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The so-called fast annealing techniques (flash-annealing and Joule heating) are being widely investigated [1][2][3][4] as they show clear industrial advantages with respect to furnace annealing. The main advantage is the velocity of the nanocrystallization reaction, which occurs 10-60 times faster than in furnace annealing. This velocity makes it possible to do the annealing of many compositions in air because they hardly oxidize in such a short annealing time. Moreover, this kind of annealing shows also disadvantages, namely:

-The current originates a magnetic field during annealing which can induce an anisotropy. As nanocrystalline samples are very thin, the magnetic field amplitude is very small, but this is still a drawback if one needs perfect samples with perfectly defined anisotropy.

-The velocity of the reaction makes it difficult to know exactly when and how the physical processes occur during the annealing. In [5][6][7] the relationship between the resistivity of the sample and the crystallization process has been studied. If the resistivity change was too small, the sample was only "warmed up" or structurally relaxed. If there was a bump, then there was an exothermic reaction of crystallization.

Depending on the magnitude of the bump, the sample could be nanocrystallized or crystallized.

-The reaction is very sensitive to the environmental conditions where the annealing takes place. It is different to anneal in vacuum, or in air. Especially the repeatability of air annealed samples is questionable if they are not carried out exactly in the same place, taking care of possible gas flows which can be laminar or turbulent [8]. The geometry of the sample is also important for annealing in air (or gas).

The measurement of the temperature would give more information about the crystallization in every possible environmental condition, but it is very difficult to measure because thermocouples act as heat sinks decreasing the local temperature and originating inhomogenities. Infrared detection shows rather high errors, but it seems possible to detect local temperatures in a sample, which would give much information about inhomogenities in the crystallization process [9]. Saturation magnetization techniques [10] are also not suitable for temperatures above the Curie temperature.

For all these reasons, it was the aim of many authors to develop good predictive models of the temperature on the sample. Aştefǎnoei et al. [11] developed a complete model considering convection to calculate the temperature distribution in the thickness of the sample. Allia et al. [12] calculated numerically the temperature distribution along a sample in vacuum during annealing. They also obtained an expression of the temperature in the central part of the sample. Zabala et al [10] calculated the time-dependent maximum temperature of a sample in air (free convective heat exchange).

In [8] an over-simplified temperature model was proposed to explain the origin of constrained hysteresis loops after current annealing under certain gas flow conditions. In this paper, an adequate mathematical model will be proposed considering each of the possible heat exchange ways during annealing: radiation and free or forced convection. This model, together with some Transmission Electron Microscope (T.E.M.) images, explains all the results obtained in [8]. The model predicts the temperature variations along the width of a sample, making some approximations of the radiation and convection terms in the equation of heat. These approximations are very well suitable for temperatures in the range of the nanocrystallization and crystallization of FINEMET ® -like samples.

EXPERIMENT

Three Vitroperm ® (Fe 73.5 Si 15.5 B 7 Nb 3 Cu 1 ) samples (length L=100 mm, width w=8.3 mm and thickness g=0.023 mm) were annealed during 60 s using a computercontrolled Agilent ® 3634 power supply. Resistance during the process was measured every 0.6 s using Ohm's law with the power supply. The electrical current was kept constant at 7 A (j=36.67•10 6 A/m 2 ). No samples in vacuum were made, as they have been extensively studied [5][6][7][12][13][14].

All samples were enclosed during annealing into a chamber with a controlled overpressure of Ar. A valve at the inlet of the system, a manometer and a second valve at the outflow were used to control the flow of Ar escaping from the recipient.

For every annealed sample, the pressure inside the recipient, with the outflow valve completely opened, was set to 4 mbar (A), 10 mbar (B) or to 20 mbar (C) controlling the opening of the inlet valve (in the following, it will be called initial pressure P 0 ), which connected the Ar bottle with the system. Then the outflow valve was closed until reaching a value of 40 mbar. Thus, the Ar flow inside could be indirectly controlled during the annealing process, being proportional to P 0 . The pressure during annealing was kept constant to 40 mbar in order to keep all annealing conditions of every sample constant except for the Ar flow which increases with P 0 . The flow was insufflated parallel to the sample length. No oxidation of the samples has been noticed in the X-ray diffraction patterns [8].

The hysteresis loops of the whole samples were measured with a computer controlled home-made inductive system.

The Transmission Electron Microscope (T.E.M.) was a Philips CM-20 T.E.M.-S.T.E.M.

MATHEMATICAL MODELS AND RESULTS

As the sample is very thin (according to Figure 1), no temperature differences in the thickness are supposed. Thus, the equation of the heat will be:
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where T (x, y, t) is the temperature in (x, y) at the moment t, I is the current intensity flowing in the y direction, K is the thermal conductivity of the material, C p is the heat capacity at constant pressure of the alloy, S is the cross section of the material through which the current flows, ρ (Τ) is the resistivity of the material defined by: where T 0 is the initial temperature, ρ 0 is the resistivity of the material at T 0 , and α is the thermal coefficient of resistivity. ϕ(T) is the function that determines the heat losses depending on the way of heat exchange. The possible forms of heat loss are by radiation plus free or forced convection by a laminar or turbulent flow of gas.
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If the sample is in vacuum ϕ(T)=ϕ rad (T) will be:
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where A 1 is the area through which the heat transmission is carried out, V is the total volume of the sample, σ is the Stefan-Boltzmann constant, and ε is the coefficient of thermal emittance of the material.

The convective heat exchange function has the general form:
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where ϕ conv is the convection heat exchange function, A is the exchanging surface and K is the heat exchange "constant". K depends on the viscosity, the density, and conductivity of the surrounding gas (which they all depend on the temperature too).

The position and shape of the sample will also determine the exchange constant. It is not the same if the sample is a horizontal plate or a vertical wall. It is also different if the heat exchanging surface is upside or downside. Typically, the formulas to calculate the heat exchange constant are semi-empirical and it is easy to find them in any technical book on this topic [START_REF] Michael | Introduction to Thermal Engineering Systems: Thermodynamics, Fluid Mechanics, and Heat Transfer[END_REF][START_REF] Chapman | Heat Transmission[END_REF]. If the sample is in a steady fluid, ϕ(T)=ϕ free (T) will be:

conv rad free ϕ ϕ ϕ + = (5) 
where

( ) ( 
)

) ( ' 2 ) ( 2 1 1 0 4 / 5 0 3 / 4 0 inf 4 / 5 0 sup T T H w T T H w T T h g T T h g lateral lateral conv - + - + - + - = ϕ (6)
h sup corresponds to the constant of heat exchange by free convection at the upper face of the tape, h inf is the constant of heat exchange by free convection at the lower face of the tape, H lateral and H' lateral , are both the heat exchange constants by free convection at both sides, considered two vertical walls.

If the sample is in a laminar or turbulent gas flow, ϕ(T)=ϕ forced (T) will be:
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where The boundary conditions are:
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The temperature at both ends of the y axis is T 0 because we consider that the electrical contacts act as ideal heat sinks. The initial temperature of the sample is T 0 . q is the heat exchange per surface unit and time at both sides of the sample. If the sample is in vacuum q will be:
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If the sample is in a steady fluid (free convection):
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In the case of gas flow: 
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In the following, a model will be presented to calculate the steady-state temperature along the x-axis of a sample annealed in each case. As only the steady state will be considered, we can neglect the temporary term in (1) and the boundary condition (11).

Sample annealed in vacuum

It has not been possible to solve equation ( 1) analytically with boundary conditions (9)(10)(11). Allia et al. [12] already solved the equation numerically considering that there are no temperature differences over the width of the sample (T=T(y); [0, L]), that the resistivity is kept constant during annealing and considering that in both ends there are heat sinks. This way, they eliminated the boundary condition (10) and simplified the problem. Solving the equation numerically, they obtained that most of the sample (at least a 90% of the surface) has a constant temperature, during the annealing in the y-direction. In addition they gave an analytical equation of the temperature of the sample in the central zone.

To apply our model to the x-axis, we have to demonstrate first that the central part of the sample does not have important temperature variations along the y axis.

If we consider a thin differential strip of the sample along the y-axis, we obtain the differential equation (having the same expression as Allia et al. [12]): 15) cannot be solved analytically, but considering constant resistivity ρ 0 it is possible to solve it numerically. The changes in the resistivity are not very important in the temperature range presented in this paper, and it will hardly change the shape of the temperature profile along the y-direction. For the values in table 1 the numerical solution of ( 15) is presented in figure 2a. From this figure, it can be seen that the temperature does not change in the central part along the y-direction.
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Thus, if we accept that the temperature does not depend on the y-coordinate in the center of the sample, we can say that T=T(x) in the center and the differential equation
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and (10) is the boundary condition. To solve analytically [START_REF] Chapman | Heat Transmission[END_REF], with the boundary condition (10) we have to approximate ϕ rad to a linear function. In order to obtain it some considerations are needed:

1) Considering that the heat produced by Joule heating is equal to the heat released by radiation we can get a kind of average temperature reached by the sample: The average temperature, T m , will be the solution of equation ( 17) (calculated with the help of a computer). This temperature will be used to make a first-order Taylor approach of q rad near T m :
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2) ϕ rad has a similar form to q rad because:
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The higher the reached temperature, the better will be this approach. In particular, for the value of T m calculated according to the data in table 1, the maximum relative error (between equations ( 12) and ( 19)) is of 0,042 % in the interval [T m -10, T m +10]. In the case of radiation, there are no great temperature variations expected over the width of the sample. Thus, we can expect a good approach to the real temperature distribution in the sample.

With these approaches, we can rewrite the differential equation ( 16):
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The solution to the differential equation ( 20) is:
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Replacing the values of table 1 in (22) we will obtain the equation that determines the temperature in the central zone of the sample in the steady state.

The temperature at both sides of the sample is of 1187.0 K and in the center it is of 1190.3 K (figure 3) which indicates a variation of only 3.3 K over the width of [-4.15, 4.15] mm. This means that Joule heating in vacuum is a good method to obtain very homogeneous samples.

Sample annealed in free convection conditions

If the sample is placed in static open air or in a static gas (without flow) the heat exchange is by free convection and radiation.

Sample A was annealed in such conditions. The resistance measured during the annealing increased up to 8 % (figure 4). This means that the sample was overannealed, and that there are mainly large hard magnetic FeSi grains together with FeB grains [8]. The hysteresis loop shows (figure 5), as expected from the resistance measurement, a hard magnetic sample with a coercive field of 14.4 Oe.

Mathematically, if we take again a thin differential strip along the y-direction of the sample, the annealing is represented by the equation: The values of all the constants of heat exchange have been calculated according to [START_REF] Michael | Introduction to Thermal Engineering Systems: Thermodynamics, Fluid Mechanics, and Heat Transfer[END_REF][START_REF] Chapman | Heat Transmission[END_REF], taking the characteristic length as A/P, where P is the perimeter of the exchanging surface. Considering the experimental conditions (Ar at 1 atm) and the expected temperature of the sample (about 1100 K) we obtain:
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The numerical solution of ( 23) is represented in figure 2b, taking constant resistivity ρ 0 , showing again that the temperature does not depend on y in the central part of the sample. Accepting that fact, we can consider that T=T(x), so that the heat equation is:
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far from both ends in the y direction. The boundary condition is then given by (10), taking q(T)=q free (T). This equation cannot be solved analytically. A linear form of the functions of heat exchange by radiation and convection is necessary. In order to obtain it, considerations similar to those of the previous section are carried out: 1) We calculate the average temperature of the sample from the transcendent equation: The solution can be obtained with a computer and it will be defined as T m .
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With the value of T m , the same approach in polynomials of Taylor can be carried out for ϕ rad and ϕ conv . The approach of ϕ conv will be:

n mT conv + ≈ ϕ (26)
where

        + - + - + - = w T H w T T H g T T h g T T h m lateral m lateral m m 0 4 / 1 0 3 / 1 0 inf 4 / 1 0 sup ' 2 2 ) ( 5 3 
) ( 4 4 ) ( 5         +       + +               + +       + - = w T H T T a T T w H T T g h a n lateral m m lateral m 0 0 2 4 / 1 0 0 sup 1 ' 2 3 4 2 4 ( ) 4 / 1 0 1 T T a m - = ( ) 3 / 1 0 inf 2 T T g h a m - =
2) q conv has also to be approximated by first order Taylor polynomials:

( ) Approaching the boundary condition q free to a first order Taylor polynomial near T m the next boundary conditions are obtained:
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The solution to equation (28) with the boundary conditions (29) will be: 
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With all the values of table 1 and the constants of heat exchange by convection the temperature distribution is obtained in figure 6.

The maximum temperature calculated from (30) is 1080.4 K. At both sides the temperature is of 1068.5 K. Thus, the temperature variation between both sides and the center of the sample, according to (30) is of 11.9 K. This small temperature difference means that the sample is very homogeneously crystallized, as it has been seen by means of a T.E.M. also represented in figure 6.

Sample annealed in forced convection conditions

This is the case of samples B and C. Sample B was annealed in "laminar flow" and sample C in "turbulent flow" conditions. The resistance of sample B (figure 4) during annealing shows that it has a similar phase composition as sample A. The maximum is almost the same, and the diffraction pattern is also not much different [8]. The hysteresis loop (Figure 5) is a constrained loop, with a coercive field of 9.7 Oe. This means that there are two magnetic phases in the sample. Sample C shows a much smaller resistance change than samples A and B (figure 4). Nevertheless there is a maximum that suggests the existence of an exothermic reaction. This means that there will only be small FeSi nanograins. The X ray diffraction pattern [8] as well as the soft hysteresis loop with a coercive field of 0.09 Oe (figure 5) confirm this hypothesis. In literature [START_REF] Michael | Introduction to Thermal Engineering Systems: Thermodynamics, Fluid Mechanics, and Heat Transfer[END_REF][START_REF] Chapman | Heat Transmission[END_REF] the value of the heat exchange constant in forced convection is calculated considering only the length of the plate. This would mean that both H, and h are the same. This is not the case. The surface of the sample can be considered as a wide flat plate, and we can take into account only the length to calculate h. Both sides of the sample are extremely thin flat plates, which do almost not change the temperature of the surrounding gas. As H is inversely proportional to the temperature difference in the gas, it will be very high. For this reason, we considered the characteristic length at both sides to be the aspect ratio L•g/(2(L+g)).

To calculate h and H, the flow velocity is necessary too. In our experiment, it is not possible to be measured but the velocity can be chosen by trial-error method, until the temperature calculated is enough to originate the crystallization obtained experimentally in samples B and C. In the case of turbulent flow (Sample C) supposing a flow velocity of 15 m/s:

h= 39.62 W•m -2 •K -1 H= 243.1 W•m -2 •K -1
The values of H and h differ from each other less in turbulent flow than in the case of laminar flow. This is due to the fact that turbulent flow will not be as much changed by heating as in the case of laminar flow. Laminar flow can get turbulent by heating, but turbulent flow can only keep being turbulent.

The numerical resolution of equation ( 31), taking a constant resistivity ρ 0 , is given in figure 2c for laminar and in figure 2d for turbulent flow conditions. The temperature is kept constant along the y-direction in most of the sample, especially in the center, so that we can consider T=T(x). The differential equation, far away from both ends of the y-direction, is:
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And (10) is the boundary condition taking q(T)=q forced (T).

In order to solve (32), we need similar considerations to those used in the previous sections: 
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It is necessary to approximate the term corresponding to radiation near T m .

Unfortunately, the expected temperature variations for these cases are very great, due to the great differences between h and H. Given the quasi-parabolic form of the function of emission by radiation with temperature, the greater the temperature, the lower is the error when the function is approximated to a straight line. Unfortunately, the first order Taylor polynomial shows rather high error for intervals of temperature higher than 20 K near the maximum temperatures at which the materials are during the annealing. Nevertheless, the fit by least squares method gives good results for maximum temperatures superior to 700 K. ϕ rad will be approximated by: ( )
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where m is the slope and n is the independent term of the least squares fit to a straight line in a temperature interval near T m .

2) Substituting (34) in (32) we obtain the differential equation: 
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And the boundary conditions are:
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Solving (35) with the boundary conditions (36) we have
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The solution to the differential equation ( 35) has, therefore, the same form for both cases of forced convection with laminar or turbulent flow. The only difference comes from the values of h (exchange constant through the surface) and H (exchange constant through both sides). In order to have a value of m and n, it is necessary to give a first interval for the temperature range that will be present in the sample during the annealing.

-Laminar Flow conditions:

For laminar flow conditions, H is almost 100 times higher than h. For this reason ϕ rad was plotted in the interval [T m -100, T m ] (T m calculated according to (33)).

The values of m and n are obtained according to (34), and they are replaced in the differential equation ( 35) and in its boundary conditions (36). Plotting (37) it was observed that the temperature variation was different from the predicted one, so another fit by least squares method is needed in the new temperature interval.

Substituting the new values of m and n in (37), the temperature interval is expected to change again, but the difference between the set and calculated intervals will not be as high as before. This means that it is necessary to make new iterations, until a good approach between the set interval and the obtained interval is achieved.

After several iterations the temperature interval [827.9, 956.7] K was used to fit ϕ rad to a straight line by least squares. The parameters are:

m= 48.5 W•m -2 •K -1 n=-32507.5 W•m -2 R 2 = 0.997
The zones of greater error will correspond to the maximum and minimum temperatures of the interval. At the maximum temperature, a relative error of 1.6 % is obtained between the fit and the real value. With respect to the values of the minimum, a relative error of 2.8 % is obtained. As the errors are below 5%, the fit is acceptable, specially knowing that the value of the loss of heat by radiation contributes to a lesser extent than in the previous cases of free convection and radiation. Both sides of the sample are at the lowest temperature, due to the high value of H. This means that the region where the error in the radiation term is the highest is where its contribution is reduced the most.

The temperature gradient in sample B is plotted in figure 7. The temperature difference between the center of the sample and both sides is of about 129 K. This temperature difference is enough to create a crystallization gradient in the sample.

The T.E.M. photographs show that there are large crystals in the center of the sample (a magnetic hard phase), and small nanograins at both sides (magnetically soft). This is the reason for the constrained loop in this sample. The constrained hysteresis loop is the addition of the soft magnetic contribution at both sides, and the hard magnetic contribution at the center. In [8] this hypothesis was definitely demonstrated by cutting two pieces of the sample: one from one side and the other from the center, obtaining the corresponding soft and hard hysteresis loops, respectively.

-Turbulent flow conditions:

Here the expected temperature differences are much lower in the surface of the sample than in laminar flow (because h and H are not so much different). But the Replacing all the values in (37), the distribution of temperature is represented in figure 8.

The temperature variation in the sample is about 16 K. This means that a first order Taylor polynomials could also be used in this case, as the temperature difference is not too high.

As the model predicts, this sample is also very homogeneous in its width. The T.E.M. photographs show that the sample is homogeneously nanocrystalline as expected from both the resistivity and hysteresis measurements. All these results are not only dependent on the way of convective heat exchange, but also on the thermophysical properties of the materials. The thermal can affect the temperature gradient on the sample. A material with a high thermal conductivity will have a lower temperature gradient, and the annealed samples will be more homogeneous. On the other hand, a high α will increase the temperature of the sample and, to a lower extent, the temperature gradient.

Another important point is the geometry of the sample. We shall suppose four different samples, S1, S2, S3 and S4, with different widths 2, 6, 20 and 50 mm, respectively. All other dimensions, the current density and flow velocity are the same as before. Each sample is considered to be annealed in vacuum, free and forced convection.

The heat exchange constants are temperature-dependent. As every sample has a different temperature the heat exchange constants have the values in table 2.

In figure 9 the temperature profiles of the central part of all four samples in every condition is plotted. Table 3, shows the maximum temperature T max , the minimum temperature, T min and T m calculated from (17), ( 25) and (32) for every case.

The radiation term (which is the most different term to a straight line) was always approximated to a straight line with an error below 5 %. From the table 3 and figure 9 it can be seen that:

-The temperature T m calculated from (17), (25) and (32) is lower as the sample gets narrower. This is due to the fact that the environment will take more heat from the sample as the sample is smaller, due to a lower thermal inertia. -The value of T m is higher than the maximum temperature T max calculated from ( 22), (30) and (37). This effect is especially noticeable for narrow samples. This is due to the fact that (17), ( 25) and (32) do not take the boundary conditions into account. The borders decrease the temperature of the sample near to them. Thus, the nearer the borders (the narrower the sample), the lower will be the temperature of the whole sample and the lower will be the maximum temperature reached. For the case of narrow samples in vacuum and convective heat exchange conditions, the difference of T m and the maximum temperature calculated from ( 17) and ( 25) might be so great that similar considerations to those for forced convection should be done in order to reduce the error. This means taking as T m another temperature within the real temperature interval of the sample width to make the Taylor approximation.

-Another effect of the borders is the steep decrease of the temperature near to them. For very narrow samples, no flat constant temperature is reached in the center.

However, the difference between T max and T min is smaller for narrow samples than for wide samples.

-For the same current density, it seems that there is a maximum limiting temperature that a very wide sample would reach. [11,12]. 
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h

  is the heat exchange constant through the upper and lower surfaces and H is the heat exchange constant through both sides of the x-direction. ϕ(T) has the same formula for laminar and turbulent flow, the values of h and H are the only difference.

  And the boundary conditions are:

  as boundary condition.

  Mathematically, if we take again a thin differential strip along the y-direction of the sample, the annealing is represented by the equation:

  In the case of laminar flow (Sample B) supposing a flow velocity of 7.5 m/s: h= 21.99 W•m -2 •K -1

1 )

 1 The temperature T m is obtained from the resolution of the transcendental equation:

  between h and H still suggests that a fit of the radiation term by least squares method would have a lower error than Taylor polynomials. After several iterations the temperature interval [850.0, 866.2] K was chosen. The values of m and n are obtained.m= 43.0 W•m -2 •K -1 n=-27803.4 W•m -2 R 2 = 0.999If we evaluate the function at the maximum and minimum temperature we obtain a relative error of 0.04 % between the fit and the theoretical value.

  α and especially the thermal conductivity of the material K,

  In this paper, we explained mathematically the temperature distributions that can be originated in the width of the sample during current annealing in the steady-state. The experimental results perfectly agree with the model, showing that, for certain geometries and commonly used materials, it is possible to modify the crystalline and magnetic properties of the samples by means of changing the gas flow around the sample.Further calculations done for different geometries show that the shape of the sample can also modify the temperature gradient, and the maximum temperature reached. Vacuum annealed samples show the lowest temperature differences in the width of the sample. Free convection and turbulent flow originate temperature gradients of about 20 K, but this can be smaller for narrow samples. Laminar flow shows the highest temperature gradients.
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 1 FIGURE CAPTIONS:

Fig. 2 :

 2 Fig. 2: Temperature distribution along the y-axis of samples annealed (a) in vacuum,

Fig. 3 :

 3 Fig. 3: Temperature distribution in the center of a sample in vacuum according to the

Fig. 4 :

 4 Fig. 4: Normalized resistance of the samples during annealing.

Fig. 5 :

 5 Fig. 5: Hysteresis loops of the entire annealed samples.

Fig. 6 :

 6 Fig. 6: Temperature distribution of sample A in free convection conditions according

Fig. 7 :

 7 Fig. 7: Temperature distribution of sample B in forced convection with laminar flow

Fig. 8 :Fig. 9 :

 89 Fig. 8: Temperature distribution of sample C in conditions of forced convection with

  Geometry of the Vitroperm® samples. L=0.1 m, w=8.3•10-3 m, and g=23•10-6 m. 82x42mm (600 x 600 DPI) Temperature distribution along the y-axis of samples annealed (a) in vacuum, (b) in free convection conditions, (c) in laminar flow conditions and (d) in turbulent flow. 91x87mm (600 x 600 DPI) Temperature distribution in the center of a sample in vacuum according to the equation (22), with the data of the table 1. 149x148mm (600 x 600 DPI) Normalized resistance of the samples during annealing. 89x87mm (600 x 600 DPI) Hysteresis loops of the entire annealed samples. 88x87mm (600 x 600 DPI) Temperature distribution of sample A in free convection conditions according to the equation (30), with the data of the table 1. The grains are large and homogeneously distributed. 149x191mm (600 x 600 DPI) Temperature distribution of sample B in forced convection with laminar flow according to the equation (37), with the data of table 1. The sample shows a crystallization gradient (large crystals in the center, and small nanograins at both sides) due to the high temperature differences in it. 149x193mm (600 x 600 DPI) Temperature distribution of sample C in conditions of forced convection with turbulent flow according to the equation (37), with the data of table 1. The temperature is enough to create nanocrystals homogeneously distributed 149x187mm (600 x 600 DPI) Temperature distribution of samples S1, S2, S3 and S4, annealed in (a) vacuum, (b) steady gas, (c) laminar flow, and (d) turbulent flow. 145x158mm (600 x 600 DPI)

  

  

  

  

  

  

  

  

TABLE CAPTIONS :Table 1 :

 CAPTIONS1 Characteristics of the material and constants necessary to solve the differential equation. Measured and from

Table 2 :

 2 Values of the different Exchange constants for every w. S1 w=50 mm, S2 w=20 mm, S3 w=6 mm y S4 w=2 mm.

Table 3 :

 3 Temperatures calculated for all four types of samples S1 (w=2 mm), S2

	(w=6 mm), S3 (w=20 mm) and S4 (w=50 mm) in every environmental condition
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	Symbol Sample annealed in free convection conditions Meaning	Value
	C p Sample	Heat capacity of the material h sup	530 J/(kg•K)
	ρ 0	Resistivity atT 0	1.909•10 -6 Ω•m -1
	I	Current intensity	7 A
	σ	Stefan-Boltzmann constant	5.67•10 -8 W/ (m 2 •K 4 )
	ε	Thermal emittance coefficient	0.3
	w	Width of the sample	8.3•10 -3 m
	g	Thickness of the sample	23•10 -6 m
	L	Length of the sample	0.1 m
	K	Thermal conductivity	10 W/(m•K)
	T 0	Laboratory temperature	298 K
	α	F o r Thermal coefficient of temperature V de Manuel table 1: F o r	1.75•10 -4 K -1
		P P	
		e e	
		e r e r	
		R R	
		e e	
		v i e v i e	
		w w	
		O n l O n l
			y y
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	Sample annealed in vacuum			
	Sample		T m (K)			T max (K)	T min (K)
	S1	.88	1187.7	0.64	18.79 1184.8	19.4 1183.2
	S2 S2	2.96	1190.1	0.64	18.71 1189.7	19.88 1186.6
	S3 S3	2.26	1190.9	0.63	18.67 1190.9	20.08 1187.5
	S4 S4	1.90	1191.1	0.63	18.67 1191.1	20.08 1187.7
	Sample annealed in laminar flow conditions Sample annealed in free convection conditions	
	Sample Sample	h (W•K -1 •m -2 ) T m (K)			H (W•K -1 •m -2 ) T max (K)	T min (K)
	S1 S1	22.59	1048.5			2106.3 1037.1	1032.1
	S2 S2	22.04	1077.6			2055.5 1076.0	1065.1
	S3 S3	21.85	1096.5			2037.3 1096.5	1083.7
	S4 Sample annealed in turbulent flow conditions 21.80 Sample h (W•K -1 •m -2 ) S1 40.54 S2 39.62 S3 39.62 S4 1105.2 Sample annealed in laminar flow conditions F Sample T m (K) S1 821.7 o S2 945.2 r S3 991.5	2032.9 H (W•K -1 •m -2 ) 248.73 243.10 243.10 1105.3 T max (K) 708.0 924.2 995.0	1092.3 T min (K) 670.4 811.6 852.2
	S4 S4 Sample annealed in turbulent flow c onditions 39.62 V de Manuel table 2: 243.10 1003.5 1007.2 P Sample T m (K) T max (K) e S1 844.6 826.5 S2 865.4 859.0 e S3 870.3 869.5 r S4 871.6 871.6	862.4 T min (K) 820.0 856.9 864.7 866.0
				V	R e	
					v i e
						w
						O n l
							y
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