Konev Victor 
  
Pergamenshchikov Serguei 
email: serge.pergamenchtchikov@univ-rouen.fr
  
Efficient robust nonparametric estimation in a semimartingale regression model *

Keywords: Non-asymptotic estimation, Robust risk, Model selection, Sharp oracle inequality, Asymptotic efficiency AMS 2000 Subject Classifications: 62G08, 62G05

The paper considers the problem of robust estimating a periodic function in a continuous time regression model with dependent disturbances given by a general square integrable semimartingale with unknown distribution. An example of such a noise is non-gaussian Ornstein-Uhlenbeck process with the Lévy process subordinator, which is used to model the financial Black-Scholes type markets with jumps. An adaptive model selection procedure, based on the weighted least square estimates, is proposed. Under general moment conditions on the noise distribution, sharp non-asymptotic oracle inequalities for the robust risks have been derived and the robust efficiency of the model selection procedure has been shown.

Introduction

Consider a regression model in continuous time dy t = S(t)dt + dξ t , 0 ≤ t ≤ n , (1.1) where S is an unknown 1-periodic R → R function, S ∈ L 2 [0, 1]; (ξ t ) t≥0 is an unobservable semimartingale noise with the values in the Skorokhod space D[0, n] such that, for any function f from L 2 [0, n], the stochastic integral

I n (f ) = n 0 f s dξ s (1.2)
is well defined and has the following properties

E Q I n (f ) = 0 and E Q I 2 n (f ) ≤ σ Q n 0 f 2 s ds . (1.3) 
Here E Q denotes the expectation with respect to the distribution Q in D[0, n] of the process (ξ t ) 0≤t≤n , which is assumed to belong to some probability family Q n specified below; σ Q > 0 is some positive constant depending on the distribution Q.

The problem is to estimate the unknown function S in the model (1.1) on the basis of observations (y t ) 0≤t≤n .

The class of the disturbances ξ satisfying conditions (1.3) is rather wide and comprises, in particular, the Lévy processes which are used in different important problems (see [START_REF] Bertoin | Lévy Processes[END_REF], for details). The models (1.1) with the Lévy's type noise naturally arise (see [START_REF] Konev | Nonparametric estimation in a semimartingale regression model. Part 1. Oracle Inequalities[END_REF]) in the nonparametric functional statistics problems (see, for example, [START_REF] Ferraty | Nonparametric Functional Data Analysis : Theory and Practice[END_REF]). Moreover, as is shown in Section 2, Non-Gaussian Ornstein-Uhlenbeck-based models also enter this class. The latter models are successfully used to model the Black-Scholes type financial markets with jumps (see [START_REF] Barndorff-Nielsen | Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial mathematics[END_REF], [START_REF] Delong | Optimal investment and consumption in a Black-Scholes market with Lévy driven stochastic coefficients[END_REF] for details and other references).

We define the error of an estimate S (any real-valued function measurable with respect to σ{y t , 0 ≤ t ≤ n}) for S by its integral quadratic risk R Q ( S, S)

:= E Q,S S -S 2 , (1.4) 
where E Q,S stands for the expectation with respect to the distribution P Q,S of the process (1.1) with a fixed distribution Q of the noise (ξ t ) 0≤t≤n and a given function S; • is the norm in L 2 [0, 1], i.e.

f 2 := 1 0 f 2 (t)dt . (1.5)
Since in our case the noise distribution Q is unknown, it seems natural to measure the quality of an estimate S by the robust risk defined as

R * n ( S, S) = sup Q∈Q n R Q ( S, S) (1.6) 
which assumes taking supremum of the error (1.4) over the whole family of admissible distributions Q n .

It is natural to treat the stated problem with respect to the quadratic risk from the standpoint of the model selection approach. It will be noted that the origin of this method goes back to early seventies with the pioneering papers by Akaike [START_REF] Akaike | A new look at the statistical model identification[END_REF] and Mallows [START_REF] Mallows | Some comments on C p[END_REF] who proposed to introduce penalizing in a log-likelihood type criterion. The further progress has been made by Barron, Birgé and Massart [START_REF] Barron | Risk bounds for model selection via penalization[END_REF], [START_REF] Massart | A non-asymptotic theory for model selection[END_REF], who developed a non-asymptotic model selection method which enables one to derive non-asymptotic oracle inequalities for nonparametric regression models with the i.i.d. gaussian disturbances. An oracle inequality yields the upper bound for the estimate risk via the minimal risk corresponding to a chosen family of estimates. Galtchouk and Pergamenshchikov [START_REF] Galtchouk | Nonparametric sequential estimation of the drift in diffusion processes[END_REF] applied the Barron-Birgé-Massart technic to the problem of estimating a nonparametric drift function in ergodic diffusion processes. Fourdrinier and Pergamenshchikov [START_REF] Fourdrinier | Improved selection model method for the regression with dependent noise[END_REF] extended the Barron-Birgé-Massart method to the models with the spherically symmetric dependent observations. They proposed a model selection procedure based on the improved least squares estimates. Lately, the authors [START_REF] Konev | General model selection estimation of a periodic regression with a Gaussian noise[END_REF] applied this method to the nonparametric problem of estimating a periodic function in a model with a gaussian colored noise in continuous time. In all cited papers, the non-asymptotic oracle inequalities have been derived, which enable one to establish the optimal convergence rate for the minimax risks. In addition to the optimal convergence rate, the other important problem is that of the efficiency of adaptive estimation procedures. In order to examine the efficiency property of a procedure one has to obtain the sharp oracle inequalities, i.e. such in which the factor at the principal term in the right-hand of the inequality is close to unity.

The first result on sharp inequalities is most likely due to Kneip [START_REF] Kneip | Ordered linear smoothers[END_REF] who studied a gaussian regression model. It will be observed that the derivation of oracle inequalities usually rests upon the fact that the initial model, by applying the Fourier transformation, is reduced to the gaussian model with independent observations. However, such a transform is possible only for gaussian models with independent homogeneous observations or for the inhomogeneous ones with the known correlation characteristics. This restriction significantly narrows the area of application of the proposed model selection procedures and rules out a broad class of models including, in particular, widely used in econometrics heteroscedastic regression models (see, for example, [START_REF] Goldfeld | Nonlinear Methods in Econometrics[END_REF]). For constructing adaptive procedures in the case of inhomogeneous observations one needs to modify the approach to the estimation problem. Galtchouk and Pergamenshchikov [START_REF] Galtchouk | Sharp non-asymptotic oracle inequalities for nonparametric heteroscedastic regression models[END_REF]- [START_REF] Galtchouk | Adaptive asymptotically efficient estimation in heteroscedastic nonparametric regression[END_REF] have developed a new estimation method intended for the heteroscedastic regression models in discrete time. The heart of this method is to combine the Barron-Birgé-Massart non-asymptotic penalization method [START_REF] Barron | Risk bounds for model selection via penalization[END_REF] and the Pinsker weighted least square method minimizing the asymptotic risk (see, for example, [START_REF] Nussbaum | Spline smoothing in regression models and asymptotic efficiency in L 2[END_REF], [START_REF] Pinsker | Optimal filtration of square integrable signals in gaussian white noise[END_REF]). This yields a significant improvement in the performance of the procedure (see numerical example in [START_REF] Galtchouk | Sharp non-asymptotic oracle inequalities for nonparametric heteroscedastic regression models[END_REF]).

The goal of this paper is to develop the robust efficient model selection method for the model (1.1) with dependent disturbances having unknown distribution. We follow the approach, proposed by Galtchouk and Pergamenshchikov in [START_REF] Galtchouk | Sharp non-asymptotic oracle inequalities for nonparametric heteroscedastic regression models[END_REF], in the construction of the procedure. Unfortunately, their method of obtaining the oracle inequalities is essentially based on the independence of observations and can not be applied here. The paper proposes the new analytical tools which allow one to obtain the sharp non-asymptotic oracle inequalities for robust risks under general conditions on the distribution of the noise in the model (1.1). This method enables us to treat both the cases of dependent and independent observations from the same standpoint, does not assume the knowledge of the noise distribution and leads to the efficient estimation procedure with respect to the risk (1.6). The validity of the conditions imposed on the noise in the equation (1.1) is verified for a non-gaussian Ornstein-Uhlenbeck process (see Section 2).

The rest of the paper is organized as follows. In Section 3 we construct the model selection procedure on the basis of weighted least squares estimates and state the main results in the form of oracle inequalities for the quadratic risk (1.4) and the robust risk (1.6). Here we specify also the set of admissible weight sequences in the model selection procedure. In Section 4 we proof some properties of the stochastic integrals with respect to the non-gaussian Ornstein-Uhlenbeck process (2.1). Section 5 gives the proofs of the main results. In Sections 6, 7 it is shown that the proposed model selection procedure for estimating S in (1.1) is asymptotically efficient with respect to the robust risk (1.6). In Appendix some auxiliary propositions are given.

Non-Gaussian Ornstein-Uhlenbeck process

In this section we consider an important example of the disturbances (ξ t ) t≥0 in (1.1) given by a non-gaussian Ornstein-Uhlenbeck process with the Lévy subordinator. Such processes are used in the financial Black-Scholes type markets with jumps (see, for example [START_REF] Delong | Optimal investment and consumption in a Black-Scholes market with Lévy driven stochastic coefficients[END_REF] and the references therein). Let the noise process in (1.1) obey the equation

dξ t = aξ t dt + du t , ξ 0 = 0 , (2.1) 
where a ≤ 0, u t = ̺ 1 w t + ̺ 2 z t , ̺ 1 and ̺ 2 are unknown constants, (w t ) t≥0 is a standard Brownian motion, (z t ) t≥0 is a compound Poisson process defined as

z t = N t j=1 Y j .
Here (N t ) t≥0 is a standard homogeneous Poisson process with unknown intensity λ > 0 and (Y j ) j≥1 is an i.i.d. sequence of random variables with

EY j = 0 , EY 2 j = 1 and EY 4 j < ∞ . (2.2)
Let (T ) k≥1 denote the arrival times of the process (N t ) t≥0 , that is,

T k = inf{t ≥ 0 : N t = k} . (2.3) 
We assume that the parameters λ, a, ̺ 1 and ̺ 2 satisfy the conditions

-a max ≤ a ≤ 0 , 0 ≤ λ ≤ λ max , ̺ * min ≤ ̺ * ≤ ̺ * max , (2.4) 
where

̺ * = ̺ 2 1 + λ̺ 2 2 .
Let Q n denote the family of all distributions of process (2.1) on D[0, n] with the parameters a, λ, ̺ 1 and ̺ 2 satisfying the conditions (2.4) with fixed bounds λ max > 0, a max > 0, ̺ * min > 0 and ̺ * max > 0.

Model selection

This Section gives the construction of a model selection procedure for estimating a function S in (1.1) on the basis of weighted least square estimates and states the main results. For estimating the unknown function S in the model (1.1), we apply its Fourier expansion in the trigonometric basis (φ j ) j≥1 in L 2 [0, 1] defined as

φ 1 = 1 , φ j (x) = √ 2 T r j (2π[j/2]x) , j ≥ 2 , (3.1) 
where the function T r j (x) = cos(x) for even j and T r j (x) = sin(x) for odd j; [x] denotes the integer part of x. The corresponding Fourier coefficients

θ j = (S, φ j ) = 1 0 S(t) φ j (t) dt (3.2)
can be estimated as

θ j,n = 1 n n 0 φ j (t) dy t . (3.3) 
In view of (1.1), we obtain

θ j,n = θ j + 1 √ n ξ j,n , ξ j,n = 1 √ n I n (φ j ) (3.4)
where I n (φ j ) is given in (1.2).

For any sequence x = (x j ) j≥1 , we set

|x| 2 = ∞ j=1 x 2 j and #(x) = ∞ j=1 1 {|x j |>0} . (3.5) 
Now we impose some additional conditions on the distribution of the noise (ξ t ) t≥0 in (1.1).

C 1 ) There exists a positive constant ς Q > 0 such that for any n ≥ 1

L 1,n (Q) = sup x∈H , #(x)≤n ∞ j=1 x j E Q ξ 2 j,n -ς Q < ∞ , where H = [-1, 1] ∞ . C 2 ) Assume that for all n ≥ 1 L 2,n (Q) = sup |x|≤1 , #(x)≤n E Q   ∞ j=1 x j (ξ 2 j,n -E Q ξ 2 j,n )   2 < ∞ .
As is shown in the proof of Theorem 3.2 in Section 5 , both Conditions C 1 ) and C 2 ) hold for the process (2.1). Further we define a class of weighted least squares estimates for S(t) as

S γ = ∞ j=1 γ(j) θ j,n φ j , (3.6) 
where γ = (γ(j)) j≥1 is a sequence of weight coefficients such that 0 ≤ γ(j) ≤ 1 and 0 < #(γ) ≤ n .

Let Γ denote a finite set of weight sequences γ = (γ(j)) j≥1 with these properties, ν = card(Γ) be its cardinal number and

µ = max γ∈Γ #(γ) . (3.8) 
The model selection procedure for the unknown function S in (1.1) will be constructed on the basis of a family of estimates ( S γ ) γ∈Γ .

The choice of a specific set of weight sequences Γ is discussed at the end of this section. In order to find a proper weight sequence γ in the set Γ one needs to specify a cost function. When choosing an appropriate cost function one can use the following argument. The empirical squared error

Err n (γ) = S γ -S 2 can be written as

Err n (γ) = ∞ j=1 γ 2 (j) θ 2 j,n -2 ∞ j=1 γ(j) θ j,n θ j + ∞ j=1 θ 2 j . (3.9) 
Since the Fourier coefficients (θ j ) j≥1 are unknown, the weight coefficients (γ j ) j≥1 can not be determined by minimizing this quantity.

To circumvent this difficulty one needs to replace the terms θ j,n θ j by some their estimators θ j,n . We set

θ j,n = θ 2 j,n - σ n n (3.10)
where σ n is some estimator for the quantity ς Q in the condition C 1 ). For this change in the empirical squared error, one has to pay some penalty. Thus, one comes to the cost function of the form

J n (γ) = ∞ j=1 γ 2 (j) θ 2 j,n -2 ∞ j=1 γ(j) θ j,n + ρ P n (γ) (3.11)
where ρ is some positive constant, P (γ) is the penalty term defined as

P n (γ) = σ n |γ| 2 n .
(3.12)

In the case, when the value of σ in C 1 ) is known, one can take σ n = ς Q and

P n (γ) = ς Q |γ| 2 n . (3.13) 
Substituting the weight coefficients, minimizing the cost function

γ = argmin γ∈Γ J n (γ) , (3.14) 
in (3.6) leads to the model selection procedure

S * = S γ . (3.15) 
It will be noted that γ exists, since Γ is a finite set. If the minimizing sequence in (3.14) γ is not unique, one can take any minimizer.

Theorem 3.1. Let Q n be a family of the distributions Q on D[0, n] such that the conditions C 1 ) and C 2 ) hold for each Q from Q n . Then for any n ≥ 1 and 0 < ρ < 1/3, the estimator (3.15), for each Q ∈ Q n , satisfies the oracle inequality R Q ( S * , S) ≤ 1 + 3ρ -2ρ 2 1 -3ρ min γ∈Γ R Q ( S γ , S) + 1 n B Q (n, ρ) (3.16)
where the risk

R Q (•, S) is defined in (1.4), B Q (n, ρ) = Ψ Q (n, ρ) + 6µ E Q,S | σ n -ς Q | 1 -3ρ and 
Ψ Q (n, ρ) = 2ς Q σ Q ν + 4ς Q L 1,n (Q) + 2νL 2,n (Q) ς Q ρ(1 -3ρ) . (3.17)
This theorem is proved in [START_REF] Konev | Nonparametric estimation in a semimartingale regression model. Part 1. Oracle Inequalities[END_REF]. Now we will obtain the oracle inequality for the model (1.1), (2.1). To write down the oracle inequality in this case, one needs the following parameters

λ 1 = λ̺ 2 1 + (λ̺ 2 ) 2 and λ 2 = ̺ 2 1 ̺ * + λ̺ 2 2 . (3.18)
Moreover, we set

M * = 4̺ 2 1 + ̺ 2 2 D * 1 + 80λ 2 + 12D * 2 + 21̺ 3 (3.19)
where

D * 1 = 4λ̺ 2 1 + 7λ 2 ̺ 2 2 , D * 2 = 4̺ 2 1 ̺ * + ̺ 2 2 D * 1 + 23λ 2 and ̺ 3 = λ̺ 4 2 EY 4 1 .
Theorem 3.2. Let Q n be a family of the distributions of the process (2.1) with the parameters meeting the conditions (2.4). Then, for any n ≥ 1 and 0 < ρ < 1/3, the estimator (3.15) satisfies, for each Q ∈ Q n , the oracle inequality (3.16) with

Ψ Q (n, ρ) = 6̺ * max ν + 4̺ * max L * 1 + 56νM * ̺ * min ρ(1 -3ρ) , (3.20) 
where

L * 1 = 2(1 + a max (a max + 1))̺ * max .
Proof of this theorem is given in Section 5.

Remark 3.1. Note that the term (3.20) does not depend on the parameters specifying the distribution family Q n . This means that the oracle inequality (3.16) is uniform over stability region for the process (2.1) including the stability bound, i.e. the case a = 0.

To obtain the oracle inequality for the robust risks one has to impose additional conditions on the distribution family Q n in (1.6). To this end, we introduce the family of distributions

Q on D[0, n] with the growth restriction on L 1,n (Q) + L 2,n (Q), i.e. P * n = Q ∈ P n : L 1,n (Q) + L 2,n (Q) ≤ l n , (3.21) 
where P n denotes the family of all probability measures on D[0, n], l n is a slowly increasing positive function, i.e. l n → +∞ as n → +∞ and for any δ > 0 lim n→∞ l n n δ = 0 .

In the sequel we use the following condition

H 0 ) Assume the distribution family Q n is a subset of the class (3.21), i.e. Q n ⊆ P * n , such that 0 < ς * := inf Q∈Q n ς Q ≤ sup Q∈Q n ς Q := ς * < ∞ ; σ * := inf Q∈Q n σ Q < ∞ . (3.22)
Theorem 3.3. Assume that the family Q n in the robust risk (1.6) satisfies the condition H 0 ). Then for any n ≥ 1 and 0 < ρ < 1/3, the estimator (3.15) satisfies the oracle inequality

R * ( S * , S) ≤ 1 + 3ρ -2ρ 2 1 -3ρ min γ∈Γ R * ( S γ , S) + 1 n B * (n, ρ) (3.23) 
where

B * (n, ρ) = Ψ * (n, ρ) + 6µ 1 -3ρ sup Q∈Q n E Q,S | σ n -ς Q | and Ψ * (n, ρ) = 2ς * σ * ν + 4ς * l n + 2νl n ς * ρ(1 -3ρ) .

Estimation of ς Q

Now we consider the case of unknown quantity σ in the condition C 1 ). One can estimate σ as 

σ n = n j=l θ 2 j,n with l = [ √ n] + 1 . ( 3 
is continuously differentiable for 0 ≤ t < 1 such that | Ṡ| 1 = 1 0 | Ṡ(t)|dt < +∞ . (3.25)
Then, for any n ≥ 1, sup

Q∈Q n E Q,S | σ n -ς Q | ≤ κ * n (S) √ n (3.26)
where

κ * n (S) = 4| Ṡ| 2 1 + ς * + l n + 4| Ṡ| 1 √ σ * n 1/4 + l n n 1/2 . Proof. Substituting (3.4) in (3.24) yields σ n = n j=l θ 2 j + 2 √ n n j=l θ j ξ j,n + 1 n n j=l ξ 2 j,n . (3.27) 
Further, denoting

x ′ j = 1 {l≤j≤n} and x ′′ j = 1 √ n 1 {l≤j≤n} ,
we represent the last term in (3.27) as

1 n n j=l ξ 2 j,n = 1 n B 1,n (x ′ ) + 1 √ n B 2,n (x ′′ ) + n -l + 1 n ς Q ,
where

B 1,n (x) = ∞ j=1 x j E Q,S ξ 2 j,n -ς Q and B 2,n (x) = ∞ j=1 x j (ξ 2 j,n -E Q,S ξ 2 j,n ) .
Combining these equations leads to the inequality

E Q,S | σ n -ς Q | ≤ j≥l θ 2 j + 2 √ n E Q,S | n j=l θ j ξ j,n | + 1 n |B 1,n (x ′ )| + 1 √ n E Q,S |B 2,n (x ′′ )| + l -1 n ς * .
By Lemma A.3 and the conditions C 1 ), C 2 ), one gets

E Q,S | σ n -ς Q | ≤ j≥l θ 2 j + 2 √ n E Q,S | n j=l θ j ξ j,n | + L 1,n (Q) n + L 2,n (Q) √ n + ς * √ n .
In view of the inequality (1.3), the last term can be estimated as

E Q,S | n j=l θ j ξ j,n | ≤ σ Q n j=l θ 2 j ≤ √ σ * | Ṡ| 1 2 √ l .
By applying the inequalities (3. 

R * ( S * , S) ≤ 1 + 3ρ -2ρ 2 1 -3ρ min γ∈Γ R * ( S γ , S) + 1 n B * 1 (n, ρ) , (3.28) 
where

B * 1 (n, ρ) = Ψ * (n, ρ) + 6µκ * n (S) (1 -3ρ) √ n .
3.2 Specification of weights in the model selection procedure (3.15)

We will specify the weight coefficients (γ(j)) j≥1 in the way proposed in [START_REF] Galtchouk | Sharp non-asymptotic oracle inequalities for nonparametric heteroscedastic regression models[END_REF] for a heteroscedastic discrete time regression model. Consider a numerical grid of the form

A n = {1, . . . , k * } × {t 1 , . . . , t m } , (3.29) 
where

t i = iε and m = [1/ε 2 ]. We assume that both parameters k * ≥ 1 and 0 < ε ≤ 1 are functions of n, i.e. k * = k * (n) and ε = ε(n), such that      lim n→∞ k * (n) = +∞ , lim n→∞ k * (n) ln n = 0 , lim n→∞ ε(n) = 0 and lim n→∞ n δ ε(n) = +∞ (3.30)
for any δ > 0. One can take, for example,

ε(n) = 1 ln(n + 1)
and k * (n) = ln(n + 1) .

For each α = (β, t) ∈ A n , we introduce the weight sequence γ α = (γ α (j)) j≥1 given as

γ α (j) = 1 {1≤j≤j 0 } + 1 -(j/ω α ) β 1 {j 0 <j≤ωα} (3.31)
where

j 0 = j 0 (α) = [ω α / ln n], ω α = (τ β t n) 1/(2β+1) and τ β = (β + 1)(2β + 1) π 2β β . We set Γ = {γ α , α ∈ A n } . (3.32) 
It will be noted that in this case ν = k * m.

Remark 3.2. It will be observed that the specific form of weights (3.31) was proposed by Pinsker [START_REF] Pinsker | Optimal filtration of square integrable signals in gaussian white noise[END_REF] for the filtration problem with known smoothness of regression function observed with an additive gaussian white noise in the continuous time. Nussbaum [START_REF] Nussbaum | Spline smoothing in regression models and asymptotic efficiency in L 2[END_REF] used these weights for the gaussian regression estimation problem in discrete time.

The minimal mean square risk, called the Pinsker constant, is provided by the weight least squares estimate with the weights where the index α depends on the smoothness order of the function S. In this case the smoothness order is unknown and, instead of one estimate, one has to use a whole family of estimates containing in particular the optimal one.

The problem is to study the properties of the whole class of estimates. Below we derive an oracle inequality for this class which yields the best mean square risk up to a multiplicative and additive constants provided that the the smoothness of the unknown function S is not available. Moreover, it will be shown that the multiplicative constant tends to unity and the additive one vanishes as n → ∞ with the rate higher than any minimax rate.

In view of the assumptions (3.30), for any δ > 0, one has

lim n→∞ ν n δ = 0 . Moreover, by (3.31) for any α ∈ K n ∞ j=1 1 {γ α (j)>0} ≤ ω α .
Therefore, taking into account that

A β ≤ A 1 < 1 for β ≥ 1, we get µ = µ n ≤ (n/ε) 1/3 .
Therefore, for any δ > 0,

lim n→∞ µ n n 1/3+δ = 0 .
To study the asymptotic behaviour of the term B * 1 (n, ρ) we assume that the parameter ρ in the cost function (3.11) 

lim n→∞ B * 1 (n, ρ n ) n δ = 0 .
4 Stochastic integrals with respect to the process (2.1)

In this Section we establish some properties of a stochastic integral

I t (f ) = t 0 f s dξ s 0 ≤ t ≤ n , (4.1) 
with respect to to the process (2.1). We will need some notations. Let us denote

ε f (t) = a t 0 e a(t-v) f (v) (1 + e 2av ) dv , (4.2) 
where f is [0, +∞) → R function integrated on any finite interval. We introduce also the following transformation

τ f,g (t) = 1 2 t 0 2f (s)g(s) + ε * f,g (s) ds (4.3)
of square integrable [0, +∞) → R functions f and g. Here

ε * f,g (t) = f (t)ε g (t) + ε f (t)g(t) .
It will be noted that 

aτ f,1 (t) = 1 2 ε f (t) and
E I t (f )I t (g) = ̺ * τ f,g (t) (4.5)
where ̺ * is given in (2.4).

Proof. Noting that the process I t (f ) satisfies the stochastic equation

dI t (f ) = af (t)ξ t dt + f (t)du t , I 0 (f ) = 0 ,
and applying the Ito formula one obtains (4.5). Hence Proposition 4.1.

Further, for integrated [0, +∞) → R functions f and g, we define the [0, +∞)

× [0, +∞) → R function D f,g (x, z) = x 0 L * f,g (y, z) dy + f (z)g(z) , (4.6) 
where Then

L * f,g (y, z) = g(y + z)L f (y, z) + f (y + z)L g (y, z); L f (x, z) = ae ax f (z) + a x 0 e av f (v + z) dv .
E I T k -(f )|G k = 0
and

E I T k -(f ) I T k -(g)|G k = ̺ 2 1 τ f,g (T k ) + ̺ 2 2 k-1 l=1 D f,g (T k -T l , T l ) .
Proof. By the Ito formula one has

I t (f ) I t (g) = t 0 (̺ 2 1 f (s)g(s) + a(f (s)I s (g) + g(s)I s (f ))ξ s )ds + ̺ 2 2 l≥1 f (T l ) g(T l ) Y 2 l 1 {T l ≤t} + t 0 (f (s)I s-(g) + g(s)I s-(f )))du s . (4.7) 
Taking the conditional expectation E (•|G k ), on the set {T k > t}, yields

E (I t (f ) I t (g)|G k ) = t 0 ̺ 2 1 f (s)g(s)ds + ̺ 2 2 l≥1 f (T l ) g(T l ) 1 {T l ≤t} + a t 0 (f (s)E(I s (g)ξ s |G k ) + g(s)E(I s (f )ξ s |G k )) ds . Now to calculate the function Z t = E(I t (f )ξ t |G k ) we put g = 1. Taking into account that E(ξ 2 t |G k ) = ̺ 2 1 2a (e 2at -1) + ̺ 2 one obtains, for T j-1 ≤ t < T j , Żt = aZ t + f (t)ψ t ,
where

ψ t = ̺ 2 1 2 1 + e 2at + ̺ 2 2 a l≥1 e 2a(t-T l ) 1 {T l ≤t} .
Therefore, for T j-1 ≤ t < T j ,

Z t = e a(t-T j-1 ) Z T j-1 + t T j-1
e a(t-s) f (s)ψ s ds .

¿From here and (4.6) with g = 1 one has

Z T j = e a(T j -T j-1 ) Z T j-1 + η j , Z T 0 = Z 0 = 0 , (4.8) 
where

η j = T j T j-1 e a(T j -s) f (s)ψ s ds + ̺ 2 2 f (T j ) .
Solving the equation (4.7) one obtains

Z T j = T j 0 e a(T j -s) f (s)ψ s ds + ̺ 2 2 j l=1
e a(T j -T l ) f (T l ) .

Therefore,

Z t = t 0 e a(t-s) f (s)ψ s ds + ̺ 2 2 l≥1
e a(t-T l ) f (T l )1 {T l ≤t} ,

i.e

aE(I t (f )ξ t |G k ) = ̺ 2 1 2 ε f (t) + ̺ 2 2 j≥1 L f (t -T j , T j ) 1 {T j ≤t} .
¿From here one comes to the desired equality. Hence Proposition 4.2.

Proposition 4.3. Let F , f and g be non random bounded left-continuous

[0, ∞) → R functions. Then E k≥1 F (T k ) I T k-(f ) I T k-(g) 1 {T k ≤t} = t 0 F (v) H f,g (v) dv ,
where

H f,g (t) = λ̺ 2 1 τ f,g (t) + (λ̺ 2 ) 2 t 0 D f,g (t -z, z)dz .
Proof. We have

ι(t) = E k≥1 F (T k ) I T k-(f ) I T k-(g) 1 {T k ≤t} .
By Proposition 4.2 one gets

ι(t) = ̺ 2 1 E k≥1 F (T k ) τ f,g (T k ) 1 {T k ≤t} + ̺ 2 2 E k≥1 F (T k ) k-1 l=1 D f,g (T k -T l , T l )1 {T k ≤t} := ι 1 (t) + ι 2 (t) ,
where

ι 1 (t) = λ t 0 l≥1 F (z)τ f,g (z) (λz) l-1 (l -1)! e -λz dz = t 0 F (z)τ f,g (z)dz .
To calculate ι 2 (t) we note that

ι 2 (t) = E l≥1 1 {T l ≤t} k≥l+1 F (T k )D f,g (T k -T l , T l )1 {T k ≤t} .
Taking into account that T k -T l is independent of T l for any k > l we obtain

ι 2 (t) = λE l≥1 1 {T l ≤t} t-T l 0 k≥l+1 F (z + T l )D f,g (z, T l ) (λz) k-l-1 (k -l -1)! e -λz dz = λE l≥1 1 {T l ≤t} t-T l 0 F (z + T l )D f,g (z, T l ) dz = λ 2 t 0 t-x 0 F (z + x) D f,g (z, x)dz dx . Note that aH f,1 (t) = λ 1 2 ε f (t) and aH 1,1 (t) = λ 1 2 e 2at -1 , (4.9) 
where λ 1 given in (3.18). Now we set

I t (f ) = I 2 t (f ) -E I 2 t (f ) . (4.10)
Further we need the following correlation measures for two integrated [0, +∞) → R functions f and g

̟ f,g = max 0≤v≤n max 0≤t≤n-v | t 0 f (u + v)g(u)du| (4.11) and ̟ * f,g = max ̟ f,g , ̟ g,f . (4.12) 
For any bounded [0, ∞) → R function f we introduce the following uniform norm

f * = sup 0≤t≤n |f (t)| .
To check the condition C 2 ) one needs the following non-asymptotic upper bound Theorem 4.4. For any bounded left-continuous [0, ∞) → R functions f , g

|E I n (f ) I n (g)| ≤ nM * ̟ * f,g + f * g * f * g * , (4.13) 
where M * is defined in (3.19).

Proof. By the Ito formula one comes to the following stochastic equation

d I t (f ) = 2av t (f )f (t)dt + dM t (f ) , I 0 (f ) = 0 , with v t (f ) = I t (f )ξ t -E I t (f )ξ t , dM t (f ) = 2I t-(f )f (t)du t + ̺ 2 2 f 2 (t)dm t , M 0 (f ) = 0 .
In view of Propositions 4.1-4.3, one finds

E [ I(f ), I(g)] t = E [M (f ), M (g)] t = t 0 V f,g (s) ds , (4.14) 
where

V f,g (t) = 4f (t)g(t)G f,g (t)+̺ 3 f 2 (t) g 2 (t) and G f,g = ̺ 2 1 ̺ * τ f,g (t)+ ̺ 2 2 H f,g (t). Note that Lemma A.1 implies max 0≤t≤n |G f,g (t)| ≤ (4̺ 2 1 ̺ * + ̺ 2 2 D * 1 )̟ * f,g . (4.15) 
One can easily check that 

V 1,1 (t) = 2λ 2 e 2at -1 a + ̺ 3 . ( 4 
(f ) = av t (f )dt + af (t)ζ t dt + dK t (f ) , v 0 (f ) = 0 , where ζ t = ξ 2 t -E ξ 2 t , K t (f ) = t 0 I * s-(f ) du s + t 0 ̺ 2 2 f (s)dm s (4.17)
with

I * t (f ) = I t (f ) + f (t)ξ t and m t = 0≤s≤t ∆z 2 s -λt .
Proposition 4.1 implies

E I * t (f )I * t (g) = ̺ * τ * f,g (t) ,
where

τ * f,g (t) = τ f,g (t) + f (t)τ 1,g (t) + g(t)τ f,1 (t) + f (t)g(t) τ 1,1 (t) . ¿From (4.3)-(4.4) it follows that τ * f,g (t) = τ f,g (t) + ε * f,g (t) + f (t)g(t)(e 2at -1) 2a . (4.18) 
By applying Proposition 4.3 one finds

E k≥1 I * T k- (f ) I * T k- (g) 1 {T k ≤t} = t 0 H * f,g (v) dv ,
where

H * f,g (t) = H f,g (t) + f (t)H 1,g (t) + g(t)H f,1 (t) + f (t)g(t) H 1,1 (t) .
¿From here and (4.9) we get

H * f,g (t) = H f,g (t) + λ 1 ε * f,g (t) + f (t)g(t)(e 2at -1) 2a . (4.19) 
Taking this into account, we calculate that, for any square integrated functions f and g,

E [K(f ) , K(g)] t = t 0 G * f,g (s) + ̺ 3 f (s) g(s) ds , (4.20) 
where

G * f,g (t) = ̺ 2 1 ̺ * τ * f,g (t) + ̺ 2 2 H * f,g (t)
. Further by applying Propositions 4.1-4.3 we obtain

E [K(f ), M (g)] t = t 0 U f,g (s)ds , (4.21) 
where

U f,g (s) = 2g(s)G f,g (s) + 2g(s)f (s)G 1,g (s) + ̺ 3 f (s)g 2 (s) .
By the Ito formula one finds for t ≥ 0

E I t (f ) I t (g) = E [ I(f ) , I(g)] t + 2 t 0 f (s) T f,g (s) + g(s) T g,f (s) ds , (4.22) 
where T f,g (t) = aE v t (f ) I t (g). Since for g = 1 the processes I t (g) and v t (g) coincide with ζ t , i.e. I t (1) = v t (1) = ζ t , (4.17) implies

Eζ 2 t = t 0 e 4a(t-s) V 1,1 (s)ds = e 4at 2λ 2 + a̺ 3 4a 2 + e 2at λ 2 a 2 + 2λ 2 -a̺ 3 4a 2 . (4.23)
We define the function

A f (t) = t 0 e 3a(t-s) f (s)a 2 E ζ 2 s + κ f (s) ds , (4.24) 
where

κ f (t) = λ 2 ε f (t) + f (t) e 2at -1 + a̺ 3 f (t) . Denote V f,g (s) = A * f,g (s) + G * f,g (s) + ̺ 3 f (s)g(s) , ( 4 

.25)

where A * f,g (t) = g(s)A f (s) + f (s)A g (s). To calculate the function T f,g (t), we note that, by the Ito formula and (4.16),

dE v t (f ) I t (g) = a(Ev t (f ) I t (g))dt + 2ag(t)(Ev t (f ) v t (g))dt + af (t)(Eζ t I t (g))dt + U f,g (t)dt .
(4.26)

Substituting here f = 1, and then taking into account (A.2) yield

Eζ t I t (g) = t 0 e 2a(t-s) A * g,g (s) + U 1,g (s) ds .
Furthermore, by (A.2)

E v t (f ) I t (g) = 2a t 0 e a(t-s) g(s) (Ev s (f )v s (g)) ds + a t 0 e a(t-s) f (s) Eζ s I s (g) ds + t 0 e a(t-s) U f,g (s)ds .
Therefore, for any bounded left-continuous [0, +∞) → R functions f and g, one finds

T f,g (t) = a t 0 e a(t-s) g(s)V f,g (s) + f (s)K g (s) + U f,g (s) ds , (4.27) 
where

V f,g (t) = 2a
t 0 e 2a(t-s) V f,g (s)ds and

K g (t) = a t 0 e 2a(t-s) A * g,g (s) + U 1,g (s) ds .
¿From (4.17) and (4.27), it follows that

|E I n (f ) I n (g)| ≤ n V f,g * + 2n f * T f,g * + 2n g * T g,f * .
Now by applying the inequality (A.10) one gets

V f,g * ≤ (4̺ 2 1 + ̺ 2 2 D * 1 )̟ * f,g + ̺ 3 f * g * f * g * .
Note that Lemmas A.6-A.8 imply

T f,g * ≤ (20λ 2 + 3D * 2 )̟ * f,g + 5̺ 3 f * g * g * .
¿From here one comes to the upper bound (4.12).

Proof of Theorem 3.2

First we note that Proposition 4.1 implies the inequality (1.3) with σ Q = 3̺ * . Therefore due to the conditions (2.4) one obtains σ * = 3̺ max . Now we verify Conditions C 1 ) and C 2 ) for the family of processes (2.1) satisfying the conditions (2.4). To begin with we note that

E Q,S ξ 2 j,n = ̺ * 1 + a n n 0 e av Υ j (v)dv , where Υ j (v) = n v φ j (t) φ j (t -v) 1 + e 2a(t-v) dt . If j = 1, one has |E Q,S ξ 2 1,n -̺ * | ≤ 2̺ * . (5.1)
Since for the trigonometric basis (3.1) for j ≥ 2

φ j (t) φ j (t -v) = cos(γ j v) + (-) j cos(γ j (2t -v))
where

γ j = 2π[j/2], therefore, Υ j (v) = cos(γ j v)F (v) + (-1) j Υ 0,j (v) , F (v) = n-v 0 1 + e 2at dt and Υ 0,j (v) = n-v 0 cos(γ j (2t + v)) 1 + e 2at dt .
Integrating by parts yields

Υ 0,j (v) = e 2a(n-v) 2γ j sin(vγ j ) + a 2γ 2 j Υ 1,j (v)
where

Υ 1,j (v) = cos(vγ j )(e a(n-v) -1) -a n-v 0 e at cos((2t + v)γ j ) dt . It is obvious, that |Υ 1,j (v)| ≤ 2.
Further we obtain

a n 0 e av Υ j (v)dv = a n 0 e av F (v) cos(vγ j )dv + a(-1) j n 0 e av Υ 0,j (v) dv := aD 1 (n) + a(-1) j D 2 (n) .
Integrating by parts two times we find

D 1 (n) = 1 γ 2 j e an Ḟ (n) -Ḟ (0) -aF (0) - n 0 e av F 1 (v)dv ,
where

F 1 (v) = a 2 F (v) + 2a Ḟ (v) + F (v) .
This implies

|D 1 (n)| ≤ 1 γ 2 j (3n|a| + 10) .
Similarly, one gets

|D 2 (n)| ≤ 2 γ 2 j .
Thus, for j ≥ 2,

|E Q,S ξ 2 j,n -̺ * | ≤ 15 |a|(1 + |a|)̺ * π 2 j 2 . (5.2) Therefore L 1,n (Q) ≤ 2(1 + |a|(|a| + 1))̺ *
and taking into account the conditions (2.4) we get

L 1,n (Q) ≤ L * 1 , (5.3) 
where L * 1 is defined in (3.18). It means that the condition C 1 ) holds with ς Q = ̺ * . Moreover, by applying the conditions (2.4) we have ς * = ̺ * max and ς * = ̺ * min . To check the condition C 2 ) we note that

E Q,S   ∞ j=1 x j (ξ 2 j,n -E Q,S ξ 2 j,n )   2 = 1 n 2 i,j≥1 x i x j E Q,S I n (φ i ) I n (φ j ) .
Therefore, in view of Theorem 4.4

E Q,S   ∞ j=1 x j (ξ 2 j,n -E Q,S ξ 2 j,n )   2 ≤ 2M * n i,j≥1 |x i ||x j |(̟ * i,j + 2) , (5.4) where ̟ 
* i,j = ̟ * φ i ,φ j
. To estimate this term we note, that for any j ≥ 1,

φ j (v + u) = a j-1 (v)φ j-1 (u) + a j (v)φ j (u) + a j+1 (v)φ j+1 (u) a j (•) are bounded functions with |a j (v)| ≤ 1. Thus, ̟ * i,j ≤ 3n1 {|i-j|≤1} + 31 {|i-j|≥2} .
Since j≥1 x 2 j ≤ 1, therefore, the upper bound in (5.4) can be estimated as i,j≥1

|x i ||x j |(̟ * i,j + 2) ≤ 14n .
¿From here, it follows that

L 2,n (Q) ≤ 28M * . (5.5) 
Hence Theorem 3.2.

Robust asymptotic efficiency

In this Section we show that the model selection procedure (

for estimating S in the model (1.1) is asymptotically efficient with respect to the robust risk (1.6). We assume that the unknown function S in the model (1.1) belongs to the Sobolev ball

W k r = {f ∈ C k per [0, 1] , k j=0 f (j) 2 ≤ r} , (6.1) 
where r > 0 , k ≥ 1 are some parameters,

C k per [0, 1] is the set of k times continuously differentiable functions f : [0, 1] → R such that f (i) (0) = f (i) (1) for all 0 ≤ i ≤ k. The functional class W k
r can be written as an ellipsoid in l 2 , i.e.

W k r = {f ∈ C k per [0, 1] : ∞ j=1 a j θ 2 j ≤ r} (6.2) 
where a j = k i=0 (2π[j/2]) 2i . We denote by Q 0 the distribution of Winer process with the scale parameter ς * defined in (3.22).

H 1 ) Assume the distribution Q 0 belongs to the family Q n .
In this Section we will show that the Pinsker constant for the robust risk (1.6) is given by the equation

R * k = ((2k + 1)r) 1/(2k+1) ς * k (k + 1)π 2k/(2k+1) . (6.3) 
It is well known that the optimal (minimax) rate for the Sobolev ball W k r is n 2k/(2k+1) (see, for example, [START_REF] Pinsker | Optimal filtration of square integrable signals in gaussian white noise[END_REF], [START_REF] Nussbaum | Spline smoothing in regression models and asymptotic efficiency in L 2[END_REF]).

We will see that asymptotically the robust risk (1.6) normalized by this rate is bounded from below by R * k , i.e. this bound can not be diminished if one considers the class of all admissible estimates for S. Let Π n be the set of all estimators S n measurable with respect to the sigma-algebra σ{y t , 0 ≤ t ≤ n} generated by the process (1.1). Theorem 6.1. Under the condition H 1 )

lim inf n→∞ n 2k/(2k+1) inf S n ∈Π n sup S∈W k r R * n ( S n , S) ≥ R * k . (6.4) 
Proof of this theorem follows directly from Theorem 3.2 in [START_REF] Konev | Nonparametric estimation in a semimartingale regression model. Part 2. Robust asymptotic efficiency[END_REF]. Now we show that, under some conditions, the normalized robust risk for the model selection procedure is bounded from above by the same constant R * k . Theorem 6.2. Assume that, in model (1.1), for each n ≥ 1 the distribution of (ξ t ) 0≤t≤n belongs to the family Q n satisfying the conditions H 0 ). Then the robust risk (1.6) of the model selection procedure S * defined in (3.33), (3.24), (3.32) has the following asymptotic upper bound lim sup

n→∞ n 2k/(2k+1) sup S∈W k r R * n ( S * , S) ≤ R * k . (6.5) 
Theorem 6.1 and Theorem 6.2 imply the following result Corollary 6.3. Under the conditions H 0 ) and H 1 )

lim n→∞ n 2k/(2k+1) inf S n ∈Π n sup S∈W k r R * n ( S n , S) = R * k . (6.6) 
Remark 6.1. The equation (6.6) means that the parameter R * k defined by (6.3) is the Pinsker constant (see, for example, [START_REF] Pinsker | Optimal filtration of square integrable signals in gaussian white noise[END_REF], [START_REF] Nussbaum | Spline smoothing in regression models and asymptotic efficiency in L 2[END_REF]) for the model (1.1). Moreover, the equality (6.6) means that the model selection procedure (3.33), (3.24), (3.32) is asymptotically robust efficient.

7 Upper bound

Known smoothness

First we suppose that the parameters k ≥ 1, r > 0 in (6.1) and ς * in (3.22) are known. Let the family of admissible weighted least squares estimates ( S γ ) γ∈Γ for the unknown function S ∈ W k r be given by (3.32). Consider the pair

α 0 = (k, t 0 )
where t 0 = [r/ε]ε, r = r/ς * and ε satisfies the conditions in (3.30). Denote the corresponding weight sequence in Γ as

γ 0 = γ α 0 . (7.1)
Note that for sufficiently large n the pair α 0 belongs to the set (3.29).

Theorem 7.1. The estimator S γ 0 satisfies the following asymptotic upper bound

lim sup n→∞ n 2k/(2k+1) sup S∈W k r R * n ( S γ 0 , S) ≤ R * k . (7.2) 
Proof. Substituting the model (1.1) in the definition of θ j,n in (3.4) yields

θ j,n = θ j + 1 √ n ξ j,n ,
where the random variables ξ j,n are defined in (3.4). Therefore, by the definition of the estimators S γ in (3.6), we get

S γ 0 -S 2 = n j=1 (1 -γ 0 (j)) 2 θ 2 j -2M n + 1 n n j=1 γ 2 0 (j) ξ 2 j,n with M n = 1 √ n n j=1
(1 -γ 0 (j)) γ 0 (j) θ j ξ j,n .

It should be observed that E Q,S M n = 0 for any Q ∈ Q * n . Moreover, by the condition C 1 )

E Q,S n j=1 γ 2 0 (j)ξ 2 j,n ≤ ς Q n j=1 γ 2 0 (j) + L 1,n (Q)
and, taking into account the condition H 0 ), we get sup

Q∈Q n E Q,S n j=1 γ 2 0 (j) ξ 2 j,n ≤ ς * n j=1 γ 2 0 (j) + l n .
Thus,

R * n ( S γ 0 , S) ≤ n j=ι 0 (1 -γ 0 (j)) 2 θ 2 j + ς * n n j=1 γ 2 0 (j) + l n n (7.3)
where ι 0 = j 0 (α 0 ). Setting

υ n = n 2k/(2k+1) sup j≥ι 0 (1 -γ 0 (j)) 2 /a j ,
we estimate the first summand in the right-hand of (7.3) as

n 2k/(2k+1) n j=ι 0 (1 -γ 0 (j)) 2 θ 2 j ≤ υ n j≥1 a j θ 2 j .
¿From here and (6.2), we obtain that for each S ∈ W k r Υ 1,n (S) = n 2k/(2k+1) n j=ι 0

(1 -γ 0 (j)) 2 θ 2 j ≤ υ n r .

Further we note that lim sup n→∞ (r) 2k/(2k+1) υ n ≤ 1

π 2k (τ k ) 2k/(2k+1) ,
where the coefficient τ k is given in (3.31). Therefore, lim sup

n→∞ sup S∈W k r Υ 1,n (S) ≤ (ς * ) 2k/(2k+1) Υ * 1 (7.4)
where

Υ * 1 = r 1/(2k+1) π 2k (τ k ) 2k/(2k+1) .
To examine the second summand in the right hand of (7.2), we set

Υ 2,n = 1 n 1/(2k+1) n j=1 γ 2 0 (j) .
It is easy to check that lim n→∞

1 (r) 1/(2k+1) Υ 2,n = 2(τ k ) 1/(2k+1) k 2 (k + 1)(2k + 1) := Υ * 2 .
Therefore, taking into account that

(ς * ) 2k/(2k+1) Υ * 1,n + ς * (r) 1/(2k+1) Υ * 2 = R * k ,
we obtain lim

n→∞ n 2k/(2k+1) sup S∈W k r R * n ( S γ 0 , S) ≤ R * k .
Hence Theorem 7.1.

Unknown smoothness

Combining Theorem 7.1 and Theorem 3.6 yields Theorem 6.2.

Appendix

A Integrating by parts yields

t-v 0 f (s + v)g(s)(1 + e 2as )ds = (1 + e 2a(t-v) ) t-v 0 f (s + v)g(s)ds -2a t-v 0 e 2as s 0 f (z + v)g(z)dz ds .
Taking into account the definition (4.11), we estimate this integral as

t-v 0 f (s + v)g(s)(1 + e 2as )ds ≤ 3̟ * f,g . Therefore, t 0 f (s)ε g (s)ds ≤ 3̟ * f,g and t 0 ε * f,g (s)ds ≤ 6̟ * f,g .
This implies the first inequality in (A.1). To obtain the second one we represent the function H f,g (t) in the following form

H g,f (t) = λ̺ 2 1 τ f,g (t) + λ 2 ̺ 2 2 t 0 f (z)g(z)dz + λ 2 ̺ 2 2 H (1) 
g,f (t) + H

f,g (t) + H

(2)

g,f (t) + H (2) f,g (t)
, where H To estimate H

g,f (t) we represent it as Note that for any 0 ≤ v ≤ y ≤ t one has

H (2) g,f ( 
t-y 0 g(y + z)f (v + z)dz ≤ 2̟ * f,g . Thus, |H (2) 
g,f (t)| ≤ 2̟ * f,g , and we come to the second inequality in (A.1). Hence Lemma A.1.

Lemma A.2. For any bounded left-continuous

[0, +∞) → R functions f , g E v t (f ) v t (g) = t 0 e 2a(t-s) V f,g (s) ds , where V f,g (s) is given in (4.20).
Proof. By the Ito formula and (4.15), one gets

dEv t (f )v t (g) = 2aEv t (f )v t (g)dt + (G * f,g (t) + ̺ 3 f (t)g(t))dt + a (g(t)Ev t (f ) ζ t + f (t)Ev t (g) ζ t ) dt .
To calculate Ev t (f ) ζ t , we put g = 1 in this equality. Then, taking into account that

κ f (t) = aG * f,1 (t) + a̺ 3 f (t) , we get aEv t (f ) ζ t = t 0 e 3a(t-s) f (s)a 2 E ζ 2 s + κ f (s) ds = A f (t) . (A.2) Therefore Ev t (f )v t (g) = t 0 e 2a(t-s) g(s) A f (s) + f (s) A g (s) ds + t 0 e 2a(t-s) G * f,g (s) + ̺ 3 f (s)g(s) ds .
Hence Lemma A.2.

Further we will need the following result.

Lemma A.3. Let υ be a continuously differentiable R → R function.

Then, for any n ≥ 1, α > 0 and for any integrated

R → R function Ψ, sup 0≤t≤n t 0 e -α(t-s) Ψ(s)υ(s) ds ≤ ̟ 1,Ψ 2 υ * + υ * α .
Proof. One obtains this inequality with the help of integrating by parts.

Lemma A.4. For any mesurable bounded [0, +∞) → R functions f and g, for any -∞ < a ≤ 0 , for any 0 ≤ t ≤ n and for any n ≥ 1

a t 0 e 2a(t-s) g(s)A f (s) ds ≤ 3λ 2 ̟ * f,g + ̺ 3 f * g * . (A.3)
Proof. One can represent the function A f (t) as

A f (t) = t 0 e 3a(t-s) f (s)υ(s)ds + λ 2 t 0 e 3a(t-s) ε f (s)ds , (A.4)
where υ(s) = a 2 E ζ 2 s + λ 2 e 2as -1 + a̺ 3 . ¿From here and (4.23) we rewrite this function as

υ(s) = aυ 1 (s) + υ 2 (s) (A.5) with υ 1 (s) = ̺ 3 4 e 4at + 3 and υ 2 (s) = λ 2 2 e 4at - λ 2 2 .
These functions can be estimated as

υ 1 * ≤ ̺ 3 ; sup -∞<a≤0 2 υ 2 * + υ2 * 2|a| ≤ 2λ 2 . (A.6)
Now we represent the intergal in (A.3) as a t 0 e 2a(t-s) g(s)A f (s) ds = J 1 (t) + J 2 (t) + λ 2 J 3 (t) ,

where

J 1 (t) = a 2 t 0 e 2a(t-s) g(s) s 0 e 3a(s-u) f (u)υ 1 (u)du ds , J 2 (t) = a t 0 e 2a(t-s) g(s) s 0 e 3a(s-u) f (u)υ 2 (u)du ds , J 3 (t) = a t 0 e 2a(t-s) g(s)
s 0 e 3a(s-u) ε f (u)du ds .

In view of (A.6) we have

sup 0≤t≤n |J 1 (t)| ≤ ̺ 3 f * g * .
Further we represent J 2 (t) as

J 2 (t) = a t 0 e 3au 
t-u 0 e 2a(t-u-s) g(s + u)f (s)υ 1 (s)ds du .

By Lemma A.3 and (A.6) we obtain that for any 0 ≤ z ≤ n and 0

≤ u ≤ n -z z 0 e 2a(z-s) υ(s)g(s + u)f (s)ds ≤ 3λ 2 ̟ * f,g . Therefore, sup 0≤t≤n |J 2 (t)| ≤ λ 2 ̟ * f,g .
Similarly, one gets

sup 0≤t≤n |J 3 (t)| ≤ 2 3 ̟ * g,ε f .
To estimate the quantity ̟ g,ε f defined in (4.11) we note that for any 0

≤ v ≤ n and 0 ≤ t ≤ n -v t 0 g(s + v)ε f (s)ds = a t 0 e ax Θ g,f (t -x, v + x)dx , (A.7) 
where

Θ g,f (t, v) = t 0 g(s + v)f (s)(1 + e 2as )ds . Denoting Υ g,f (s, u) = s 0 g(r + u)f (r)dr , (A.8) we represent the function Θ g,f (t, v) as Θ g,f (t, v) = (1 + e 2at ) Υ g,f (t, v) -2a t 0 e 2as Υ g,f (s, v)ds . Therefore max 0≤v≤n max 0≤t≤n-v |Θ g,f (t, v)| ≤ 3̟ * f,g .
In view of (A.7), one gets

̟ g,ε f ≤ 3̟ * f,g and sup 0≤t≤n |J 3 (t)| ≤ 2̟ * f,g .
Hence Lemma A.4.

Lemma A.5. For any mesurable bounded [0, +∞) → R functions f and g, for any -∞ < a ≤ 0 , for any 0 ≤ t ≤ n and for any n ≥ 1

2a t 0 e 2a(t-s) G * f,g (s) ds ≤ D * 2 ̟ f,g , (A.9)
where D * 2 is defined in (3.19).

Proof. First we note that the function G * f,g can be represented as

G * f,g (t) = G f,g (t) + λ 2
a τf,g (t) + λ 2 2a e 2at -3 f (t)g(t) .

Integrating by the parts yields Proof. Taking into account (A.4)-(A.5), we write down the function A g (t) as A g (t) = A (1) g (t) + A (2) g (t) where A (1) g (t) = a t 0 e 3a(t-s) g(s)υ 1 (s)ds , A (2) g (t) = t 0 e 3a(t-s) g(s)υ 2 (s) + λ 2 ε g (s) ds . In view of (A. ¿From here, it follows that for any j ≥ 2

Since

A.2 Property of the Fourier coefficients

θ 2 j ≤ 2 j 2 | Ṡ| 2 1 .
Taking into account that

sup l≥2 l j≥l 1 j 2 ≤ 2 ,
we arrive at the desired result.

. 24 ) 3 . 4 .

 2434 Proposition Assume that the family distribution Q n satisfies the condition H 0 ) and the unknown function S(•) in the model(1.1) 

  22) we obtain the upper bound (3.26). Hence Proposition 3.4. Theorem 3.1 and Proposition 3.4 imply the following result. Theorem 3.5. Assume that the family distribution Q n satisfies the condition H 0 ) and the unknown function S is continuously differentiable satisfying the condition (3.25). Then, for any n ≥ 1 and 0 < ρ < 1/3, the model selection procedure (3.15) with the estimator (3.24) satisfies the oracle inequality

  depends on n, i.e. ρ = ρ n such that ρ n → 0 as n → ∞ and for any δ > 0 lim n→∞ n δ ρ n = 0 . (3.33) Applying this limiting relation to the analysis of the asymptotic behavior of the additive term D n (ρ) in (3.28) one comes to the following result. Theorem 3.6. Assume that the family distribution Q n satisfies the condition H 0 ) and the unknown function S is continuously differentiable satisfying the condition (3.25). Then, for any n ≥ 1, the model selection procedure (3.15), (3.33), (3.24), (3.32) satisfies the oracle inequality (3.28) with the additive term B * 1 (n, ρ) obeying, for any δ > 0, the following limiting relation
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 1141 If f and g are from L 2 [0, n] then

Proposition 4 . 2 .

 42 Let G k = σ{T 1 , . . . , T k }, where k ≥ 1, be σ-algebra generated by the stopping times (2.3), f and g be bounded left-continuous [0, ∞) × Ω → R functions measurable with respect to B[0, +∞) G k (the product σ algebra created by B[0, +∞) and G k ).

e 0 e

 0 ay g(y + z)y av f (v + z) dv dy dz . + z)f (z) dz dy ≤ ̟ * f,g .

  + z)f (v + z)dz dv dy .

t 0 e 0 eLemma A. 7 . 1 a t 0 e

 00710 2a(t-s) τf,g (s) ds ≤ 8̟ * f,g .Finally, by applying Lemma A.3 with υ(s) = e 2as -3 and Ψ(s) = f (s)g(s), one getst 2a(t-s) (e 2as -3)f (s)g(s) ds ≤ 7̟ * f,g .Hence Lemma A.5.Lemma A.6. For any mesurable bounded [0, +∞) → R functions f and g, for any -∞ < a ≤ 0 , for any 0 ≤ t ≤ n and for any n ≥ 1|V f,g (t)| ≤ (6λ 2 + D * 2 )̟ * f,g + 3̺ 3 f * g * . (A.10)Proof. This inequality is a direct consequence of Lemmas A.2-A.5 Hence Lemma A.6. For any mesurable bounded [0, +∞) → R functions f and g, for any -∞ < a ≤ 0 , 0 ≤ t ≤ n and n ≥ a(t-s) f (s)K g (s) ds ≤ 14λ 2 g * ̟ * f,g + ̺ 3 f * g 2 * . (A.11)

e 0 e

 0 2a(s-r) g(r)ε g (r)dr ds , J * 4 (t) = ̺ 3 a 2 t 0 e a(t-s) f (s) s 2a(s-r) g 2 (r)dr ds .

Lemma A. 9 .

 9 Suppose that the function S in (1.1) is differentiable and satisfies the condition (3.25). Then the Fourier coefficients (3.2) ) sin 2 (πpt)dt , p ≥ 1 .

  .1 Technical lemmas

	Lemma A.1. The operators τ f,g and H f,g satisfy the following in-
	equalities				
	sup 0≤t≤n	|τ f,g (t)| ≤ 4̟ * f,g	and	sup 0≤t≤n	|H f,g (t)| ≤ D * 1 ̟ * f,g , (A.1)
	where D * 1 is given in (3.19).	
	Proof. Fist note that			
	t	f (s)ε g (s)ds = a	t	e av	t-v	f (s + v)g(s)(1 + e 2as )ds dv .
	0		0		0	

  By applying Lemma A.3 with Ψ(s) = f (s + x)g(s) and υ(s) = υ 2 (s) ≤ 6λ 2 ̟ * f,g g * .Proof. We note thatU f,g (t) = 2g(t)G f,g (t) + λ 2 a f (t)g(t)ε g (t) + ̺ 3 f (t)g 2 (t) . (s)g(s)ε g (s) ds ≤ 8 g * ̟ * f,g .¿From here we come to desired result. Hence lemma A.8.

	Noting that In view of Lemma A.3, we obtain sup 0≤t≤n |υ 2 (t)| ≤ sup 0≤t≤n t 0 e a(t-s) f (s)g(s)ε g (s) ds ≤ ̟ * λ 2 2 , f,g 2 ε g * + one comes to the inequalities Taking into account that	εg * |a|	.
	sup 0≤t≤n one gets	|A (2) g (t)| ≤ ε g * ≤ 2 g * and 5λ 2 6|a| g * and	sup 0≤t≤n εg * ≤ 4|a| g * , | Ȧ(2)
	one gets	0≤t≤n sup	0	t	e a(t-s) f
	sup 0≤t≤n f,g g Therefore, sup 0≤x≤t |Γ f,g (t -x, x)| ≤ 17 3|a| λ 2 ̟ *
	sup 0≤t≤n f,g g Similarly, one can show that |J * 2 (t)| ≤ 6λ 2 ̟ *
	sup 0≤t≤n |J Finally, the function J * 4 (t) can be estimated as
				sup 0≤t≤n	|J * 4 (t)| ≤	̺ 3 2	f * g 2 * .
	Hence Lemma A.7.					
		6), one obtains
	sup 0≤t≤n	|A (1) g (t)| ≤	̺ 3 3	g * and	sup 0≤t≤n	|J * 1 (t)| ≤	̺ 3 3	f * g 2 * .
	Denoting							
		Γ f,g (t, x) =	0	t	e a(t-s) A (2) g (s)f (s + x)g(s)ds ,
	one has Taking into account (A.10) we obtain that J * 2 (t) = 2a 2 t-x 0 e 2ax Γ f,g (t -x, x) dx . 2a t 0 e a(t-s) g(s)G f,g (s) ds ≤ 2(4̺ 2 1 ̺ * + ̺ 2 D * 1 ) g * ̟ * f,g .

g (t)| ≤ 4λ 2 g * . * * . * 3 (t)| ≤ 8 λ 2 ̟ * f,g g * .

Lemma A.8. For any measurable bounded [0, +∞) → R functions f and g, -∞ < a ≤ 0, 0 ≤ t ≤ n and n ≥ 1

a t 0 e a(t-s) U f,g (s) ds ≤ 2D * 2 g * ̟ * f,g + ̺ 3 f * g 2 * .

(A.12)

l≥1 e 2a(t-T l ) 1 {T l ≤t} ,
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