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The coordinate system µ× κ on L2([0, 1])× L2([0, 1]) for the

AKNS operator

L. Amour∗

Abstract
A direct proof of the following result is given. The map µ×κ for the AKNS operator on the unit

interval associated to the separated boundary conditions is one to one on L2([0, 1])× L2([0, 1]). The
Schrödinger operators are considered in an appendix.

1 Introduction and statement of the result.

This short paper is concerned with the AKNS operator

H(p, q) =
(

0 −1
1 0

)
d

dx
+

( −q p
p q

)
(1)

on [0, 1]. In (1) the potentials p and q are real-valued functions belonging to L2([0, 1]).

Let us mention that H(p, q) is the self-adjoint operator of the Lax pair associated to the one dimensional
nonlinear cubic (defocusing) Schrödinger equation iut+uxx−2|u|2u = 0 (setting u = p+iq). The operator

H(p, q) is also unitarily equivalent to the Zakharov-Shabat operator i

(
1 0
0 −1

)
d

dx
+

(
0 ϕ
ϕ̄ 0

)
(with

ϕ = q − ip). Moreover H(p, q) is related to the first operator in the decomposition of the Dirac operator
with a radial potential.

In this paper, the operatorH(p, q) is associated to the SL(α, β) boundary conditions where (α, β) ∈ [0, π[2.

One says that F =
(

Y
Z

)
∈ H1([0, 1])×H1([0, 1]) satisfies the SL(α, β) boundary conditions if

{
cosα Y (0) + sin α Z(0) = 0
cosβ Y (1) + sin β Z(1) = 0 . (2)

Fix (α, β) ∈ [0, π[2. The operator H(p, q) denotes the following self-adjoint operator

D(H(p, q)) = {F =
(

Y
Z

)
∈ H1([0, 1])×H1([0, 1]) satisfying (2)}

H(p, q)F = H(p, q)F, ∀F ∈ D(H(p, q))
.
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1



Let us recall the following points ([A]). For each (p, q) ∈ L2([0, 1]) × L2([0, 1]) the spectrum of H(p, q)
denoted by σ(H(p, q)) is a strictly increasing sequence of eigenvalues (µk(p, q))k∈Z. Each eigenvalue is of
multiplicity one. The asymptotic expansion is

(µk(p, q)− kπ − α + β)k∈Z ∈ `2(Z). (3)

For any complex number z and any (p, q) ∈ L2([0, 1])×L2([0, 1]) the functions F1(·, z, p, q) =
(

Y1(·, z, p, q)
Z1(·, z, p, q)

)

and F2(·, z, p, q) =
(

Y2(·, z, p, q)
Z2(·, z, p, q)

)
denote the solutions to

H(p, q)F = z F (4)

on [0, 1] verifying the initial conditions

F1(0, z, p, q) =
(

1
0

)
, F2(0, z, p, q) =

(
0
1

)
.

In particular, any solution F =
(

Y
Z

)
to (4) may be expressed as,

F (x) = Y (0) F1(x, z, p, q) + Z(0)F2(x, z, p, q), ∀x ∈ [0, 1]. (5)

Set

Fα(x, z, p, q) =
(

Yα(x, z, p, q)
Zα(x, z, p, q)

)

= − sin α F1(x, z, p, q) + cos α F2(x, z, p, q).

(6)

The µk(p, q)’s are the simple zeros of the entire function

z 7→ cosβ Yα(1, z, p, q) + sin β Zα(1, z, p, q)

and Fα(·, µk(p, q), p, q) is the eigenfunction (up to a non vanishing multiplicative factor) corresponding
to µk(p, q). The sequence (κk(p, q))k∈Z is defined by

κk(p, q) = − sin β Yα(1, z, p, q) + cos β Zα(1, z, p, q), ∀ k ∈ Z. (7)

The maps µ and κ are then defined on L2([0, 1])× L2([0, 1]) by

µ(p, q) = (µk(p, q))k∈Z, κ(p, q) = (κk(p, q))k∈Z. (8)

It is known ([GG]) that µ×κ is one to one on H1([0, 1])×H1([0, 1]). The main result here is the following
one.

Theorem 1.1. The map µ× κ is one to one on L2([0, 1])× L2([0, 1]).
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According to Theorem 1.1 the map µ× κ may be viewed as a global coordinates system on L2([0, 1])×
L2([0, 1]).

The goal here is to provide a quick and direct proof of Theorem 1.1. Note that this result certainly
should be also proved starting from the Birkhoff coordinates ([GPT, Ch. III.8]) or from the action-angle
coordinates. Also note that, although this result is stated in [GG], it is only proved in [GG] for potentials
in H1([0, 1])×H1([0, 1]) in order to follow the proof of [PT, Theorem 3.5] (see also [S] for singular AKNS
operators with potentials in H1([0, 1])×H1([0, 1])).

If one of the two parameters α and β is not given then it is determined from (3). One may also replace the
sequence (κk(p, q))k∈Z by the sequence of norming constants (||Fα(·, µk(p, q), p, q)||L2([0,1])×L2([0,1]))k∈Z.

In order to derive Theorem 1.1 an entire function f is introduced in (12). This function is already used
for the AKNS operator (see [DG]) in the proof of results like one spectrum together with the knowledge of
the potentials on half of the interval uniquely determine the potentials on the whole interval (Hochstadt-
Lieberman type’s result). See also [L],[AR], . . . in the case of the Schrödinger operator. The point of
this paper is to remark that this function f still may be used to obtain Theorem 1.1.

More precisely, suppose that (p, q) ∈ L2([0, 1]) × L2([0, 1]), (p̃, q̃) ∈ L2([0, 1]) × L2([0, 1]) and define
f by (12). The main step is to derive that f is entirely vanishing since the fact that f ≡ 0 implies
(p, q) = (p̃, q̃) is provided by [DG]. To this end, the number of the zeros of f has to be sufficiently high.
When µk(p, q) = µk(p̃, q̃) for some k ∈ Z then it is already known (see [DG]) that µk(p, q) is a zero of
f . The main fact is the following. If µk(p, q) = µk(p̃, q̃) and κk(p, q) = κk(p̃, q̃) for all k ∈ Z then the
µk(p, q)’s becomes zeros of order at least two of f (Proposition 2.2).

In the case of Hochstadt-Lieberman type of results, (p, q) = (p̃, q̃) on [ 12 , 1] implies that f is of type 1
(at most) and the µk(p, q)’s are zeros of f . In the case of Theorem 1.1, f is of type 2 (at most) and
the µk(p, q)’s are zeros of order (at least) two of f . That is to say, in the second case, the type and the
number of zeros are multiplied by two. Actually one has to pay attention not only to the type of f but

also to polynomial factors. Precisely, one has f(z) = O

(
e2|=z|

|=z| 12

)
and the power 1

|=z| 12
is used in the proof.

It is proved in Proposition 2.3 that the µk(p, q)’s being zeros of order 2 of f lead to a first estimate on
Nf (Nf is a function related to the number of zeros of f , see (17)) and the type, the order and the power

1

|=z| 12
give rise in Proposition 2.4 using Jensen’s Theorem to a second estimate on Nf when f 6≡ 0. These

two estimates on Nf are not compatible. Therefore f is entirely vanishing.

An appendix is concerned with Schrödinger operators associated with Dirichlet boundary conditions. It
is noticed that the proof of Theorem 1.1 may be adapted to obtain a new proof of the fact that µ × κ

is one to one on L2([0, 1]) ([PT]). In particular this proof does not rely on the existence of an involution
(see the proof of [PT]) and may be also extended to L1([0, 1]).

3



The next section is devoted to the proof of Theorem 1.1.

Acknowledgment: It is a pleasure to thank Prof. Benôıt Grébert who brought this problem to my
attention.

2 Proof of Theorem 1.1

Let us begin the proof with the following remark.

Remark 2.1. It is sufficient to prove Theorem 1.1 in the particular case (α, β) = (0, 0).

Indeed, defining

Gab(x) =
(

cos(ax + b) sin(ax + b)
− sin(ax + b) cos(ax + b)

)
, ∀x ∈ [0, 1]

and

gab :





L2([0, 1])× L2([0, 1]) −→ L2([0, 1])× L2([0, 1])(
u
v

)
7−→ Gab

(
u
v

)
(9)

for (a, b) ∈ R2, it is checked by direct computations that

(i) H(p, q)F = z F ⇐⇒ H
((

g2a,2b

(
p
q

))T
)

gabF = (z + a) gabF

(ii) F satisfies the SL(0, 0) boundary conditions if and only if gα−β,−αF verifies the SL(α, β) boundary
conditions.
Suppose that (α, β) ∈ [0, π[2 and (p, q) ∈ L2([0, 1])×L2([0, 1]) are given and let us temporarily emphasize
on the dependance on (α, β) by writing µk(α, β, p, q) and κk(α, β, p, q) instead of µk(p, q) and κk(p, q)

respectively. Set
(

p]

q]

)
= g−2(α−β),2α

(
p
q

)
. The above points (i)(ii) yield that µk(α, β, p, q) =

µk(0, 0, p], q])+α−β and Fα(·, µk(α, β, p, q), p, q) = gα−β,−αFα(·, µk(0, 0, p], q]), p], q]) since the two sides
of the last equality are eigenfunction for the same eigenvalue and the same initial condition. Then (7)
shows that κk(α, β, p, q) = κk(0, 0, p], q]). Moreover, ||(p, q)||L2([0,1])×L2([0,1]) = ||(p], q])||L2([0,1])×L2([0,1]).
This explains Remark 2.1.

Let us mention that in the case (α, β) = (0, 0) the µk(p, q)’s are the zeros of the entire function z 7→
Y2(1, z, p, q), F2(·, µk(p, q), p, q) is the eigenfunction corresponding to the eigenvalue µk(p, q) (up to a non
zero multiplicative factor) and κk(p, q) = Z2(1, µk(p, q), p, q) for all k ∈ Z. The asymptotic expansions of
the quantities used in the sequel are (see [GKP, Prop. I.3])

Y2(x, z, p, q) = sin zx + o(e|=z|x)
Z2(x, z, p, q) = cos zx + o(e|=z|x)

(10)
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as |z| → +∞ uniformly in x ∈ [0, 1] for fixed (p, q) and (see (3))

(µk(p, q)− kπ)k∈Z ∈ `2(Z). (11)

Fix (p, q) ∈ L2([0, 1])×L2([0, 1]) and (p̃, q̃) ∈ L2([0, 1])×L2([0, 1]). According to Remark 2.1 it is supposed
from now on that (α, β) = (0, 0). It shall be proved that if µk(p, q) = µk(p̃, q̃) and κk(p, q) = κk(p̃, q̃) for
all k ∈ Z then (p, q) = (p̃, q̃).

Define the entire function (see [DG]),

f(z) =
∫ 1

0
{Y2(x, z, p, q)Z2(x, z, p̃, q̃) + Z2(x, z, p, q)Y2(x, z, p̃, q̃)} (p(x)− p̃(x))+
{Z2(x, z, p, q)Z2(x, z, p̃, q̃)− Y2(x, z, p, q)Y2(x, z, p̃, q̃)} (q(x)− q̃(x)) dx

(12)

for all z ∈ C.

Proposition 2.2. (i) Suppose that µk(p, q) = µk(p̃, q̃) for all k ∈ Z. Then the µk(p, q)’s are zeros of the
function f .
(ii) If in addition κk(p, q) = κk(p̃, q̃) for all k ∈ Z then the µk(p, q)’s are zeros of order at least two of f .

It is actually proved that if µk(p, q) = µk(p̃, q̃) for all k ∈ Z and if κ`(p, q) = κ`(p̃, q̃) for some ` ∈ Z then
µ`(p, q) is a zero of order at least two of f .

Proof of Proposition 2.2: For F =
(

Y
Z

)
and F̃ =

(
Ỹ

Z̃

)
in L2([0, 1])×L2([0, 1]) set wronskian(F, F̃ ) :=

Y Z̃ − ZỸ . Part (i) of Proposition 2.2 is already observed in [DG] and follows from

z ∈ σ(H(p, q)) ∩ σ(H(p̃, q̃)) =⇒ f(z) = −wronskian(F2(x, z, p, q), F2(x, z, p̃, q̃))|x=1
x=0

= 0 . (13)

(ii) The symbol ˙ denotes the abbreviated notation ∂
∂z . By direct computations,

ḟ(z) = Ż2(x, z, p, q)Y2(x, z, p̃, q̃) + Z2(x, z, p, q)Ẏ2(x, z, p̃, q̃)
−Ẏ2(x, z, p, q)Z2(x, z, p̃, q̃)− Y2(x, z, p, q)Ż2(x, z, p̃, q̃) |x=1

x=0

, (14)

then

ḟ(µ`(p, q)) = Z2(1, µ`(p, q), p, q)Ẏ2(1, µ`(p, q), p̃, q̃)− Ẏ2(1, µ`(p, q), p, q)Z2(1, µ`(p, q), p̃, q̃), (15)

for all ` ∈ Z. Equality (15) follows from Y2(0, z, p, q) = 0 for all z ∈ C implying Ẏ2(0, z, p, q) = 0 for all
z ∈ C and from Y2(1, µk(p, q), p, q) = 0 for all k ∈ Z.

Furthermore, using infinite products expansions

Y2(1, z, p, q) = (z − µ0(p, q))
∏

k∈Z

µk(p, q)− z

kπ
, (16)
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for all z ∈ C. In (16),
∏

k∈Z means limn→+∞
∏
|k|≤n. Equality (16) comes from the estimates (z −

µ0(p, q))
∏

k∈Z
µk(p,q)−z

kπ = sin z(1 + o(1)) uniformly on Γn = {z ∈ C | |z| = (n + 1
2 )π} as n → +∞

([DG, Lemma 5], see also [GKP]) together with Y2(1, z, p, q) = sin z + o(e|=z|) as |z| → +∞ (see (10)),
| sin z| > e|=z|

4 on Γn and the maximum modulus principle.

In particular (16) yields that for each z ∈ C, the sequence (µk(p, q))k∈Z determines Y2(1, z, p, q) and also
Ẏ2(1, z, p, q). Thus, according to (15), if µk(p, q) = µk(p̃, q̃) for all k ∈ Z and if κ`(p, q) = κ`(p̃, q̃) for
some ` ∈ Z then ḟ(µ`(p, q)) = 0. This completes the proof of (ii). ¤

For any t > 0 let nf (t) denotes the number of zeros counted with their multiplicity of the function f

inside the closed ball of radius t and centered at the origin.

Set

Nf (R) =
∫ R

0

nf (t)
t

dt, (17)

for any R > 0.

On one side it is derived that

Proposition 2.3. Let Rj = min(−µ−j(p, q), µj(p, q)), ∀ j ∈ N. Then the sequence (Nf (Rj) − 4
π Rj)j∈N

is bounded from below.

Proof of Proposition 2.3: Define rj = max(−µ−j(p, q), µj(p, q)), ∀ j ∈ N. Let k0 ∈ N be such that (see
(11)) Rk > 0 for all k ≥ k0. According to Proposition 2.2

nf (t) ≥ 4k, ∀ t ∈ [Rk, rk[
nf (t) ≥ 4k + 2, ∀ t ∈ [rk, Rk+1[, ∀ k ≥ k0

(18)

in such a way that

Nf (Rj) ≥
j−1∑

k=k0

∫ rk

Rk

4k

t
dt +

j−1∑

k=k0

∫ Rk+1

rk

4k + 2
t

dt + O(1)

≥ −
j−1∑

k=k0

∫ rk

Rk

2
t

dt +
j−1∑

k=k0

∫ Rk+1

Rk

4k + 2
t

dt + O(1),

(19)

as j → +∞. From (11), (rk − kπ) ∈ `2(N), (Rk − kπ) ∈ `2(N) and therefore

j−1∑

k=k0

ln
rk

Rk
= O(1), as j → +∞. (20)

Writing,
(4k + 2)(ln Rk+1 − ln Rk) = (4(k + 1)− 2) ln Rk+1 − (4k − 2) ln Rk − 4 ln Rk

6



it is clear that

j−1∑

k=k0

(4k + 2)(ln Rk+1 − ln Rk) = (4j − 2) ln Rj − 4
j−1∑

k=k0

ln Rk + O(1), as j → +∞. (21)

That is to say, (19)(20)(21) shows

Nf (Rj) ≥ (4j − 2) ln Rj − 4
j−1∑

k=k0

ln Rk + O(1), as j → +∞. (22)

From (11), Rj = jπ + sj for all j ∈ N with (sj)j∈N ∈ `2(N).

First, using ln j! = (j + 1
2 ) ln j − j + O(1) and

∑j−1
k=k0

ln(1 + sk

kπ ) = O(1), it is deduced that

j−1∑

k=k0

ln Rk = j ln π + (j − 1
2
) ln j − j + O(1). (23)

Next,
ln Rj = ln j + O(1), j ln Rj = j ln j + j ln π + O(1), as j → +∞. (24)

Consequently, (22)(23)(24) yield

Nf (Rj) ≥ 4j + O(1)

≥ 4
π

Rj + O(1), as j → +∞

since the terms behaving like ln j and j ln j disappear. This proves Proposition 2.3. ¤

On the other side, it is proved that

Proposition 2.4. If the function f is non vanishing then limR→+∞Nf (R)− 4
π R = −∞.

Proof of Proposition 2.4: According to Y2(x, z, p, q) = sin zx + O(e2|=z|x) and Z2(x, z, p, q) = cos zx +
O(e2|=z|x),

f(z) =
∫ 1

0

(sin 2zx + O(e2|=z|x))(p(x)− p̃(x)) + (cos 2zx + O(e2|=z|x))(q(x)− q̃(x)) dx. (25)

In particular, one deduces using Cauchy-Schwarz’s inequality that

f(z) = O

(
e2|=z|

|=z| 12 ||(p− p̃, q − q̃)||L2([0,1])×L2([0,1])

)
. (26)

First suppose that f(0) 6= 0. Then Jensen’s Theorem for the function f may be written as

Nf (R) =
1
2π

∫ 2π

0

ln |f(Reiθ)| dθ. (27)
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Therefore (27) with (26) imply (see [L] for a similar computation) that the following equality is satisfied

Nf (R) =
4
π

R− 1
2

ln R + O(1), as R → +∞. (28)

Next assume that f has a zero of order m at the origin. For t > 0 define n?
f (t) as the number of zeros of

f in {z ∈ C | 0 < |z| ≤ t} and for R > 0 set N?
f (R) =

∫ R

0

n?
f (t)

t dt. In that case, Jensen’s Theorem reads
as

N?
f (R) =

1
2π

∫ 2π

0

ln |f(Reiθ)| dθ −m ln R− ln
f (m)(0)

m

implying

N?
f (R) =

4
π

R−
(

1
2

+ m

)
ln R + O(1), as R → +∞. (29)

Since nf (t) = n?
f (t)+m then Nf (t) = N?

f (t)+m ln R+O(1) and (28) stays valid in that case. The proof
of Proposition 2.4 is finished. ¤

Proposition 2.3 and Proposition 2.4 imply that f is entirely vanishing on C. This yields using the same
argument as [DG] that (p, q) = (p̃, q̃). The proof of Theorem 1.1 is complete.

3 Appendix

Let H(q) = − d2

dx2 + q on [0, 1] associated with the Dirichlet boundary conditions y(0) = y(1) = 0 with
q ∈ L1([0, 1]). Let us recall the following facts ([LG],[PT], . . . ). Set y2(·, z, q) the solution to H(q)y = zy

satisfying y(0) = 0 and y′(0) = 1. It is known that y2(x, z, q) = sin
√

z√
z

+O( e|=
√

z|x
z ). The spectrum of H(q)

is a sequence of strictly increasing simple eigenvalues (µn(q))n≥1 satisfying µn(q) = n2π2+
∫ 1

0
q(x)dx+o(1)

as n → +∞. The µn(q)’s are the zeros of the entire function y2(1, ·, q) and for each n ≥ 1, y2(·, µn(q), q)
is an eigenfunction corresponding to µn(q). Let κn(q) = y′2(1, µn(q), q), ∀n ≥ 1 and define µ(q) =
(µn(q))n≥1, κ(q) = (κn(q))n≥1.

The purpose of this appendix is to provide another quick proof (similar to the one of Theorem 1.1 for
the AKNS operator) of the following result. In particular, our proof do not rely on the existence of an
involution.

Theorem 3.1. ([PT]) The map µ× κ is one to one on L2([0, 1]).

Remark 3.2. Actually we can prove here µ× κ is one to one on L1([0, 1]).

Proof : First the proof in the L2([0, 1]) is given since it is similar to the case of AKNS operators. Let
q ∈ L2([0, 1]), q̃ ∈ L2([0, 1]) and suppose that the µn(q)’s and the µn(q̃)’s are strictly positive (since the
map q 7→ q + C translates the whole spectrum). As in (12) define

f(z) =
∫ 1

0

y2(x, z2, q)y2(x, z2, q)(q(x)− q̃(x))dx, ∀ z ∈ C.

8



Suppose that (µ×κ)(q) = (µ×κ)(q̃). Similarly to Proposition 2.2, it is obtained that the ±
√

µn(q)’s are
zeros of order at least two of the entire function f , implying that nf (t) ≥ 4k for all t ∈ [

√
µk(q),

√
µk+1(q)[

(2k since
√

µn(q) and −
√

µn(q) are zeros, and 2k since these zeros are order of at least 2). Set Rj =√
µj(q), ∀ j ≥ 1. It is then deduced analogously to Proposition 2.3 that Nf (Rj) ≥

∑j
k=1

∫ Rk+1

Rk

4k
t dt

implying (
Nf (Rj)− 4

π
Rj + 2 ln Rj

)

j≥1

is bounded from below. (30)

Besides, the counterpart to Proposition 2.3 is written as follows. One has y2(x, z2, q)y2(x, z2, q) =
O

(
e2|=z|x
|z|2

)
and the Cauchy-Schwarz inequality provides an additional |z| 12 in the estimates for f . Namely,

f(z) = O

(
e2|=z|

|z| 52 ||q − q̃||L2([0,1])

)
, (31)

implying (Jensen’s Theorem), if f 6≡ 0 , that

Nf (R)− 4
π

R +
5
2

ln R = O(1), as R → +∞. (32)

Therefore (30)(32) yields f ≡ 0 implying (see [L] or [AR]) that q = q̃. The proof of Theorem 3.1 is then
complete in the L2([0, 1]) case.

In the case q ∈ L1([0, 1]) and q̃ ∈ L1([0, 1]) the proof is modified as follows. Equality (31) becomes
(instead of applying Cauchy-Schwarz inequality an argument is borrowed to [L])

|f(z)| ≤ C
e2|=z|x

|z|2 (e−ε|=z| + δε), (33)

for all ε > 0, where δε → 0 as ε → 0 and for some C > 0. Note that that C and δε depends only on
||q − q̃||L1([0,1]). The estimate (33) gives rise to (Jensen’s Theorem, see [L])

lim
R→+∞

Nf (R)− 4
π

R + 2 lnR = −∞ (34)

if f 6= 0. Since (30) is still valid for L1 potentials then (30)(34) prove that f ≡ 0 and q = q̃ as before.
The proofs of Theorem 3.1 and Remark 3.2 are finished. ¤
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