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DISCRETE EVOLUTIONARY GENETICS. MULTIPLICATIVE
FITNESSES AND THE MUTATION-FITNESS BALANCE

THIERRY HUILLET1, SERVET MARTINEZ2

Abstract. We revisit the multi-allelic mutation-fitness balance problem es-

pecially when fitnesses are multiplicative. Using ideas arising from quasi-
stationary distributions, we analyze the qualitative differences between the

fitness-first and mutation-first models, under various schemes of the mutation

pattern. We give some stochastic domination relations between the equilib-
rium states resulting from these models.

Keywords: Evolutionary genetics, fitness landscape, selection, mutation,
stochastic models, quasi-stationarity.
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1. Introduction and outline

Population genetics aims at elucidating the fate of the allelic population composi-
tion when various driving ‘forces’ such as selection or mutation are at stake in the
gene pool. This requires to identify first the updating mechanisms responsible of
the gene frequency-distributions evolution over time. In this note, we shall briefly
revisit the basics of the deterministic dynamics arising in discrete-time asexual
evolutionary genetics when the origin of motion is either the fitness or the muta-
tions or both. We start with the multi-allelic haploid case before dealing with the
diploid case. First, we consider general fitness mechanisms, then general mutation
mechanisms and then we shall combine the two.

The general purpose of the Sections 2 − 3 is to introduce separately the marginal
allelic dynamics driven by fitness and then the one driven by mutations. These
issues are of course part of the standard models discussed for example in [1], [2],
[3] and [4].

In Section 4, we stress that there are two different ways to combine the fitness
and the mutation effects. One (fitness-first), which is classical, consists in apply-
ing first the fitness mapping and then let mutation act on the result. The other
(mutation-first) consists in reversing the order. Stochastic models pertaining to
the mutation/selection combination are numerous. See [5], [6] (and the References
therein) for the relation of a mutation/selection model with ancestral branching
processes. A recent discussion on a Markov chain evolution to study the probabil-
ity that a new mutant becomes fixed in a Moran type model can be found in [7]. A
work describing phenotypic variation and natural selection by modeling population
as a Markov point process can be found in [8].
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In Section 5, we focus on a model with multiplicative fitnesses and general mu-
tation pattern and we analyze both the fitness-first and mutation-first dynamics.
Starting with the fitness-first dynamics, we observe that it has the structure of a
discrete-time nonlinear master equation of some Markov process whose construc-
tion we give. In this stochastic interpretation, the polymorphic equilibrium state
interprets as a quasi-stationary distribution of the Markov process conditioned to
be currently alive. It is the left eigenvector of some sub-stochastic matrix A asso-
ciated to its spectral radius. The corresponding right survival eigenvector makes
sense in this interpretation. A similar interpretation can be given when dealing with
the mutation-first dynamics driven now by some sub-stochastic matrix B with its
own left and right Perron-Frobenius eigenvectors. The matrices A and B are di-
agonally similar. Using these stochastic tools, we observe that the mean fitness at
equilibrium of the model B is larger than the one of model A, together with some
stochastic domination properties between both the left and right Perron-Frobenius
eigenvectors of the models A and B. If we specify the structure of the mutation
matrix to be reversible, then the right and left Perron-Frobenius eigenvectors of
each model can be related to one another by using an appropriate Schur product.
Some simplifications also occur if we deal with symmetric mutations because the
right (left) eigenvector of A coincides with the left (right) eigenvector of B.

Section 6 particularizes the study of Section 5 when a house of cards condition holds
for the mutation matrix. Because this mutation model is quite restrictive, some
simplifications occur and the shapes of the polymorphic equilibrium states can be
made more explicit.

The interpretation of the fitness-first and mutation-first dynamics in terms of a
stochastic process conditioned on not being currently absorbed in some coffin state
suggests that related conditional models for the evolutionary dynamics involving
multiplicative fitness and mutations could also be relevant. In Section 7, we sug-
gest to condition the process on its non-extinction either locally (stepwise) or to
condition it globally on not getting extinct in the remote future. Models A and B
lead to different conditional dynamics.

2. Evolution under fitness: the deterministic point of view

We briefly describe the frequency distribution dynamics when fitness only drives
the process. We start with the haploid case before moving to the diploid case.

2.1. Single locus: haploid population with K alleles. Consider K alleles Ak,
k = 1, ...,K attached to a single locus. Suppose the current time-t allelic frequency
distribution is given by the column vector x := xk, k = 1, ...,K 1. We therefore
have x ∈ SK =

{
x ≥ 0 : |x| :=

∑K
k=1 xk = 1

}
the K−simplex. Let w := wk > 0,

k = 1, ...,K, denote the absolute fitnesses of the alleles. Let

(1) w (x) :=
∑

l

wlxl = w∗x

1In the sequel, a boldface variable, say x, will represent a column-vector so that its transpose,
say x∗, will be a line-vector. Similarly, A∗ will stand for the transpose of some matrix A.
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be the mean fitness of the population at time t. The variance in absolute fitness
σ2(x) and the variance in relative fitness σ2(x) are given respectively by

(2) σ2(x) =
K∑

k=1

xk (wk − w(x))2 ; σ2(x) =
K∑

k=1

xk

(
wk

w(x)
− 1
)2

=
σ2(x)
w(x)2

.

2.1.1. Dynamics. The discrete-time update of the allele frequency distribution on
the simplex SK is given by 2:

(3) x′k = pk (x) :=
xkwk

w (x)
, k = 1, ...,K.

As required, the vector p (x) := pk (x), k = 1, ...,K, maps SK into SK . In vector
form, with Dx :=diag(xk, k = 1, ...,K), the nonlinear deterministic dynamics reads
3:

x′ = p (x) =
1

w (x)
Dwx =

1
w (x)

Dxw,

or, with ∆x := x′ − x, the increment of x

∆x =
(

1
w(x)

Dw − I

)
x.

Without loss of generality, we can assume that 0 < w1 ≤ ... ≤ wK = 1. Thus that
allele AK has largest fitness.

Let ϕk,l : SK → SK be the involution exchanging the coordinates k and l. When
wk = wl, we have that ϕk,l (x′) =

(
ϕk,l(x)

)′, and so the evolution is symmetric
under ϕk,l. In that case, the alleles k and l can be merged into a single one.

For x ∈ SK , let support(x) = {k : xk > 0}. Let E = {k : wk = 1} be the set of
alleles with maximal fitness. Any x ∈ SK such that support(x) ⊆ E is called an
equilibrium state. A vector x = ek = (0, ..., 0, 1, 0, ..., 0) with k ∈ E is called a pure
(or monomorphic) equilibrium state.

2.1.2. Mean fitness increase. According to the dynamical system (3), unless its
equilibrium state is attained, the absolute mean fitness w (x) increases. Indeed,
with ∆w(x) = w(x′)− w(x):

(4) ∆w(x) =
∑

k

wk∆xk =
∑

k

wkxk

(
wk

w(x)
− 1
)

=
∑

k w2
kxk

w(x)
− w(x) ≥ 0,

and it is > 0 except when support(x) ⊆ E .
The mean fitness is maximal at equilibrium. The rate of increase of w (x) is:

(5)
∆w(x)
w(x)

=
∑

k

xk

(
wk

w(x)
− 1
)2

=
∑

k

(∆xk)2

xk
= σ2(x).

These last two facts are sometimes termed the 1930s Fisher fundamental theorem
of natural selection (FTNS). Then, if there is an allele whose fitness is strictly larger
than the ones of the others starting from any initial state of SK which is not an

2The symbol ′ is a common and useful notation to denote the updated frequency.
3Dxw clearly is the Schur product of x and w. See [3] page 238 for a similar notational

convenience.
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extremal point, the haploid trajectories will converge to this fittest state.

2.2. Single locus: diploid population with K alleles. We now run into similar
considerations but with diploid populations.

2.2.1. Joint evolutionary dynamics. Let wk,l ≥ 0, k, l = 1, ...,K stand for the
absolute fitness of the genotypes AkAl attached to a single locus. Assume wk,l = wl,k

(wk,l being proportional to the probability of an AkAl surviving to maturity, it is
natural to take wk,l = wl,k). Let then W be the symmetric fitness matrix with
k, l−entry wk,l.

Assume the current frequency distribution at time t of the genotypes AkAl is given
by xk,l. Let X be the frequencies array with k, l−entry xk,l. The joint evolutionary
dynamics in the diploid case is given by the updating:

(6) x′k,l = xk,l
wk,l

ω(X)
where ω(X) =

∑
k,l

xk,lwk,l.

The relative fitness of the genotype AkAl is wk,l/ω (X). The joint dynamics takes
the matrix form:

X ′ =
1

ω(X)
X ◦W =

1
ω(X)

W ◦X

where ◦ stands for the (commutative) Hadamard product of matrices.

Let J be the K ×K matrix whose entries are all 1 (the identity for ◦). Then

∆X := X ′ −X =
1

ω (X)
(X − J) ◦W =

1
ω (X)

W ◦ (X − J) .

Let

(7) σ2(X) =
K∑

k,l=1

xk,l(wk,l − ω(X))2; σ2(X) =
K∑

k,l=1

xk,l

(
ωk,l

ω(X)
− 1
)2

=
σ2(X)
ω(X)2

stand respectively the genotypic variance in absolute fitness and the diploid variance
in relative fitness. The increase of the mean fitness is given by

(8) ∆ω (X) =
∑
k,l

∆xk,lwk,l =
∑
k,l

xk,l

(
w2

k,l

ω(X)
− wk,l

)
= ω(X)σ2(X) ≥ 0,

which vanishes only at the equilibrium states maximizing wk,l, with a relative rate
of increase: ∆w(X)/w(X) = σ2(X). This is the diploid version of the FTNS.

2.2.2. Marginal allelic dynamics. Assuming a Hardy-Weinberg equilibrium, the fre-
quency distribution at time t, say xk,l, of the genotypes AkAl is given by: xk,l =
xkxl where xk =

∑
l xk,l is the marginal frequency of allele Ak in the whole geno-

typic population. The frequency information is x = X1 (1 is the unit K-vector) and
the mean fitness is given by the quadratic form: ω(x) :=

∑
k,l xkxlwk,l = x∗Wx.

Let

(9) σ2(x) =
K∑

k,l=1

xkxl (wk,l − ω(x))2 ; σ2 (x) =
K∑

k,l=1

xkxl

(
wk,l

ω(x)
− 1
)2

=
σ2(x)
ω(x)2
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be respectively the genotypic variance in absolute fitness and the diploid variance
in relative fitness.

If we first define the frequency-dependent marginal fitness of Ak by wk(x) =
(Wx)k :=

∑
l wk,lxl, the marginal dynamics is given as in (3) by:

(10) x′k = xk
wk (x)
ω (x)

=
1

ω (x)
xk (Wx)k =: pk (x) , k = 1, ...,K.

In vector form (10) reads

x′ =
1

ω(x)
DxWx =

1
ω(x)

DWxx =: p (x) ,

where p maps SK into SK . Iterating, the time-t frequency distribution x (t) is the
t−times composition of p applied to some x(0).

In the diploid case, assuming fitnesses to be multiplicative, say with wk,l = wkwl,

then selection acts on the gametes rather than on the genotypes. Observing wk(x)
x∗Wx =

wk∑
l wlxl

, the dynamics (10) boils down to (3). However, the mean fitness in this

case is ω (x) = (
∑

l wlxl)
2 and not w (x) =

∑
l wlxl as in the haploid case.

2.2.3. Increase of mean fitness. Again, the mean fitness ω (x) , as a Lyapunov func-
tion, increases as time passes by. We indeed have

∆ω (x) = ω (x′)− ω (x) =
1

ω (x)2
∑
k,l

xkwk (x) wk,lxlwl (x)−
∑
k,l

xkwk,lxl ≥ 0,

and vanishes only when the process has reached equilibrium.

Its partial rate of increase due to frequency shifts only is δω (x) :=
∑

k ∆xkwk (x) .
It satisfies

(11)
δω (x)
ω (x)

=
∑

k

xk

(
wk (x)
ω (x)

− 1
)2

=
∑

k

(∆xk)2

xk
=

1
2
σ2

A (x) ,

where σ2
A (x) is the allelic variance in relative fitness

(12) σ2
A (x) := 2

K∑
k=1

xk

(
wk (x)
ω (x)

− 1
)2

.

2.2.4. An alternative representation of the allelic dynamics. There is an alternative
vectorial representation of the dynamics (10) emphasizing its gradient-like charac-
ter. Define the matrix G(x) = Dx − xx∗. It is symmetric, positive semi-positive
whose quadratic form vanishes only for the constants. G (x) is partially invertible
on the space orthogonal to the constants with left-inverse

G (x)−1 =
(

I − 1
K

J

)
D−1

x .
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Note G (x) G(x)−1δ 6= δ. Looking for a left-inverse in the weaker sense of the
quadratic form, that is satisfying

δ∗G (x)−1
G (x) δ = δ∗Iδ

for all δ with |δ| = 0, every G (x)−1 =
(
I − λ

K J
)
D−1

x would do the job for any
λ ∈ R. In particular λ = 0.

Introduce the quantity VW (x) = 1
2 log ω(x). Then, (10) may be recast as the

gradient-like dynamics:

(13) ∆x =
1

ω(x)
G(x)Wx = G(x)∇VW (x),

with |∆x| = 1∗∆x = 0 as a result of 1∗G (x) = 0∗. Note

∇VW (x)∗∆x = ∇VW (x)∗G (x)∇VW (x) ≥ 0.

Based on [9], [10], the dynamics (13) is of gradient-type with respect to the Shashahani-
Svirezhev distance metric given by

dG (x,x′) =
(
∆x∗G (x)−1 ∆x

)1/2

=

(
K∑

k=1

x−1
k (∆xk)2

)1/2

.

Its trajectories are perpendicular to the level surfaces of VW with respect to this
metric. From (11) and (12), dG (x,x′), which is the length of ∆x, is also the square-
root of half the allelic variance (the standard deviation) in relative fitness.

3. The mutation mapping

We now briefly describe the frequency distribution dynamics when mutation is the
only driving source of motion.
Assume alleles mutate according to the scheme: Ak → Al with probability µk,l ∈
[0, 1] satisfying µk,k = 0 and 0 <

∑
l 6=k µk,l ≤ 1 for all k. Let M :=

[
µk,l

]
be

the mutation pattern matrix; we shall assume that the non-negative matrix M is
irreducible. We first consider the deterministic diploid model involving mutations.

3.1. Only mutations. Considering first an updating mechanism of the frequencies
where only mutations operate, we get

(14) x′k = xk +
∑
l 6=k

µl,kxl − xk

∑
l 6=k

µk,l, k = 1, ...,K.

In matrix form, with M∗ the transpose of M

(15) x′ = x+M∗x−DM1x =: Mx =: pM (x) ,

and the update of the frequencies with mutations is given by the affine transforma-
tion

M := I−DM1 + M∗.

We have M ≥ 0 and M = M∗ if and only if M is stochastic, M1 = 1. Also
1∗M = 1∗ and then M maps SK into SK because if 1∗x = 1, then 1∗x′ =
1∗Mx = (M∗1)∗ x = 1∗x = 1. The matrix M∗ is stochastic and irreducible
and so, by Perron-Frobenius theorem, it has a unique strictly positive probability
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left-eigenvector associated to the real dominant eigenvalue 1. Let x∗eq be this line-
vector, then x∗eq = x∗eqM

∗, or xeq = Mxeq. Under the irreducibility assumption on
M , the frequencies dynamics involving only mutations has a unique polymorphic
equilibrium fixed point xeq > 0. When M is primitive then limt→∞Mt = xeq1∗.
This shows that

x := x(t) = Mtx(0) →
t→∞

xeq1∗x(0) = xeq,

regardless of the initial condition x(0) belonging to SK .

Note finally that from (15):

(16) ∆x = (M− I)x =: ∇VM(x),

where VM(x) = 1
2x
∗ (M− I)x is the quadratic mutation potential. The proba-

bility right-eigenvector xeq of M uniquely solves ∇VM (x) = 0 with VM(xeq) = 0,
maximal.

3.2. Remarks and special cases. (i) Reversible mutations: Let xeq solve x∗eq =
x∗eqM

∗. Define
←−
M∗ = D−1

xeq
MDxeq

.

We have
←−
M∗1 = D−1

xeq
Mxeq = 1, so

←−
M∗ is the stochastic matrix of the time-reversed

process at equilibrium with invariant measure x∗eq. If
←−
M∗ = M∗, then the mutation

pattern is said to be time-reversible. In this case

µk,l = µl,k

xeq,k

xeq,l
.

(ii) If M = M∗, then M = M∗ and M is doubly stochastic. In that case, xeq =
1
K · (1, ..., 1)∗ =: xb. A model with symmetric mutations by assuming for instance
multiplicative mutations: µk,l = µkµl. In this case, with µ the column vector of
the µks,

M = I + µµ∗ − |µ|Dµ.

Alternatively, assuming µk,l = µ ∈
(
0, 1

K−1

]
for all k 6= l leads to M = µJ +

(1−Kµ) I which is also symmetric.

It is not necessary that M = M∗ in order to have M doubly stochastic. It suffices
to impose M1 = M∗1. In that case although M 6= M∗, the overall input-output
mutation probabilities attached to any state coincide and the equilibrium state
again matches with the barycenter xb of SK .

(iii) (Kingman house of cards, [4]). Assume the mutation probabilities only depend
on the terminal state, that is: µk,l = µl for all k 6= l, still with µk,k = 0. Let
µ∗ = (µ1, ..., µK). Then, M = 1µ∗ −Dµ, M1 = |µ| ·1− µ where minµk < |µ| :=
µ∗1 < 1 + max µk, M = µ1∗ + (1− |µ|) I and

(17) x′ = Mx = x+M∗x−DxM1 = µ + (1− |µ|)x.

The equilibrium state is xeq = µ/ |µ|. Note that |µ| ≤ 1 + 1
K−1 . This model is

reversible. In this model the coordinates are decoupled: x′k = µk + (1− |µ|)xk,
depends only on xk.
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(iv) Assume the mutation probabilities only depend on the initial state, that is:
µk,l = µk for all l 6= k. Then

M = I −KDµ + 1µ∗.

This mutation model is also reversible and the equilibrium state is

xeq,k =
1/µk∑
l 1/µl

.

(v) (Random walk). In this case, M is tri-diagonal with µk,l = u±δk,k±1 and xeq

is a truncated geometric distribution with common ratio ρ = u+/u−:

xeq,k =
ρk−1∑K
l=1 ρl−1

, k = 1, ...,K.

This model is reversible.

(vi) (Cyclic mutation pattern). Here, µk,l = µkδl,k+1, k = 1, ...,K − 1 and µK,l =
µKδl,1. This model is not reversible and

xeq,k =
1/µk∑
l 1/µl

.

4. Combining fitness and mutations

Let us now consider the dynamics driven both by fitness and mutation. There are
two ways to combine the fitness and mutation effects. One (fitness-first), which is
classical, consists in applying first the fitness mapping and then let mutation act
on the result. The other (mutation-first), which seems to be less popular, consists
in reversing the order.

4.1. Fitness-first dynamics. It is typically obtained by applying first the fitness
operator and then the mutation one to give the ‘fitness-first’ dynamics [11]:

(18) x′ =
1

x∗Wx
MDWxx =

1
x∗Wx

MDxWx,

defining a new nonlinear transformation. Alternatively, x′ = p (x) where p (x) =
1

x∗WxMDxWx is the new mapping from SK to SK to consider. Component-wise,
this is also as required

(19) x′k =
1

ω(x)

xkwk(x)+
∑
l 6=k

µl,kwl(x)xl − xkwk(x)
∑
l 6=k

µk,l

 , k = 1, ...,K.

We have: p(ek) =
(
µk,1, ..., µk,k−1, 1−

∑
l 6=k µk,l, µk,k+1, ..., µk,K

)∗
∈ SK and so

the extremal states ek are not invariant under p and from the fixed-point theorem,
there exists some equilibrium state in SK . Using the representation (13) and (15):

(20) ∆x = (M− I)x + MG(x)∇VW (x) = ∇VM(x) + MG(x)∇VW (x).

This is not a gradient-like dynamics in general because there is a competition be-
tween the mutation and fitness potentials VM and VW .
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When M = I (no mutation) (20) boils down into (13) and when W = J (no selec-
tion), (20) boils down into (16). When both M = I (no mutation) and W = J (no
selection), ∆x = 0 with corresponding neutral p (x) = x.

4.2. Mutation-first. Because W was assumed symmetric (W = W ∗), there is
another way to combine the mutation-selection effects. It is obtained by applying
first the mutation operator and then the fitness operator to give the ‘mutation-first’
dynamics:

(21) x′ =: p (x) =
1

ω (Mx)
DWMxMx,

where ω (Mx) := (Mx)∗WMx. We have: 1∗p (x) = (WMx)∗Mx/ω (Mx) = 1
if and only if W = W ∗ and under this condition, this new p(x) again maps the
K−simplex SK onto itself. The dynamics of y := Mx is

y′ =
1

ω (y)
MDWyy,

which is of the form (18) and x = M−1y may be recovered as an output from y
only if M is invertible.

Component-wise, each component pk (x) may be read from

(22) x′k =
(WMx)k

ω(Mx)

xk

1−
∑
l 6=k

µk,l

+
∑
l 6=k

µl,kxl

 , k = 1, ...,K.

Equation (21) may also be recast as:

(23) ∆x = (M− I)x +
1

ω(Mx)
G(Mx)WMx = ∇VM(x) + G(Mx)∇VW (Mx),

where, as before, VW (x) = log ω(x)/2. The mean fitness function appearing in (23)
is

ω(Mx) := (Mx)∗WMx = x∗M∗WMx,

or else, the new fitness matrix to consider is WM : = M∗WM, which is itself
symmetric because W = W ∗. Just like (20), (23) neither is a gradient-like dynamics.

Although natural, this alternative ‘mutation-first’ way to combine mutations and
fitness effects seems to have been less studied in the literature.

5. Multiplicative fitness

We now focus on the multiplicative fitness model. Following the previous observa-
tions, we shall distinguish two cases.
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5.1. Fitness-first. In the haploid case or in the diploid case when fitnesses are
multiplicative, wk,l = wkwl, with w (x) =

∑
l wlxl

w (x)x′k = xkwk+
∑
l 6=k

µl,kwlxl − xkwk

∑
l 6=k

µk,l, k = 1, ...,K,

or

(24) x′ =
1

w(x)
MDxw =

1
w(x)

MDwx,

where w is the constant column-vector of the wks and w(x) = w∗x.

When dealing with multiplicative fitnesses models, we shall assume mink wk > 0,
maxk wk = 1 and the second largest wk < 1.

The image of the extremal states x = el by the transformation x → x′ reduces
to Mel which belongs to the interior of SK . In that case, there exists a unique,
globally stable polymorphic equilibrium state which is the fixed-point of (24). This
follows from the Perron-Frobenius theorem commented in the forthcoming para-
graph. Recall that in the absence of mutations, the multiplicative fitness model
cannot have a polymorphic equilibrium state.

5.1.1. Polymorphic equilibrium and steady mean fitness. Let A = DwM∗, the latter
‘selection-first’ recurrence may be recast as

(25) x∗(t + 1) =
1

x∗(t)A1
x∗(t)A.

Under our assumptions on w, A1 = w and therefore A is sub-stochastic. By
iteration

x∗ (t) =
1

x∗(0)At1
x∗(0)At.

When M is primitive, so is A ≥ 0 which has Perron-Frobenius left and right
probability eigenvectors x∗A > 0 and yA > 0 associated to its largest eigenvalue
1 > ρA > 0.

Then, lim
t→∞

(
1

ρA
A
)t

= 1∑
k xA,kyA,k

yAx∗A showing that,

∀x(0) : lim
t→∞

x(t) = xA > 0,

which is the required limiting polymorphic state. The value of ρA (respectively ρ2
A)

is the limiting haploid (diploid) mean fitness because: wA := w (xA) = w∗xA =
x∗AA1 = ρA. When looking at the equivalent reformulation (25) of (24), xA can
be interpreted as a quasi-stationary distribution as developed now. For the precise
definition, see [12].

5.1.2. A stochastic interpretation of the deterministic dynamics (25). A vector x
of SK can be thought of as a probability vector. The dynamical equation (24), as
a nonlinear update mapping from SK to SK , may be viewed as the discrete-time
nonlinear master equation of some Markov process whose construction we now give.
We shall need to introduce an extra state, say ∂ = {0} which will be absorbing for
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the process we shall now construct. It will be useful to extend the matrix A to ∂ in
the following way:

Ak,0 = 1−
K∑

l=1

Ak,l, A0,l = δl,0.

Let then L(t) be the random labels distribution of an individual at time t, with
enlarged state-space {0, 1, ...,K}. Let (Ut : t = 1, 2) be an i.i.d. driving sequence
of uniformly distributed random variables on [0, 1]. Consider the random evolution
equation

1 (L(t + 1) = l′, L(t) = l) = 1
(
Ut+1 < AL(t),l′

)
· 1(L(t) = l),

where l, l′ ∈ {0, 1, ...,K}.
From this construction (L(s) : s ≤ t) is measurable with respect to (Us : s ≤ t) and
we get

(26) P (L(t + 1) = l′ | L(t)) = AL(t),l′ .

Let τ be the first time that L(t) hits the absorbing state ∂ = {0}. Using the
extinction time (26) may be recast as

P (L(t + 1) = k, τ > t + 1 | L(t)) = AL(t),k1(τ > t).

Putting zk(t) := P (L(t) = k, τ > t), we get an un-normalized version of (25):

zk (t + 1) = E
(
AL(t),k1(τ > t)

)
= (z∗(t)A)k , k ∈ {1, ...,K}.

We clearly have

(27) lim
t→∞

ρ−t
A Pk(τ > t) =

yA,k∑
k xA,kyA,k

,

and so 1 > P (τ > t) ∼ ρt
A → 0 geometrically fast. From the last expression, the

right-hand-side may be interpreted as the propensity of a type-k allele to survive
to its fate: the eventual extinction. If yA,k > yA,l indeed, the extinction time of
the process started at k is larger than the one started at l (has larger survival
asymptotic tails). We shall call yA the survival probability vector.

Defining the normalized conditional probabilities

xk (t) =
zk(t)∑K

k=1 zk(t)
= P (L(t) = k | τ > t) ,

we obtain the normalized haploid dynamics (25)

x′k =
(x∗A)k∑K

k=1 (x∗A)k

, k ∈ {1, ...,K}.

It may now be viewed as the nonlinear master equation of some stochastic Mar-
kovian process. In view of this construction, the vector xA is the quasi-stationary
distribution of L(t) given τ > t.

We note that the appeal to the coffin state ∂ was a necessary step to understand
the normalization zk → xk, and the stochastic interpretation of (25) allows to give
sense to the right eigenvector yA of A.

Clearly the above construction can be done for N particles, in particular N = 2 in
the diploid case.
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5.2. Mutation-first. If instead of (24) the dynamics is of the type ‘mutation-first’

(28) x′ =
1

w∗Mx
DwMx,

because the mutation operator was applied first in the composition of the fitnesses
and mutation effects, the latter recurrence may be recast as:

(29) x∗ (t + 1) =
1

x∗ (t) B1
x∗(t)B,

where now B = M∗Dw. By iteration x∗ (t) = 1
x(0)∗Bt1x∗(0)Bt.

5.2.1. Equilibrium and mean fitness at equilibrium. Let xB > 0 and yB > 0, be
now the left and right probability Perron-Frobenius eigenvector of B associated to

its largest eigenvalue ρB > 0. We have lim
t→∞

(
1

ρB
B
)t

= 1∑
k xB,kyB,k

yBx∗B showing
that

∀x(0) : lim
t→∞

x(t) = xB > 0.

We have B = D−1
w ADw and so B is diagonally similar to A. Therefore ρB = ρA

and xB = DwxA/wA together with yB = D−1
w yA/

∣∣D−1
w yA

∣∣ .
The limiting equilibrium mean fitness is now wB := w∗xB = x∗Bw (or w2

B in the
diploid case). Recalling xB = DwxA/wA, we have

wB =
∑

k w2
kxA,k∑

k wkxA,k
.

Since wA =
∑

k wkxA,k = ρA, under the multiplicative fitness hypothesis we obtain:

Proposition 1. ρA = wA < wB < 1.

Remark: The quantity σ2 (xA) =
∑

k

(
wk

wA
− 1
)2

xA,k is the variance in relative
fitness at equilibrium for the model A. We therefore have

σ2 (xA) =
wB

wA
− 1 or wB = wA

(
1 + σ2 (xA)

)
. �

The equilibrium fitness of the second model is larger than the one of the first.
Without mutations, only the fittest state, say {K} under our hypotheses, will
survive, leading to an equilibrium mean fitness equal to (0, 0, ..., 0, 1)w∗ = wK =
1. Therefore, both mutation models lead to a decrease of the equilibrium mean
fitness, when compared to the one without mutations. However, the first model
involves mutations which are more deleterious than the ones relative to the second
one where mutations appear more advantageously.

Note finally that w∗MxB = w∗D−1
w B∗xB = ρBw∗D−1

w xB = ρB1∗xB = ρB =
ρA and, since B = M∗Dw then BD−1

w = M∗ so that Bw−1 = 1 if w−1 :=(
w−1

1 , ..., w−1
K

)∗
is the reciprocal fitness vector. As a result, x∗BBw−1 = ρBx∗Bw−1 =

1 so that x∗Bw−1 :=
∑

k
xB,k

wk
= ρ−1

B .

5.2.2. A stochastic interpretation of the deterministic dynamics (29). We can re-
peat the above construction substituting B for A and we are done.
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5.2.3. The stochastic dominations xB �st xA and yA �st yB. For two K−dimensional
probability vectors a and b, we put a �st b if for each l

l∑
k=1

ak ≤
l∑

k=1

bk.

Proposition 2. We have xB �st xA.

Proof: xB = DwxA/wA and therefore

xB,k =
wkxA,k∑K

k=1 wkxA,k

.

With αl :=
∑l

k=1 xA,k, we have

K∑
k=1

wkxA,k = αl

l∑
k=1

wk
xA,k∑l

k=1 xA,k

+ (1− αl)
K∑

k=l+1

wk
xA,k∑K

k=l+1 xA,k

.

Since
∑l

k=1 wk
xA,k∑l

k=1 xA,k
∈ (w1, wl) and

∑K
k=l+1 wk

xA,k∑K
k=l+1 xA,k

∈ (wl+1, wK) ,

K∑
k=1

wkxA,k ≥
l∑

k=1

wk
xA,k∑l

k=1 xA,k

,

and therefore
l∑

k=1

xA,k ≥
∑l

k=1 wkxA,k∑K
k=1 wkxA,k

=
l∑

k=1

xB,k,

which means xB �st xA. �

We point out that we used the order 0 < w1 ≤ ... ≤ wK = 1 on w. Would we have
considered the reverse order, we would get the opposite domination relationship.

We also have the following stochastic domination property between the two survival
probability vectors:

Corollary 3. yA �st yB.

Proof: Because B and A are diagonally similar, we also have yA = DwyB/ |DwyB |
and the same argument applies substituting (yA,yB) for (xB ,xA) in the previous
proof. �

5.3. Symmetric mutations. When M = M∗, mutations are symmetric and B =
A∗. Therefore xB = yA and yB = xA. The left (right) probability eigenvector of
B matches with the right (left) probability eigenvector of A. In this case, there is
a stochastic domination property between the left and right eigenvectors of both
models, namely

Proposition 4. If mutations are symmetric yA �st xA and xB �st yB .
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5.4. Reversible mutations. When dealing with reversible mutations with equi-
librium distribution xeq, we show now that the right eigenvector of A (or B) can
be computed from the left eigenvector by using an appropriate Schur product in-
volving w and xeq.

Let A be an irreducible non-negative matrix. Let (xA,yA) be the left and right
probability eigenvectors of A, associated to the spectral radius ρA of A.

If there exists a positive vector η such that ηkAk,l = ηlAl,k for all k, l, A is said to
be reversible with respect to η.

Consider the stochastic matrix

(30) Ã = ρ−1
A D−1

yA
ADyA

.

Its left probability invariant measure is easily seen to be xÃ = DyA
xA/

∑
k xA,kyA,k,

which is the normalized Schur product of xA and yA. We have

Lemma 5. If A is reversible with respect to η, then Ã is reversible with respect to
D2

yA
η, the Schur product of yA, yA and η.

Proof:

Ãl,k = ρ−1
A Al,k

yA,k

yA,l
= ρ−1

A

ηk

ηl

Ak,l
yA,k

yA,l
=

ηk

ηl

Ãk,l

y2
A,k

y2
A,l

. �

As an illustration, we shall consider the fitness-first dynamics for which A = DwM∗.
This A will be reversible with respect to η if and only if M∗ itself is reversible.
Indeed, η must satisfy

(31) ηkwkµk,l = ηlwlµl,k,

and if this is the case M∗ must be reversible with respect to xeq, leading to ηk =
xeq,k/wk.

In case M∗ is reversible, Ã is reversible with respect to D2
yA

η with entries propor-

tional to
(
xeq,ky2

A,k

)
/wk. But this must be the invariant measure of Ã which, up

to a normalizing constant, is DyA
xA with un-normalized entries xA,kyA,k. For this

point, see also [13]. We conclude:

Proposition 6. If the mutation matrix is reversible with respect to xeq, then Ã is
reversible with respect to D2

yA
D−1

w xeq = D−1
w D2

yA
xeq and

xA =
D−1

w Dxeq
yA∣∣D−1

w Dxeq
yA

∣∣ .

Example: If M∗ is symmetric, it is reversible with respect to the uniform measure
xeq,k = 1/K. Therefore xA = D−1

w yA/
∣∣D−1

w yA

∣∣ . Up to a normalization constant,
we have (

xeq,ky2
A,k

)
/wk = y2

A,k/wk = wkx2
A,k = xA,kyA,k,

the Schur product of xA and yA.
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Substituting B for A and (xB ,yB) for (xA,yA) , the same holds true for B = M∗Dw

and we get

Corollary 7. If the mutation matrix is reversible with respect to xeq, then B̃ =
ρ−1

B D−1
yB

BDyB
is reversible with respect to D2

yB
Dwxeq = DwD2

yB
xeq and

xB =
DwDxeq

yB∣∣DwDxeq
yB

∣∣ or xB,k =
wkxeq,kyB,k∑
k wkxeq,kyB,k

.

6. Multiplicative fitness and the House of Cards condition

We shall again distinguish two cases.

6.1. Fitness-first. Assume the house of cards condition holds, leading to: A =
DwM∗, with M∗ = 1µ∗ + (1− |µ|) I. In this case, the computations become more
explicit. Since for all k,

∑
l 6=k µk,l =

∑
l 6=k µl = |µ| − µk ≤ 1, we have

|µ| ≤ K

K − 1
and 1− |µ| ≥ − 1

K − 1
.

Under the multiplicative fitness and the house of cards conditions, Equation (19)
reads

x′k =
1

w(x)

xkwk + µk

∑
l 6=k

wlxl − xkwk

∑
l 6=k

µl

 = µk +
1− |µ|
x∗w

wkxk.

The equilibrium frequency distribution is therefore the solution to the equation

xA =
1− |µ|
x∗Aw

DwxA + µ,

which, since ρA = x∗Aw, is exactly seen to be:

(32) xA,k =
µk

1− (1− |µ|) wk/ρA

, k = 1, ...,K,

where ρA ∈ (0, 1) is such that
∑

k xA,k = 1. See [4] where these results appear first.
Alleles Ak with largest frequencies are those for which both (µk, wk) are large. The
equilibrium mean fitness is

(33) x∗Aw =
∑

k

µkwk

1− (1− |µ|) wk/ρA

= ρA,

the spectral radius of A and A = DwM∗ satisfying A1 = w. Because xA > 0, we
have:

(34) wA = ρA > (1− |µ|) max
k

wk.

If |µ| = 1, xA,k = µk, k = 1, ...,K and ρA =
∑

k µkwk.
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6.2. Mutation-first. When fitnesses are multiplicative: W = ww∗ is symmetric,
(21) is also x′ =: p(x) = 1

w∗MxDwMx. With w = (w1, ..., wk)∗ , this simplifies to
give:

(35) x′k =
wk

w∗Mx

xk

1−
∑
l 6=k

µk,l

+
∑
l 6=k

µl,kxl

 , k = 1, ...,K.

When the house of cards condition holds, B = M∗Dw, with M∗ = 1µ∗+(1− |µ|) I.
Equation (35) further simplifies to:

(36) x′k =
wk

w∗µ+(1− |µ|)w∗x
(µk + xk (1− |µ|)) , k = 1, ...,K.

From Equation (36), the equilibrium frequency distribution is the solution to the
equations

xB,k =
wk

w∗µ+(1− |µ|)x∗Bw
(µk + xB,k (1− |µ|)) , k = 1, ...,K,

which is exactly seen to be:

(37) xB,k =
wkµk

w∗µ+(1− |µ|) (wB − wk)
, k = 1, ...,K,

where wB = x∗Bw ∈ (0, 1) is such that
∑

k xB,k = 1.

Alleles Ak with largest frequencies are those for which the product wkµk is largest.
Because A and B are diagonally similar, we have xB = DwxA/wA where wA =
ρA = ρB . From the expression (32) of xA,k, we get the alternative expression

(38) xB,k =
wkµk

ρB − (1− |µ|) wk
, k = 1, ...,K.

We also have

(39) x∗Bw =
∑

k

w2
kµk

ρB − (1− |µ|)wk
= wB ,

the equilibrium mean fitness under B = M∗Dw .

Comparing the two expressions (37) and (38) of xB,k, this suggests that ρB =
w∗µ+(1− |µ|) wB . Thus wA = ρA = ρB = w∗µ+(1− |µ|) wB and

(40) wB − wA = |µ|wB −w∗µ > 0.

As a result

(41) wB >
1
|µ|

w∗µ

gives a lower bound for wB in terms of the average of w with respect to the mutation
equilibrium probability measure xeq = µ/ |µ| .
Because xB > 0, from (37), we also have:

((1− |µ|) wk −w∗µ) < (1− |µ|) wB , ∀k.

If 1−|µ| > 0, this means wB > maxk wk−w∗µ/ (1− |µ|) whereas if 1−|µ| < 0 this
means wB < mink wk + w∗µ/ (|µ| − 1) . When |µ| = 1, wB =

∑
k w2

kµk/
∑

k wkµk

is explicit, together with

xB,k =
wkµk∑
k wkµk

, k = 1, ...,K.
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Recalling that when |µ| = 1 : wA = ρA =
∑

k µkwk, we can check in this particular
case that: wB > wA.

7. Alternative conditional models for the evolutionary dynamics

The interpretation of (24) and of (29) in terms of a stochastic process conditioned
on not being currently absorbed in ∂ suggests that other conditional models for the
evolutionary dynamics involving multiplicative fitness and mutations could also be
worth investigating.

Consider first the fitness-first model (24) driven by A = DwM∗. Let Â = D−1
A1A

and consider the updating dynamics on the simplex

(42) x∗ (t + 1) = x∗ (t) Â.

Because A1 = w, we have Â = M∗ which is the pure mutation stochastic ma-
trix. Using the terms of the stochastic interpretation of (24), we have: Âk,l =
PL(0)=k (L(1) = l | τ > 1) which is the transition matrix of a one-step conditioned
process. Therefore conditioning locally L(t) on non-extinction brings one back to
the pure underlying mutation model with xÂ = xeq.

Let us consider a similar conditioning but for the mutation-first dynamics. With
now B = M∗Dw, let B̂ = D−1

B1B and consider the dynamics

(43) x∗ (t + 1) = x∗ (t) B̂.

We have B̂ = D−1
B1B = D−1

M∗wM∗Dw which is stochastic but cannot be reduced
to mutation effects in general. This is an additional illustration of the differences
between the two models based on A or B. Note that B̂ and Â are not diagonally
similar.

Let now Ã := ρ−1
A D−1

yA
ADyA

and consider the dynamics on the simplex

(44) x∗(t + 1) = x∗(t)Ã.

We have: Ãk,l = lims→∞ PL(0)=k (L(1) = l | τ > s) which is the transition matrix
of a process conditioned on not getting extinct in the remote future (see [14]).
Therefore conditioning globally L(t) on non-extinction in the far future brings one
back to a standard (linear) Chapman-Kolmogorov evolution equation. This condi-
tioning being more stringent than the one involved in (24), one expects its limiting
frequency distribution (which is xÃ = DxA

yA/
∑

k xA,kyA,k) to stay away more
significantly from the origin {0}. For this model, the mean fitness at equilibrium
will be:

wÃ = w∗DxA
yA =

∑
k wkxA,kyA,k∑

k xA,kyA,k
.

When mutations are reversible,

xÃ,k =
wkx−1

eq,kx2
A,k∑

k wkx−1
eq,kx2

A,k

.

Similar conclusions can be drawn if we define B̃ := ρ−1
B D−1

yB
ADyB ..
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The main interest is that in both conditioning (either local or global), the deter-
ministic updating mechanisms are now linear in sharp contrast with (24) and (29)
involving rational updating mechanisms.
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