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Abstract

The paper considers the problem of robust estimating a periodic
function in a continuous time regression model with dependent dis-
turbances given by a general square integrable semimartingale with
unknown distribution. An example of such a noise is non-gaussian
Ornstein-Uhlenbeck process with the Lévy process subordinator, which
is used to model the financial Black-Scholes type markets with jumps.
An adaptive model selection procedure, based on the weighted least
square estimates, is proposed. Under general moment conditions on
the noise distribution, sharp non-asymptotic oracle inequalities for the
robust risks have been derived and the robust efficiency of the model
selection procedure has been shown.
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‡Laboratoire de Mathématiques Raphael Salem, Avenue de l’Université, BP. 12, Uni-
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1 Introduction

Consider a regression model in continuous time

dyt = S(t)dt+ dξt , 0 ≤ t ≤ n , (1.1)

where S is an unknown 1-periodic R → R function, S ∈ L2[0, 1];
(ξt)t≥0 is an unobservable semimartingale noise with the values in the
Skorokhod space D[0, n] such that, for any function f from L2[0, n],
the stochastic integral

In(f) =

∫ n

0

fsdξs (1.2)

is well defined and has the following properties

EQIn(f) = 0 and EQI
2
n(f) ≤ σQ

∫ n

0

f2s ds . (1.3)

Here EQ denotes the expectation with respect to the distribution Q
in D[0, n] of the process (ξt)0≤t≤n, which is assumed to belong to
some probability family Qn specified below; σQ > 0 is some positive
constant depending on the distribution Q.

The problem is to estimate the unknown function S in the model
(1.1) on the basis of observations (yt)0≤t≤n.

The class of the disturbances ξ satisfying conditions (1.3) is rather
wide and comprises, in particular, the Lévy processes which are used
in different important problems (see [4], for details). The models (1.1)
with the Lévy’s type noise naturally arise (see [18]) in the nonparamet-
ric functional statistics problems (see, for example, [8]). Moreover, as
is shown in Section 2, Non-Gaussian Ornstein-Uhlenbeck-based mod-
els also enter this class. The latter models are successfully used to
model the Black-Scholes type financial markets with jumps (see [2],
[6] for details and other references).

We define the error of an estimate Ŝ (any real-valued function
measurable with respect to σ{yt , 0 ≤ t ≤ n}) for S by its integral
quadratic risk

RQ(Ŝ, S) := EQ,S ‖Ŝ − S‖2 , (1.4)

where EQ,S stands for the expectation with respect to the distribution
PQ,S of the process (1.1) with a fixed distribution Q of the noise
(ξt)0≤t≤n and a given function S; ‖ · ‖ is the norm in L2[0, 1], i.e.

‖f‖2 :=
∫ 1

0

f2(t)dt . (1.5)
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Since in our case the noise distribution Q is unknown, it seems natural
to measure the quality of an estimate Ŝ by the robust risk defined as

R∗
n(Ŝ, S) = sup

Q∈Qn

RQ(Ŝ, S) (1.6)

which assumes taking supremum of the error (1.4) over the whole
family of admissible distributions Qn.

It is natural to treat the stated problem with respect to the quadratic
risk from the standpoint of the model selection approach. It will be
noted that the origin of this method goes back to early seventies with
the pioneering papers by Akaike [1] and Mallows [21] who proposed
to introduce penalizing in a log-likelihood type criterion. The further
progress has been made by Barron, Birgé and Massart [3], [22], who
developed a non-asymptotic model selection method which enables
one to derive non-asymptotic oracle inequalities for nonparametric
regression models with the i.i.d. gaussian disturbances. An oracle
inequality yields the upper bound for the estimate risk via the min-
imal risk corresponding to a chosen family of estimates. Galtchouk
and Pergamenshchikov [9] applied the Barron-Birgé-Massart technic
to the problem of estimating a nonparametric drift function in ergodic
diffusion processes. Fourdrinier and Pergamenshchikov [7] extended
the Barron-Birgé-Massart method to the models with the spherically
symmetric dependent observations. They proposed a model selection
procedure based on the improved least squares estimates. Lately, the
authors [17] applied this method to the nonparametric problem of es-
timating a periodic function in a model with a gaussian colored noise
in continuous time. In all cited papers, the non-asymptotic oracle
inequalities have been derived, which enable one to establish the opti-
mal convergence rate for the minimax risks. In addition to the optimal
convergence rate, the other important problem is that of the efficiency
of adaptive estimation procedures. In order to examine the efficiency
property of a procedure one has to obtain the sharp oracle inequalities,
i.e. such in which the factor at the principal term in the right-hand
of the inequality is close to unity.

The first result on sharp inequalities is most likely due to Kneip
[15] who studied a gaussian regression model. It will be observed
that the derivation of oracle inequalities usually rests upon the fact
that the initial model, by applying the Fourier transformation, is re-
duced to the gaussian model with independent observations. How-
ever, such a transform is possible only for gaussian models with in-
dependent homogeneous observations or for the inhomogeneous ones
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with the known correlation characteristics. This restriction signifi-
cantly narrows the area of application of the proposed model selection
procedures and rules out a broad class of models including, in par-
ticular, widely used in econometrics heteroscedastic regression mod-
els (see, for example, [14]). For constructing adaptive procedures in
the case of inhomogeneous observations one needs to modify the ap-
proach to the estimation problem. Galtchouk and Pergamenshchikov
[11]-[12] have developed a new estimation method intended for the
heteroscedastic regression models in discrete time. The heart of this
method is to combine the Barron-Birgé-Massart non-asymptotic pe-
nalization method [3] and the Pinsker weighted least square method
minimizing the asymptotic risk (see, for example, [23], [24]). This
yields a significant improvement in the performance of the procedure
(see numerical example in [11]).

The goal of this paper is to develop the robust efficient model
selection method for the model (1.1) with dependent disturbances
having unknown distribution. We follow the approach, proposed by
Galtchouk and Pergamenshchikov in [11], in the construction of the
procedure. Unfortunately, their method of obtaining the oracle in-
equalities is essentially based on the independence of observations and
can not be applied here. The paper proposes the new analytical tools
which allow one to obtain the sharp non-asymptotic oracle inequal-
ities for robust risks under general conditions on the distribution of
the noise in the model (1.1). This method enables us to treat both
the cases of dependent and independent observations from the same
standpoint, does not assume the knowledge of the noise distribution
and leads to the efficient estimation procedure with respect to the risk
(1.6). The validity of the conditions imposed on the noise in the equa-
tion (1.1) is verified for a non-gaussian Ornstein-Uhlenbeck process
(see Section 2).

The rest of the paper is organized as follows. In Section 3 we con-
struct the model selection procedure on the basis of weighted least
squares estimates and state the main results in the form of oracle in-
equalities for the quadratic risk (1.4) and the robust risk (1.6). Here we
specify also the set of admissible weight sequences in the model selec-
tion procedure. In Section 4 we proof some properties of the stochastic
integrals with respect to the non-gaussian Ornstein-Uhlenbeck process
(2.1). Section 5 gives the proofs of the main results. In Sections 6, 7 it
is shown that the proposed model selection procedure for estimating
S in (1.1) is asymptotically efficient with respect to the robust risk
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(1.6). In Appendix some auxiliary propositions are given.

2 Non-Gaussian Ornstein-Uhlenbeck pro-

cess

In this section we consider an important example of the disturbances
(ξt)t≥0 in (1.1) given by a non-gaussian Ornstein-Uhlenbeck process
with the Lévy subordinator. Such processes are used in the financial
Black-Scholes type markets with jumps (see, for example [6] and the
references therein). Let the noise process in (1.1) obey the equation

dξt = aξtdt+ dut , ξ0 = 0 , (2.1)

where a ≤ 0, ut = ̺1wt + ̺2zt, ̺1 and ̺2 are unknown constants,
(wt)t≥0 is a standard Brownian motion, (zt)t≥0 is a compound Poisson
process defined as

zt =

Nt∑

j=1

Yj .

Here (Nt)t≥0 is a standard homogeneous Poisson process with un-
known intensity λ > 0 and (Yj)j≥1 is an i.i.d. sequence of random
variables with

EYj = 0 , EY 2
j = 1 and EY 4

j <∞ . (2.2)

Let (T )k≥1 denote the arrival times of the process (Nt)t≥0, that is,

Tk = inf{t ≥ 0 : Nt = k} . (2.3)

We assume that the parameters λ, a, ̺1 and ̺2 satisfy the conditions

− amax ≤ a ≤ 0 , 0 ≤ λ ≤ λmax , ̺∗min ≤ ̺∗ ≤ ̺∗max , (2.4)

where ̺∗ = ̺21 + λ̺22. Let Qn denote the family of all distributions of
process (2.1) on D[0, n] with the parameters a, λ, ̺1 and ̺2 satisfying
the conditions (2.4) with fixed bounds λmax > 0, amax > 0, ̺∗min > 0
and ̺∗max > 0.
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3 Model selection

This Section gives the construction of a model selection procedure for
estimating a function S in (1.1) on the basis of weighted least square
estimates and states the main results.

For estimating the unknown function S in the model (1.1), we ap-
ply its Fourier expansion in the trigonometric basis (φj)j≥1 in L2[0, 1]
defined as

φ1 = 1 , φj(x) =
√
2Trj(2π[j/2]x) , j ≥ 2 , (3.1)

where the function Trj(x) = cos(x) for even j and Trj(x) = sin(x) for
odd j; [x] denotes the integer part of x. The corresponding Fourier
coefficients

θj = (S, φj) =

∫ 1

0

S(t)φj(t) dt (3.2)

can be estimated as

θ̂j,n =
1

n

∫ n

0

φj(t) dyt . (3.3)

In view of (1.1), we obtain

θ̂j,n = θj +
1√
n
ξj,n , ξj,n =

1√
n
In(φj) (3.4)

where In(φj) is given in (1.2).
For any sequence x = (xj)j≥1, we set

|x|2 =
∞∑

j=1

x2j and #(x) =

∞∑

j=1

1{|xj |>0} . (3.5)

Now we impose some additional conditions on the distribution of the
noise (ξt)t≥0 in (1.1).

C1) There exists a positive constant ςQ > 0 such that for any n ≥ 1

L1,n(Q) = sup
x∈H ,#(x)≤n

∣∣∣∣∣∣

∞∑

j=1

xj

(
EQ ξ

2
j,n − ςQ

)
∣∣∣∣∣∣
<∞ ,

6



where H = [−1, 1]∞.

C2) Assume that for all n ≥ 1

L2,n(Q) = sup
|x|≤1 ,#(x)≤n

EQ




∞∑

j=1

xj (ξ
2
j,n −EQξ

2
j,n)




2

<∞ .

As is shown in the proof of Theorem 3.2 in Section 5 , both Con-
ditions C1) and C2) hold for the process (2.1). Further we define a
class of weighted least squares estimates for S(t) as

Ŝγ =
∞∑

j=1

γ(j)θ̂j,nφj , (3.6)

where γ = (γ(j))j≥1 is a sequence of weight coefficients such that

0 ≤ γ(j) ≤ 1 and 0 < #(γ) ≤ n . (3.7)

Let Γ denote a finite set of weight sequences γ = (γ(j))j≥1 with these
properties, ν = card(Γ) be its cardinal number and

µ = max
γ∈Γ

#(γ) . (3.8)

The model selection procedure for the unknown function S in (1.1)
will be constructed on the basis of a family of estimates (Ŝγ)γ∈Γ.
The choice of a specific set of weight sequences Γ is discussed at the
end of this section. In order to find a proper weight sequence γ in
the set Γ one needs to specify a cost function. When choosing an
appropriate cost function one can use the following argument. The
empirical squared error

Errn(γ) = ‖Ŝγ − S‖2

can be written as

Errn(γ) =
∞∑

j=1

γ2(j)θ̂2j,n − 2
∞∑

j=1

γ(j)θ̂j,n θj +
∞∑

j=1

θ2j . (3.9)

Since the Fourier coefficients (θj)j≥1 are unknown, the weight coef-
ficients (γj)j≥1 can not be determined by minimizing this quantity.
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To circumvent this difficulty one needs to replace the terms θ̂j,n θj by

some their estimators θ̃j,n. We set

θ̃j,n = θ̂2j,n − σ̂n
n

(3.10)

where σ̂n is some estimator for the quantity ςQ in the condition C1).
For this change in the empirical squared error, one has to pay some

penalty. Thus, one comes to the cost function of the form

Jn(γ) =

∞∑

j=1

γ2(j)θ̂2j,n − 2

∞∑

j=1

γ(j) θ̃j,n + ρ P̂n(γ) (3.11)

where ρ is some positive constant, P̂ (γ) is the penalty term defined as

P̂n(γ) =
σ̂n |γ|2
n

. (3.12)

In the case, when the value of σ in C1) is known, one can take σ̂n = ςQ
and

Pn(γ) =
ςQ |γ|2
n

. (3.13)

Substituting the weight coefficients, minimizing the cost function

γ̂ = argminγ∈Γ Jn(γ) , (3.14)

in (3.6) leads to the model selection procedure

Ŝ∗ = Ŝγ̂ . (3.15)

It will be noted that γ̂ exists, since Γ is a finite set. If the minimizing
sequence in (3.14) γ̂ is not unique, one can take any minimizer.

Theorem 3.1. Let Qn be a family of the distributions Q on D[0, n]
such that the conditions C1) and C2) hold for each Q from Qn. Then
for any n ≥ 1 and 0 < ρ < 1/3, the estimator (3.15), for each Q ∈ Qn,
satisfies the oracle inequality

RQ(Ŝ∗, S) ≤ 1 + 3ρ− 2ρ2

1− 3ρ
min
γ∈Γ

RQ(Ŝγ , S) +
1

n
BQ(n, ρ) (3.16)

where the risk RQ(·, S) is defined in (1.4),

BQ(n, ρ) = ΨQ(n, ρ) +
6µEQ,S|σ̂n − ςQ|

1− 3ρ
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and

ΨQ(n, ρ) =
2ςQσQν + 4ςQL1,n(Q) + 2νL2,n(Q)

ςQρ(1− 3ρ)
. (3.17)

This theorem is proved in [18].

Now we will obtain the oracle inequality for the model (1.1), (2.1).
To write down the oracle inequality in this case, one needs the follow-
ing parameters

λ1 = λ̺21 + (λ̺2)
2 and λ2 = ̺21̺

∗ + λ̺22 . (3.18)

Moreover, we set

M∗ = 4̺21 + ̺22D
∗
1 + 80λ2 + 12D∗

2 + 21̺3 (3.19)

where D∗
1 = 4λ̺21 + 7λ2̺22, D∗

2 = 4̺21̺
∗ + ̺22D

∗
1 + 23λ2 and ̺3 =

λ̺42EY
4
1 .

Theorem 3.2. Let Qn be a family of the distributions of the process
(2.1) with the parameters meeting the conditions (2.4). Then, for
any n ≥ 1 and 0 < ρ < 1/3, the estimator (3.15) satisfies, for each
Q ∈ Qn, the oracle inequality (3.16) with

ΨQ(n, ρ) =
6̺∗maxν + 4̺∗maxL

∗
1 + 56νM∗

̺∗minρ(1− 3ρ)
, (3.20)

where
L∗
1 = 2(1 + amax(amax + 1))̺∗max .

Proof of this theorem is given in Section 5.

Remark 3.1. Note that the term (3.20) does not depend on the pa-
rameters specifying the distribution family Qn. This means that the
oracle inequality (3.16) is uniform over stability region for the process
(2.1) including the stability bound, i.e. the case a = 0.

To obtain the oracle inequality for the robust risks one has to
impose additional conditions on the distribution family Qn in (1.6).
To this end, we introduce the family of distributions Q on D[0, n] with
the growth restriction on L1,n(Q) + L2,n(Q), i.e.

P∗
n =

{
Q ∈ Pn : L1,n(Q) + L2,n(Q) ≤ ln

}
, (3.21)
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where Pn denotes the family of all probability measures on D[0, n], ln
is a slowly increasing positive function, i.e. ln → +∞ as n→ +∞ and
for any δ > 0

lim
n→∞

ln
nδ

= 0 .

In the sequel we use the following condition
H0) Assume the distribution family Qn is a subset of the class (3.21),
i.e. Qn ⊆ P∗

n, such that

0 < ς∗ := infQ∈Qn
ςQ ≤ supQ∈Qn

ςQ := ς∗ <∞ ;

σ∗ := infQ∈Qn
σQ <∞ .

(3.22)

Theorem 3.3. Assume that the family Qn in the robust risk (1.6)
satisfies the condition H0). Then for any n ≥ 1 and 0 < ρ < 1/3, the
estimator (3.15) satisfies the oracle inequality

R∗(Ŝ∗, S) ≤ 1 + 3ρ− 2ρ2

1− 3ρ
min
γ∈Γ

R∗(Ŝγ , S) +
1

n
B∗(n, ρ) (3.23)

where

B∗(n, ρ) = Ψ∗(n, ρ) +
6µ

1− 3ρ
sup
Q∈Qn

EQ,S|σ̂n − ςQ|

and

Ψ∗(n, ρ) =
2ς∗σ∗ν + 4ς∗ln + 2νln

ς∗ρ(1− 3ρ)
.

3.1 Estimation of ςQ

Now we consider the case of unknown quantity σ in the condition C1).
One can estimate σ as

σ̂n =

n∑

j=l

θ̂2j,n with l = [
√
n] + 1 . (3.24)
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Proposition 3.4. Assume that the family distribution Qn satisfies
the condition H0) and the unknown function S(·) in the model (1.1)
is continuously differentiable for 0 ≤ t < 1 such that

|Ṡ|1 =
∫ 1

0

|Ṡ(t)|dt < +∞ . (3.25)

Then, for any n ≥ 1,

sup
Q∈Qn

EQ,S|σ̂n − ςQ| ≤
κ∗n(S)√

n
(3.26)

where

κ∗n(S) = 4|Ṡ|21 + ς∗ +
√
ln +

4|Ṡ|1
√
σ∗

n1/4
+

ln
n1/2

.

Proof. Substituting (3.4) in (3.24) yields

σ̂n =

n∑

j=l

θ2j +
2√
n

n∑

j=l

θjξj,n +
1

n

n∑

j=l

ξ2j,n . (3.27)

Further, denoting

x′j = 1{l≤j≤n} and x′′j =
1√
n
1{l≤j≤n} ,

we represent the last term in (3.27) as

1

n

n∑

j=l

ξ2j,n =
1

n
B1,n(x

′) +
1√
n
B2,n(x

′′) +
n− l + 1

n
ςQ ,

where

B1,n(x) =

∞∑

j=1

xj

(
EQ,S ξ

2
j,n − ςQ

)
and B2,n(x) =

∞∑

j=1

xj (ξ
2
j,n−EQ,Sξ

2
j,n) .

Combining these equations leads to the inequality

EQ,S|σ̂n − ςQ| ≤
∑

j≥l

θ2j +
2√
n
EQ,S|

n∑

j=l

θjξj,n|

+
1

n
|B1,n(x

′)|+ 1√
n
EQ,S |B2,n(x

′′)|+ l − 1

n
ς∗ .
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By Lemma A.3 and the conditions C1), C2), one gets

EQ,S|σ̂n − ςQ| ≤
∑

j≥l

θ2j +
2√
n
EQ,S|

n∑

j=l

θjξj,n|

+
L1,n(Q)

n
+

L2,n(Q)
√
n

+
ς∗√
n
.

In view of the inequality (1.3), the last term can be estimated as

EQ,S|
n∑

j=l

θjξj,n| ≤

√√√√σQ

n∑

j=l

θ2j ≤
√
σ∗|Ṡ|1

2√
l
.

By applying the inequalities (3.22) we obtain the upper bound (3.26).
Hence Proposition 3.4.

Theorem 3.1 and Proposition 3.4 imply the following result.

Theorem 3.5. Assume that the family distribution Qn satisfies the
condition H0) and the unknown function S is continuously differ-
entiable satisfying the condition (3.25). Then, for any n ≥ 1 and
0 < ρ < 1/3, the model selection procedure (3.15) with the estimator
(3.24) satisfies the oracle inequality

R∗(Ŝ∗, S) ≤ 1 + 3ρ− 2ρ2

1− 3ρ
min
γ∈Γ

R∗(Ŝγ , S) +
1

n
B∗
1(n, ρ) , (3.28)

where

B∗
1(n, ρ) = Ψ∗(n, ρ) +

6µκ∗n(S)

(1− 3ρ)
√
n
.

3.2 Specification of weights in the model se-

lection procedure (3.15)

We will specify the weight coefficients (γ(j))j≥1 in the way proposed
in [11] for a heteroscedastic discrete time regression model. Consider
a numerical grid of the form

An = {1, . . . , k∗} × {t1, . . . , tm} , (3.29)

where ti = iε and m = [1/ε2]. We assume that both parameters
k∗ ≥ 1 and 0 < ε ≤ 1 are functions of n, i.e. k∗ = k∗(n) and ε = ε(n),
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such that




limn→∞ k∗(n) = +∞ , limn→∞

k∗(n)

lnn
= 0 ,

limn→∞ ε(n) = 0 and limn→∞ nδε(n) = +∞
(3.30)

for any δ > 0. One can take, for example,

ε(n) =
1

ln(n + 1)
and k∗(n) =

√
ln(n+ 1) .

For each α = (β, t) ∈ An, we introduce the weight sequence γα =
(γα(j))j≥1 given as

γα(j) = 1{1≤j≤j
0
} +

(
1− (j/ωα)

β
)
1{j

0
<j≤ωα} (3.31)

where j0 = j0(α) = [ωα/ ln n],

ωα = (τβ t n)
1/(2β+1) and τβ =

(β + 1)(2β + 1)

π2ββ
.

We set
Γ = {γα , α ∈ An} . (3.32)

It will be noted that in this case ν = k∗m.

Remark 3.2. It will be observed that the specific form of weights
(3.31) was proposed by Pinsker [24] for the filtration problem with
known smoothness of regression function observed with an additive
gaussian white noise in the continuous time. Nussbaum [23] used
these weights for the gaussian regression estimation problem in dis-
crete time.

The minimal mean square risk, called the Pinsker constant, is pro-
vided by the weight least squares estimate with the weights where the
index α depends on the smoothness order of the function S. In this
case the smoothness order is unknown and, instead of one estimate,
one has to use a whole family of estimates containing in particular the
optimal one.

The problem is to study the properties of the whole class of esti-
mates. Below we derive an oracle inequality for this class which yields
the best mean square risk up to a multiplicative and additive constants
provided that the the smoothness of the unknown function S is not
available. Moreover, it will be shown that the multiplicative constant
tends to unity and the additive one vanishes as n → ∞ with the rate
higher than any minimax rate.
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In view of the assumptions (3.30), for any δ > 0, one has

lim
n→∞

ν

nδ
= 0 .

Moreover, by (3.31) for any α ∈ Kn

∞∑

j=1

1{γα(j)>0} ≤ ωα .

Therefore, taking into account that Aβ ≤ A1 < 1 for β ≥ 1, we get

µ = µn ≤ (n/ε)1/3 .

Therefore, for any δ > 0,

lim
n→∞

µn
n1/3+δ

= 0 .

To study the asymptotic behaviour of the term B∗
1(n, ρ) we assume

that the parameter ρ in the cost function (3.11) depends on n, i.e.
ρ = ρn such that ρn → 0 as n→ ∞ and for any δ > 0

lim
n→∞

nδρn = 0 . (3.33)

Applying this limiting relation to the analysis of the asymptotic
behavior of the additive term Dn(ρ) in (3.28) one comes to the follow-
ing result.

Theorem 3.6. Assume that the family distribution Qn satisfies the
condition H0) and the unknown function S is continuously differen-
tiable satisfying the condition (3.25). Then, for any n ≥ 1, the model
selection procedure (3.15), (3.33), (3.24), (3.32) satisfies the oracle in-
equality (3.28) with the additive term B∗

1(n, ρ) obeying, for any δ > 0,
the following limiting relation

lim
n→∞

B∗
1(n, ρn)

nδ
= 0 .
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4 Stochastic integrals with respect to

the process (2.1)

In this Section we establish some properties of a stochastic integral

It(f) =

∫ t

0

fsdξs 0 ≤ t ≤ n , (4.1)

with respect to to the process (2.1). We will need some notations. Let
us denote

εf (t) = a

∫ t

0

ea(t−v) f(v) (1 + e2av) dv , (4.2)

where f is [0,+∞) → R function integrated on any finite interval. We
introduce also the following transformation

τf,g(t) =
1

2

∫ t

0

(
2f(s)g(s) + ε∗f,g(s)

)
ds (4.3)

of square integrable [0,+∞) → R functions f and g. Here

ε∗f,g(t) = f(t)εg(t) + εf (t)g(t) .

It will be noted that

aτf,1(t) =
1

2
εf (t) and aτ1,1(t) =

1

2

(
e2at − 1

)
. (4.4)

Proposition 4.1. If f and g are from L2[0, n] then

E It(f)It(g) = ̺∗ τf,g(t) (4.5)

where ̺∗ is given in (2.4).

Proof. Noting that the process It(f) satisfies the stochastic equation

dIt(f) = af(t)ξtdt+ f(t)dut , I0(f) = 0 ,

and applying the Ito formula one obtains (4.5). Hence Proposition 4.1.

Further, for integrated [0,+∞) → R functions f and g, we define the
[0,+∞)× [0,+∞) → R function

Df,g(x, z) =

∫ x

0

L∗
f,g(y, z) dy + f(z)g(z) , (4.6)

15



where L∗
f,g(y, z) = g(y + z)Lf (y, z) + f(y + z)Lg(y, z);

Lf (x, z) = aeax
(
f(z) + a

∫ x

0

eav f(v + z) dv

)
.

Proposition 4.2. Let Gk = σ{T1, . . . , Tk}, where k ≥ 1, be σ-algebra
generated by the stopping times (2.3), f and g be bounded left-continuous
[0,∞) × Ω → R functions measurable with respect to B[0,+∞)

⊗Gk

(the product σ algebra created by B[0,+∞) and Gk). Then

E
(
ITk−

(f)|Gk

)
= 0

and

E
(
ITk−

(f) ITk−
(g)|Gk

)
= ̺21τf,g(Tk) + ̺22

k−1∑

l=1

Df,g(Tk − Tl, Tl) .

Proof. By the Ito formula one has

It(f) It(g) =

∫ t

0

(̺21f(s)g(s) + a(f(s)Is(g) + g(s)Is(f))ξs)ds

+ ̺22

∑

l≥1

f(Tl) g(Tl)Y
2
l 1{Tl≤t}

+

∫ t

0

(f(s)Is−(g) + g(s)Is−(f)))dus . (4.7)

Taking the conditional expectation E (·|Gk), on the set {Tk > t}, yields

E (It(f) It(g)|Gk) =

∫ t

0

̺21f(s)g(s)ds+ ̺22

∑

l≥1

f(Tl) g(Tl) 1{Tl≤t}

+ a

∫ t

0

(f(s)E(Is(g)ξs|Gk) + g(s)E(Is(f)ξs|Gk)) ds .

Now to calculate the function Zt = E(It(f)ξt|Gk) we put g = 1. Taking
into account that

E(ξ2t |Gk) =
̺21
2a

(e2at − 1) + ̺22

∑

l≥1

e2a(t−Tl) 1{Tl≤t} ,

16



one obtains, for Tj−1 ≤ t < Tj ,

Żt = aZt + f(t)ψt ,

where

ψt =
̺21
2

(
1 + e2at

)
+ ̺22a

∑

l≥1

e2a(t−Tl)1{Tl≤t} .

Therefore, for Tj−1 ≤ t < Tj ,

Zt = ea(t−Tj−1
)ZTj−1

+

∫ t

Tj−1

ea(t−s)f(s)ψsds .

¿From here and (4.6) with g = 1 one has

ZTj
= ea(Tj−Tj−1

)ZTj−1
+ ηj , ZT

0
= Z0 = 0 , (4.8)

where

ηj =

∫ Tj

Tj−1

ea(Tj−s)f(s)ψsds+ ̺22f(Tj) .

Solving the equation (4.7) one obtains

ZTj
=

∫ Tj

0

ea(Tj−s)f(s)ψsds+ ̺22

j∑

l=1

ea(Tj−Tl)f(Tl) .

Therefore,

Zt =

∫ t

0

ea(t−s)f(s)ψsds+ ̺22

∑

l≥1

ea(t−Tl)f(Tl)1{Tl≤t} ,

i.e

aE(It(f)ξt|Gk) =
̺21
2
εf (t) + ̺22

∑

j≥1

Lf (t− Tj, Tj)1{Tj≤t}.

¿From here one comes to the desired equality. Hence Proposition 4.2.

Proposition 4.3. Let F , f and g be non random bounded left-continuous
[0,∞) → R functions. Then

E
∑

k≥1

F (Tk) ITk−
(f) ITk−

(g)1{Tk≤t} =

∫ t

0

F (v)Hf,g(v) dv ,

17



where

Hf,g(t) = λ̺21 τf,g(t) + (λ̺2)
2

∫ t

0

Df,g(t− z, z)dz .

Proof. We have

ι(t) = E
∑

k≥1

F (Tk) ITk−
(f) ITk−

(g)1{Tk≤t} .

By Proposition 4.2 one gets

ι(t) = ̺21E
∑

k≥1

F (Tk) τf,g(Tk)1{Tk≤t}

+ ̺22 E
∑

k≥1

F (Tk)

k−1∑

l=1

Df,g(Tk − Tl, Tl)1{Tk≤t}

:= ι1(t) + ι2(t) ,

where

ι1(t) = λ

∫ t

0

∑

l≥1

F (z)τf,g(z)
(λz)l−1

(l − 1)!
e−λzdz =

∫ t

0

F (z)τf,g(z)dz .

To calculate ι2(t) we note that

ι2(t) = E
∑

l≥1

1{Tl≤t}

∑

k≥l+1

F (Tk)Df,g(Tk − Tl, Tl)1{Tk≤t} .

Taking into account that Tk −Tl is independent of Tl for any k > l we
obtain

ι2(t) = λE
∑

l≥1

1{Tl≤t}

∫ t−Tl

0

∑

k≥l+1

F (z + Tl)Df,g(z, Tl)
(λz)k−l−1

(k − l − 1)!
e−λzdz

= λE
∑

l≥1

1{Tl≤t}

∫ t−Tl

0

F (z + Tl)Df,g(z, Tl) dz

= λ2
∫ t

0

∫ t−x

0

(
F (z + x)Df,g(z, x)dz

)
dx .

18



Note that

aHf,1(t) =
λ1
2
εf (t) and aH1,1(t) =

λ1
2

(
e2at − 1

)
, (4.9)

where λ1 given in (3.18). Now we set

Ĩt(f) = I2t (f)−E I2t (f) . (4.10)

Further we need the following correlation measures for two integrated
[0,+∞) → R functions f and g

̟f,g = max
0≤v≤n

max
0≤t≤n−v

|
∫ t

0

f(u+ v)g(u)du| (4.11)

and
̟∗

f,g = max
(
̟f,g,̟g,f

)
. (4.12)

For any bounded [0,∞) → R function f we introduce the following
uniform norm

‖f‖∗ = sup
0≤t≤n

|f(t)| .

To check the condition C2) one needs the following non-asymptotic
upper bound

Theorem 4.4. For any bounded left-continuous [0,∞) → R functions
f , g

|EĨn(f)Ĩn(g)| ≤ nM∗
(
̟∗

f,g + ‖f‖∗‖g‖∗
)
‖f‖∗‖g‖∗ , (4.13)

where M∗ is defined in (3.19).

Proof. By the Ito formula one comes to the following stochastic
equation

dĨt(f) = 2avt(f)f(t)dt+ dMt(f) , Ĩ0(f) = 0 ,

with vt(f) = It(f)ξt −E It(f)ξt,

dMt(f) = 2It−(f)f(t)dut + ̺22f
2(t)dmt , M0(f) = 0 .

In view of Propositions 4.1–4.3, one finds

E [Ĩ(f), Ĩ(g)]t = E [M(f),M(g)]t =

∫ t

0

Vf,g(s) ds , (4.14)
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where Vf,g(t) = 4f(t)g(t)Gf,g(t)+̺3 f
2(t) g2(t) andGf,g = ̺21̺

∗τf,g(t)+
̺22Hf,g(t). Note that Lemma A.1 implies

max
0≤t≤n

|Gf,g(t)| ≤ (4̺21̺
∗ + ̺22D

∗
1)̟

∗
f,g . (4.15)

One can easily check that

V1,1(t) = 2λ2
e2at − 1

a
+ ̺3 . (4.16)

The constants λ2, ̺3 and D∗
1 are given in (3.18)-(3.19). Moreover, by

the Ito formula we get

dvt(f) = avt(f)dt+ af(t)ζtdt+ dKt(f) , v0(f) = 0 ,

where ζt = ξ2t −E ξ2t ,

Kt(f) =

∫ t

0

I∗s−(f) dus +

∫ t

0

̺22f(s)dms (4.17)

with

I∗t (f) = It(f) + f(t)ξt and mt =
∑

0≤s≤t

∆z2s − λt .

Proposition 4.1 implies

E I∗t (f)I
∗
t (g) = ̺∗ τ∗f,g(t) ,

where

τ∗f,g(t) = τf,g(t) + f(t)τ1,g(t) + g(t)τf,1(t) + f(t)g(t) τ1,1(t) .

¿From (4.3)–(4.4) it follows that

τ∗f,g(t) = τf,g(t) +
ε∗f,g(t) + f(t)g(t)(e2at − 1)

2a
. (4.18)

By applying Proposition 4.3 one finds

E
∑

k≥1

I∗Tk−
(f) I∗Tk−

(g)1{Tk≤t} =

∫ t

0

H∗
f,g(v) dv ,

where

H∗
f,g(t) = Hf,g(t) + f(t)H1,g(t) + g(t)Hf,1(t) + f(t)g(t)H1,1(t) .
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¿From here and (4.9) we get

H∗
f,g(t) = Hf,g(t) + λ1

ε∗f,g(t) + f(t)g(t)(e2at − 1)

2a
. (4.19)

Taking this into account, we calculate that, for any square integrated
functions f and g,

E [K(f) , K(g)]t =

∫ t

0

(
G∗

f,g(s) + ̺3 f(s) g(s)
)
ds , (4.20)

where
G∗

f,g(t) = ̺21̺
∗τ∗f,g(t) + ̺22H

∗
f,g(t) .

Further by applying Propositions 4.1–4.3 we obtain

E [K(f),M(g)]t =

∫ t

0

Uf,g(s)ds , (4.21)

where

Uf,g(s) = 2g(s)Gf,g(s) + 2g(s)f(s)G1,g(s) + ̺3f(s)g
2(s) .

By the Ito formula one finds for t ≥ 0

E Ĩt(f) Ĩt(g) = E [Ĩ(f) , Ĩ(g)]t + 2

∫ t

0

(
f(s)Tf,g(s) + g(s)Tg,f (s)

)
ds ,

(4.22)

where Tf,g(t) = aE vt(f) Ĩt(g). Since for g = 1 the processes Ĩt(g) and

vt(g) coincide with ζt, i.e. Ĩt(1) = vt(1) = ζt, (4.17) implies

Eζ2t =

∫ t

0

e4a(t−s) V1,1(s)ds = e4at
2λ2 + a̺3

4a2
+ e2at

λ2
a2

+
2λ2 − a̺3

4a2
.

(4.23)

We define the function

Af (t) =

∫ t

0

e3a(t−s)
(
f(s)a2E ζ2s + κf (s)

)
ds , (4.24)

where
κf (t) = λ2

(
εf (t) + f(t)

(
e2at − 1

))
+ a̺3f(t) .

Denote
Vf,g(s) = A∗

f,g(s) +G∗
f,g(s) + ̺3 f(s)g(s) , (4.25)
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where A∗
f,g(t) = g(s)Af (s) + f(s)Ag(s).

To calculate the function Tf,g(t), we note that, by the Ito formula and
(4.16),

dE vt(f)Ĩt(g) = a(Evt(f)Ĩt(g))dt + 2ag(t)(Evt(f) vt(g))dt

+ af(t)(EζtĨt(g))dt+ Uf,g(t)dt . (4.26)

Substituting here f = 1, and then taking into account (A.2) yield

EζtĨt(g) =

∫ t

0

e2a(t−s)
(
A∗

g,g(s) + U1,g(s)
)
ds .

Furthermore, by (A.2)

E vt(f)Ĩt(g) = 2a

∫ t

0

ea(t−s) g(s) (Evs(f)vs(g)) ds

+ a

∫ t

0

ea(t−s)f(s)
(
Eζs Ĩs(g)

)
ds+

∫ t

0

ea(t−s) Uf,g(s)ds .

Therefore, for any bounded left-continuous [0,+∞) → R functions f
and g, one finds

Tf,g(t) = a

∫ t

0

ea(t−s)
(
g(s)Vf,g(s) + f(s)Kg(s) + Uf,g(s)

)
ds , (4.27)

where

Vf,g(t) = 2a

∫ t

0

e2a(t−s) Vf,g(s)ds

and

Kg(t) = a

∫ t

0

e2a(t−s)
(
A∗

g,g(s) + U1,g(s)
)
ds .

¿From (4.17) and (4.27), it follows that

|E Ĩn(f) Ĩn(g)| ≤ n‖Vf,g‖∗ + 2n‖f‖∗‖Tf,g‖∗ + 2n‖g‖∗‖Tg,f‖∗ .
Now by applying the inequality (A.10) one gets

‖Vf,g‖∗ ≤
(
(4̺21 + ̺22D

∗
1)̟

∗
f,g + ̺3‖f‖∗‖g‖∗

)
‖f‖∗‖g‖∗ .

Note that Lemmas A.6–A.8 imply

‖Tf,g‖∗ ≤
(
(20λ2 + 3D∗

2)̟
∗
f,g + 5̺3‖f‖∗‖g‖∗

)
‖g‖∗ .

¿From here one comes to the upper bound (4.12).
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5 Proof of Theorem 3.2

First we note that Proposition 4.1 implies the inequality (1.3) with
σQ = 3̺∗. Therefore due to the conditions (2.4) one obtains σ∗ =
3̺max. Now we verify Conditions C1) and C2) for the family of pro-
cesses (2.1) satisfying the conditions (2.4). To begin with we note
that

EQ,Sξ
2
j,n = ̺∗

(
1 +

a

n

∫ n

0

eav Υj(v)dv

)
,

where

Υj(v) =

∫ n

v

φj(t)φj(t− v)
(
1 + e2a(t−v)

)
dt .

If j = 1, one has
|EQ,Sξ

2
1,n − ̺∗| ≤ 2̺∗ . (5.1)

Since for the trigonometric basis (3.1) for j ≥ 2

φj(t)φj(t− v) = cos(γjv) + (−)j cos(γj(2t− v))

where γj = 2π[j/2], therefore,

Υj(v) = cos(γjv)F (v) + (−1)j Υ0,j(v) , F (v) =

∫ n−v

0

(
1 + e2at

)
dt

and

Υ0,j(v) =

∫ n−v

0

cos(γj(2t+ v))
(
1 + e2at

)
dt .

Integrating by parts yields

Υ0,j(v) =
e2a(n−v)

2γj
sin(vγj) +

a

2γ2j
Υ1,j(v)

where

Υ1,j(v) = cos(vγj)(e
a(n−v) − 1)− a

∫ n−v

0

eat cos((2t+ v)γj) dt .

It is obvious, that |Υ1,j(v)| ≤ 2. Further we obtain

a

∫ n

0

eav Υj(v)dv = a

∫ n

0

eav F (v) cos(vγj)dv + a(−1)j
∫ n

0

eav Υ0,j(v) dv

:= aD1(n) + a(−1)jD2(n) .
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Integrating by parts two times we find

D1(n) =
1

γ2j

(
eanḞ (n)− Ḟ (0) − aF (0)−

∫ n

0

eavF1(v)dv

)
,

where
F1(v) = a2F (v) + 2aḞ (v) + F̈ (v) .

This implies

|D1(n)| ≤
1

γ2j
(3n|a|+ 10) .

Similarly, one gets

|D2(n)| ≤
2

γ2j
.

Thus, for j ≥ 2,

|EQ,Sξ
2
j,n − ̺∗| ≤ 15 |a|(1 + |a|)̺∗

π2j2
. (5.2)

Therefore
L1,n(Q) ≤ 2(1 + |a|(|a|+ 1))̺∗

and taking into account the conditions (2.4) we get

L1,n(Q) ≤ L∗
1 , (5.3)

where L∗
1 is defined in (3.18). It means that the condition C1) holds

with ςQ = ̺∗. Moreover, by applying the conditions (2.4) we have
ς∗ = ̺∗max and ς∗ = ̺∗min.
To check the condition C2) we note that

EQ,S




∞∑

j=1

xj (ξ
2
j,n −EQ,Sξ

2
j,n)




2

=
1

n2

∑

i,j≥1

xixj EQ,S Ĩn(φi)Ĩn(φj) .

Therefore, in view of Theorem 4.4

EQ,S




∞∑

j=1

xj (ξ
2
j,n −EQ,Sξ

2
j,n)




2

≤ 2M∗

n

∑

i,j≥1

|xi||xj |(̟∗
i,j + 2) ,

(5.4)
where ̟∗

i,j = ̟∗
φi,φj

. To estimate this term we note, that for any

j ≥ 1,

φj(v + u) = aj−1(v)φj−1(u) + aj(v)φj(u) + aj+1(v)φj+1(u)
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aj(·) are bounded functions with |aj(v)| ≤ 1. Thus,

̟∗
i,j ≤ 3n1{|i−j|≤1} + 31{|i−j|≥2} .

Since
∑

j≥1
x2j ≤ 1, therefore, the upper bound in (5.4) can be esti-

mated as ∑

i,j≥1

|xi||xj |(̟∗
i,j + 2) ≤ 14n .

¿From here, it follows that

L2,n(Q) ≤ 28M∗ . (5.5)

Hence Theorem 3.2.

6 Robust asymptotic efficiency

In this Section we show that the model selection procedure (3.15),
(3.33), (3.24), (3.32) for estimating S in the model (1.1) is asymptot-
ically efficient with respect to the robust risk (1.6). We assume that
the unknown function S in the model (1.1) belongs to the Sobolev ball

W k
r = {f ∈ Ck

per[0, 1] ,
k∑

j=0

‖f (j)‖2 ≤ r} , (6.1)

where r > 0 , k ≥ 1 are some parameters, Ck
per[0, 1] is the set of k

times continuously differentiable functions f : [0, 1] → R such that
f (i)(0) = f (i)(1) for all 0 ≤ i ≤ k. The functional class W k

r can be
written as an ellipsoid in l2, i.e.

W k
r = {f ∈ Ck

per[0, 1] :
∞∑

j=1

aj θ
2
j ≤ r} (6.2)

where aj =
∑k

i=0 (2π[j/2])
2i.

We denote by Q0 the distribution of Winer process with the scale
parameter ς∗ defined in (3.22).

H1) Assume the distribution Q0 belongs to the family Qn.
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In this Section we will show that the Pinsker constant for the
robust risk (1.6) is given by the equation

R∗
k = ((2k + 1)r)1/(2k+1)

(
ς∗k

(k + 1)π

)2k/(2k+1)

. (6.3)

It is well known that the optimal (minimax) rate for the Sobolev ball
W k

r is n2k/(2k+1) (see, for example, [24], [23]).
We will see that asymptotically the robust risk (1.6) normalized

by this rate is bounded from below by R∗
k, i.e. this bound can not be

diminished if one considers the class of all admissible estimates for S.
Let Πn be the set of all estimators Ŝn measurable with respect to the
sigma-algebra σ{yt , 0 ≤ t ≤ n} generated by the process (1.1).

Theorem 6.1. Under the condition H1)

lim inf
n→∞

n2k/(2k+1) inf
Ŝn∈Πn

sup
S∈W k

r

R∗
n(Ŝn, S) ≥ R∗

k . (6.4)

Proof of this theorem follows directly from Theorem 3.2 in [19].
Now we show that, under some conditions, the normalized robust risk
for the model selection procedure is bounded from above by the same
constant R∗

k.

Theorem 6.2. Assume that, in model (1.1), for each n ≥ 1 the distri-
bution of (ξt)0≤t≤n belongs to the family Qn satisfying the conditions

H0). Then the robust risk (1.6) of the model selection procedure Ŝ∗
defined in (3.33), (3.24), (3.32) has the following asymptotic upper
bound

lim sup
n→∞

n2k/(2k+1) sup
S∈W k

r

R∗
n(Ŝ∗, S) ≤ R∗

k . (6.5)

Theorem 6.1 and Theorem 6.2 imply the following result

Corollary 6.3. Under the conditions H0) and H1)

lim
n→∞

n2k/(2k+1) inf
Ŝn∈Πn

sup
S∈W k

r

R∗
n(Ŝn, S) = R∗

k . (6.6)

Remark 6.1. The equation (6.6) means that the parameter R∗
k de-

fined by (6.3) is the Pinsker constant (see, for example, [24], [23]) for
the model (1.1). Moreover, the equality (6.6) means that the model
selection procedure (3.33), (3.24), (3.32) is asymptotically robust effi-
cient.
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7 Upper bound

7.1 Known smoothness

First we suppose that the parameters k ≥ 1, r > 0 in (6.1) and ς∗ in
(3.22) are known. Let the family of admissible weighted least squares
estimates (Ŝγ)γ∈Γ for the unknown function S ∈ W k

r be given by
(3.32). Consider the pair

α0 = (k, t0)

where t0 = [r/ε]ε, r = r/ς∗ and ε satisfies the conditions in (3.30).
Denote the corresponding weight sequence in Γ as

γ0 = γα
0
. (7.1)

Note that for sufficiently large n the pair α0 belongs to the set (3.29).

Theorem 7.1. The estimator Ŝγ
0
satisfies the following asymptotic

upper bound

lim sup
n→∞

n2k/(2k+1) sup
S∈W k

r

R∗
n (Ŝγ0 , S) ≤ R∗

k . (7.2)

Proof. Substituting the model (1.1) in the definition of θ̂j,n in (3.4)
yields

θ̂j,n = θj +
1√
n
ξj,n ,

where the random variables ξj,n are defined in (3.4). Therefore, by

the definition of the estimators Ŝγ in (3.6), we get

‖Ŝγ
0
− S‖2 =

n∑

j=1

(1− γ0(j))
2 θ2j − 2Mn +

1

n

n∑

j=1

γ20(j) ξ
2
j,n

with

Mn =
1√
n

n∑

j=1

(1 − γ0(j)) γ0(j) θj ξj,n .

It should be observed that EQ,SMn = 0 for any Q ∈ Q∗
n. Moreover,

by the condition C1)

EQ,S

n∑

j=1

γ20(j)ξ
2
j,n ≤ ςQ

n∑

j=1

γ20(j) + L1,n(Q)
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and, taking into account the condition H0), we get

sup
Q∈Qn

EQ,S

n∑

j=1

γ20(j) ξ
2
j,n ≤ ς∗

n∑

j=1

γ20(j) + ln .

Thus,

R∗
n(Ŝγ0 , S) ≤

n∑

j=ι
0

(1− γ0(j))
2 θ2j +

ς∗

n

n∑

j=1

γ20(j) +
ln
n

(7.3)

where ι0 = j0(α0). Setting

υn = n2k/(2k+1) sup
j≥ι

0

(1− γ0(j))
2/aj ,

we estimate the first summand in the right-hand of (7.3) as

n2k/(2k+1)
n∑

j=ι
0

(1− γ0(j))
2 θ2j ≤ υn

∑

j≥1

aj θ
2
j .

¿From here and (6.2), we obtain that for each S ∈W k
r

Υ1,n(S) = n2k/(2k+1)
n∑

j=ι
0

(1− γ0(j))
2 θ2j ≤ υn r .

Further we note that

lim sup
n→∞

(r)2k/(2k+1) υn ≤ 1

π2k (τk)
2k/(2k+1)

,

where the coefficient τk is given in (3.31). Therefore,

lim sup
n→∞

sup
S∈W k

r

Υ1,n(S) ≤ (ς∗)2k/(2k+1) Υ∗
1 (7.4)

where

Υ∗
1 =

r1/(2k+1)

π2k(τk)
2k/(2k+1)

.

To examine the second summand in the right hand of (7.2), we set

Υ2,n =
1

n1/(2k+1)

n∑

j=1

γ20(j) .
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It is easy to check that

lim
n→∞

1

(r)1/(2k+1)
Υ2,n =

2(τk)
1/(2k+1) k2

(k + 1)(2k + 1)
:= Υ∗

2 .

Therefore, taking into account that

(ς∗)2k/(2k+1)Υ∗
1,n + ς∗(r)1/(2k+1)Υ∗

2 = R∗
k ,

we obtain
lim
n→∞

n2k/(2k+1) sup
S∈W k

r

R∗
n(Ŝγ0 , S) ≤ R∗

k .

Hence Theorem 7.1.

7.2 Unknown smoothness

Combining Theorem 7.1 and Theorem 3.6 yields Theorem 6.2.

8 Appendix

A.1 Technical lemmas

Lemma A.1. The operators τf,g and Hf,g satisfy the following in-
equalities

sup
0≤t≤n

|τf,g(t)| ≤ 4̟∗
f,g and sup

0≤t≤n
|Hf,g(t)| ≤ D∗

1̟
∗
f,g , (A.1)

where D∗
1 is given in (3.19).

Proof. Fist note that
∫ t

0

f(s)εg(s)ds = a

∫ t

0

eav
(∫ t−v

0

f(s+ v)g(s)(1 + e2as)ds

)
dv .

Integrating by parts yields

∫ t−v

0

f(s+ v)g(s)(1 + e2as)ds = (1 + e2a(t−v))

∫ t−v

0

f(s+ v)g(s)ds

− 2a

∫ t−v

0

e2as
(∫ s

0

f(z + v)g(z)dz

)
ds .
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Taking into account the definition (4.11), we estimate this integral as

∣∣∣∣
∫ t−v

0

f(s+ v)g(s)(1 + e2as)ds

∣∣∣∣ ≤ 3̟∗
f,g .

Therefore,
∣∣∣∣
∫ t

0

f(s)εg(s)ds

∣∣∣∣ ≤ 3̟∗
f,g and

∣∣∣∣
∫ t

0

ε∗f,g(s)ds

∣∣∣∣ ≤ 6̟∗
f,g .

This implies the first inequality in (A.1). To obtain the second one we
represent the function Hf,g(t) in the following form

Hg,f(t) = λ̺21τf,g(t) + λ2̺22

∫ t

0

f(z)g(z)dz

+ λ2̺22

(
H

(1)
g,f (t) +H

(1)
f,g(t) +H

(2)
g,f (t) +H

(2)
f,g(t)

)
,

where

H
(1)
g,f (t) = a

∫ t

0

∫ t−z

0

eayg(y + z)f(z) dy dz

and

H
(2)
g,f (t) = a2

∫ t

0

∫ t−z

0

eayg(y + z)

∫ y

0

eavf(v + z) dv dy dz .

Now we note

|H(1)
g,f (t)| =

∣∣∣∣a
∫ t

0

eay
(∫ t−y

0

g(y + z)f(z) dz

)
dy

∣∣∣∣ ≤ ̟∗
f,g .

To estimate H
(2)
g,f (t) we represent it as

H
(2)
g,f (t) = a2

∫ t

0

eay
(∫ y

0

eav
(∫ t−y

0

g(y + z)f(v + z)dz

)
dv

)
dy .

Note that for any 0 ≤ v ≤ y ≤ t one has
∣∣∣∣
∫ t−y

0

g(y + z)f(v + z)dz

∣∣∣∣ ≤ 2̟∗
f,g .

Thus, |H(2)
g,f (t)| ≤ 2̟∗

f,g, and we come to the second inequality in

(A.1). Hence Lemma A.1.
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Lemma A.2. For any bounded left-continuous [0,+∞) → R functions
f , g

E vt(f) vt(g) =

∫ t

0

e2a(t−s) Vf,g(s) ds ,

where Vf,g(s) is given in (4.20).

Proof. By the Ito formula and (4.15), one gets

dEvt(f)vt(g) = 2aEvt(f)vt(g)dt+ (G∗
f,g(t) + ̺3 f(t)g(t))dt

+ a (g(t)Evt(f) ζt + f(t)Evt(g) ζt) dt .

To calculate Evt(f) ζt, we put g = 1 in this equality. Then, taking
into account that

κf (t) = aG∗
f,1(t) + a̺3 f(t) ,

we get

aEvt(f) ζt =

∫ t

0

e3a(t−s)
(
f(s)a2E ζ2s + κf (s)

)
ds = Af (t) . (A.2)

Therefore

Evt(f)vt(g) =

∫ t

0

e2a(t−s)
(
g(s)Af (s) + f(s)Ag(s)

)
ds

+

∫ t

0

e2a(t−s)
(
G∗

f,g(s) + ̺3 f(s)g(s)
)
ds .

Hence Lemma A.2.

Further we will need the following result.

Lemma A.3. Let υ be a continuously differentiable R → R function.
Then, for any n ≥ 1, α > 0 and for any integrated R → R function
Ψ,

sup
0≤t≤n

∣∣∣∣
∫ t

0

e−α(t−s)Ψ(s)υ(s) ds

∣∣∣∣ ≤ ̟1,Ψ

(
2‖υ‖∗ +

‖υ̇‖∗
α

)
.

Proof. One obtains this inequality with the help of integrating by
parts.
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Lemma A.4. For any mesurable bounded [0,+∞) → R functions f
and g, for any −∞ < a ≤ 0 , for any 0 ≤ t ≤ n and for any n ≥ 1

∣∣∣∣a
∫ t

0

e2a(t−s) g(s)Af (s) ds

∣∣∣∣ ≤ 3λ2̟
∗
f,g + ̺3‖f‖∗‖g‖∗ . (A.3)

Proof. One can represent the function Af (t) as

Af (t) =

∫ t

0

e3a(t−s)f(s)υ(s)ds+ λ2

∫ t

0

e3a(t−s)εf (s)ds , (A.4)

where υ(s) = a2E ζ2s + λ2
(
e2as − 1

)
+ a̺3. ¿From here and (4.23) we

rewrite this function as

υ(s) = aυ1(s) + υ2(s) (A.5)

with

υ1(s) =
̺3
4

(
e4at + 3

)
and υ2(s) =

λ2
2
e4at − λ2

2
.

These functions can be estimated as

‖υ1‖∗ ≤ ̺3 ;

sup−∞<a≤0

(
2‖υ2‖∗ +

‖υ̇2‖∗
2|a|

)
≤ 2λ2 .

(A.6)

Now we represent the intergal in (A.3) as

a

∫ t

0

e2a(t−s) g(s)Af (s) ds = J1(t) + J2(t) + λ2J3(t) ,

where

J1(t) = a2
∫ t

0

e2a(t−s) g(s)

(∫ s

0

e3a(s−u)f(u)υ1(u)du

)
ds ,

J2(t) = a

∫ t

0

e2a(t−s) g(s)

(∫ s

0

e3a(s−u)f(u)υ2(u)du

)
ds ,

J3(t) = a

∫ t

0

e2a(t−s) g(s)

(∫ s

0

e3a(s−u)εf (u)du

)
ds .

In view of (A.6) we have

sup
0≤t≤n

|J1(t)| ≤ ̺3‖f‖∗‖g‖∗ .
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Further we represent J2(t) as

J2(t) = a

∫ t

0

e3au
(∫ t−u

0

e2a(t−u−s) g(s+ u)f(s)υ1(s)ds

)
du .

By Lemma A.3 and (A.6) we obtain that for any 0 ≤ z ≤ n and
0 ≤ u ≤ n− z

∣∣∣∣
∫ z

0

e2a(z−s)υ(s)g(s + u)f(s)ds

∣∣∣∣ ≤ 3λ2̟
∗
f,g .

Therefore,
sup

0≤t≤n
|J2(t)| ≤ λ2̟

∗
f,g .

Similarly, one gets

sup
0≤t≤n

|J3(t)| ≤
2

3
̟∗

g,εf
.

To estimate the quantity ̟g,εf
defined in (4.11) we note that for any

0 ≤ v ≤ n and 0 ≤ t ≤ n− v
∫ t

0

g(s+ v)εf (s)ds = a

∫ t

0

eax Θg,f (t− x, v + x)dx , (A.7)

where

Θg,f (t, v) =

∫ t

0

g(s + v)f(s)(1 + e2as)ds .

Denoting

Υg,f (s, u) =

∫ s

0

g(r + u)f(r)dr , (A.8)

we represent the function Θg,f(t, v) as

Θg,f (t, v) = (1 + e2at)Υg,f (t, v) − 2a

∫ t

0

e2asΥg,f (s, v)ds .

Therefore
max
0≤v≤n

max
0≤t≤n−v

|Θg,f (t, v)| ≤ 3̟∗
f,g .

In view of (A.7), one gets

̟g,εf
≤ 3̟∗

f,g and sup
0≤t≤n

|J3(t)| ≤ 2̟∗
f,g .

Hence Lemma A.4.
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Lemma A.5. For any mesurable bounded [0,+∞) → R functions f
and g, for any −∞ < a ≤ 0 , for any 0 ≤ t ≤ n and for any n ≥ 1

∣∣∣∣2a
∫ t

0

e2a(t−s)G∗
f,g(s) ds

∣∣∣∣ ≤ D∗
2̟f,g , (A.9)

where D∗
2 is defined in (3.19).

Proof. First we note that the function G∗
f,g can be represented as

G∗
f,g(t) = Gf,g(t) +

λ2
a
τ̇f,g(t) +

λ2
2a

(
e2at − 3

)
f(t)g(t) .

Integrating by the parts yields

∣∣∣∣
∫ t

0

e2a(t−s) τ̇f,g(s) ds

∣∣∣∣ ≤ 8̟∗
f,g .

Finally, by applying Lemma A.3 with υ(s) = e2as − 3 and Ψ(s) =
f(s)g(s), one gets

∣∣∣∣
∫ t

0

e2a(t−s) (e2as − 3)f(s)g(s) ds

∣∣∣∣ ≤ 7̟∗
f,g .

Hence Lemma A.5.

Lemma A.6. For any mesurable bounded [0,+∞) → R functions f
and g, for any −∞ < a ≤ 0 , for any 0 ≤ t ≤ n and for any n ≥ 1

|Vf,g(t)| ≤ (6λ2 +D∗
2)̟

∗
f,g + 3̺3‖f‖∗‖g‖∗ . (A.10)

Proof. This inequality is a direct consequence of Lemmas A.2-A.5
Hence Lemma A.6.

Lemma A.7. For any mesurable bounded [0,+∞) → R functions f
and g, for any −∞ < a ≤ 0 , 0 ≤ t ≤ n and n ≥ 1

∣∣∣∣a
∫ t

0

ea(t−s) f(s)Kg(s) ds

∣∣∣∣ ≤ 14λ2‖g‖∗̟∗
f,g + ̺3‖f‖∗ ‖g‖2∗ . (A.11)
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Proof. Taking into account (A.4)–(A.5), we write down the function
Ag(t) as

Ag(t) = A(1)
g (t) +A(2)

g (t)

where

A(1)
g (t) = a

∫ t

0

e3a(t−s)g(s)υ1(s)ds , A(2)
g (t) =

∫ t

0

e3a(t−s)
(
g(s)υ2(s) + λ2εg(s)

)
ds .

Since

U1,g(t) =
2λ2
a
g(t)εg(t) + ̺3g

2(t) ,

the integral in (A.12) can be represented as

a

∫ t

0

ea(t−s) f(s)Kg(s) ds = J∗
1 (t) + J∗

2 (t) + J∗
3 (t) + J∗

4 (t) ,

where

J∗
1 (t) = 2a2

∫ t

0

ea(t−s)f(s)

(∫ s

0

e2a(s−r)g(r)A(1)
g (r)dr

)
ds ,

J∗
2 (t) = 2a2

∫ t

0

ea(t−s)f(s)

(∫ s

0

e2a(s−r)g(r)A(2)
g (r)dr

)
ds ,

J∗
3 (t) = 2aλ2

∫ t

0

ea(t−s)f(s)

(∫ s

0

e2a(s−r)g(r)εg(r)dr

)
ds ,

J∗
4 (t) = ̺3 a

2

∫ t

0

ea(t−s)f(s)

(∫ s

0

e2a(s−r)g2(r)dr

)
ds .

In view of (A.6), one obtains

sup
0≤t≤n

|A(1)
g (t)| ≤ ̺3

3
‖g‖∗ and sup

0≤t≤n
|J∗

1 (t)| ≤
̺3
3
‖f‖∗ ‖g‖2∗ .

Denoting

Γf,g(t, x) =

∫ t

0

ea(t−s)A(2)
g (s)f(s+ x)g(s)ds ,

one has

J∗
2 (t) = 2a2

∫ t−x

0

e2axΓf,g(t− x, x) dx .
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Noting that

sup
0≤t≤n

|υ2(t)| ≤
λ2
2
,

one comes to the inequalities

sup
0≤t≤n

|A(2)
g (t)| ≤ 5λ2

6|a| ‖g‖∗ and sup
0≤t≤n

|Ȧ(2)
g (t)| ≤ 4λ2 ‖g‖∗ .

By applying Lemma A.3 with Ψ(s) = f(s + x)g(s) and υ(s) = υ2(s)
one gets

sup
0≤t≤n

sup
0≤x≤t

|Γf,g(t− x, x)| ≤ 17

3|a| λ2̟
∗
f,g ‖g‖∗ ≤ 6λ2̟

∗
f,g ‖g‖∗ .

Therefore,
sup

0≤t≤n
|J∗

2 (t)| ≤ 6λ2̟
∗
f,g ‖g‖∗ .

Similarly, one can show that

sup
0≤t≤n

|J∗
3 (t)| ≤ 8λ2̟

∗
f,g ‖g‖∗ .

Finally, the function J∗
4 (t) can be estimated as

sup
0≤t≤n

|J∗
4 (t)| ≤

̺3
2
‖f‖∗ ‖g‖2∗ .

Hence Lemma A.7.

Lemma A.8. For any measurable bounded [0,+∞) → R functions f
and g, −∞ < a ≤ 0, 0 ≤ t ≤ n and n ≥ 1

∣∣∣∣a
∫ t

0

ea(t−s) Uf,g(s) ds

∣∣∣∣ ≤ 2D∗
2 ‖g‖∗̟

∗
f,g + ̺3‖f‖∗ ‖g‖2∗ . (A.12)

Proof. We note that

Uf,g(t) = 2g(t)Gf,g(t) +
λ2
a
f(t)g(t)εg(t) + ̺3f(t)g

2(t) .

Taking into account (A.10) we obtain that

∣∣∣∣2a
∫ t

0

ea(t−s) g(s)Gf,g(s) ds

∣∣∣∣ ≤ 2(4̺21̺
∗ + ̺2D

∗
1)‖g‖∗̟

∗
f,g .
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In view of Lemma A.3, we obtain

sup
0≤t≤n

∣∣∣∣
∫ t

0

ea(t−s) f(s)g(s)εg(s) ds

∣∣∣∣ ≤ ̟∗
f,g

(
2‖εg‖∗ +

‖ε̇g‖∗
|a|

)
.

Taking into account that

‖εg‖∗ ≤ 2‖g‖∗ and ‖ε̇g‖∗ ≤ 4|a|‖g‖∗ ,
one gets

sup
0≤t≤n

∣∣∣∣
∫ t

0

ea(t−s) f(s)g(s)εg(s) ds

∣∣∣∣ ≤ 8‖g‖∗̟∗
f,g .

¿From here we come to desired result. Hence lemma A.8.

A.2 Property of the Fourier coefficients

Lemma A.9. Suppose that the function S in (1.1) is differentiable
and satisfies the condition (3.25). Then the Fourier coefficients (3.2)
satisfy the inequality

sup
l≥2

l
∞∑

j=l

θ2j ≤ 4 |Ṡ|21 .

Proof. In view of (3.1), one has

θ2p = − 1√
2πp

∫ 1

0

Ṡ(t) sin(2πpt)dt

and

θ2p+1 =
1√
2πp

∫ 1

0

Ṡ(t)(cos(2πpt)− 1)dt

= −
√
2

πp

∫ 1

0

Ṡ(t) sin2(πpt)dt , p ≥ 1 .

¿From here, it follows that for any j ≥ 2

θ2j ≤ 2

j2
|Ṡ|21 .

Taking into account that

sup
l≥2

l
∑

j≥l

1

j2
≤ 2 ,

we arrive at the desired result.
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