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REDUCTION OF BIVARIATE POLYNOMIALS

FROM CONVEX-DENSE TO DENSE,

WITH APPLICATION TO FACTORIZATIONS

JÉRÉMY BERTHOMIEU AND GRÉGOIRE LECERF

Abstract. In this article we present a new algorithm for reducing the usual
sparse bivariate factorization problems to the dense case. This reduction sim-
ply consists in computing an invertible monomial transformation that produces
a polynomial with a dense size of the same order of magnitude as the size of
the integral convex hull of the support of the input polynomial. This approach
turns out to be very efficient in practice, as demonstrated with our implemen-
tation.

1. Introduction

Let K be a field. Throughout this paper, F represents the bivariate polynomial
in the variables x and y over K that we want to factor. At the present time,
the best known complexity bounds for the squarefree and irreducible factorization
problems are essentially obtained in terms of the dense size of F . This is relevant
to many situations but, in many others, it is important to take the sparsity of F
into account. In this article, we present a simple method to transform F in a way
that is compatible to factorizations, but so that the dense size becomes of the same
order of magnitude as the size of the integral convex hull of the support of F . In the
next paragraphs, we give precise definitions for the sparse and dense sizes, state our
main complexity result on support reduction, and then corollaries on factorizations.

1.1. Sizes of polynomials. Let S be a finite subset of points in Z2. The bounding
rectangle of S is the smallest rectangle of the form (ox, oy) + [0, dx] × [0, dy] that
contains S, where ox, oy ∈ Z and dx, dy ∈ N. We define the dense size of S as
(dx + 1)(dy + 1). We write IntS for the integral convex hull of S, that is the set of
integer points inside the convex hull of S seen as a subset of R2, so that

IntS = Z2
⋂

{

∑

e∈S

tee|te ∈ R≥0 and
∑

e∈S

te = 1

}

.

The convex size of S is defined as the cardinality | IntS| of IntS.
For our purposes it will be convenient to consider bivariate Laurent polynomials .

Any such polynomial F ∈ K[x, y, x−1, y−1] can be stored as a vector of nonzero
terms, with each term composed of a coefficient and an exponent, regarded as a
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2 JÉRÉMY BERTHOMIEU AND GRÉGOIRE LECERF

vector in Z2. This storage is usually called the sparse representation of F . For
any (i, j) ∈ Z2, we let Fi,j denote the coefficient of xiyj in F . The support of F is
defined as

SuppF =
{

(i, j) ∈ Z2|Fi,j 6= 0
}

.

The sparse size of F , written σ, refers to the cardinality of the support of F . We
also define the dense size (resp. the convex size) of F as the dense size (resp.
convex size) of its support.

The Newton polygon of F , written NewtonF , is the convex hull of the support of
F in R2. If F factors into GH , then it is known from Ostrowski [Ost21] (translated
in [Ost99], and revisited later in [Ost75]) that:

NewtonF = NewtonG+NewtonH = {a+ b|a ∈ NewtonG, b ∈ NewtonH} .
The latter sum of the convex hulls of G and H is usually called the Minkowski sum.
In general, even if the sparse size of F is small compared to its convex size, the
irreducible factors of F can be dense with respect to their Newton polygons, what
we call convex-dense for short. For example, simply consider F = yp−xp ∈ Q[x, y],
where p is a prime integer: here σ = 2 and F factors into x−y and F/(x−y) whose
sparse size is exactly p. This shows that the irreducible factorization of F cannot
be achieved in time polynomial in σ, and that the convex size of F is a relevant
quantity to analyze the complexity of factorization problems.

Example 1.1. Let F = x−1y−1+1+2x3+3y2. The sparse size of F is σ = 4. The
Newton polygon of F is drawn in following Figure 1: the black disks represent the
monomials of F , while the white disks are the other monomials contained in the
Newton polygon. The convex size of F is therefore π = 8, and since the bounding
rectangle of the support of F is (−1,−1) + [0, 4]× [0, 3], the dense size of F is 20.

Figure 1. Newton polygon of F = x−1y−1 + 1 + 2x3 + 3y2.

1.2. Main result. The method we propose in this paper concerns all the usual
types of factorization, including the squarefree, the irreducible and the absolute
ones. Our main result is a pretreatment, applied to the input polynomial, which
consists of a monomial transformation that preserves the sparse size and roughly the
convex size, but decreases the dense size. The monomial transformations considered
are the maps of the affine group over Z2, written Aff

(

Z2
)

. To be precise, these are
the maps U

(1.1) U : (i, j) 7→
(

α β
α′ β′

)(

i
j

)

+

(

γ
γ′

)

,
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with α, β, γ, α′, β′, and γ′ in Z, such that αβ′−α′β = ±1. Such a map U preserves
the absolute value of the volumes in R2.

Let S be a finite subset of Z2. The set S is said to be normalized if it belongs
to N2 and if it contains at least one point in {0} × N, and also at least one point
in N×{0}. For such a normalized set, we write dx for the largest abscissa involved
in S and, analogously, dy for the largest ordinate, so that the bounding rectangle
is R = [0, dx]× [0, dy]. The following theorem will be proven in Section 4.2:

Theorem 1.2. For any normalized finite subset S of Z2, of cardinality σ, convex
size π, bounding rectangle [0, dx]× [0, dy], and dense size δ = (dx + 1)(dy + 1), one
can compute an invertible affine map U ∈ Aff(Z2) as in (1.1), together with U(S),
with O

(

σ log2 δ
)

bit-operations, such that U(S) is normalized of dense size at most
9π.

Here, by the number of bit-operations we mean the size of the Boolean circuit that
performs the computation, as in the computation tree model considered in [BCS97,
Chapter 4]. The rest of this introduction is devoted to applications of Theorem 2
to factorizations of bivariate polynomials. Roughly speaking, given a polynomial F
with a small convex size compared to its dense size, we can use the algorithm un-
derlying Theorem 1.2 on the support of F in order to construct another polynomial
to factor, with the same convex size as F but with a dense size of the same order of
magnitude as the convex size. Therefore, any fast factorization algorithm in terms
of the dense size leads to a fast algorithm in terms of the convex size. Another im-
portant application of our Theorem 1.2, developed by Chèze in [Chè10], concerns
the decomposition of multivariate rational functions.

The proof of Theorem 1.2 is organized as follows. In our first section we explain
a naive approach to reduce S so that the ratio of the volumes of its convex hull
and of its bounding rectangle increases. The second section provides us with a
uniform bound on the latter ratio reached at the end of the reduction process. The
last section is then devoted to a faster dichotomic reduction algorithm, to practical
performances, and to a proof that our reduction technique leads to an essentially
optimal volume ratio in the worst case.

1.3. Applications. We shall now explain how Theorem 1.2 can be used to reduce
convex-dense factorization problems to the usual dense case. For the cost analysis
we use the computation tree model for counting the number of operations in the
ground field K. Let us recall that the “soft-Oh” notation f(n) ∈ Õ(g(n)) means

that f(n) ∈ g(n) logO(1)(3 + g(n)) (we refer the reader to [GG03, Chapter 25,
Section 7] for details).

If U is an affine map of Z2 as in (1.1), then we consider its action on the monomi-

als, and we write U(xiyj) for xαi+βj+γyα
′i+β′j+γ′

. By linearity, this action extends
to K[x, y, x−1, y−1] as follows:

U(F ) =
∑

(i,j)∈SuppF

Fi,jU(xiyj).

Greatest common divisor. A Laurent polynomial is said to be normalized if its
support is normalized. Let F and G be two normalized polynomials in K[x, y]
of degree at most dx in x and dy in y, and with supports included in a common
convex polygon of convex size π. This situation naturally occurs for instance when
computing the discriminant of F , say in y, where G is set to ∂

∂y
F .
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Thanks to Theorem 1.2, we can compute a reduction map U with O
(

σ log2 δ
)

bit-operations such that the partial degrees of F̃ = U(F ) and G̃ = U(G) are at

most d̃x in x and d̃y in y, and with d̃xd̃y ∈ O(π). Without loss of generality we can

further assume that d̃x ≥ d̃y, so that the computation of H̃ = gcd(F̃ , G̃) in K[x, y]

can be done with Õ
(

π1.5
)

operations in K, assuming that K has cardinality at least

(6d̃y + 3)d̃x, by [GG03, Corollary 11.9, part i ]. Under the same assumptions on
the cardinality of K, a randomized variant can also obtain the same g.c.d. with an
expected number of operations only in Õ(π), by [GG03, Corollary 11.9, part ii ].

There exists a unit h in K[x, y, x−1, y−1] (that is a term cxiyj with c invertible

in K) such that H = hU−1(H̃) is normalized. We say that H is a normalization

of U−1(H̃). By the aforementioned Ostrowski theorem, it is classical to deduce
that H is the actual g.c.d. of F and G, and that the convex size of H is at most
π. Finally, the computation of H from H̃ takes Õ(π log δ) more bit-operations.
Of course this approach leads to a significant speedup when compared to a direct
application of [GG03, Corollary 11.9] as soon as π is much smaller than δ.

Squarefree factorization. Let U be an invertible affine map over Z2 as in Equa-
tion (1.1), and let L be the linear part of U . Let F still be a normalized polynomial
in K[x, y] of degree at most dx in x and dy in y, of sparse size σ, and of convex size
π. If the squarefree factorization of F writes into F = F 1

1F
2
2 · · ·F r

r , where the Fi

are the pairwise coprime squarefree factors, then

L(F ) = L(F1)
1L(F2)

2 · · ·L(Fr)
r.

As for the g.c.d., thanks to Theorem 1.2, we can compute a reduction map U with
O
(

σ log2 δ
)

bit-operations such that the partial degrees of F̃ = U(F ) are at most

d̃x in x and d̃y in y, and with d̃xd̃y ∈ O(π). Without loss of generality we can again

assume that d̃x ≥ d̃y.

If K has characteristic 0, then the squarefree factorization of F̃ takes Õ
(

π1.5
)

operations in K by [Lec08, Proposition 8]. This cost further drops to an expected

one in Õ(π) with the randomized variant of [Lec08, Proposition 9]. Then the
squarefree factors can be easily deduced by applying U−1 and normalizing. Other
algorithms of [Lec08] concerning the separable factorization can be also adapted in
the same way to benefit of sparsity.

Irreducible factorization. If F is a Laurent polynomial, then U(F ) is irreducible if,
and only if, F is irreducible. If F is normalized, then F is irreducible in K[x, y]
if, and only if, F is irreducible in K[x, y, x−1, y−1]. The irreducible factorization in
K[x, y] can thus be deduced from the one in K[x, y, x−1, y−1]. As for the squarefree
factorization, we first compute a reduction map U , then we compute the irreducible
factorization of U(F ), and finally we apply U−1 and normalize all the factors.

With this strategy, informally speaking, the algorithms of [Lec10] for instance
show that the number of operations in a prime finite field can grow with only
Õ(π1.5). In Section 4.3 we report on examples that illustrate the speedup gained
thanks to the reduction process.

1.4. Related work. Fast arithmetic operations on sparse polynomials are still a
matter of active research. At the present time, the best performances are achieved
essentially with supports being close to rectangles, thanks to the Kronecker substi-
tution that reduces the product to a single variable [GG03, Chapter 8, Section 4].
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Recent progress has been accomplished for instance in [HL10], but even when softly
linear time algorithms are available for the sparse product, the overhead compared
to dense sizes remains important. These facts motivate the strategy of the present
paper: by a direct reduction to the dense case we avoid relying on sparse arithmetic
at all.

Concerning the irreducible factorization of bivariate polynomials, the Hensel
lifting and recombination technique is the most popular. It leads to the best known
complexity bounds [BLS+04, Lec06, Lec07, Lec10] in the dense case. Hensel lifting
is used in Bernardin’s implementation within Maple [Ber97, Ber98], and in Steel’s
one in Magma [Ste05, BHKS09]. In order to benefit from fast Hensel lifting, which
means here with a softly linear cost, in the bivariate case, one needs first to assume
that F is separable, say in y, and then find a value x0 such that F (x0, y) remains
separable. Unfortunately the shift of x spoils the sparse and convex sizes. One
possible solution consists in the direct computation of the irreducible factorization
in K[[x]][y] but, at the present time, no algorithm with softly linear time is known
for that task. Efforts have been made in this direction. For instance, in [AGL04]
an algorithm for computing a factor of a given convex support is designed for
special cases, with time polynomial in the convex size of the input polynomial.
In [BHKS09], Puiseux series solutions of F are computed directly, with no shift in
x. The best known complexity bounds for the Puiseux expansions seem to be found
in [Pot08, PR10]. Recently, in [Wei10], Weimann proposed partial generalizations
of the algorithms of [Lec06, Lec07]: if K is a number field, and if the polynomials
supported by the exterior facets of the Newton polygon are separable, then, from
their irreducible factors, one can deduce the factorization with O(πω) operations
in K, where ω is the linear algebra exponent (known to be between 2 and 2.37, but
unfortunately close to 3 in practice). Compared to these methods, our approach
has the advantage that it can be performed from the outset with no separability
assumption, that it does not need to compute the Newton polygon, and that it can
benefit from fast Hensel lifting.

Another important class of factorization algorithms is due to Gao in [Gao03],
who showed that the absolute factorization can be performed in softly quadratic
time in terms of the dense size. The first half of his algorithm consists in comput-
ing a basis of the first De Rham cohomology group of the complementary of the
hypersurface defined by F . In [GR03] it has been shown that this task can be done
in time polynomial in the convex size. When a fast sparse polynomial product is
available, one can even compute the probable number of absolute factors in time
softly quadratic in the convex size, over finite fields with sufficiently large charac-
teristic [HL10, Section 7]. However these approaches still suffer an overhead when
compared to the dense case, and it requires the input polynomial to be separable.

The factorization of sparse polynomials in terms of the sparse size is an active
research area. Although this is not the main goal of the present article, let us
mention briefly important results for multivariate polynomials. Polynomial time in
terms of the sparse size of the output has been investigated by Zippel in [Zip79,
Zip81] (see also [Zip93, Chapter 17]). Specifically, he proposed a probabilistic
variant of Hensel lifting that runs in time polynomial in the total sparse size of the
lifted factors of F in K[[x]][y]. His results have been extended and refined in [Gat83,
Kal85, GK85, Kal89]. These techniques perform well only if the lifted factors are
very sparse. Finally another class of results focuses on the only computation of
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f dy
dxh b

dR0

RA B
CDEFGH(0; 0) O

Figure 2. Bounding octagon O and rectangles R and R′ for
S = {(2, 0) , (1, 1) , (5, 2) , (7, 2) , (2, 3) , (0, 4) , (7, 4) , (8, 4) , (5, 5)}.

the irreducible factors of a bounded given degree. A polynomial time bound has
been proved recently for this task in [AKS07] for two variables and, independently,
in [KK06] directly with several variables.

2. Support reduction

This section is devoted to the reduction algorithm underlying Theorem 1.2. We
start with a naive version that is to be refined in Section 4.

2.1. Bounding rectangles. Let S be a normalized finite subset of Z2 with bound-
ing rectangle R = [0, dx]× [0, dy]. We introduce the integers b, d, f and h as follows:

• b = dx −max(i,j)∈S (i− j),
• d = dx + dy −max(i,j)∈S (i+ j),
• f = dy +min(i,j)∈S (i− j),
• h = min(i,j)∈S (i+ j).

Then, let us define the following eight points, drawn in Figure 2 above:

A = (h, 0) , B = (dx − b, 0) , C = (dx, b) , D = (dx, dy − d) ,
E = (dx − d, dy) , F = (f, dy) , G = (0, dy − f) , H = (0, h) .

The rectangle R′ supported by lines (AH), (BC), (DE), (FG) is the smallest
rectangle containing S whose edges are parallel to the two main bissectors. The
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octagon O = ABCDEFGH contains S and any of its edges contains a point of S,
O is the bounding octagon of S.

2.2. Elementary transformations. Our reduction algorithm will only use the
three following elementary transformations. The first one, written λ, corresponds
to substituting y/x into y, this yields the following map of Z2:

λ : Z2 → Z2

(i, j) 7→ (i− j, j) .

We will need to swap x and y. This is the role of µ:

µ : Z2 → Z2

(i, j) 7→ (j, i) .

Finally, translations in x are necessary to normalize the supports occurring in the
reduction algorithm:

τk : Z2 → Z2

(i, j) 7→ (i+ k, j) .

2.3. Reduced sets of points. Applying λ to S modifies the volume of the bound-
ing rectangle. For instance Figure 3 is the image of Figure 2 by λ: the height of R
does not change, but the horizontal length becomes dx+dy−b−f . The points (i, j)
in S that are sent to the far left of λ(S) are such that i−j is minimal. Analogously,
those that are sent to the far right of λ(S) are such that i− j is maximal. Applying
λ−1 instead of λ will result in the horizontal length of the new R being the differ-
ence between max (i+ j) and min (i+ j), namely dx + dy − d− h, as illustrated by
Figure 4.

From now on and until the end of this article, η represents a real number in
[0, 3/4).

�(A)
�(F )�(G) �(H)

dx� b�dy+ f (0; 0) �(B)
�(C)�(D)�(E)

Figure 3. Image of the octagon of Figure 2 by λ, and its new
bounding rectangle.
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h ��1(A)
��1(H) ��1(G)

dx+ dy� d(0; 0) ��1(B)
��1(C)��1(E)��1(F ) ��1(D)

Figure 4. Image of the octagon of Figure 2 by λ−1, and its new
bounding rectangle.

Definition 2.1. A finite subset S of Z2 is said to be η-reduced whenever S is
normalized, with dx greater than or equal to dy, and such that b, d, f and h, as
defined in Section 2.1, satisfy the following two conditions:

b+ f ≤ (1 + η)dy and d+ h ≤ (1 + η)dy .

If S has only one point, then it is already η-reduced. In the next subsection, we
propose an algorithm for reducing any finite subset of points of Z2. We shall see
that η is used for controlling the tradeoff between the quality of the reduction and
the time needed to reduce. The strongest reduction corresponds to η = 0.

2.4. Degenerate case. In this subsection we consider the case when S is degen-
erate, which means that all the points of S are aligned. If S is normalized and is a
singleton, then it is the origin and it is already η-reduced, whatever the value of η
is. Otherwise we have the following proposition:

Proposition 2.2. For any degenerate normalized finite set of points S of cardinal-
ity σ, convex size π, and bounding rectangle [0, dx] × [0, dy], one can compute an

invertible affine map U ∈ Aff(Z2) as in (1.1), together with U(S), with O
(

σ log2 δ
)

bit-operations, where δ = (dx + 1)(dy + 1), such that:

• |α|, |β|, |α′|, and |β′| are at most max(dx, dy, 1),
• |γ| and |γ′| are at most dxdy,
• U(S) is normalized of dense size π.

Proof. According to the hypotheses, the following two situations can occur: the
points of S are either on the segment between (0, 0) and (dx, dy), or on the segment
joining (0, dy) to (dx, 0). Let us first deal with the former case. Let g ≥ 0 be the
g.c.d. of dx and dy, and let u and v be the Bézout coefficients so that g = udx+vdy
holds with |u| ≤ dy and |v| ≤ dx. We refer the reader to [GG03, Lemma 3.12] for
instance for these classical facts. We take U to be the linear map whose matrix is

(

u v
−dy/g dx/g

)

.
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Since IntS = {(idx/g, idy/g)|i ∈ {0, . . . , g}} we have that π = g + 1 and that
U(IntS) is the segment joining (0, 0) to (g, 0). It follows that U(S) has dense size
exactly π.

The latter case, where S is on the segment joining (0, dy) to (dx, 0), is similar,
taking

U : (i, j) 7→
(

−u v
dy/g dx/g

)(

i
j

)

+

(

udx
−dxdy/g

)

.

By [GG03, Theorem 3.13] the computation of g, u, and v can be done with

O(log2 δ) bit-operations using the naive version of the Euclidean algorithm. Then
applying U to all the points of S takes O

(

σ log2 δ
)

bit-operations by multiplying
naively the integers in quadratic time [GG03, Chapter 2, Section 3]. �

We remark that the value of η does not intervene in this degenerate case.

2.5. Reduction algorithm. Until the end of this section we assume that S is a
nondegenerate finite set of points. The following algorithm computes U ∈ Aff

(

Z2
)

such that U(S) is η-reduced.

Algorithm 1. Support reduction.

Input: a nondegenerate normalized finite subset S of N2 of cardinality σ, and
a real number η in

[

0, 34
)

.

Output: U ∈ Aff(Z2), such that U(S) is η-reduced.
Compute (dx, dy) for S, as defined in Section 2.1.
Initialize U with the identity.
Repeat

(1) If dx < dy then

S := µ(S)
U := µ ◦ U
Swap dx and dy.

(2) Compute b, d, f , h for S, as defined in Section 2.1.
(3) If b+ f > (1 + η) dy then

S := τdy−f ◦ λ(S)
U := τdy−f ◦ λ ◦ U
dx := dx + dy − b− f

else if d+ h > (1 + η) dy then

S := τ−h ◦ λ−1(S)
U := τ−h ◦ λ−1 ◦ U
dx := dx + dy − d− h

else return U .

Proposition 2.3. Algorithm 1 is correct. For any nondegenerate normalized finite
subset S of N2 with bounding rectangle [0, dx] × [0, dy], Algorithm 1 performs at
most O (max(dx, dy)) steps in the main “Repeat” loop.

Proof. After each reduction step in the main loop, either dx and dy are swapped, or
dx decreases by at least 1 and dy is left unchanged. Therefore the number of steps
is bounded by O (max(dx, dy)). Since S remains normalized all along the process,
the algorithm always terminates with S being η-reduced. �



10 JÉRÉMY BERTHOMIEU AND GRÉGOIRE LECERF

Example 2.4. Assume η = 0 and let F = 1 + xy + x5y2, whose support S is
{(0, 0) , (1, 1) , (5, 2)}, as drawn in Figure 5 below. After the first step of the al-
gorithm, where λ is applied, S becomes as in the left part of Figure 6. In the
second step, λ is applied once more and makes S reduced, as shown in the right
part of Figure 6. In the end, the algorithm returns U = τ1 ◦ λ2, so that we have
U(F ) = x+y+x2y2. The bounding rectangle of U(F ) corresponds to dx = dy = 2,
while its bounding octagon O is defined by b = f = h = 1, and d = 0.

Figure 5. Input set S = {(0, 0) , (1, 1) , (5, 2)}.

Figure 6. S after one, and then two reduction steps.

Example 2.5. Let S be {(0, 0) , (1, 1) , (5, 2)} as in Example 2.4 and Figure 5, and
assume η = 1/2. Since b+f = 4 and (1 + η) dy = 3, the input set S can be reduced
by applying λ to obtain the same set as in the left part of Figure 6. However, after
this reduction, we have b+ f = 3 which is not strictly greater than (1 + η) dy = 3.
We thus see with this example that the reduction process stops earlier with η = 1/2
than with η = 0.

2.6. Bit-cost analysis. The main difficulty in analyzing the bit-cost of Algo-
rithm 1 resides in bounding the size of the entries of the map U . This is the
purpose of the following lemma:

Lemma 2.6. Let S be a nondegenerate normalized finite subset S of N2 with bound-
ing rectangle [0, dx]× [0, dy], and let U be an affine map as in (1.1) that sends S to

a normalized set S̃ with bounding rectangle [0, d̃x]× [0, d̃y]. Then we have:

• |α| ≤ 2d̃xdy, |β| ≤ 2dxd̃x, |α′| ≤ 2dyd̃y, and |β′| ≤ 2dxd̃y,

• |γ| ≤ 4dxdyd̃x and |γ′| ≤ 4dxdyd̃y.

Proof. Since S is nondegenerate, then it contains at least three points A = (xA, yA),
B = (xB , yB), and C = (xC , yC) that are not aligned. Computing the images of A,
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B, and C by the linear part L =

(

α β
α′ β′

)

of U leads to:

{

|α(xB − xA) + β(yB − yA)| ≤ d̃x

|α(xC − xA) + β(yC − yA)| ≤ d̃x.
.

It follows that
{

|α(xB − xA)(xC − xA) + β(yB − yA)(xC − xA)| ≤ dxd̃x

|α(xC − xA)(xB − xA) + β(yC − yA)(xB − xA)| ≤ dxd̃x,

whence

|β||(yB − yA)(xC − xA)− (yC − yA)(xB − xA)| ≤ 2dxd̃x.

Since |(yB − yA)(xC − xA) − (yC − yA)(xB − xA)| is a nonzero integer, we deduce

that |β| ≤ 2dxd̃x. The bounds for α, α′ and β′ can be obtained mutatis mutandis .
Since points of the image of S by L have abscissae (resp. ordinates) with absolute

values at most 4dxdyd̃x (resp. 4dxdyd̃y), the absolute value of γ (resp. γ′) is at

most 4dxdyd̃x (resp. 4dxdy d̃y). �

Proposition 2.7. For any nondegenerate normalized finite subset S of N2 of cardi-
nality σ, with bounding rectangle [0, dx]× [0, dy], and dense size δ = (dx+1)(dy+1),
Algorithm 1 takes O (σmax(dx, dy) log δ) bit-operations.

Proof. Since the maximum of dx and dy never increases during the main loop,
the bit-size of the points in S remains in O(log δ). Therefore Lemma 2.6 implies
that all the entries in U also remain bounded by O (log δ) at every step. Each
reduction step thus takes O(σ log δ) bit-operations. The conclusion follows from
Proposition 2.3. �

3. Dense size of reduced sets

Let S be a finite subset of Z2. In this section, we carry on using the notation
of Section 2.1, and we further write VolS for the volume of the convex hull of S.
In the next paragraphs, we show that VolS cannot be too small compared to the
volume VolR of the bounding rectangle R of S, whenever S is reduced. In the
second subsection, we deduce similar bounds in terms of discrete sizes while taking
care of the degenerate cases.

3.1. Continuous bound. Recall that η is a real constant in [0, 3/4). The following
theorem guarantees that the volume spanned by an η-reduced set of points can be
uniformly controlled in terms of the volume of its bounding rectangle:

Theorem 3.1. If S is an η-reduced set of points, then VolS ≥ 3−4η
8 VolR, where

R is the bounding rectangle of S.

Proof. In Lemma 3.2 below, we shall show that the volume of S is larger or equal
to the volume of at least one of the following polygons:

Q1 = ACEG,

Q2 = BDFH,
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P1 = ABDEG, P2 = BCEGH,

P3 = BCEFH, P4 = BDEGH,

P5 = ABDFG, P6 = ACDFH,

P7 = ACEFH, P8 = ACDFG.

Then, Lemma 3.3 asserts that VolQi ≥ 1−η
2 VolR, for all i ∈ {1, 2}. And finally,

for the eight pentagons, the combination of Lemmas 3.4 and 3.6 below provides us
with VolPi ≥ 3−4η

8 VolR, for all i ∈ {1, . . . , 8}. �

Lemma 3.2. Let S be a normalized finite set of points (not necessarily η-reduced).
Then at least one of the polygons Q1, Q2, P1,...,P8 defined above has at most VolS.
Proof. From the definitions of the bounding rectangle, and of b, d, f , h, there exist
eight points I, J , K, L, M , N , O and P in S such that I ∈ [AB], J ∈ [BC] , . . . , P ∈
[AH ], as drawn on the following figure (note that some of these points may coincide
in particular degenerate cases):

R
EF

H I
D

P
G

J
LN

A B
MO K CO

Figure 7. Points of S lying on the bounding octagon O.

Since VolS is the volume of the convex hull spanned by S, it is already clear
that

Vol(IJKLMNOP ) ≤ VolS.
By considering the subdivision of IJKLMNOP into the triangle IJP and the poly-
gon JKLMNOP , we see that Vol(AJP ) ≤ Vol(IJP ) or Vol(BJP ) ≤ Vol(IJP ),
according to the slope of (PJ) being positive or not.
It follows that Vol(AJKLMNOP ) ≤ VolS or Vol(BJKLMNOP ) ≤ VolS. In
other words, moving I on its supporting segment [A,B] makes Vol(IJKLMNOP )
either decrease or increase. Doing so with K, M and O, and then with some
points among J , L, N and P , so that Vol (IJKLMNOP ) decreases, we are led to
distinguish the following cases:

• If I, K, M and O all move clockwise, that is I moves to A, K moves to C,
M moves to E and O moves to G, then we get the polygon AJCLENGP
whose volume is at least VolQ1.
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• If I, K, M and O all move counterclockwise, then we get the polygon
BJDLFNHP whose volume is at least VolQ2.

• Otherwise two consecutive points among the cycle I, K, M , and O move
into opposite directions. We now remark that the symmetries i 7→ dx − i,
j 7→ dy − j and (i, j) 7→ (j, i) preserve the problem, the volumes, exchange
the roles of Q1 and Q2, and globally preserve the set of the eight pentagons
P1, . . . ,P8. We can thus restrict ourselves to considering for instance the
case for when I moves to B and K moves to C, and examine the following
subcases:

– M moves to E and O to H . If N moves to F , then we get the polygon
BCLEFHP , that has volume at least VolP3. Otherwise, if N moves
to G, then we get the polygon BCLEGHP , which has volume at least
VolP2.

– M moves to E and O to G. If P moves to H , then we get the polygon
BCLENGH , that has volume at least VolP2. Otherwise, if P moves
to A, then we get the polygon BCLENGA, which has volume at least
VolQ1.

– M moves to F and O to H . If L moves to D then we get the polygon
BCDFNHP , that has volume at least VolQ2. Otherwise, if L moves
to E, then we get the polygon BCEFNHP , which has volume at least
VolP3.

– M moves to F and O to G. Let us assume that P moves to A. Then if
Lmoves toD, then we get the polygonBCDFNGA, which has volume
at least VolP5. Otherwise, if L moves to E then we get the polygon
BCEFNGA, that has volume at least VolQ1. The symmetries then
handle the situation of P moving to H instead of A. �

Lemma 3.3. If S is an η-reduced set of points, then

VolQi ≥
1− η

2
VolR, for i ∈ {1, 2}.

GH
F DCE

BA
Figure 8. Quadrangle Q1 in octagon O and rectangle R.
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Proof. Since the roles of Q1 and Q2 are interchanged by the symmetry i 7→ dx − i,
it suffices to prove the lemma for Q1 only. We compute the volume of Q1 as the
difference between the volume dxdy of the bounding rectangle and the volume of
the four triangles outside of Q1:

VolQ1 = dxdy − (dx − h)b/2− (dy − b)d/2− (dx − d)f/2− (dy − f)h/2

=
1

2
(dy − b− f) (dx − d− h) +

1

2
dxdy.(3.1)

Since S is η-reduced, we have (1 + η) dy−b−f ≥ 0, dx−d−h ≥ 0, thus dy−b−f ≥
−ηdy. This yields VolQ1 ≥ 1

2dxdy −
η
2dxdy = 1−η

2 VolR. �

Lemma 3.4. If S is an η-reduced set of points, then

VolPi ≥
3− 4η

8
VolR, for i ∈ {1, 3, 5, 7} .

BA
CDEFGH

Figure 9. Pentagon P1 in octagon O and rectangle R.

Proof. Thanks to the symmetries, it suffices to prove the lemma for P1. The volume
of P1 is computed as the difference of the volume ofR with those of the four triangles
outside of P1:

VolP1 = VolR− 1

2

(

b (dy − d) + d2 + f (dx − d) + h (dy − f)
)

.

From (3.1) we deduce that:

VolP1 −VolQ1 =
1

2
(b (dx − dy − h) + d (dy − d)) .

Then, from

4b (dx − dy − h) + d2y = 4b(dx − b− h) + (2b− dy)
2,

and dx − b − h ≥ 0, it follows that 4b (dx − dy − h) + d2y ≥ 0, and that VolP1 −
VolQ1 ≥ − 1

8d
2
y. The conclusion comes from Lemma 3.3:

VolP1 ≥ 1− η

2
dxdy −

1

8
d2y ≥ 3− 4η

8
VolR. �
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Remark 3.5. For η = 0, the inequality of Lemma 3.4 turns out to be sharp. For
instance with S = {(dx/2, 0) , (0, dx/2) , (dx, dx)} we have b = f = h = 1

2dx and

d = 0. Pentagon P1, as drawn on the following figure, has volume 3
8d

2
x.

A=B
CD=EFG=H

Figure 10. Minimal pentagon P1 with dx = dy.

Lemma 3.6. If S is an η-reduced set of points, then

VolPi ≥
3− 4η

8
VolR, for i ∈ {2, 4, 6, 8} .

A B
CEF

HG D

Figure 11. Pentagon P2 in octagon O and rectangle R.
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Proof. Thanks to the symmetries, it suffices to prove the lemma for P2. Specifically
we shall prove that the following quantity is nonnegative:

θ (b, d, f, h) = 8VolP2 − (3− 4η)VolR
= (5 + 4η) dxdy + 4h (b− dx)− 4b2 + 4d (b− dy) + 4f (d− dx)

= (1 + 4η) dxdy + 4 (dx − d) (dy − f − h)− 4 (b− d) (b − h) .

Since f + h ≤ dy, we have that (1 + 4η) dxdy + 4 (dx − d) (dy − f − h) ≥ 0. There-
fore, if h ≥ b ≥ d or d ≥ b ≥ h, then the lemma is proved.

Otherwise, if b ≤ d and b ≤ h, |b− d| |b− h| is maximal for b = 0 and, for
d = h = (1 + η) dy/2, since d + h ≤ (1 + η) dy. It follows that −4 (b− d) (b− h) ≥
− (1 + η)2 d2y. From dx ≥ dy and η ∈ [0, 3/4) we deduce that (1 + 4η) dx ≥
(1 + η)

2
dy , and that θ (b, d, f, h) ≥ 0.

It remains to study the case for when b ≥ d and b ≥ h. Using dx − d ≥ b− d, we
obtain:

θ (b, d, f, h) ≥ (1 + 4η) dxdy + 4 (b− d) (dy − b− f) .

Then applying b+ f ≤ (1 + η)dy leads to:

θ (b, d, f, h) ≥ (1 + 4η)dxdy − 4 (b− d) ηdy

≥ (1 + 4η)dxdy − 4ηdxdy ≥ 0,

which concludes the proof. �

3.2. Discrete bound. For our algorithmic purposes, we need to control the num-
ber of integral points in the convex hull, instead of its volume.

Proposition 3.7. If S is an η-reduced subset of N2 of convex size π and with
bounding rectangle R = [0, dx]× [0, dy], then the following inequalities hold:

3− 4η

18
(dx + 1)(dy + 1) ≤ π ≤ (dx + 1)(dy + 1).

Proof. As R contains S, the convex size π is always at most (dx+1)(dy+1). If S is
degenerate, then dy = 0 and π = dx + 1, so that the proposition is correct. Let us
now assume that S is nondegenerate. We decompose IntS into Intb S∪Inti S, where
Intb S are the points lying upon the boundary of the Newton polygon of S, while
Inti S are the other ones strictly inside. Pick’s Theorem (see [Cox69, Chapter 13,
Proposition 51] or [GS93]) relates VolS to | Intb S| and | Inti S|, as follows:

VolS =
1

2
| Intb S|+ | Inti S| − 1.

It follows that π ≥ VolS, and that π ≥ 3−4η
8 dxdy by Theorem 3.1.

Whenever dy = 1, we have b+ d+ f + h ∈ {0, 1, 2}. If b+ h = 1 and d+ f = 1,
then from b + f ≤ 1 and d + h ≤ 1, we can deduce that f = h which implies
f = h = 0 because f + h ≤ 1. Therefore, b = d = 1, which is impossible since
b+ d ≤ 1. Finally, we must have b+ h = 0 or d+ f = 0, hence π ≥ dx + 1.

If dy ≥ 2, the conclusion follows from dx ≥ 2(dx+1)/3 and dy ≥ 2(dy+1)/3. �

Remark 3.8. In the case for when η = 0, if α is such that the inequality α| IntR| ≤
| IntS| holds for every reduced finite subset S in Z2, with VolS > 0, then nec-
essarily we have that α ≤ 3/8. In fact it suffices to consider the family Sn =
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{(n/2, 0) , (0, n/2) , (n, n)} for n even. We have | Int S2| = 4 and | IntSn+2| =
| IntSn|+ 3

(

n
2 + 1

)

, and deduce that

| IntSn|
| IntRn|

=
3n (n+ 2) + 8

8 (n+ 1)
2

is decreasing and converges to 3/8. In general, the constant 3−4η
18 thus may be

rather pessimistic for large S.

4. Faster reduction algorithm

The last ingredient now missing to prove Theorem 1.2 is a reduction algorithm
with a number of reduction steps that grows only with the logarithm of the dense
size. This is the goal of this section.

4.1. Dichotomic approach. This section is dedicated to a fast variant of Algo-
rithm 1. We do not compute exactly the same output, however. Roughly speaking,
the main idea is to determine quickly how many times λ or λ−1 can be applied
before two consecutive swaps.

Let S be a normalized finite subset of N2 with bounding rectangle [0, dx]× [0, dy],
and let q be a positive integer. The points (i, j) in S that are sent to the far left of
λq(S) are such that i − qj is minimal. Analogously, those that are sent to the far
right of λq(S) are such that i− qj is maximal. This motivates the introduction of
bq, dq, fq, and hq as

• bq = dx −max(i,j)∈S (i− qj),
• dq = dx + qdy −max(i,j)∈S (i + qj),
• fq = qdy +min(i,j)∈S (i− qj),
• hq = min(i,j)∈S (i+ qj).

For q = 1, these definitions coincide with those of b, d, f , and h of Section 2.1. The
following inequalities hold:

bq + dq ≤ qdy, bq + hq ≤ dx,

fq + hq ≤ qdy, dq + fq ≤ dx.

The height of the bounding rectangle of λq(S) is still dy, while the horizontal
length becomes dx + qdy − bq − fq. In the same manner, the horizontal length of
the bounding rectangle of λ−q(S) becomes dx + qdy − dq − hq.

From now on, the reduction factor η is supposed to be positive, that is in (0, 3/4).
We write ⌊a⌋ for the integer part of a (⌊a⌋ ≤ a < ⌊a⌋ + 1), and log2 a for the
logarithm of a in base 2. The fast algorithm we propose summarizes as follows:

Algorithm 2. Dichotomic support reduction.

Input: a nondegenerate normalized finite subset S of N2 of cardinality σ, and
a real number η in

(

0, 3
4

)

.

Output: U ∈ Aff(Z2), such that U(S) is η-reduced.
Compute (dx, dy) for S, as defined in Section 2.1.
Initialize U with the identity.
Initialize m with ⌊log2(dx/ (ηdy))⌋.
Repeat

(1) If dx < dy then
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S := µ(S)
U := µ ◦ U
Swap dx and dy
m := ⌊log2(dx/ (ηdy))⌋.

(2) If m < 0 then return U .
(3) Compute b2m , d2m , f2m , h2m for S as defined above.
(4) If b2m + f2m > 2m (1 + η) dy then

S := τ2mdy−f2m ◦ λ2m(S)
U := τ2mdy−f2m ◦ λ2m ◦ U
dx := dx + 2mdy − b2m − f2m

else if d2m + h2m > 2m (1 + η) dy then

S := τ−h2m
◦ λ−2m(S)

U := τ−h2m
◦ λ−2m ◦ U

dx := dx + 2mdy − d2m − h2m .
(5) m := m− 1.

Proposition 4.1. Assume that η > 0. For any nondegenerate normalized finite
subset S of N2, of cardinality σ and dense size δ, Algorithm 2 is correct and runs
in O

(

σ log2 δ
)

bit-operations.

Proof. Let us consider that the bounding rectangle of S is [0, dx]× [0, dy] at input.
Without loss of generality, we can assume that dx ≥ dy holds in order to simplify
the proof. Then we let ℓ0 = dx and ℓ1 = dy , and define the sequence (Si)i with
S0 = S and Si is the current value of the set just after the ith swap, that is at
the end of step 1. We write r for the total number of swaps performed during
the execution of the algorithm, we let ℓi be the largest abscissa in Si, and mi be
⌊log2 (ℓi/ (ηℓi+1))⌋. By convention, ℓr+1 is the largest ordinate in Sr.

For when i+2 ≤ r holds, we have that ℓi+2 ≤ ℓi−ηℓi+1. By descending induction,
starting with ℓr ≥ 1 and ℓr−1 ≥ 1, we shall prove that ℓi ≥ ϕr−i−1, where ϕ is the

positive root
η+

√
4+η2

2 > 1 of the characteristic equation x2−ηx−1 = 0. Since this

is true for i = r and i = r − 1, and since ℓi ≥ ηℓi+1 + ℓi+2 ≥ ηϕr−i−2 + ϕr−i−3 =
ϕr−i−1, we deduce that dx = ℓ0 ≥ ϕr−1. The number of swaps r thus drops to
O (log dx).

By Lemma 2.6, since all the Si are normalized, each reduction step amounts to
O (σ log δ) bit-operations. On the other hand the total number of steps is

∑r
i=0 mi,

r
∑

i=0

mi ∈ O

(

r
∑

i=0

log2

(

ℓi
ℓi+1

)

+ r log2
1

η

)

∈ O (log δ) ,

which concludes the cost analysis.
We shall prove that when the algorithm stops, the final value of S is η-reduced.

We now focus on what happens just after the last swap. In short, we let M be mr

and TM+1 be Sr. We denote by Tm the current value of S just before entering step 6,
where m being the corresponding current value of m. Therefore T0 corresponds to
the output of the algorithm and we want to prove that it is η-reduced. If T0 = T1
then we are done.

If A is a subset of points, then we write ℓx(A) for the horizontal length of the
bounding rectangle of A. Let us now assume that T0 is the normalization of λ(T1).
In this case, of course, λ−1 does not reduce T0. Let us prove that λ does not reduce
T0 either. If Tm were the normalization of λ2m(Tm+1) for all m in {0, . . . ,M}, then
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we would deduce that

ℓx(T0) ≤ ℓx(TM+1)−
M
∑

m=0

2mηℓr+1 = ℓr − (2M+1 − 1)ηℓr+1

< ℓr − (ℓr/(ηℓr+1)− 1)ηℓr+1 = ηℓr+1,

which is impossible. Therefore there exists a largest integer µ ∈ {0, . . . ,M} such
that for all m in {0, . . . , µ− 1}, Tm is the normalization of λ2m(Tm+1). This yields
that T0 is the normalization of λ2µ−1(Tµ) and also that

(4.1) ℓx(T0) < ℓx(Tµ)− (2µ − 1) ηℓr+1.

One of the following two cases arises:

• If Tµ = Tµ+1 then we have that

ℓx(λ(T0)) = ℓx(λ
2µ (Tµ)) = ℓx(λ

2µ (Tµ+1)) ≥ ℓx(Tµ+1)− 2µηℓr+1.

Combined with (4.1) it follows that ℓx(λ(T0)) > ℓx(T0)− ηℓr+1, and hence
that T0 is η-reduced.

• Otherwise, if Tµ is the normalization of λ−2µ(Tµ+1), then we have that
ℓx(Tµ) < ℓx(Tµ+1)− 2µηℓr+1, so that

ℓx(T0) ≤ ℓx(Tµ+1)− (2µ+1 − 1)ηℓr+1.

Since Tµ+1 is the normalization of λ(T0), we deduce that

ℓx(λ(T0)) = ℓx(Tµ+1) ≥ ℓx(T0) + (2µ+1 − 1)ηℓr+1,

whence that T0 is η-reduced.

Finally the last case for when T0 is the normalization of λ−1(T1) can be treated in
the same way. �

Remark 4.2. At each step of the algorithm, the current degree, say d̃y, in y, is
smaller than the initial dy. Therefore whenever one chooses η < 1

dy

from the

outset, the reduction is at least
⌈

d̃y

dy

⌉

= 1. Therefore the algorithms behaves the

same as with η = 0 and Proposition 4.1 is still valid if η = 0. However, there is
no uniform η > 0 such that, for every input, the behaviour of the algorithm is the
same as with η = 0.

4.2. Proof of Theorem 1.2. We prove a slightly more precise theorem than The-
orem 1.2, which contains bounds on the bit-size of the entries of the affine map U :

Theorem 4.3. For any normalized finite subset S of Z2, of cardinality σ, convex
size π, bounding rectangle [0, dx]× [0, dy], and dense size δ = (dx + 1)(dy + 1), one

can compute an invertible affine map U ∈ Aff(Z2) as in (1.1), with O
(

σ log2 δ
)

bit-operations, such that:

• |α|, |β|, |α′|, and |β′| are at most max(2max(dx, dy)
2, 1),

• |γ| and |γ′| are at most 4max(dx, dy)
3,

• U(S) is normalized of dense size at most 9π.

Proof. Proposition 2.2 already covers the degenerate case. In the nondegenerate
situation, the theorem follows from Proposition 3.7 for the dense size of the out-
put, from Proposition 4.1 with taking η = 1/4 for the bit-complexity, and from
Lemma 2.6 for the size of the entries of U . �
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4.3. Timings. We report on performances obtained with our implementation in
Maple 14 for computing the irreducible factorization of the following polynomials
in Q[x, y]:

Pn =

(

xn+1 +

n
∑

i=0

ixiyn−i

)(

yn+1 +

n
∑

i=0

(n− i)xiyn−i

)

×
(

x⌊ n

2 ⌋−1y⌊n

2 ⌋−1 +
n
∑

i=0

xiyn−i

)

.

The source code is available from
http://www.lix.polytechnique.fr/~berthomieu/convex-dense.htm.
In Table 1, we display timings, in seconds obtained using an Intel Xeon X5450
at 3.0 GHz running Linux. The first line contains the time spent in the direct
call of the native function factor. The second line concerns the time spent in our
Algorithm 1 with η = 0. The last line corresponds to calling factor on the reduced
polynomial. Indeed, as an optimization, Algorithm 1 is run on the set of vertices
of the convex hull of the support of the input polynomial. For a set of size σ, it is
classical that the convex hull can be computed in time softly linear in σ: we refer
the reader to [PS85, Chapter 3, Theorem 3.7] for instance.

n 8 16 32 64 128
dense factorization 0.04 0.25 2.3 48 1100
reduction 0.06 0.14 0.28 0.54 1.1
convex factorization 0.04 0.06 0.22 1.5 25

Table 1. Factorization of Pn, in seconds.

As expected, our reduction strategy leads to a significant speedup. In fact, with
this family, notice that the dense size grows with n2 while the convex size only
grows with n. We have also tried Algorithm 2: the gains are not substantial since
most of the time is spent in the factorization. Finally let us mention that one could
investigate the design of a reduction algorithm featuring a dichotomy in the size of
the exponents, in a way similar to the half-g.c.d. algorithm (see for instance [GG03,

Chapter 11]). This would probably lead to a bit-complexity bound in Õ (σ log δ).
However, the practical impact would be minor as long as the sizes of the exponents
are intended to fit into one machine word.

4.4. Optimality of the reduction. It is natural to ask if our algorithm computes
the best transformation U of Z2, that maximizes the ratio of the volumes of U(S)
and R(U(S)), where R(U(S)) represents the bounding rectangle of U(S).

First, let us mention that the transformations λ, µ and τ1 used within our al-
gorithm actually generate Aff

(

Z2
)

. In fact it is classical that SL
(

Z2
)

is generated

by λ and the rotation ρ =
(

0 −1
1 0

)

by the angle π/2 [Ser96, Chapter 7, Theorem 2].

Since ρ can be decomposed into ρ = µλµλ−1µλµ, and since detµ = −1, we deduce
that λ and µ generate GL

(

Z2
)

. However we will not prove that our algorithm re-

turns the best U ∈ Aff(Z2) on all input. Roughly speaking, we will only prove that
the bound 3/8 of the ratio of the volumes at the end of our reduction algorithm is
the best bound one can expect in general when η = 0. This bound is attained with
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the example of Figure 10. Specifically, we aim at proving there is no transformation
U such that for all finite subset S ⊂ Z2, the inequality VolU(S) ≥ αVolR(U(S))
holds with α > 3/8:

Proposition 4.4. With the convention VolU(S)
VolR(U(S)) = 1 whenever VolS = 0, one

has

inf
S⊂Z2,|S|<∞

sup
U∈Aff(Z2)

VolU(S)
VolR(U(S)) =

3

8
,

where R(U(S)) represents the bounding rectangle of U(S).
Proof. The degenerate case, that is when VolS = 0, follows from Proposition 2.2,
so that from now on, we can assume that VolS > 0. By Theorem 3.1, there exists
U ∈ Aff(Z2) such that VolU(S) ≥ 3

8 VolR(U(S)), whence

inf
S⊂Z2,|S|<∞

sup
U∈Aff(Z2)

VolU(S)
VolR(U(S)) ≥ 3

8
.

We shall show that supU∈Aff(Z2)
VolU(S)

VolR(U(S)) = 3
8 holds for when S = {(1, 0) , (0, 1),

(2, 2)}, which will conclude the proof. For the rest of the proof, S represents the
particular set of points {(1, 0) , (0, 1) , (2, 2)}. As VolU(S) is constant, and equals
3/2 for all U , it suffices to show that, for any U ∈ Aff

(

Z2
)

, VolR(U(S)) ≥ 4. As
translating and swapping x and y do not change VolR(U(S)), we can assume that

U ∈ SL
(

Z2
)

. Let
(

α β

α′ β′

)

be the matricial representation of U , with αβ′−βα′ = 1.

Let ρ be the rotation by the angle π/2. As VolR(ρ(U(S))) = VolR(U(S)), one
can apply ρ, or ρ−1, once or twice so that we can further assume that α ≥ 1 and
α′ ≥ 0 hold.

If α′ = 0, then αβ′ = 1 so that α = 1 and β′ = 1. Since the image of (2, 2) is
(2 + 2β, 2), the height of the bounding rectangle of U(S) is 2, and VolR(U(S)) ≥ 4
as soon as the horizontal length of R(U(S)) is greater or equal to 2. In fact, this
length is the maximum of |β − 1|, |2β + 1| and |β + 2|. If |β − 1| = 0, then β = 1
and 2β+1 = 3. Otherwise, if |β − 1| = 1 then either β = 0 and β+2 = 2, or β = 2
and β + 2 = 4. In this way we observe that, in all cases, the length is at least 2.
We can now restrict to considering α′ ≥ 1.

If β = 0 then α = 1 and β′ = 1. The horizontal length of U(S) is 2 and its
height is 2α′ + 1. Therefore we have again that VolR(U(S)) ≥ 4. Similarly, when
β′ = 0, we have β = −1 and α′ = 1: the height of U(S) is 2 and its horizontal
length is at least α + 1 ≥ 2, which yields the same conclusion. Thus, we can now
further restrict to considering the case that none of the coefficients of the matrix
of U is zero.

From U(1, 0)− U(0, 1) = (α− β, α′ − β′), we deduce that

VolR(U(S)) ≥ |α− β| |α′ − β′| .
Whenever |α − β| ≥ 2 and |α′ − β′| ≥ 2, we are done. Therefore, it remains to
examine the following cases:

• If α = β, then αβ′ − βα′ = α (β′ − α′) = 1 implies α = β = 1 and
β′ = α′ + 1. A direct calculation yields VolR(U(S)) = 3(3α′ + 2) ≥ 4.

• If α′ = β′, then αβ′ − βα′ = α′ (α− β) = 1 implies α′ = β′ = 1 and
α = β + 1, and then VolR(U(S)) = 3(3β + 2) ≥ 4, since β ≥ 1 holds in
this case.
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• If |α− β| = 1, then we distinguish:
– if β = α+1, then the horizontal length ofR(U(S)) is at least 3α+2 ≥ 5,
– if α = β+1, then the horizontal length ofR(U(S)) is at least 3β+2 ≥ 5.

• If |α′ − β′| = 1, then we distinguish:
– if β′ = α′ + 1 then the height of R(U(S)) is at least 3α′ + 2 ≥ 5,
– if α′ = β′ + 1 then the height of R(U(S)) is at least 3β′ + 2 ≥ 5. �
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