

Genetic Analysis and Phylogenetic Comparison of Black Queen Cell Virus Genotypes

Zsuzsanna Tapaszti, Petra Forgách, Csaba Kővágó, Grażyna Topolska,

Norbert Nowotny, Miklós Rusvai, Tamás Bakonyi

▶ To cite this version:

Zsuzsanna Tapaszti, Petra Forgách, Csaba Kővágó, Grażyna Topolska, Norbert Nowotny, et al.. Genetic Analysis and Phylogenetic Comparison of Black Queen Cell Virus Genotypes. Veterinary Microbiology, 2009, 139 (3-4), pp.227. 10.1016/j.vetmic.2009.06.002 . hal-00526932

HAL Id: hal-00526932 https://hal.science/hal-00526932

Submitted on 17 Oct 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Title: Genetic Analysis and Phylogenetic Comparison of Black Queen Cell Virus Genotypes

Authors: Zsuzsanna Tapaszti, Petra Forgách, Csaba Kővágó, Grażyna Topolska, Norbert Nowotny, Miklós Rusvai, Tamás Bakonyi

PII:	S0378-1135(09)00286-7
DOI:	doi:10.1016/j.vetmic.2009.06.002
Reference:	VETMIC 4456
To appear in:	VETMIC
Received date:	31-10-2008
Revised date:	20-5-2009
Accepted date:	3-6-2009

Please cite this article as: Tapaszti, Z., Forgách, P., Kővágó, C., Topolska, G., Nowotny, N., Rusvai, M., Bakonyi, T., Genetic Analysis and Phylogenetic Comparison of Black Queen Cell Virus Genotypes, *Veterinary Microbiology* (2008), doi:10.1016/j.vetmic.2009.06.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

VETMIC-D-08-2979 revised manuscriptCCEPTED MANUSCRIPT

1	Genetic Analysis and Phylogenetic Comparison of Black Queen
2	Cell Virus Genotypes
3	Zsuzsanna Tapaszti ¹ , Petra Forgách ¹ *, Csaba Kővágó ¹ , Grażyna Topolska ² , Norbert
4	Nowotny ³ , Miklós Rusvai ⁴ , Tamás Bakonyi ^{1,3}
5	¹ Department of Microbiology and Infectious Diseases, Faculty of Veterinary Science, Szent
6	István University, Hungária krt. 23-25, H-1143 Budapest, Hungary
7	² Laboratory of Bee Diseases, Department of Clinical Sciences, Faculty of Veterinary
8	Medicine, Warsaw University of Life Sciences, 8 Ciszewskiego str., 02-786 Warsaw, Poland
9	³ Zoonoses and Emerging Infections Group, Clinical Virology, Department of Pathobiology,
10	University of Veterinary Medicine, Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
11	⁴ Department of Pathology and Forensic Veterinary Medicine, Faculty of Veterinary Science,
12	Szent István University, István u. 2, H-1078 Budapest, Hungary
13	
14	Running title: Phylogeny of BQCV
15	
16	*Corresponding author. Mailing address: Department of Microbiology and Infectious
17	Diseases, Faculty of Veterinary Science, Szent István University, Hungária krt. 23-25, H-
18	1143 Budapest, Hungary. Phone: 36 1 2519900. Fax: 36 1 2519260. E-mail:
19	Forgach.Petra@aotk.szie.hu
20	

1 Abstract

Phylogenetic analysis of 22 Black queen cell virus (BQCV) genotypes collected from 2 3 honeybee colonies in Poland, Austria and Hungary was performed on a partial helicase 4 enzyme coding region (ORF1) and on a partial structural polypeptide coding region (ORF2). While the phylogeny based on the ORF2 region showed - with the exception of one strain 5 from Poland – clustering of the genotypes corresponding to their geographic origin, the 6 7 ORF1-based tree exhibited a completely different distribution of the Polish strains: three of 8 them clustered within a branch clearly separated from all other central European BQCVs, 9 while four other Polish strains remained well within the central European BQCV genotypes. In order to investigate this discrepancy in more detail, the nearly complete genome sequences 10 11 of the 3 differing Polish strains were determined, together with one Hungarian sample. The sequences were aligned to each other and to the reference strain from South-Africa. 12 13 Comparison of the different genome regions revealed that the 5'-UTR and the intergenic regions of the BQCV genome are highly conserved with longer homologous sections. ORF1 14 15 (non-structural protein coding region) was found more variable compared to ORF2 (structural 16 protein coding region). The 5'-proximal third of ORF1 was particularly variable and contained 17 several deletions / insertions. The sudden changes in the similarity levels of BQCV strains in 18 different genomic regions are indicative of preceding recombination events.

19

20 Keywords: honey bee; Black queen cell virus; BQCV; RT-PCR; phylogenetic analysis

1 Introduction

2 Black queen cell virus (BQCV) was first isolated from queen prepupae and pupae, which 3 were found dead in their cells. The name of the virus was derived from the darkened areas on 4 the wall of queen cells containing infected pupae (Bailey and Woods, 1977). BOCV is a 5 widely prevalent virus; recent surveys in worker bees in France and Austria detected 86% and 6 30% infection rates, respectively (Tentcheva et al., 2004; Berényi et al., 2006). Infected 7 worker bees remain apparently healthy (Bailey, 1983b). It is believed that such bees transmit 8 the virus to bee larvae, especially queen bee larvae, with the secreted brood food - (Allen and 9 Ball, 1996); experiment showed that queen larvae can be successfully infected with BQCV 10 added into larval food (Topolska, 2008). In Australia and Poland BQCV was found to be the 11 main cause of death of the queen brood in queen rearing apiaries (Anderson, 1993; Topolska, 12 2008). Adult worker honeybees, worker or drone brood can also be infected by the virus, but 13 normally without apparent morphologic alterations, although symptomatic BQCV infection of such broods was also reported (Bailey and Woods, 1977; Siede and Buchler, 2003). 14

15 BQCV particles contain a single stranded RNA genome of 8550 nt, consisting of two open 16 reading frames (ORFs): the 5'-proximal ORF (ORF1) encoding a putative replicase 17 polyprotein, and the 3'-proximal ORF (ORF2) encoding a capsid polyprotein (Leat et al., 18 2000). The initiation of ORF1 is at nucleotide (nt) position 658, the termination at nt position 19 5625. ORF1 encodes the putative helicase, 3C-like cystein protease and RNA-dependent RNA polymerase (RdRp) enzymes. ORF2 is located between nt pos. 5834 and 8395 (Leat et 20 21 al., 2000). The translation initiation of ORF2 is modulated by internal ribosomal entry site (IRES), its translation initiation codon is CCU, and it encodes four capsid proteins, with 22 molecular masses of 34, 32, 29 and 6 kDa (Leat et al., 2000). BQCV is classified into the 23 24 Cripavirus genus within the Dicistroviridae family.

1 Insect viruses and vertebrate viruses differ significantly regarding their virus-host interactions. In vertebrates, neutralizing antibodies represent an intensive selective pressure 2 3 on the surface antigens of the virions. Therefore, usually appreciable sequence diversity is 4 seen at the antigen-determinant regions of the structural protein coding genome sections of 5 different isolates of the same virus. In insects, however, the immune system does not produce 6 immunoglobulins, and the defence mechanisms are mainly based on innate immunity (Cherry 7 and Silverman 2006, Zambon et al., 2005). Hence, the evolution of insect viruses is probably 8 influenced by other intracellular factors targeting different regions of the viral genome.

9 While in many cases BQCV infections remain unapparent, considerable losses of queen 10 pupae are experienced in some colonies or apiaries. Besides host factors and beekeeping 11 conditions, differences in the virulence of the strains may also influence the development of the disease. The aim of this study was to compare the nucleotide sequence diversity of BQCV 12 13 genotypes obtained from different geographic origins. Although our initial goal was a phylogenetic analysis of central European BQCV strains, the results of the partial sequence 14 15 comparisons stimulated us to perform a comprehensive genome analysis of selected strains to 16 reveal the level of variance within the different genomic regions of the virus.

1 Materials and Methods

2 Samples

Honeybee samples were collected from three European countries: Poland, Hungary and Austria. The samples from Poland (queen cells with dead larvae, prepupae and pupae) originated from a queen rearing apiary, in which BQCV infection symptoms were observed, The samples from Hungary (queen larvae, prepupae, pupae, and adult worker bees) and Austria (adult worker bees) were collected from different apiaries without reported symptoms of BQCV infection, since in these countries BQCV-associated losses were not observed and reported by beekeepers.

Queen larvae, prepupae and pupae were processed individually, while the adult bees from the same colony were pooled (50 bees/colony). Samples were homogenized in 10 ml sterile phosphate buffered saline (PBS), and centrifuged at 1,500 g for 10 minutes to clear from crude cell debris. The supernatants were centrifuged again at 12,000 g for 15 minutes to pelletize fine cellular elements, bacterial and fungal spores. The supernatants were further processed.

16

17 RNA isolation and RT-PCR

18 RNA was extracted from 140 µl sample supernatant by using QIAamp viral RNA mini kit 19 (Oiagen, Hilden, Germany) according to the manufacturer's instructions. Two pairs of oligonucleotide primers were designed, based on the BQCV genome deposited in GenBank 20 21 database (accession number: AF183905), using Sci-Ed-Central primer designer program 22 (Scientific and Educational Software, version 3.0). Primers were designed to amplify partial 23 sequences of the structural polyprotein gene and the RNA helicase enzyme gene regions. 24 Further sets of primers were also designed to determine the complete genome sequence of selected BOCV genotypes. The sequences, orientations and locations of the primers, as well 25

as product sizes are listed in Table I and Table II. The oligonucleotides were synthesized by
 Creative Labor Ltd (Szeged, Hungary).

Reverse transcription and amplifications were carried out in a continuous RT-PCR method using the QIAGEN OneStep RT-PCR Kit (Qiagen, Hilden, Germany). The reaction mixture contained 10 µl of 5× reaction buffer, 2 µl of deoxy-nucleoside-triphosphate mix (dNTP), 50 pmol of the appropriate primers, 2 µl of enzyme mix containing Omniscript and Sensiscript reverse transcriptases and HotStarTaq DNA polymerase, 5 µl template RNA, 10 µl Q solution, 40 U RiboLock RNase Inhibitor (Fermentas, Vilnius, Lithuania), and distilled water was added to reach the final volume of 50 µl.

10 The reverse transcription was carried out at 50°C for 30 minutes, followed by heat denaturation at 95°C for 15 min. Thereafter samples were subjected to 40 cycles of 11 amplification: denaturation at 94°C for 45 sec, primer annealing at 55°C for 45 sec, and DNA 12 13 extension at 72°C for 1 min. Finally samples were maintained at 72°C for 10 min, and were kept at 4°C until electrophoresis was carried out. The reactions were accomplished in a MJ 14 15 Research MiniCycler (MJ Research, Inc., Watertown, MA, USA) thermocycler. 16 Amplification products were electrophoresed in agarose gel containing ethidium bromide, 17 visualized by UV transillumination, and photographed by the Kodak DS Electrophoresis 18 Documentation and Analysis System. Product sizes were determined with reference to a 100 bp molecular weight ladder (GeneRuler, Fermentas, Vilnius, Lithuania). 19

20

21 Nucleotide sequencing and computer analysis

22 Specific amplification products were excised from the agarose gel and extracted using 23 QIAquick Gel Extraction Kit (Qiagen, Hilden, Germany), according to the manufacturer's 24 instructions. Fluorescence-based sequencing reactions were performed on the amplification 25 products using the same primers as in the RT-PCRs. The nucleotide sequences were

1 determined in at least two independent reactions using an ABI Prism 310 automated 2 sequencing system (Biological Research Centre of the Hungarian Academy of Sciences, 3 Szeged). The nucleotide sequences were identified by the Basic Local Alignment Search Tool 4 (BLAST, Altschul et al, 1990) at the National Center for Biotechnology Information (NCBI), 5 NIH, and they were compiled and aligned with using BioEdit 4.7.8 and Align Plus (Scientific 6 and Educational Software) programs. Multiple nucleotide alignments were created by the 7 ClustalX 1.8 program. The phylogenetic analysis was performed using the Phylogeny 8 Inference Program Package (PHYLIP, version 3.6b, Felsenstein, 2004). Bootstrap resampling 9 analysis of 1000 replicates was performed with the SEQBOOT program to prove the stability 10 of the trees. Distance matrices were generated by the DNADIST/Neighbor-Joining and Fitch 11 programs, using a translation/transversion ratio of 2.0. Phylogenetic trees were drawn using TreeView (Win32, version 1.6.6.) software. The differences in the similarity levels of the 12 13 different genomic regions of selected BQCV genotypes were plotted by the SimPlot program (version 3.5.1., Ray, 2003) using the 2-parameter (Kimura) distance model. 14

15

16 Nucleotide sequence accession numbers.

17 The BQCV sequences described in this paper were submitted to GenBank database under18 accession numbers EF517501 - EF517522.

1 Results

2 Phylogenetic analysis of central European Black queen cell virus genotypes

3 Specific amplification products were generated from five Austrian, ten Hungarian and seven Polish samples, from two regions of the BQCV genome (the helicase enzyme coding region, 4 5 between nt positions 2144 and 2726, and the structural polyprotein coding region between nt 6 positions 6540 and 7053, referring to the complete genome sequence, respectively). The 7 nucleotide sequences of the amplification products were determined, and the sequences were 8 aligned to each other. At the helicase domain region the central European genotypes showed 9 82 to 90% identity with the South-African reference strain. The Hungarian and the Austrian 10 BQCVs were more similar to each other (94-99% identity) than to the Polish genotypes (81-11 96% identity). Genotypes Poland4, Poland5 and Poland6 were very similar to each other (98-12 99% identity), and they were more similar to the South-African reference strain than to the 13 other investigated central European strains (exhibiting a similarity rate of 90% to the reference strain, and 81-83% to the other central European genotypes). At the structural 14 15 polyprotein coding region generally higher identity rates (91 to 94%) were found between the 16 central European genotypes and the reference strain. In this region, the Hungarian and 17 Austrian genotypes were again more similar to each other (97-99%) than to the Polish strains 18 (93-96%). One genotype - Poland4 - showed particularly high divergence being 89-91% 19 identical to the other Polish, Austrian and Hungarian genotypes, and 91% identical to the 20 reference strain.

Nucleic acid sequences were translated to putative amino acid sequences, resulting in 186 and and and anion acid (aa) long polypeptide sequences of the helicase and the structural protein region, respectively. The aa sequences were also aligned, and compared to the South-African reference strain, as well as to each other. In the helicase region 91 to 100%, and in the

structural polyprotein region 97 to 100% aa identities were found between the investigated
 genotypes.

3 Phylogenetic analyses were performed on the two selected genome regions (Figure 1. and 2.). 4 The tree based on the partial helicase coding region is separated in three main groups. All 5 Austrian and Hungarian genotypes and Polish genotypes 1 to 3 and 7 cluster within one 6 branch of the tree. Three Polish genotypes (4 to 6) form a separate cluster, and the South-7 African strain represents the third main branch of the tree. The three unique Polish genotypes 8 are closer to the South-African strain than to the other European genotypes (Figure 1.). 9 However, the phylogenetic tree based on the partial structural polyprotein sequences exhibits 10 partly a considerably different topology: the central European BQCVs form a common 11 cluster, however it is sub-divided into two main groups. One group contains the Austrian and 12 Hungarian genotypes, while the Polish viruses form the second group. The separation of the two groups is statistically supported (bootstrap of 1000 replicates is 944). Within the 13 Austrian-Hungarian group, four Austrian genotypes form a separate subgroup together with 14 15 two Hungarian genotypes, while the other eight Hungarian viruses and one Austrian genotype 16 form a second, more diverse branch. In this tree, genotypes Poland 5 and 6 cluster together with the other Polish genotypes, with the exception of Poland 4, which has similar genetic 17 18 distances from both the European genotypes and the South-African strain, the latter 19 representing the third main branch of the tree (Figure 2.). Phylogenetic trees based on the 20 putative amino acid sequences were also constructed, but the relatively short sequences and 21 high similarity rates resulted in low bootstrap values, therefore these trees are not shown.

22

23 Genome comparisons of selected BQCV genotypes

The phylogenetic analysis of central European BQCV genotypes revealed that three viruses from Poland (named Poland 4, 5 and 6) represent a separate cluster of the investigated

1 viruses, when the partial ORF 1 (helicase coding region) was used for the analysis. Poland 5 2 and 6 genotypes, however, clustered together with the other Polish genotypes, when the 3 partial ORF 2 (structural polyprotein coding region) was used as basis of the analysis. This phenomenon could be explained by intramolecular recombination between different BOCV 4 5 genotypes. To prove this theory, the genome sequence of strains Poland 4, 5, and 6 were 6 determined between nt positions 54 and 8431 (referring to the South-African strain's complete 7 genome record) using overlapping PCR amplification products (Table II). This region covers 8 the partial 5' UTR, the entire ORF 1, intergenic, and ORF 2 regions, and the partial 3' end of 9 the genome. As a representative of the "typical" central European genotypes, strain Hungary 10 10 was also sequenced in the same region. One Austrian genotype (Austria 5) was partially 11 sequenced between nt positions 59 and 2255, to investigate the diversity of the ORF 1 region. 12 Multiple sequence alignments were created and the similarity rates within the sequenced 13 regions were demonstrated by SimPlot graphs (Figure 3.). Strains Poland 5 and 6 shared a high level of similarity (98%); they were 95% identical to the Poland 4 genotype, and 89% 14 15 identical to the Hungary 10 and the South-African reference strain. Strain Poland 4 showed 87 16 and 90% similarity to the Hungary 10 and South-African strains, respectively. The Hungarian 17 and South-African viruses shared 86% identity. The detailed analysis of the different genomic 18 regions, however, revealed interesting variance between the sequence identities. Within the 5' UTR region, a 117 nucleotide long section was identified (between nt positions 69 and 235) 19 where all six investigated viruses (Poland 4 to 6, Hungary 10, Austria 5 and South-Africa) 20 21 were 100% identical to each other. ORF 1 (non-structural protein coding region) proved to be 22 highly interesting regarding sequence diversity in being split into two differing regions: the 23 substitutions and insertions/deletions are concentrated on the 5' proximal part of the gene, 24 within a ~1700 nucleotides long region. The European sequences are 84 nucleotides shorter than the South-African strain's sequence. Between nt positions 1176 and 1244, the South-25

1 African strain contains a 69 nucleotide-long continuous sequence, which is missing in the investigated five European genotypes. There are no other BQCV sequences available in 2 3 GenBank database on this part of the genome, therefore, other virus strains could not be included in the comparison. On the 3' side of ORF1 (approx. from nt pos. 1700 to 5625) the 4 5 similarity rates are higher than in the first third of this ORF, and the identity rates correspond 6 to the geographic origin of the viruses: the Polish genotypes are very similar to each other 7 (98-99%), and – surprisingly – they are more similar to the South-African strain (90-91%) 8 than to the Hungarian virus (84-85%). The Hungarian genotype differs widely from the 9 South-African strain as well (84-85%). In GenBank database partial sequence data had been deposited on the 3' proximal side of ORF1 of one BQCV strain from Britain (helicase domain, 10 11 AF125252) and three genotypes from France (helicase AY669847, AY669848, Tentcheva et al., 2004; and RdRp domain, AY230509). These western European genotypes shared 80-96% 12 13 identity with the investigated central European BQCVs, however the Poland 5 and 6 viruses were 97% similar to the French viruses in the helicase domain region. The British strain, 14 15 however, showed similar and relatively low identities to the other investigated strains (82-16 86%).

The two ORFs of BQCV are separated by a 208 nt long intergenic region between positions 5626 and 5833 (Leat et al., 2000). In the 3' proximal of this region a 155 nt long region was found (between positions 5679 and 5833), in which all five investigated genotypes were 100% identical. This homologous region is extended to the first 56 nucleotides of ORF2. In the GenBank database four further nucleotide sequences were found, which were also 100% identical to the investigated viruses at the intergenic region of BQCV (BD173516, BD177020, BD294724, and BD295735; sequences from Japan).

In ORF2 (structural polyprotein coding region) in general higher similarity rates (90 to 92%)
were found between the genotypes from different countries, compared to ORF 1 (82 to 88%).

Poland 5 and 6 genotypes shared 98% identity, while Poland 4 genotype was 92-93% similar
to them in ORF2. In GenBank database partial genome sequences were found in this region of
one genotype from Germany (AF521640, Siede and Buchler, 2003), one from the USA
(AY626246), and one from Uruguay (DQ364629, Antúnez et al., 2006). These viruses shared
93-98% identity to the central European BQCVs.

The distribution of the sequence differences within the BQCV genome are plotted on Figure 6 7 3. The conserved areas at the 5' UTR region and at the intergenic region are striking on the 8 plots, as well as the high level of diversity at the 5'-proximal side of ORF1. When Poland 4 is 9 used as reference, the Poland 5 and 6 sequences show high similarity to it at the 3'-proximal 10 side of the ORF1, while the South-African and the Hungarian genotypes exhibit higher 11 diversity. In the ORF2 region, however, all investigated strains differ in a similar level from 12 the Poland 4 genotype, especially at the 5'-proximal half of this ORF. The close genetic 13 relationship between the Poland 5 and Poland 6 strains is also indicated by Figure 3. The greatest differences between these viruses are found at the ORF1 5' proximal region (~90% 14 15 identity), while at further genomic parts identities amount to 95 to 100%. Interestingly, in this 16 region the Poland 5 and 6 viruses are more similar to the Hungary 10 genotype than to the 17 Poland 4 strain, which suddenly turns to the opposite at approx. nt position 1700 nt. The 18 Hungarian genotype in general differs at the same level from the Polish and South-African 19 genotypes, however, within the ORF2, high similarity was found between the Poland 5 and the Hungary 10 sequences. 20

21

1 Discussion

2 The scientific interest in insect viruses has significantly increased in the last ten years. On one 3 hand, insects represent the highest number of animal species on earth, and most of the viruses 4 infecting them presumably have not been discovered vet. Besides the possible use of viruses 5 in the control of insect pests and parasites, the knowledge on insect viruses is essential for the 6 prevention of mass mortality among economically important insects (such as honeybees) or 7 ecologically important and endangered species. On the other hand, because the physiology of 8 invertebrates and vertebrates differ in several aspects, the investigations of invertebrate 9 viruses may also provide information on differences in the pathophysiology, immunology, 10 and ecology of invertebrate and vertebrate infections.

11 Although virus infections in the honeybee are common, they are rarely associated with severe 12 symptoms and mortality. In certain cases, however, viruses are considered as the causative agents of bee diseases. In vertebrate viruses it is well-known that different virus strains may 13 14 exhibit different virulence, but such alterations have not been described in any honeybee virus 15 yet. In our previous studies, the phylogenetic variability of two honeybee viruses, Sacbrood 16 virus (SBV; Grabensteiner et al., 2001) and Acute bee paralysis virus (ABPV, Bakonyi et al., 17 2002) has been investigated. While SBV is member of the Iflaviridae family, Iflavirus genus, 18 ABPV is classified within the same family and genus as BQCV (*Dicistroviridae*, *Cripavirus*). Although ABPV and BQCV share only 45% nucleotide sequence identity, their genome 19 organization is very similar. In general, phylogenetic clustering corresponding to the 20 21 geographic origin of the genotypes was observed both in SBV and in ABPV strains. Genetic 22 analysis of another iflavirus, the Deformed wing virus, however does not show any 23 phylogenetic clustering, based on its geographic origin (Berényi et al., 2007). Comparison of 24 the complete genome sequences of central European ABPV genotypes and the reference strain did not result in the detection of significant differences in sequence divergences at any 25

regions of the investigated strains (Bakonyi et al., 2003). There were no significant
 differences in the identity levels of the structural and non-structural protein coding regions of
 SBV either (Grabensteiner et al., 2001).

In the study presented here, phylogenetic analyses were performed on two genomic regions of 4 5 22 central European BQCV strains and the South-African reference strain. The phylogenetic 6 trees indicated different clustering of the viruses. The tree based on the partial helicase coding 7 region could not differentiate the genotypes according to their origin, but three Polish 8 genotypes formed a separate cluster compared to the other central European BQCVs (Figure 9 1). Many of the "central European" subgroups were statistically poorly supported. The 10 phylogeny based on the partial structural protein coding region showed a much better 11 resolution: the viruses from Poland are separated from the Austrian and Hungarian genotypes, 12 and a closer genetic relatedness with limited mixing of the genotypes can be observed at the 13 Austrian–Hungarian clusters (Figure 2). The spatial distance, the limited trade of bee queens, and the existence of ecological barriers (i.e. the Carpathian Mountains) between the Polish 14 15 and Austrian-Hungarian bee populations are plausible explanations for this sort of genetic 16 separation of the BQCV genotypes. The extreme geographical distance explains the 17 divergence of the South-African BQCV from the European ones. One Polish genotype, 18 however, cluster within a separate group, which is genetically distant from both the other central European viruses, and from the South-African strain. 19

To estimate the reliability of the phylogenetic analyses, and to explain the unexpected clustering of the three Polish genotypes, a more comprehensive genome analysis was performed on the viruses concerned. Genetic recombination between virus genotypes could explain the different clustering of the same virus strains on the two trees constructed using sequences of the two different genomic regions. Recombination between foot-and-mouth disease virus serotypes were described as frequent and common events, with typical

1 breakpoint distribution of "cold spots" and "hot spots" within the structural genes (Heath et al., 2006). Similar recombination patterns were found in other picornaviruses too (Lukashev, 2 3 2005). The Dicistroviridae family is related to the Picornaviridae family; both of them are due to be classified into the proposed order *Picornavirales*. Therefore, it would not be 4 surprising if recombinations were possible between BQCV genotypes as well. The 5 6 phylogenetic algorithms, however, calculate only independent sequence changes (mutations); 7 therefore recombinations may disturb the statistical analysis. Thus, such regions should be 8 selected for the phylogenetic comparisons which are not involved in recombination events. 9 However we can not exclude the possibility that the individual queen larvae (prepupae, pupae) from Poland examined in the studies were infected by different virus genotypes, which 10 11 may enhance the opportunity for recombination events. The main reason for this is that each 12 queen larva is fed by many workers. In the queen rearing apiaries it is a common procedure to 13 pool the bees from different colonies together to obtain a rearing colony strong enough to rear many queens and, in the apiary from which the samples for investigation originated, seven 14 15 BQCV genotypes (Poland 1-7) were found. On the other hand, the presence of different 16 BQCV genotypes in the apiary is not surprising because Polish native strains of bees are 17 rather aggressive and not very productive, so breeding material for queen rearing apiaries is 18 imported from different, sometimes distant regions.

By the comparison of the BQCV sequences, a typical pattern was found in the diversity of the different genomic regions. Two genome sections (>100 nucleotides) were found where all investigated viruses were homologous. Both areas are non-coding regions close to the beginning of the ORFs. These areas usually play central roles in the transcription-initiation and the expression regulation of the subsequent genes. The homologous area found in the intergenic region covers the majority of the stem-loop structures predicted for the IRES of BQCV and other dicistroviruses (Leat et al., 2000, Sasaki and Nakashima, 1999). Their

function might explain the high degree of sequence conservation; however, in other
 dicistroviruses such 100% homologous areas were not found.

3 The 5'-proximal third of ORF1 proved to be the most variable region of the investigated BOCVs. ORF1 encodes the non-structural proteins, but the exact role of this region is still 4 5 unknown (Leat et al., 2000). The domains of helicase, protease and RdRp are located in the 6 3'-proximal side of the ORF1. In the case of several vertebrate viruses non-structural proteins 7 are responsible for the differences in the virulence of the strains (Wicker et al., 2006; Tews et 8 al., 2009). Replication-associated genes, such as helicase and polymerase, are also likely to be 9 under some selective pressure for sequence conservation for protein function. Therefore, the 10 unique clustering of the Poland strains 4, 5 and 6 away from the other European strains in the 11 helicase phylogenetic tree is of interest as it may suggest that these are variants of other 12 BQCV genotypes and may have differing virulence. It is interesting to mention that the 13 Polish genotypes were all from symptomatic honeybees whereas the Austrian and Hungarian genotypes were from asymptomatic honeybees. Further studies, involving experimental bee 14 15 (larvae) infections, are planned to investigate the possible connection between the sequence 16 divergence of this region and the virulence of BQCV strains. The latest investigations of 17 samples from queen rearing apiaries (Topolska, 2008) revealed a big diversity in the signs 18 which accompanied the death of a queen brood because of BQCV infection in Polish apiaries. 19 Although dead, decomposed black larvae and prepupae, known from literature, were present (Bailey 1997), most often almost normal, pale yellow white-eyed pupae were found. Maybe 20 21 the lack of symptomatic BQCV infected queen brood in Hungary and Austria might be 22 explained by the presence of less virulent BQCV strains in these countries.

Another striking observation on the ORF1 is that the unique Polish genotypes are more
similar to the South-African strain than to the Hungarian genotype at the 3' side of the frame.
Sequences of two French BQCVs showed close relationship to these Polish genotypes.

Investigations of further western European strains could provide more information on the possible origin of these particular viruses. The ORF2 in general exhibited a lower level of sequence divergence than ORF1. However, the similarity rates between the closely related viruses (i.e. the Polish genotypes) were lower in this region than in ORF1. Therefore, ORF2 seems to be a more suitable target region for phylogenetic analysis of BQCV, because the mutation-derived individual sequence changes are more characteristic in this area.

7 Because the similarities between BQCV genotypes originating from the same geographic 8 regions (i.e. Poland 4 versus 5 and 6) suddenly changed within the genome, recombinations of 9 certain genome sections between genotypes is likely. In the current study the parties involved in the recombination events were not accurately identified; therefore, further experiments are 10 11 necessary to document the exact process of a possible recombination event, and the most 12 frequently affected genomic regions. Poland 4 virus represents a unique genotype of the central European BQCVs. Further investigations should reveal the pathological impact of this 13 14 virus, and identify closely related strains.

15 The RT-PCR-based diagnostic submissions should target the intergenic region of BQCV, 16 because due to the high level of conservation, the assays are likely to detect all genotypes, 17 regardless of their geographic origin and recombinations.

1 Acknowledgements

This study was supported by the Hungarian National Grants OTKA F043155, D048647, and
M027651; the Hungarian-Slovenian Intergovernmental S&T Cooperation Grant OMFB00482/07, and the Hungarian-Austrian Intergovernmental S&T Cooperation Grant OMFB00738/07. T. Bakonyi is grantee of the "Bolyai János" Postdoctoral Fellowship Grant of the
Hungarian Academy of Sciences.

7 The help of Eszter Roza (Faculty of Veterinary Science, Budapest) is greatly acknowledged.

Cool in the second seco

- 8 The authors thank for the reviewers of Veterinary Microbiology for their valuable advices on
- 9 the manuscript.
- 10

1 References

2	Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J., 1990 Basic local
3	alignment search tool. J. Mol. Biol. 215, 403-410.
4	Allen, M. and Ball, B.V. 1996. The incidence and world distribution of honey bee viruses.
5	Bee World. 77, 141-162.
6	
7	Anderson, D.L. 1993. Pathogens and queen bees. Australasian Beekeeper. 94, 292-296.
8	
9	Antúnez, K., D'Alessandro, B., Corbella E., Ramallo G. and Zunino, P. 2006. Honeybee
10	viruses in Uruguay. J. Invert. Pathol. 93, 67-70.
11	
12	Bailey, L. and Woods, R.D. 1977. Two more small RNA viruses from honey bees and further
13	observations on sacbrood and acute bee-paralysis viruses. J. Gen. Virol. 25, 175-186.
14	
15	Bailey, L. 1982. Viruses of honeybees. Bee World. 63, 165-173.
16	
17	Bakonyi, T., Grabensteiner, E., Kolodziejek, J., Rusvai, M., Topolska, G., Ritter, W. and
18	Nowotny, N. 2002. Phylogenetic analysis of acute bee paralysis strains. Appl. Environ.
19	Microbiol. 68, 6446-6450.
20	
21	Bakonyi, T., Forgách, P., Topolska, G., Nowotny, N. and Rusvai, M. 2003. Nucleic acid
22	investigations of two central European strains of acute bee paralysis virus isolated from honey
23	bees (Apis mellifera L.), Apimondia 2003, 38th International Scientific Apicultural Congress,
24	Ljubljana, Slovenia
25	
26	Berényi, O., Bakonyi, T., Derakhshifar, I., Köglberger, H. and Nowotny, N. 2006. Occurrence
27	of six honeybee viruses in diseased Austrian apiaries. Appl. Environ. Microbiol. 68, 6446-
28	6450.
29	
30	Berényi, O., Bakonyi, T., Derakhshifar, I., Köglberger, H., Topolska, G., Ritter W.,
31	Pechhacker, H. and Nowotny, N. 2007. Phylogenetic analysis of deformed wing virus

32 genotypes from diverse geographic origins indicates recent global distribution of the virus.

1	Appl Environ Microbiol 73, 3605-3611
2	
3	Cherry, S. and Silverman, N. 2006. Host-pathogen interactions in drosophila: new tricks from
4	an old friend. Nat. Immunol. 7, 911-917.
5	
6	Felsenstein, J. 2004. PHYLIP Phylogeny Inference Package Version 3.6b (beta release)
7 °	Department of Genome Sciences, University of Washington, Seattle, WA USA
0	Grahanstainar E. Pittar W. Cartar M.I. Davisan S. Paabhaakar H. Kaladziaiak I.
9 10	Boecking O Derakhshifar I Moosheckhofar P Licek E and Nowotny N 2001
10	Sachroad virus of the honouboe (Anis mallifered): Papid identification and phylogenetic
11	analysis using reverse transcription PCP. Clin Diagn. Lab. Immunol. 8, 02, 104
12	analysis using reverse transcription-r CK. Chin Diagn. Lab. minution. 8, 93-104.
13	Heath I van der Walt E Varsani A and Martin D.P. 2006 Recombination patterns in
14	another provide and the second in other picornaviruses I Virol 80, 11827-11832
15	aphthoviruses millior those round in other preomaviruses. 5 virol. 80, 11827-11852.
17	Leat N Ball B.V. Govan V and Davison S 2000 Analysis of the complete genome
18	sequence of black queen-cell virus a nicorna-like virus from honey bees. I Gen Virol 81
10	2111-2119
20	
20	Lukashev A N 2005 Role of recombination in evolution of enteroviruses Rev Med Virol
22	15 157-167
23	
24	Ray, S. C. 2003. SimPlot for Windows 98/NT/2000/XP Version 3.5.1
25	
26	Sasaki, J. and Nakashima, N. 1999. Translation initiation at the CUU codon is mediated by
27	the internal ribosome entry site of an insect picorna-like virus in vitro. J. Virol. 73, 1219-
28	1226.
29	
30	Siede, R. and Buchler, R. 2003. Symptomatic Black Queen Cell Virus infection of drone
31	brood in Hessian apiaries. Berl. Munch. Tierarztl. Wochenschr. 116, 130-133.
32	

Tentcheva, D., Gauthier, L., Zappulla, N., Dainat, B., Cousserans, F., Colin, M.E. and
 Bergoin, M. 2004. Prevalence and Seasonal Variations of Six Bee Viruses in *Apis mellifera* L.
 and *Varroa destructor* Mite Populations in France. Appl. Environ. Microbiol. 70, 7185-7191.

Tews, B.A., Schürmann, E.M. and Meyers, G. 2009. Mutation of cysteine 171 of pestivirus E
rns RNase prevents homodimer formation and leads to attenuation of classical swine fever
virus. J Virol. 83, 4823-4834.

8

9 Topolska, G. 2008. Zakażenia wirusowe czerwiu matecznego oraz matek pszczelich w 10 dziesięciu pasiekach hodowlanych w Polsce [Virus infections of queen brood and queen bees 11 in ten queen rearing apiaries in Poland] Warsaw University of Life Sciences, Warsaw, Poland 12

Wicker, J.A., Whiteman, M.C., Beasley, D.W., Davis, C.T., Zhang, S., Schneider, B.S.,
Higgs, S., Kinney, R.M. and Barrett, A.D. 2006. A single amino acid substitution in the
central portion of the West Nile virus NS4B protein confers a highly attenuated phenotype in
mice. Virology. 349, 245-253.

17

Zambon, R.A., Nandakumar, M., Vakharia, V.N. and Wu, L.P. 2005. The Toll pathway is
important for an antiviral response in *Drosophila*. Proc. Nat. Acad. Sci. U S A. 102, 72577262.

21

1	Legends of tables and figures
2	
3	Table I. Oligonucleotide primer pairs selected for RT-PCR, specific for the helicase and the
4	structural protein region of BQCV, respectively. Amplicons were sequenced and used for
5	constructing phylogenetic trees (Figures 1. and 2.).
6	
7	Table II. Oligonucleotide primer pairs designed to produce overlapping sequences for the
8	complete sequencing of selected BQCV genotypes.
9	
10	Figure 1. Neighbor-joining tree based on the partial helicase enzyme region (ORF1) of
11	BQCV genotypes. Internal labels indicate the percentages of bootstrap values; only values
12	> 70% were indicated. Bar represents the genetic distance between the viruses.
13 14	Figure 2. Neighbor-joining tree based on the partial structural polypeptide coding region
15	(ORF2) of BQCV genotypes. Internal labels indicate the percentages of bootstrap values; only
16	values $> 70\%$ were indicated. Bar represents the genetic distance between the viruses.
17	
18	Figure 3. Similarity plot of the Hungary 10, Poland 4, and Poland 5 genotypes and the South-
19	African reference strain compared to the Poland 6 genotype.

Region	Primer ^(a) code	Sequence (5' to 3')	Nucleotide positions ^(b)	Size of the amplicon
Helicase	BQCV2144+	TGA GAG CTG CAG AAC AAG AG	2144-2163	502 hr
	BQCV2726-	TCA CGT GTC AAG GCT TCA TC	2726-2707	383 Up
Structural protein	BQCV6540+	TGA GAG CTG CAG AAC AAG AG	6540-6559	514 hr
	BQCV7053-	TCC ATG GCG ACA GTT ACA TC	7053-7034	514 bp

^(a) +: forward, -: reverse primers

^(b) Nucleotide positions refer to the published complete BQCV sequence (GenBank accession number AF183905, Leat et al., 2000).

K CON

Primer ^(a)		Nucleotide	Size of the
	Sequence (5' to 3')		
code	code		amplicon (bp)
BQ29+	CTA TAC GCG CTT GGT TGT	29-46	1807
BQ1835-	TCC GCT AAC GTG GAC TCT GT	1835-1816	1007
BQ1645+	ATA GGC ACG TGG TTG ACT AC	1645-1664	1082
BQ2726-	TCA CGT GTC AAG GCT TCA TC	2726-2707	1082
BQ2144+	TGA GAG CTG CAG AAC AAG AG	2144-2163	1022
BQ3716-	CTA GAT TCC ACG CGC ACA GT	3176-3157	1055
BQ3016+	GCG AGT AAG GCC AAG GTT GA	3016-3035	1540
BQ4564-	CCG CCT CTA TGC ATT CCT GT	4564-4545	1549
BQ4429+	GAT ACC TCT TGC GGT TAT CC	4429-4448	1510
BQ5938-	CGG TCC ATC TTC AAG CAC TA	5938-5919	1310
BQ5744+	CTC CAA GAT CGG TGG ATA GC	5744-5763	1720
BQ7473-	TCG TCG CCA GCA TTG ACT TC	7473-7454	1750
BQ7353+	CCA AGT ACG CTC ATG CTA GT	7353-7372	1140
BQ8492-	TCA TGA GAA GAA CCG AGA AG	8492-8473	1140
BQ29+	CTA TAC GCG CTT GGT TGT	29-46	2275
BQ2303-	GCC ATG TGT AAC GGA TAA GG	2303-2284	2213
BQ2298+	CAT GGC GTC GAT AGA AGA GA	2298-2317	000
BQ3286-	TCGTTGTAACAGCCGTAAGC	3286-3267	989
BQ7405+	GTT GAA GGC GAC TAA TAC CG	7405-7424	1088
BQ8492-	TCA TGA GAA GAA CCG AGA AG	8492-8473	1088
BQ510+	TGC TAC TGC GGT AGT GGA	510-527	Sequencing primer
BQ1062+	CGT GGA CAC CTC TAT TGG TA	1062-1081	Sequencing primer
BQ506+	ACT CTG CTA CTG CGG TAG CG	506-525	Sequencing primer
BQ1834-	CCG CTA ATG TGG ATT CTG	1834-1817	Sequencing primer
BQ276+	GTA GCC TGT ACT ACC TGA AG	276-295	Sequencing primer
BQ951+	GGT TGA CCG AAT GTA CCA	951-968	Sequencing primer

^(a) +: forward, -: reverse primers

^(b) Nucleotide positions refer to the published complete BQCV sequence (GenBank accession number AF183905, Leat et al., 2000).