−1[qm]. Remember that we suppose qm ≤ N < qm+1, with qm+1 =
am+1qm + qm−1. Set Q = bN/qmc, rh = qm − 1 if 0 ≤ h < Q and rh = N −Qqm if h = Q.
In particular, 0 ≤ rh ≤ qm− 1 and Q < qm+1/qm. The assumption that n ≥ 2 ensures that
qm ≥ 2 (a necessary assumption for Kruse’s estimates) because qm ≥ q2 ≥

√
2 > 1.

• first step. We use (4.6):

N∑

k=qm

k 6≡0,qm−1[qm]

1

ks

1

2bk||kα||c+ 1
=

Q∑

h=1

rh∑
j=1

j 6=qm−1

1

(hqm + j)s
(
2b(hqm + j)||(hqm + j)α||c+ 1

)

≤
Q∑

h=1

rh∑
j=1

j 6=qm−1

1

(hqm + j)s+1||(hqm + j)α|| .

To deal with the sum over j, we then follow Kruse [14, pp. 240-241] verbatim to get (even
when the sums are empty, in which case their values are 0):

rh∑
j=1

j 6=qm−1

1

(hqm + j)s+1||(hqm + j)α|| ≤
1

(hqm)s+1

rh∑
j=1

j 6=qm−1

1

||(hqm + j)α||

≤ 2

(hqm)s+1

rh∑

k=1

1
k

qm

≤ 2qm(1 + log(rh + 1))

(hqm)s+1

≤ 2
1 + log(qm)

qs
mhs+1

.
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Hence, finally,

N∑

k=qm

k 6≡0,qm−1[qm]

1

ks

1

2bk||kα||c+ 1
=

Q∑

h=1

rh∑
j=1

j 6=qm−1

1

(hqm + j)s
(
2b(hqm + j)||(hqm + j)α||c+ 1

)

≤ 2
1 + log(qm)

qs
m

Q∑

h=1

1

hs+1
≤ 2ζ(s + 1)

1 + log(qm)

qs
m

. (4.8)

• Second and third steps. We now use twice the inequality (4.7). We have

N∑

k=qm

k≡0[qm]

1

ks

1

2bk||kα||c+ 1
=

Q∑

h=1

1

(hqm)s

1

2bhqm||hqmα||c+ 1
≤ 1

qs
m

Q∑

h=1

1

hs

≤





1 + log(qm+1/qm)

qm

if s = 1

1

1− s
· 1 + q1−s

m+1

qm

if 0 < s < 1.
(4.9)

Similarly, we have

N∑

k=qm

k≡qm−1[qm]

1

ks

1

2bk||kα||c+ 1
≤

am+1−1∑

h=1

1

(hqm + qm−1)s
≤ 1

qs
m

am+1∑

h=1

1

hs

≤





1 + log(qm+1/qm)

qm

if s = 1

1

1− s
· 1 + q1−s

m+1

qm

if 0 < s < 1,
(4.10)

Adding together the three estimates (4.8), (4.9) and (4.10), whose sum is RN , we imme-
diately obtain the result in the case s = 1. For s ∈ (0, 1), we get

RN ≤ 2ζ(s + 1)
1 + log(qm)

qm

+
2

1− s
· 1 + q1−s

m+1

qm

and the conclusion follows by the sequence of inequalities

log(qm) ≤ log(qm+1) =
1

1− s
log(q1−s

m+1) ≤
1

1− s
q1−s
m+1.

¤

We need one more lemma.

Lemma 4. Fix an integer m ≥ 6 and an irrational number α.
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For any ω > 0, we have
∞∑

j=m

1

qω
j

≤ 3 log(qm)

qω
m

+
1

1− (1/2)ω/2
· 1

qω
m

(4.11)

For ω = 1, a better bound is
∞∑

j=m

1

qj

≤ 3 log(qm)

qm

. (4.12)

Furthermore,
∞∑

j=m

log(qj)

qj

≤ 5 log(qm)2

qm

. (4.13)

Remark 5. Slightly better bounds will be given during the proof but they are more com-
plicated and we don’t need them.

Proof. Below, log2(x) := log(x)/ log(2). We recall that qj ≥ 2(j−1)/2 for any j ≥ 1. For
simplicity, we set δm = d2 log2(qm)e ≥ m. We have

∞∑
j=m

1

qω
j

=
δm∑

j=m

1

qω
j

+
∞∑

j=δm+1

1

qω
j

≤ δm −m + 1

qω
m

+
∞∑

j=δm+1

1

2ω(j−1)/2

≤ 2 log2(qm)−m + 2

qω
m

+
1

1− (1/2)ω/2
· 1

2ωδm/2

≤ 3 log(qm)−m + 2

qω
m

+
1

1− (1/2)ω/2
· 1

qω
m

.

This gives (4.11) because −m + 2 ≤ 0.
If ω = 1, we remark that, for m ≥ 6, −m + 2 + 1

1−(1/2)1/2 < 0 so that

3 log(qm)−m + 2

qm

+
1

1− (1/2)1/2
· 1

qm

≤ 3 log(qm)

qm

,

which gives (4.12).

We now prove (4.13). We set κm = d3 log2(qm)e ≥ m. We also define εm as the unique
positive real number such that (1/εm)1/εm = qκm+1. In terms of Lambert function W , we
have

εm =
W (log(qκm+1))

log(qκm+1)
.

(The function W is defined on (0,∞) by the implicit equation x = W (x)eW (x); see [6] for its

properties.) Since κm ≥ m ≥ 6, then qκm+1 ≥ q7 ≥ 23; hence 0 < εm ≤ W (log(8))
log(8)

≈ 0.41868.



20

It follows that 2−κm(1−εm)/2 ≤ 2−κm/3 ≤ 1/qm and that 0 < 1
1−(1/2)(1−εm)/2 < 5.5. These

bounds are used below.
The reason for introducing εm is that log(x) ≤ xεm for any x ≥ (1/εm)1/εm = qκm+1. We

now make the same kind of computations as above:

∞∑
j=m

log(qj)

qj

=
κm∑

j=m

log(qj)

qj

+
∞∑

j=κm+1

log(qj)

qj

≤
κm∑

j=m

log(qj)

qj

+
∞∑

j=κm+1

qεm
j

qj

≤ κm −m + 1

qm

log(qm) +
∞∑

j=κm+1

1

2(j−1)(1−εm)/2

≤ 3 log2(qm)−m + 2

qm

log(qm) +
1

1− (1/2)(1−εm)/2
· 1

2κm(1−εm)/2

≤ 5 log(qm)2

qm

− (m− 2) log(qm)

qm

+
5.5

qm

≤ 5 log(qm)2

qm

,

where in the last inequality, we used the fact that (m−2) log(qm)−5.5 ≥ 4 log(q6)−5.5 ≥ 0.
This completes the proof of the lemma. ¤

Proof of Proposition 1. Let us assume that s = 1 and fix α ∈ A1. By Lemma 3, for any
integers n,m such that 2 ≤ n < m, we have

qm−1∑

k=qn

||k2α||
k2||kα|| =

m−1∑
j=n

qj+1−1∑

k=qj

||k2α||
k2||kα|| ≤ 2

(
1 + ζ(2)

) m−1∑
j=n

1 + log
(
max(qj+1/qj, qj)

)

qj

.

Since both series converges when m → +∞, we deduce that

∞∑

k=qn

||k2α||
k2||kα|| ≤ 2

(
1 + ζ(2)

) ∞∑
j=n

1 + log
(
max(qj+1/qj, qj)

)

qj

.

This proves (i) and (ii) in the case s = 1. The proof can immediately be adapted to the
case 0 < s < 1.

Let us prove (iii). Consider α ∈ As with an irrationality exponent µ := µ(α) < 1 + 1
1−s

,

with the associated constant c(α) ≥ 1. We have already shown that qj+1 ≤ c(α)qµ−1
j .

Hence,

q1−s
j+1

qj

≤ c(α)1−s 1

q
1−(µ−1)(1−s)
j

.

It also follows that
∞∑

j=m

q1−s
j+1

qj

≤ c(α)1−s

∞∑
j=m

1

q
1−(µ−1)(1−s)
j

For m ≥ 6, we now use the bound (4.11) with ω = 1 − (µ − 1)(1 − s) together with the
bound (4.12) on the right hand side of the inequality in (ii). This gives (4.2).
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It remains to prove (iv). If α ∈ A1 has a finite irrationality exponent µ(α), we have
qj+1 ≤ c(α)qµ−1

j . Hence log(qj+1) ≤ (µ(α)− 1) log(qj) + log c(α). It follows that

∞∑

k=qm

||k2α||
k2||kα|| ≤ 2

(
1 + ζ(2)

)
(

(1 + log c(α))
∞∑

j=m

1

qj

+ (µ(α)− 1)
∞∑

j=m

log(qj)

qj

)
.

Eq. (4.3) follows by means of (4.12) and (4.13) when m ≥ 6. ¤

5. Proof of Theorem 1

5.1. Proof of (i). We fix a rational a/b such that gcd(a, b) = 1 and b ≥ 1. We have

Φs,N

(a

b

)
=

N∑
n=1

1

ns+1

n∑
m=1

cos
(
2mnπ

a

b

)

As in the proof of Theorem 4, (ii), we write m = rb + j with 1 ≤ j ≤ b and r ≥ 0 and get

Φs,N

(a

b

)
=

1

b

b∑
j=1

N∑
n=1

1

ns
cos

(
2πjn

a

b

)
+O(

bHN(s + 1)
)
,

where the implicit constant is absolute. We treat similarly the sum over n to get

Φs,N

(a

b

)
=

1

b

b∑
j=1

b∑

k=1

cos
(
2πjk

a

b

) ∑
n≤N

n≡k[b]

1

ns
+O(

bζ(s + 1)
)
.

Hence, since ∑
n≤N

n≡k[b]

1

ns
=

1

b
HN(s) +O(1)

where the constant depends at most on s, we deduce that

Φs,N

(a

b

)
= HN(s)

1

b2

b∑
j=1

b∑

k=1

cos
(
2πjk

a

b

)
+O(

b
)
,

where the constant depends at most on s.
It remain to compute

1

b2

b∑
j=1

b∑

k=1

cos
(
2πjk

a

b

)
.

We do this in a slightly more general form that will be used later.

Lemma 5. For any rational number u/v not necessarily reduced, with v ≥ 1, we have

1

v

v∑
j=1

v∑

k=1

cos
(
2πjk

u

v

)
= gcd(u, v).
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Proof. We denote by S the double sum to be computed. The inner sum over k equals v if
v divides ju and 0 otherwise. Thus,

S =
v∑

j=1

v|ju

1 =
∑

j=1,...,v
v

gcd(u,v)
|j u

gcd(u,v)

1 =
∑

j=1,...,v
v

gcd(u,v)
|j

1 =

gcd(u,v)∑
j=1

1 = gcd(u, v).

¤

Applying the lemma with u = a and v = b (which are coprime), we obtain that

Φs,N

(a

b

)
=

1

b
HN(s) +O(

b
)
, (5.1)

(the constant depends on s), which proves the claim, in an even more precise form that
will be used later.

5.2. Proof of (ii). We remark that

∣∣∣∣∣
cos

(
πn(n + 1)α

)
sin

(
πn2α

)

sin
(
πnα

)
∣∣∣∣∣ ≤

| sin (
πn2α

)|
| sin (

πnα
)| =

sin
(
π||n2α||)

sin
(
π||nα||) ≤ π

2

||n2α||
||nα|| .

(We have used the inequalities 2x ≤ sin(πx) ≤ πx, which hold for any x such that 0 ≤
x ≤ 1/2.)

By definition of Φs,N(α), we deduce that

∣∣∣Φs,N(α)
∣∣∣ ≤

N∑
n=1

∣∣∣∣∣
cos

(
πn(n + 1)α

)
sin

(
πn2α

)

ns+1 sin
(
πnα

)
∣∣∣∣∣ ≤

π

2

N∑
n=1

||n2α||
ns+1||nα|| . (5.2)

We can now use Proposition 1, (i), to conclude that both series converge for any α ∈ As.

5.3. Proof of (iii). • Almost sure convergence of Φs,N . We have proved that Φs,N(α)
converges to Φs(α) for all α ∈ As and moreover, that As is of measure 1.

• Convergence of Φs,N to Φs in L2(0, 1).
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Firstly, let us show that (Φs,N)n≥1 converges in L2. For this, it is enough to show that
the sequence is Cauchy. For any integers N ≥ M ≥ 1, we have

∫ 1

0

(
Φs,N(α)− Φs,M(α)

)2
dα

=
N∑

m=M+1

N∑
n=M+1

1

(mn)s+1

m∑

k=1

n∑

`=1

∫ 1

0

cos
(
2kmπα

)
cos

(
2`nπα

)
dα.

=
1

2

N∑
m=M+1

N∑
n=M+1

1

(mn)s+1

∑

1≤k≤m,1≤`≤n

`m=kn

1

=
1

2

N∑
m=M+1

N∑
n=M+1

1

(mn)s+1

∑

1≤`≤n

n|`m

1

=
1

2

N∑
m=M+1

N∑
n=M+1

gcd(m,n)

(mn)s+1
.

(We use an identity obtain during the proof of Lemma 5 for the last equality.) For any

integer m ≥ 1, the Dirichlet series with positive terms Am(s + 1) :=
∑∞

n=1
gcd(m,n)

ns+1 is
convergent and thus

∫ 1

0

(
Φs,N(α)− Φs,M(α)

)2
dα ≤ 1

2

N∑
m=M+1

Am(s + 1)

ms+1
.

It remains to prove that the series with term Am(s + 1)/ms+1 converges. For this, we
proceed as follows. The arithmetic function n 7→ gcd(m,n) is multiplicative and bounded
by m. Therefore, Am(t) converges for any t such that Re(t) > 1 and we have

Am(t) =
∏

p

( ∞∑

k=0

a(pk)

pkt

)

=
∏

p|m

( vp(m)∑

k=0

pk

pkt
+

∞∑

k=vp(m)+1

pvp(m)

pkt

)
·
∏

p-m

( ∞∑

k=0

1

pkt

)

= ζ(t)
∏

p|m

(
1

p(t−1)vp(m)

(
p(t−1)(vp(m)+1) − 1

pt−1 − 1
− 1

pt − 1

)(
1− 1

pt

))
.

In particular, substituting s + 1 for t with s > 0, we obtain the bound

Am(s + 1) ¿
∏

p|m

(
1 +

1

ps

)
,
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where the implicit constant depends on s. Now, for any s > 0, we have

∏

p|m

(
1 +

1

ps

)
=

∑

d|m

|µ(d)|
ds

≤
∑

d|m
1 ≤ eO(log(m)/ log log(m))

for some absolute constant (Extremal order of
∑

d|m 1, in Tenenbaum [21, p. 84]). Hence,
we have proved that ∣∣∣∣

Am(s + 1)

ms+1

∣∣∣∣ ¿
eO(log(m)/ log log(m))

ms+1
,

where the right-hand side is the term of a convergent series, as was to be proved.
Therefore, ||Φs,N − Φs,M ||2 tends to 0 when N ≥ M → +∞, so that the sequence

(Φs,N)N≥0 converges in L2(0, 1) to a certain function Φ̂s. By a classical property, we

deduce the existence of a subsequence (ΦNk,s)k such that ΦNk,s → Φ̂s almost surely, which

implies that Φs = Φ̂s almost surely.

5.4. Proof of (iv). Given some irrational number α and s ∈ (0, 1], that will be further
specified later, we consider a sequence of coprime rational numbers (am/bm)m that con-
verges to α.

By the mean value theorem, we have

∣∣∣∣Φs,N(α)− Φs,N

(am

bm

)∣∣∣∣ ≤
N∑

n=1

1

ns+1

n∑

k=1

∣∣∣ cos(2πknα)− cos
(
2πkn

am

bm

)∣∣∣

≤
N∑

n=1

1

ns+1

n∑

k=1

∣∣∣2πknα− 2πkn
am

bm

∣∣∣

≤ 2π
∣∣∣α− am

bm

∣∣∣ ·
N∑

n=1

1

ns

n∑

k=1

k

¿ N3−s
∣∣∣α− am

bm

∣∣∣, (5.3)

where the implicit constant depends only on s. Hence,

Φs,N(α) = Φs,N

(am

bm

)
+O

(
N3−s

∣∣∣α− am

bm

∣∣∣
)

=
HN(s)

bm

+O(bm) +O
(
N3−s

∣∣∣α− am

bm

∣∣∣
)
, (5.4)

by (5.1) and where the implicit constants depend on s. We now distinguish the case s = 1
from the case s ∈ (0, 1).

• Case s = 1. Since HN = log(N) +O(1), Eq (5.4) becomes

Φs,N(α) =
log(N)

bm

+O(bm) +O
(
N2

∣∣∣α− am

bm

∣∣∣
)
. (5.5)
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Let us now assume that α is such that

0 <
∣∣∣α− am

bm

∣∣∣ ≤ 1

eδmb2m
, (5.6)

where δm is some function tending to +∞ with m. We can take for example α =
∑

n≥1 1/bn

avec bn+1 = 2b3n et b1 = 1: for any m ≥ 1, we have

m∑
n=1

1

bn

=:
am

bm

and obviously (am, bm) = 1 because am is odd and bm is a pure power of 2. Of course, the
diophantine condition (5.6) implies that α is a Liouville number.

We choose N = Nm = be 1
2

δmb2mc, so that (5.5) becomes

Φ1,Nm(α) =
1

2
δmbm +O(bm) +O(1). (5.7)

Then, it follows that

lim sup
N→+∞

Φ1,N(α) = +∞.

In fact, (5.7) even implies that

Φ1,Nm(α) À
√

δm log(Nm),

with Nm ≈ e
1
2

δmb2m . We can choose δm much larger than bm, and have bm = O(log(Nm)ε)
for any given ε ∈ (0, 1). Therefore, there exist infinitely many choices for the sequence
(δm)m (corresponding to infinitely many α) such that δm À log(Nm)/b2

m À log(Nm)1−2ε,
in which case we have

lim sup
N→+∞

Φ1,N(α)

log(N)1−ε
= +∞,

as claimed. Clearly, we can make this contruction for a dense set of Liouville numbers.

• Case s ∈ (0, 1). Since HN(s) = N1−s

1−s
+O(1), Eq (5.4) becomes

Φs,N(α) =
N1−s

(1− s)bm

+O(bm) +O
(
N3−s

∣∣∣α− am

bm

∣∣∣
)
. (5.8)

Let us assume for the moment that α is not a Liouville number and is such that

0 <
∣∣∣α− am

bm

∣∣∣ ≤ 1

bµ
m

,

where (am, bm) = 1, for some µ > 2 + 4
1−s

, which implies that the irrationality exponent of

α is ≥ 2 + 4
1−s

.

We choose N = Nm =
⌊
b

µ
3−s
m

⌋
so that Eq (5.8) becomes

Φs,Nm(α) =
1

1− s
b

(1−s)µ
3−s

−1
m +O(bm) +O(1). (5.9)
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The condition on µ ensures that (1−s)µ
3−s

− 1 > 1 and thus

lim sup
N→+∞

Φs,N(α) = +∞.

In fact, (5.9) even implies that for any ε > 0, we have

lim sup
N→+∞

Φs,N(α)

N (1−s)− 3−s
µ
−ε

= +∞.

The reader will easily adapt this computation to the case of Liouville numbers where she
will replace µ by a sequence (µm)m that tends to +∞ with m. In this case, we obtain

lim sup
N→+∞

Φs,N(α)

N (1−s)−ε
= +∞.

Again, this contruction can be made for a dense set of Liouville numbers.

5.5. Proof of (v). To prove the divergence of Φs,N(α) for any α and s ≤ 0, it is enough to
prove that that

∑n
m=1 cos(2πmnα) does not tend to 0 as n → +∞. For a rational α = a/b,

this is immediate because, for any integer n, we have

bn∑
m=1

cos(2πmnbα) =
bn∑

m=1

cos(2πmna) = bn,

hence

lim sup
n→+∞

1

n

n∑
m=1

cos
(
2πmn

a

b

)
= 1.

For α irrational, this is a consequence of the following lemma.

Lemma 6. For any irrational number α, we have

lim sup
n→+∞

1

n

n∑
m=1

cos(2πmnα) =
L(α)

2π
sin

( 2π

L(α)

)
6= 0.

Proof. We have

1

n

n∑
m=1

cos(2πmnα) =
cos(πn(n + 1)α) sin(πn2α)

n sin(πnα)

=
cos(πnα) sin(2πn2α)

2n sin(πnα)
− sin(πn2α)2

n

=
cos(π||nα||) sin(2πn||nα||)

2n sin(π||nα||) +O
( 1

n

)
.
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The quantity
cos(π||nα||) sin(2πn||nα||)

2n sin(π||nα||) is maximal when ||nα|| is close to 0 and n||nα||
not too close to 0, and thus

lim sup
n→+∞

1

n

n∑
m=1

cos(2πmnα) = lim sup
n→+∞

sin(2πn||nα||)
2n sin(π||nα||)

= lim sup
n→+∞

sin(2πn||nα||)
2πn||nα||

=
L(α)

2π
sin

( 2π

L(α)

)
.

Moreover, since L(α) ≥ √
5, we have 0 < 2π/L(α) < π and thus sin( 2π

L(α)
) 6= 0. ¤

6. Proof of Theorem 2

6.1. Proof of (i). We fix a rational number a/b with gcd(a, b) = 1 and b = 1. Using the
Fourier expansion of ||α|| as for FN(α), we obtain

1

HN(s)
Gs,N

(a

b

)
=

1

4
− 2

π2

∞∑

`=0

1

(2` + 1)2

1

HN(s)
Φs,N

(
(2` + 1)

a

b

)
.

We now use Eq. (5.1), which says that, provided gcd(u, v) = 1 and v ≥ 1, then

Φs,N

(u

v

)
=

1

v
HN(s) +O(v),

where the constant depends only on s. Hence, if u and v are not coprime, we have

Φs,N

(u

v

)
=

gcd(u, v)

v
HN(s) +O

( v

gcd(u, v)

)
.

It follows that

1

HN(s)
Gs,N

(a

b

)
=

1

4
− 2

π2

∞∑

`=0

gcd(b, 2` + 1)

b(2` + 1)2
+O

( b

HN(s)

)
, (6.1)

where the constant depends only on s.
We now prove the alternative expression of the main term as a product. The principle is

very similar to what was done earlier. We observe that the arithmetic function ` 7→ gcd(b, `)
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is multiplicative and thus that, for any complex number s such that Re(s) > 1,
∞∑

`=0

gcd(b, 2` + 1)

(2` + 1)s
=

∏
p≥3

( ∞∑

k=0

gcd(b, pk)

pks

)

=
∏
p≥3

p|b

( vp(b)∑

k=0

pk

pks
+

∞∑

k=vp(b)+1

pvp(b)

pks

)
·
∏
p≥3

p-b

( ∞∑

k=0

1

pks

)

= ζ(s)

(
1− 1

2s

)∏
p≥3

p|b

(
1

p(s−1)vp(b)

(
p(s−1)(vp(b)+1) − 1

ps−1 − 1
− 1

ps − 1

)(
1− 1

ps

))
.

Using this for s = 2, we find

lim
N→+∞

1

HN(s)
Gs,N

(a

b

)
=

1

4
− 1

4b

∏
p≥3

p|b

(
(pvp(b)+1 − 1)(p + 1)− 1

pvp(b)+2

)
,

which is a rational number < 1
4
.

6.2. Proof of (ii). As seen at the beginning of the proof of (i), we have

Gs,N(α) := Gs,N(α)− 1

4
HN(s) = − 2

π2

∞∑

`=0

Φs,N

(
(2` + 1)α

)

(2` + 1)2
.

To justify that we can pass to the limit N → +∞ under the sum sign, we will use Tannery’s
theorem, which is a version of Lebesgue dominated convergence theorem for series: Let
(An(k))n≥0 be a sequences of complex numbers that depends on an integer parameter k ≥ 0.
Let us assume that

• for all n ≥ 0, limk→+∞ An(k) exists and is finite;
• for all n ≥ 0, there exists Mn such that |An(k)| ≤ Mn for all k ≥ 0 and such that∑

n Mn is convergent.

Then, lim
k→+∞

∞∑
n=0

An(k) =
∞∑

n=0

lim
k→+∞

An(k) < ∞.

We will also need the following lemma.

Lemma 7. (i) For any α ∈ A1 with a finite irrationality exponent µ(α), any integer N ≥ 1
and any integer k ≥ 1, we have |Φ1,N(kα)| ¿ log(k +1), where the constant depends on α.

(ii) Given s ∈ (0, 1), for any α ∈ As with an irrationality exponent µ(α) < 1 + 1
1−s

,

any integer N ≥ 1 and any integer k ≥ 1, we have |Φs,N(kα)| ¿ k(µ(α)−1)(1−s), where the
constant depends on α and s.

Proof. Using the inequality (5.2) and items (iii) and (iv) of Proposition 1, we find that

|Φ1,N(α)| ¿ µ(α) + log c(α)
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and

|Φs,N(α)| ¿ c(α)1−s

1−√2
(µ(α)−1)(1−s)−1

,

where the first constant is absolute and the second one depends on s. Furthermore, it
is straitghforward to see that if α has a finite irrationality exponent, then for all integer
k ≥ 1, the irrational number kα also has a finite irrationality exponent and that we can
take µ(kα) and c(kα)) such that

µ(kα) = µ(α), c(kα) ≤ c(α)kµ(α)−1.

Hence,

|Φ1,N(kα)| ¿ µ(kα) + log c(kα)

≤ µ(α) + (µ(α)− 1) log(k) + log c(α) ¿ log(k + 1),

and similarly

|Φs,N(kα)| ¿ c(kα)1−s

1−√2
(µ(kα)−1)(1−s)−1

≤ c(α)1−sk(µ(α)−1)(1−s)

1−√2
(µ(α)−1)(1−s)−1

¿ k(µ(α)−1)(1−s),

where both constants depend on α, and also s for the second. ¤

We can now easily finish the proof of item (ii) of Theorem 2. Indeed, in the case s = 1,
for any α ∈ A1 with finite irrationality exponent, for any integer ` ≥ 0, (2` + 1)α also
has a finite irrationality exponent and, therefore, belongs to A1 (by Lemma 1, (i)). Hence
Φ1,N((2` + 1)α) converges to Φ1((2` + 1)α) and by (i) of Lemma 7, we have

∣∣∣∣
Φ1,N((2` + 1)α)

(2` + 1)2

∣∣∣∣ ¿
log(` + 1)

(2` + 1)2
,

where the right-hand side is the term of convergent series. By Tannery’s theorem, we
therefore have

lim
N→+∞

Gs,N(α) = − lim
N→+∞

2

π2

∞∑

`=0

Φ1,N

(
(2` + 1)α

)

(2` + 1)2

= − 2

π2

∞∑

`=0

Φ1

(
(2` + 1)α

)

(2` + 1)2
.

In the case s ∈ (0, 1), for any α ∈ As with an irrationality exponent µ(α) < 1 + 1
1−s

, for

any integer ` ≥ 0, (2`+1)α also has an irrationality exponent µ((2`+1)α) = µ(α) < 1+ 1
1−s

and, therefore, belongs to As (by Lemma 1, (ii)). Hence Φs,N((2` + 1)α) converges to
Φs((2` + 1)α) and by (ii) of Lemma 7, we have

∣∣∣∣
Φs,N((2` + 1)α)

(2` + 1)2

∣∣∣∣ ¿
1

`2−(µ(α)−1)(1−s)
,
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where the right-hand side is the term of convergent series because 1 > (µ(α) − 1)(1 − s).
Again, by Tannery’s theorem, we therefore have

lim
N→+∞

Gs,N(α) = − lim
N→+∞

2

π2

∞∑

`=0

Φs,N

(
(2` + 1)α

)

(2` + 1)2

= − 2

π2

∞∑

`=0

Φs

(
(2` + 1)α

)

(2` + 1)2
.

6.3. Proof of (iii). The almost sure convergence of Gs,N to Gs is a consequence of (ii)
because the sets As all have measure 1. It remains to prove the convergence in L2(0, 1).
Firstly, we note that for any integer k ≥ 0 and any integers M ≥ N ≥ 1, we have∣∣∣∣Φs,M

(
(2k + 1)α

) − Φs,N

(
(2k + 1)α

)∣∣∣∣
2

=
∣∣∣∣Φs,M(α) − Φs,N(α)

∣∣∣∣
2

by the 1-periodicity of
the Φs,N . Therefore,

∣∣∣∣Gs,M(α)− Gs,N(α)
∣∣∣∣

2
≤ 2

π2

∞∑

k=0

1

(2k + 1)2

∣∣∣∣Φs,M

(
(2k + 1)α

)− Φs,N

(
(2k + 1)α

)∣∣∣∣
2

≤ 2

π2

∞∑

k=0

1

(2k + 1)2

∣∣∣∣Φs,M(α)− Φs,N(α)
∣∣∣∣

2

≤ 1

4

∣∣∣∣Φs,M(α)− Φs,N(α)
∣∣∣∣

2
.

Since the right hand side converges to 0 by Theorem 1 when M ≥ N → +∞, we have
obtained the convergence of the Gs,N in L2(0, 1) to a function that can be nothing but Gs.

6.4. Proof of (iv). We will use the same method as in the proof of item (iv) in Theorem 1.
The proof is based on the “identity” (6.2) given in Lemma 8 below. We will then leave
most of the details to the reader as no new idea will be involved.

Lemma 8. Let us fix s ∈ (0, 1], an irrational number α and a rational number a/b with
gcd(a, b) = 1 and b ≥ 1. For any integers M ≥ 1, N ≥ 1 we have

Gs,N(α) =

(
1

4
− 2

π2

∞∑

`=0

gcd(b, 2` + 1)

b(2` + 1)2

)
HN(s)

+O(b) +O
(

HN(s)

M

)
+O

(
HMN3−s

∣∣∣α− a

b

∣∣∣
)

, (6.2)

where the implicit constants depend at most on s.

Proof. Nota Bene: As the reader will check, all the implicit constants below depend at
most on s.
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Firstly, starting from the definition, we find that, for any integer M ≥ 1,
∣∣∣∣Gs,N(α)−Gs,N

(a

b

)∣∣∣∣

≤ 2

π2

( M∑

`=0

+
∞∑

`=M+1

)
1

(2` + 1)2

∣∣∣Φs,N

(
(2` + 1)α

)− Φs,N

(
(2` + 1)

a

b

)∣∣∣.

Secondly, using the upper bound (5.3), we have

M∑

`=0

1

(2` + 1)2

∣∣∣Φs,N

(
(2` + 1)α

)− Φs,N

(
(2` + 1)

a

b

)∣∣∣ ¿ N3−s
∣∣∣α− a

b

∣∣∣
M∑

`=0

1

2` + 1

¿ HMN3−s
∣∣∣α− a

b

∣∣∣.
Thirdly, we know that |Φs,N(α)| ≤ HN(s) in all situations. Hence,

∞∑

`=M+1

1

(2` + 1)2

∣∣∣Φs,N

(
(2` + 1)α

)− Φs,N

(
(2` + 1)

a

b

)∣∣∣

¿ HN(s)
∞∑

`=M+1

1

(2` + 1)2
¿ HN(s)

M
.

Therefore, we have obtained

Gs,N(α) = Gs,N

(a

b

)
+O

(
HN(s)

M

)
+O

(
HMN3−s

∣∣∣α− a

b

∣∣∣
)

and the lemma follows using (6.1). ¤
To conclude the proof of item (iv), we first choose a sequence of rational (am/bm)m that

converges to α, with (am, bm) = 1, bm ≥ 1. Then, we take M = bHN(s)c, so that after
some simplifications, (6.2) becomes

Gs,N(α) =

(
1

4
− 2

π2

∞∑

`=0

gcd(bm, 2` + 1)

bm(2` + 1)2

)
HN(s) +O(bm) +O

(
log(N)N3−s

∣∣∣α− am

bm

∣∣∣
)

.

Since
2

π2bm

≤ 2

π2

∞∑

`=0

gcd(bm, 2` + 1)

bm(2` + 1)2
,

it follows that

Gs,N(α)− 1

4
HN(s) ≤ −2HN(s)

π2bm

+O(bm) +O
(

log(N)N3−s
∣∣∣α− am

bm

∣∣∣
)

. (6.3)

For s = 1 or s ∈ (0, 1), we now take for α the same reals as those used during the proof
of item (iv) of Theorem 1 and with the same choices for N in function of bm. In (6.3),

the main term is −2HN (s)
π2bm

and we obtain the divergence at the rate indicated for irrational



32

numbers with irrationality exponent m(α) > 2 + 4
1−s

when s ∈ (0, 1), or for a dense set of
Liouville numbers when s = 1.

6.5. Proof of (iv). Since L(α) ≥ √
5 for any irrational number α, it follows from item

(iv) of Theorem 4 that

lim inf
n→+∞

Fn(α) <
1

4
.

Thus, for any s ≤ 0, the sequence n−s
(
Fn(α)− 1

4

)
does not tend to zero and a fortiori the

series
∑

n n−s
(
Fn(α)− 1

4

)
does not converge.

The divergence for α a rational number is a consequence of the oscillating (and nearly
periodic) behavior of Fn(α)− 1

4
as shown in item (ii) of Theorem 4.

7. Proof of Theorem 3

7.1. Proof of (i). The Fourier expansion of Φs,N(α) is

Φs,N(α) =
N2∑

k=1

cos(2πkα)
∑

1≤m≤n≤N

mn=k

1

ns+1
=

N2∑

k=1

cos(2πkα)
∑

n|k√
k≤n≤N

1

ns+1

=
∞∑

k=1

cos(2πkα)
∑

n|k√
k≤n≤N

1

ns+1

and the difficulty is to justify that we can pass to the limit under the sum sign.

By Carleson’s theorem [5], we know that the Fourier expansion of Φs converges almost
surely to Φs because Φs ∈ L2(0, 1). We will give a direct proof of the almost sure conver-
gence that avoids this difficult theorem.

Set

Ŝs,N(α) =
N∑

k=1

φ̂s,k cos(2πkα),

where φ̂s,k :=
∑

n|k,n≥
√

k

1

ns+1
. We will show that, for all α ∈ Bs,

lim
N→+∞

Ŝs,N(α) = Φs(α).

This will prove that the trigonometric series

Ŝs(α) :=
∞∑

k=1

φ̂s,k cos(2πkα)

converges almost surely to Φs(α). It will remain to show that Ŝs is the Fourier series of

Φs, i.e. that the coefficients φ̂k,s coincide the Fourier coefficients φk,s of Φs computed by
the usual integrals.
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We now pass to the details

• Almost sure convergence of a trigonometric series to Φs.
For any real number α, we observe that

Ŝs,N(α) =
N∑

n=1

1

ns+1

∑

1≤k≤n2,k≤N,n|k
cos(2πkα) =

N∑
n=1

1

ns+1

∑

1≤k≤n, k≤N/n

cos(2πknα)

=
∑

1≤n≤√N

1

ns+1

n∑

k=1

cos(2πknα) +
∑

√
N<n≤N

1

ns+1

∑

1≤k≤N/n

cos(2πknα) (7.1)

=
∑

1≤n≤√N

1

ns+1

n∑

k=1

cos(2πknα) +O
( ∑
√

N<n≤N

1

ns+1||nα||
)

.

In the last step, we have used the following fact: we have
∑

1≤k≤N/n

cos(2πknα) = O
( 1

| sin(πnα)|
)

= O
( 1

||nα||
)
,

where the constants are absolute, so that
∑

√
N<n≤N

1

ns+1

∑

1≤k≤N/n

cos(2πknα) = O
( ∑
√

N<n≤N

1

ns+1||nα||
)
.

We have thus obtained the equality

Ŝs,N(α) = Φb√Nc,s(α) +O
( ∑
√

N<n≤N

1

ns+1||nα||
)

.

If α ∈ As, then Φb√Nc,s(α) converges to Φs(α) while if α ∈ Bs, then the series
∑

n
1

ns+1||nα||
is convergent by Kruse’s inequality (4.4). Therefore, limN Ŝs,N(α) exists and is equal to
Φs(α) for all irrational numbers α ∈ As ∩Bs = Bs (at least).

• Convergence of Ŝs to Φs in L2(0, 1). It is clear that, for any s ∈ (0, 1],

|φs,k| ≤ 1

k(s+1)/2

∑

n|k
1 ¿ ec log(k)/ log log(k)

k(s+1)/2
.

Hence
∑

k φ2
k,s < ∞ and by the Fischer-Riesz’s Theorem, the series Ŝs converges in L2(0, 1).

Its L2-sum is Φs because it converges to it also almost surely.

• Fourier coefficients of Φs. Let (cs,k)k∈Z and (ĉs,k)k∈Z denote the Fourier coefficients of

Φs and Ŝs respectively (which are already known to be 0 for k = 0 and k odd). Since both
functions belong to L2(0, 1), the coefficients can be computed by the usual integrals and

by the Cauchy-Schwarz inequality, we have for any k ∈ Z, |cs,k − ĉk,s| ≤ ||Φs − Ŝs||2 = 0.

Hence, Ŝs is the Fourier series of Φs.
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7.2. Proof of (ii). We now know that Ŝs,N(α) = Ss,N(α) and we start again with the
identity (7.1):

Ss,N(α) =
∑

1≤n≤√N

1

ns+1

n∑

k=1

cos(2πknα) +
∑

√
N<n≤N

1

ns+1

∑

1≤k≤N/n

cos(2πknα).

We now specify α = a/b ∈ Q with gcd(a, b) = 1, b ≥ 1.
We use again a computation done during the proof of Theorem 4, (ii):

∑

1≤k≤N/n

cos
(
2πkn

a

b

)
=

N

bn

b∑
j=1

cos
(
2πjn

a

b

)
+O(b).

Hence, using the fact that
∑b

j=1 cos(2πjna
b
) = 0, resp. = b, if b - n, resp. b | n, we obtain

that

Ss,N

(a

b

)
= Φb√Nc,s

(a

b

)
+ N

∑
√

N<n≤N

b|n

1

ns+2
+O

(
b

∑
√

N<n≤N

1

ns+1

)
(7.2)

=
1

b
Hb√Nc(s)(1 + o(1)) +

1

b(s + 1)
N

1−s
2 (1 + o(1)) +O(b).

(In (7.2), the implicit constant is absolute.)

If s ∈ (0, 1), then since Hb√Nc(s) ∼ 1
1−s

N
1−s
2 , it follows that

lim
N→+∞

1

Hb√Nc(s)
Ss,N

(a

b

)
=

2

b(1 + s)
. (7.3)

If s = 1, then the term 1
b(s+1)

N
1−s
2 (1 + o(1)) is simply O(1), hence

lim
N→+∞

1

Hb√Nc
S1,N

(a

b

)
=

1

b

and (7.3) also holds for s = 1. This completes the proof of (ii).

7.3. Proof of (iii). Item (iii) is proved by the same method as the one used to show that
the sequence Φ1,N does not converge for certain Liouville numbers: for this we use the
approximations (5.1) and (7.2).

8. Graphs and numerical values

In this section, we present approximate values of the function Φ1(α) for various values
of α, obtained using the freeware GP-Pari [10]. For this, we need to find an upper bound
for the speed of convergence of the sequence Φs,N(α) to its limit. We explain later why,
despite an explicit bound for the speed of convergence of Gs,N(α), we cannot compute
values of Gs(α). Some graphs are also displayed, obtained using the computer algebra
freeware XCAS [22].
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8.1. Speed of convergence.

Proposition 2. (i) If α ∈ A1 has a finite irrationality exponent µ(α), we have
∣∣Φ1(α)− Φ1,N(α)

∣∣

≤ π(1 + ζ(2))
(
3(1 + log c(α))

log(qm)

qm

+ 5(µ(α)− 1)
log(qm)2

qm

)

for any integer N such that N ≥ qm with m ≥ 6.

(ii) If α ∈ As (for some s ∈ (0, 1)) and has an irrationality exponent µ(α) < 1 + 1
1−s

,
then

∣∣Φs(α)− Φs,N(α)
∣∣

≤ π
(
1 + ζ(s + 1)

)

(1− s)q
1−(µ(α)−1)(1−s)
m

(
3(1 + c(α)1−s) log(qm) +

c(α)1−s

1−√2
(µ(α)−1)(1−s)−1

)
.

for any integer N such that N ≥ qm with m ≥ 6.

Proof. During the proof of item (ii) of Theorem 1, we saw that∣∣∣∣∣
cos

(
πn(n + 1)α

)
sin

(
πn2α

)

sin
(
πnα

)
∣∣∣∣∣ ≤

π

2

||n2α||
||nα||

for any n ≥ 1. Hence,

∣∣Φs(α)− Φs,N(α)
∣∣ ≤

∞∑
n=N

∣∣∣∣∣
cos

(
πn(n + 1)α

)
sin

(
πn2α

)

ns+1 sin
(
πnα

)
∣∣∣∣∣ ≤

π

2

∞∑
n=N

||n2α||
ns+1||nα||

and the conclusion follows by Proposition 1, (iii) and (iv). ¤
The bounds given by Proposition 2 are good enough to provide a few digits of Φs(α)

with a computer for any given α and s and with N of a reasonable size. The situation is
somewhat different for the computation of Gs(α). It is possible to obtain explicit bounds
for the difference

∣∣Gs(α)− Gs,N(α)
∣∣, using the fact that

∣∣Gs(α)− Gs,N(α)
∣∣ ≤ 2

π2

∞∑

k=0

1

(2k + 1)2

∣∣Φs

(
(2k + 1)α

)− Φs,N

(
(2k + 1)α

)∣∣.

We now use Proposition 2 to bound

Φs

(
(2k + 1)α

)− Φs,N

(
(2k + 1)α

)

but we have to be careful that the bound depends on qm = qm

(
(2k + 1)α

)
. There does

not seem to exist general results providing a simple link between the sequences (qm(α))m

and (qm(`α))m, where ` is any positive integer. Therefore, we uniformize the bounds
of Proposition 2 by means of the (already multiply used) inequality qm(α) ≥ 2(m−1)/2.
We don’t write the exact result which seems useless in practice because, for example, to
compute the first digit of G1(

√
2) one needs to compute G1,259717522849(

√
2).
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8.2. Explicit irrationality exponents. Our remaining problem is to find numerical ex-
pressions of µ(α) and c(α) for a given α. Unfortunately, there is no general recipe. In the
proposition below, we collect a few results of the litterature that provide explicit values of
these numbers for interesting irrational numbers. We emphasize that the values of µ(α)
below are not necessarily the best known (see [17] for more recent results) but, usually, the
authors of these refinements take c(α) = 1 and state their results for large enough q, which
is not the kind of result we need. It also happens in the case of algebraic numbers that
bounds for µ(α) close to Roth’s result (which asserts that for any ε > 0, m(α) ≤ 2 + ε but
without an explicit expression of c(α, ε)) have been obtained, but at the cost of increased
values of c(α), which is not necessarily a good thing for numerical computations.

Proposition 3. (i) (Liouville’s inequality [17]) Assume that α is a real algebraic irrational

number of degree d, with minimal polynomial P (X) =
∑d

j=0 cjX
j ∈ Z[X]. For any rational

number p/q, q ≥ 1, wehave
∣∣∣∣α−

p

q

∣∣∣∣ ≥
1(|α|+ 1

)d−1 ∑d
j=1 j|cj|

· 1

qd
.

In other words, we can take µ(α) = d and c(α) = (|α|+ 1)d−1
∑d

j=1 j|aj|.
(ii) (Baker’s inequality [1]) For any rational number p/q with q ≥ 1, we have

∣∣∣∣
3
√

2− p

q

∣∣∣∣ ≥
10−6

q2.955
.

Hence we can take µ( 3
√

2) = 2.955 and c( 3
√

2) = 106.

(iii) (Mignotte’s inequalities [15]) For any rational number p/q with q ≥ 2, we have
∣∣∣∣π −

p

q

∣∣∣∣ ≥
1

q21
and

∣∣∣∣π2 − p

q

∣∣∣∣ ≥
1

q18
.

Hence we can take µ(π) = 21, µ(π2) = 18 and c(π) = c(π2) = 1.
(iv) (Bundschuh’s inequality [4]) For any rational number p/q with q ≥ 1, we have

∣∣∣∣e−
p

q

∣∣∣∣ ≥
log log(4q)

18q2 log(4q)
.

Hence we can take µ(e) = 2.1 and c(e) = 77.

Proof. For (ii) to (iv), we refer to the cited references. Item (i) is also classical (in this or
another form) but its proof is so short that we provide it here.

Let us assume that |α − p
q
| ≤ 1. By the mean value theorem, there exists ξ between α

and p/q such that

P
(p

q

)
= P (α)− P

(p

q

)
= P ′(ξ)

(
α− p

q

)
.
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Since the degree of α is at least 2 and P is the minimal polynomial of α, neither P (p
q
) nor

P ′(ξ) can be 0. Hence, |P (p
q
)| ≥ 1

qd and

0 < |P ′(ξ)| ≤ max(1, |ξ|)d−1

d∑
j=1

j|cj|.

Therefore, we have
∣∣∣α− p

q

∣∣∣ ≥ 1

max(1, |ξ|)d−1
∑d

j=1 j|cj|
· 1

qd
.

It remains to bound ξ. Since |α − p
q
| < 1 and ξ is between α and p

q
, it is clear that

|ξ| ≤ |α|+ 1. Hence max(1, |ξ|) ≤ max(1, 1 + |α|) = 1 + |α| and therefore
∣∣∣∣α−

p

q

∣∣∣∣ ≥
1(|α|+ 1

)d−1 ∑d
j=1 j|cj|

· 1

qd
.

Since this bound also holds when |α− p
q
| ≥ 1, the result follows. ¤

8.3. Graphs and numerical values of Φs(α). In this section, we present approximations
of various values of Φs(α) for s = 1. For this, we computed Φs,N(α) with GP-Pari with
N and the reader will check using Propositions 2 and 3 that we get three, four or five
significant digits as indicated.

We also present graphical representations of Φs,50000 for s = 1, 1
2
, 1

10
. Since Φs,N are

continous while Φs is (probably) not, these representations should be taken cautiously.
However, they present some interesting features, coroborated by the results proved in the
previous sections or the table below: we see that Φs,N(α) converges for less values of α
when s is getting closer to 0) and also that the absolute minimun of Φs seems to achieved

at
√

5−1
2

and 3−√5
2

in the four cases considered.

α Φ1(α) N√
5−1
2

−1.11153 2.05× 109√
2− 1 −1.08588 2.08× 109

√
7565−53

82
−1.08589 2.27× 109

3
√

2 −0.1419(0) 3.39× 108

e −0.3666(3) 1.92× 108

π 0.357(10) 3.20× 108

π2 0.370(67) 2.67× 108

The figures between parentheses are stable for a long time before reaching the indicated
values of N , but our bound does not prove that they are correct. For the same reason, we
do not mention our numerical results for Φ1/2(α).
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Figure 4. Φ1,50000

The choice of the quadratic number
√

7565−53
82

is not arbitrary. Indeed, in the Lagrange
spectrum, it is the number with the fifth smallest Lagrange constant: we have

L

(√
5− 1

2

)
< L

(√
2− 1

)
< L

(√
221− 9

14

)
< L

(√
1517− 23

38

)
< L

(√
7565− 53

82

)

(see [7, p. 10]). It is interesting to see that this order is not respected by Φ1 (and also by
Φ1/2 if we believe our “unpublished” data):

Φ1

(√
5− 1

2

)
< Φ1

(√
7565− 53

82

)
< Φ1

(√
2− 1

)
.

The function Φs does not have a clear diophantine signification, since it is just a brick used

to define Gs. But the fact that Φ1

(√
5−1
2

)
seems to be a minimum value of Φ1 is puzzling.

8.4. Graphs and numerical values of Gs(α). We present approximations to four digits
for a few values of G1(α); they are computed from G1,30000(α). However, we cannot garantee
that even a single digit after the decimal point is correct, even though our computations
in Pari-GP suggest this is the case. It seems that

G1

(√
5− 1

2

)
= 0.2169 . . . , G1

(√
2− 1

)
= 0.2103 . . . , G1

(√
7565− 53

82

)
= 0.2105 . . .

and again we observe that the order of Lagrange spectrum does not seem to be respected.
We also present graphical representations of Gs,200 for the same values of 1, 1

2
, 1

10
. (For

s = 1, the plot is displayed in the Introduction.) The same precautions should be taken
as for Φs,50000 concerning their interpretation. However, they present the same interesting
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Figure 5. Φ 1
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Figure 6. Φ 1
10

,50000

features: we “see” that Gs,N(α) converges for less values of α when s is getting closer to 0)

and also that the absolute maximun of Gs seems to be achieved at
√

5−1
2

and 3−√5
2

.
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Figure 7. G 1
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9. Open problems

We collect here some questions that we believe are interesting and worth investigating.
The answer might depend on the value of s ∈ (0, 1].

1) To find the exact domains of definition of Φs and Gs.
2) To prove or disprove that Φs, resp. Gs, is bounded below, resp. above, on its domain

of definition. To prove or disprove that Φs, resp. Gs, is not bounded above, resp. below.
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3) To prove or disprove that Φs, resp. Gs, takes its minimum, resp. maximum, at
√

5−1
2

and 3−√5
2

.
4) To improve the bounds in Propositions 2 or to device a different and more efficient

method to compute approximate values of Φs and Gs.
5) To find expressions of lim infn Fn(α) and lim supn Fn(α) in terms of some known

diophantine characteristics of α. The techniques of [3] and [19] might be useful here.
6) For some given s < 1, consider α, β ∈ As such that Φs(α) ≤ Φs(β). Do we have

Φt(α) ≤ Φt(β) for any t ∈ (s, 1]? Same question with Gs instead of Φs.
7) Do the graphs of Φs and Gs have any kind of fractal/auto-similarity structure, even

in an approximate sense? For this problem, does the similarity of the Fourier coefficients
of Φs with those of Eisenstein series can be used in some way? We recall for exam-
ple that Itatsu [11] used theta series to study the differentiability of Riemann’s function∑∞

n=1
sin(n2α)

n2 . See also [8].
8) Since cos(πn(n + 1)α) = cos(πnα) cos(πn2α)− sin(πnα) sin(πn2α), we have

Φs(α) =
1

2

∞∑
n=1

cot(πnα) sin(2πn2α)

ns+1
−

∞∑
n=1

sin(πn2α)2

ns+1
.

The second series on the right hand side converges for any α and any s > 0 and is remi-

niscent of Riemann’s function. The first series seems to attain its minimum at
√

5−1
2

when
s ∈ (0, 1]. Is this true?

In connection with the last two questions, we observe that the implied series have a
ressemblance with the one on the left hand side of the identity

∑

m∈Z
m odd

(−1)(m−1)/2qm2/4 cot
(mπα

2
− πx

)
= −i

θ3(α)θ4(α)θ2(α)

θ4(x, α)
(9.1)

where q = eiπα and

θ3(x, α) =
∑

m∈Z
qm2

e2iπmx, θ4(x, α) =
∑

m∈Z
(−1)mqm2

e2iπmx

θ2(x, α) =
∑

m∈Z
m odd

qm2/4eiπmx, θ1(x, α) =
∑

m∈Z
m odd

(−1)(m−1)/2qm2/4eiπmx

are the usual Jacobi theta series. The modular properties of the function in (9.1) and of
many other related functions are studied in [16].

Finally, let us mention that the related series (amongst many others)

∞∑
n=1

sin(2πn||nα||)
n2 sin(π||nα||) ,

∞∑
n=1

sin(2πn||nα||)
n2||nα|| ,

∞∑
n=1

||n2α|| sin2(πn2α)

n2||nα||
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all seem to be extremal at α =
√

5−1
2

. On the other hand, the series
∑∞

n=1
||n2α||
n2||nα|| seems to

be minimal at
√

5− 2; it is studied in details [20], along with the series
∑∞

n=1(−1)n ||n2α||
n2||nα||

which seems to be minimal at
√

2/2.
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