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ABsTRACT. In this article we present a new algorithm for reducing the usual sparse
bivariate factorization problems to the dense case. This reduction simply consists in com-
puting an invertible monomial transformation that produces a polynomial with a dense
size of the same order of magnitude as the size of the integral convex hull of the support of
the input polynomial. This approach turns out to be very efficient in practice, as demon-
strated with our implementation.
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1. INTRODUCTION

Let K be a field. Throughout this paper, F' represents the bivariate polynomial in the variables
z and y over K that we want to factor. At the present time, the best known complexity bounds
for the squarefree and irreducible factorization problems are essentially obtained in terms of the
dense size of F'. This is relevant to many situations but, in many others, it is important to take
the sparsity of F' into account. In this article, we present a simple method to transform F' in a
way that is compatible to factorizations, but so that the dense size becomes of the same order of
magnitude as the size of the integral convex hull of the support of F. In the next paragraphs,
we give precise definitions for the sparse and dense sizes, state our main complexity result on
support reduction, and then corollaries on factorizations.

1.1. Sizes of polynomials.

Let S be a finite subset of points in Z2. The bounding rectangle of S is the smallest rectangle
of the form (05, 0y) + [0, d;] x [0, d,] that contains S, where o0,, 0, € Z and d,, d, € N. We define
the dense size of S as (dy + 1) (d, + 1). We write Int S for the integral convez hull of S, that is
the set of integer points inside the convex hull of S seen as a subset of R2, precisely

IntS:Z2ﬂ {Z tee|te € R>gand Z tezl}.

eeS e€S

The convez size of S is defined as the cardinality |Int S| of Int S.

For our purposes it will be convenient to consider bivariate Laurent polynomials. Any such
polynomial F € K[z, y, 7!, y~!] can be stored as a vector of nonzero terms, with each term
composed of a coefficient and an exponent seen as a vector in Z2. This storage is usually called
the sparse representation of F. For any (i, j) € Z?, we let F; ; denote the coefficient of ziyl in
F. The support of F is defined as

Supp F = {(i,j) €Z2|Fi’j7&0}.

The sparse size of F, written o, refers to the cardinality of the support of F. We also define the
dense size (resp. the convez size) of F' as the dense size (resp. convex size) of its support.

x. This work has been partly supported by the French ANR-09-JCJC-0098-01 MAGi1X project, and by the
DiciTeo 2009-36HD grant of the Région Ile-de-France.



2 CONVEX-DENSE FACTORIZATION

The Newton polygon of F, written Newton F, is the convex hull of the support of F in R2.
If F factors into G H, then it is known from Ostrowski [Ost21] (translated in [Ost99], and revis-
ited later in [Ost75]) that:

Newton F' = Newton G + Newton H = {a + b|a € Newton G, b € Newton H }.

The latter sum of the convex hulls of G and H is usually called the Minkowski sum. In general,
even if the sparse size of F' is small compared to its convex size, the irreducible factors of F' can
be dense with respect to their Newton polygons, what we call convez-dense in short. In fact,
simply consider F' = y? — 2P € Q[z, y], where p is a prime integer: here o =2 and F factors into
x —y and F/(x — y) whose sparse size is exactly p. This shows that the irreducible factorization
of F' cannot be achieved in time polynomial in o, and that the convex size of F is a relevant
quantity to analyze the complexity of factorization problems.

Example 1. Let F =2~' y=' + 1 4+ 2 2% + 3 2. The sparse size of F is ¢ = 4. The Newton
polygon of F' is drawn in following Figure 1: the black disks represent the monomials of F,
while the white disks are the other monomials contained in the Newton polygon. The convex
size of F' is therefore 7 =8, and since the bounding rectangle of the support of Fis (—1,—1)+
[0,4] x [0, 3], the dense size of F' is 20.

AEERNE

_—]

Figure 1. Newton polygon of F=z~ 1y~ 1 4+14 223+ 392

1.2. Main result.

The method we propose in this paper concerns all the usual types of factorization, including
the squarefree, the irreducible and the absolute ones. Our main result is a pretreatment, applied
to the input polynomial, which consists in a monomial transformation that preserves the sparse
size and roughly the convex size, but decreases the dense size. The considered monomial trans-
formations are the maps of the affine group over Z?, written Aff(Z?). Precisely, these are the

maps U
(5 2)()(2)

with a, 8, v, o', ', and v’ in Z, such that a« 3’ — a' 8 =+ 1. Such a map U preserves the abso-
lute value of the volumes in R2.

Let S be a finite subset of Z2. Set S is said to be normalized if it belongs to N? and if it
contains at least one point in {0} x N, and also at least one point in N x {0}. For such a nor-
malized set, we write d, for the largest abscissa involved in S and, analogously, d, for the
largest ordinate, so that the bounding rectangle is R = [0, d;] x [0, d,]. The following theorem
will be proven in Section 4.2:

Theorem 2. For any normalized finite subset S of 72, of cardinality o, convex size T, bounding
rectangle [0, d;] x [0, dy], and dense size § = (d, + 1) (dy + 1), one can compute an invertible
affine map U € Aff(Z?) as in (1), with O(o log® §) bit-operations, such that:

e lal, |8], |&'|, and |B’| are at most max (2 max (d,,d,)? 1),
e |v] and |¥'| are at most 4max (d,d,)?,

o U(S) is normalized of dense size at most 9.
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Here, by the number of bit-operations we mean the size of the Boolean circuit that performs the
computation, as in the computation tree model considered in [BCS97, Chapter 4]. The proof of
Theorem 2 is organized as follows. In our first section we explain a naive approach to reduce S
so that the ratio of the volumes of its convex hull and of its bounding rectangle increases. The
second section provides us with a uniform bound on the latter ratio reached at the end of the
reduction process. The last section is then devoted to a faster dichotomic reduction algorithm,
to practical performances, and to a proof that our reduction technique leads to an essentially
optimal volume ratio in the worst case.

1.3. Applications.

We shall now explain how Theorem 2 can be used to reduce convex-dense factorization prob-
lems to the usual dense case. For the cost analysis we use the computation tree model for
counting the number of operations in the ground field K. Let us recall that the “soft-Oh” nota-
tion f(n) € O(g(n)) means that f(n) € g(n)log®" (3 + g(n)) (we refer the reader to [GGO03,
Chapter 25, Section 7] for details).

If U is an affine map of Z? as in (1), then we consider its action on the monomials, and we
write U (x?y7) for x@i+Bi+vye'i+B87+7" By linearity, this action is extended to K[z, y,z 1, y ']
as follows:

UF)= S FyUE ).
(¢,j)ESupp F
Greatest common divisor.

A Laurent polynomial is said to be normalized if its support is normalized. Let F' and G be
two normalized polynomials in K[z, y] of degree at most d, in z and d, in y, and with supports
included in a common convex polygon of convex size w. This situation naturally occurs for

instance when computing the discriminant of F', say in y, where G is set to %F.

Thanks to Theorem 2, we can compute a reduction map U with O(o log? §) bit-operations
such that the partial degrees of F' = U(F) and G = U(G) are at most d, in z and d, in y, and
with d, d, € O(w). Without loss of generality we can further assume that d, > d,, so that the
computation of H = ged (F, @) in K[z, y] can be done with O(7'%) operations in K, assuming
that I has cardinality at least (6 Jy +3) dy, by [GG03, Corollary 11.9, part i]. Under the same
assumptions on the cardinality of K, a randomized variant can also obtain the same g.c.d. with
an expected number of operations only in O(r), by [GG03, Corollary 11.9, part ii].

There exists a unit h in K[z, y, 2=, y~!] (that is a term ¢ 2% y/ with ¢ invertible in K) such
that H = h U~'(H) is normalized. We say that H is a normalization of U~'(H). By the afore-
mentioned Ostrowski theorem, it is classical to deduce that H is the actual g.c.d. of F' and G,
and that the convex size of H is at most m. Finally the computation of H from H takes O(W log
d) more bit-operations. Of course this approach leads to a significant speedup when compared to
a direct application of [GG03, Corollary 11.9] as soon as 7 is much smaller than §.

Squarefree factorization.

Let U be an invertible affine map over Z? as in Equation (1), and let L be the linear part of
U. Let F still be a normalized polynomial in K[z, y] of degree at most d, in z and d, in y, of
sparse size o, and of convex size w. If the squarefree factorization of F writes into F =
F} FZ...FT, where the Fj are the pairwise coprime squarefree factors, then

L(F) = L(Fy)! L(Fy)? - L(F,)".

As for the g.c.d., thanks to Theorem 2, we can compute a reduction map U with O(o log?® 4)
bit-operations such that the partial degrees of F = U(F) are at most d, in = and ciy in y, and
with d, dy, € O(7). Without loss of generality we can again assume that d, > d,,.

If K has characteristic 0, then the squarefree factorization of F takes O(ﬂ1'5) operations in
K by [Lec08, Proposition 8]. This cost further drops to an expected one in O(x) with the ran-
domized variant of [Lec08, Proposition 9]. Then the squarefree factors can be easily deduced by

applying U ! and normalizing. Other algorithms of [Lec08] concerning the separable factoriza-
tion can be also adapted in the same way to benefit of sparsity.
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Irreducible factorization.

If F is a Laurent polynomial, then U(F) is irreducible if, and only if, F is irreducible. If F is
normalized, then F is irreducible in K[z, y] if, and only if, F is irreducible in K[z, y, %, y 1.
The irreducible factorization in K[z, y] can thus be deduced from the one in K[z, y, 2=, y~1.
As for the squarefree factorization, we first compute a reduction map U, then we compute the
irreducible factorization of U(F), and finally we apply U ~! and normalize all the factors.

With this strategy, informally speaking, the algorithms of [Lec10] for instance show that the

number of operations in a prime finite field can grow with only O(W1'5). In Section 4.3 we report
on examples that illustrate the speedup gained thanks to the reduction process.

1.4. Related works.

Fast arithmetic operations on sparse polynomials are still a matter of active research. At the
present time, the best performances are achieved essentially with supports being close to rectan-
gles, thanks to the Kronecker substitution that reduces the product to a single variable [GGO03,
Chapter 8, Section 4]. Recent progresses have been accomplished for instance in [HL10], but
even when softly linear time algorithms are available for the sparse product, the overhead com-
pared to dense sizes remains important. These facts motivate the strategy of the present paper:
by a direct reduction to the dense case we avoid relying on sparse arithmetic at all.

Concerning the irreducible factorization, the Hensel lifting and recombination technique is
the most popular, that leads to the best known complexity bounds [BLS+04, Lec06, Lec07,
Lec10] in the dense case. Hensel lifting is used in Bernardin’s implementation within
MAPLE [Ber97, Ber98], and in Steel’s one in MAGMA [Ste05, BHKS09]. In order to benefit of
fast Hensel lifting, which means here with a softly linear cost, in the bivariate case, one needs
first to assume that F' is separable, say in y, and then find a value xg such that F(zq,y) remains
separable. Unfortunately the shift of x spoils the sparse and convex sizes. One possible solution
consists in the direct computation of the irreducible factorization in K[[z]][y] but, at the present
time, no algorithm with softly linear time is known for that task. Efforts have been accom-
plished in this direction. For instance, in [AGL04]| an algorithm for computing a factor of a
given convex support is designed for special cases, with time polynomial in the convex size of
the input polynomial. In [BHKS09]|, Puiseux series solutions of F' are computed, directly with
no shift in z. The best known complexity bounds for the Puiseux expansions seem to be found
in [Pot08, PRO09]. Recently Weimann proposed partial generalizations of the algorithms
of [Lec06, LecO7]: if the polynomials supported by the exterior facet of the Newton polygon are
separable, then, from their irreducible factors, one can deduce the factorization with O(x%)
operations in K, where w is the linear algebra exponent (known to be between 2 and 2.37, but
unfortunately close to 3 in practice). Compared to these methods, our approach has the advan-
tage that it can be performed from the outset with no separability assumption, that it does not
need to compute the Newton polygon, and that it can benefit of fast Hensel lifting.

Another important class of factorization algorithms is due to Gao, who showed in [Gao03]
that the absolute factorization can be performed in softly quadratic time in terms of the dense
size. The first half of his algorithm consists in computing a basis of the first De Rham coho-
mology group of the complementary of the hypersurface defined by F. In [GRO3] it has been
shown that this task can be done in time polynomial in the convex size. When fast sparse poly-
nomial product is available, one can even compute the probable number of absolute factors in
time softly quadratic in the convex size, over finite fields with sufficiently large character-
istic [HL10, Section 7]. However these approaches still suffers an overhead when compared to
the dense case, and it requires the input polynomial to be separable.

The factorization of sparse polynomials in terms of the sparse size is an active research area.
Although this is not the main goal of the present article, let us mention briefly important results
for multivariate polynomials. Polynomial time in terms of the sparse size of the output has been
investigated by Zippel in [Zip79, Zip81] (see also [Zip93, Chapter 17]). Precisely, he proposed a
probabilistic variant of the Hensel lifting that runs in time polynomial in the total sparse size of
the lifted factors of F' in K[[z]][y]. His results have been extended and refined in [Gat83, Kal85,
GK85, Kal89]. These techniques are only performant if the lifted factors are very sparse.
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Finally another class of results focuses on the only computation of the irreducible factors of a
bounded given degree. Polynomial time has been proved recently for this task in [AKSO07] for
two variables and, independently, in [KKO06] directly with several variables.

2. SUPPORT REDUCTION

This section is devoted to the reduction algorithm underlying Theorem 2. We start with a naive
version that is to be refined in Section 4.

2.1. Bounding rectangles.

Let S be a normalized finite subset of Z? of bounding rectangle R = [0, d,] x [0, d,]. We
introduce the integers b, d, f and h as follows:

o b=d, —max( jjes (i —j),

(] dzdx+dy—maX(i7]')E§(i+j)7

e f=dy+ming jes(i—j)

° hzmin(i7]')eg (t+ 7).

Then, let us define the following eight points, drawn in Figure 2 below:

A= (h,0), B=(d,—b,0), C=(d;,b), D
E=(d,—d,dy), F=(f.dy), G=(0,dy—f), H

(do,dy — d),
(0,h)

The rectangle R’ supported by lines (AH), (BC), (DE), (FG) is the smallest rectangle con-
taining S whose edges are parallel to the two main bissectors. The octagon O = ABCDEFGH
contains § and any of its edges contains a point of S, O is the bounding octagon of S.

// \\‘
.
I’ M
. ~
’ ~
<
”, \\s !
W .~ R
. S
’ \\
I,, \\
’ ~
’ ~
. ~
. .
f / i i d
’ .~
dy S G D AN
. R4
‘ .
’
. C
~
~
.
\\ H
b
A @)
(0,0) A B R
’
\\\ K
4
d \\ .
7
\\\,”

Figure 2. Bounding octagon O and bounding rectangles R and R'.

2.2. Elementary transformations.
Our reduction algorithm will only use the three following elementary transformations. The
first one, written )\, corresponds to substituting y/z into y, this yields the following map of Z*:

A 72— 72
(Zaj) = (Z_Jaj)
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We will need to swap x and y, this is the role of u:

u: 72 — 72

(i,5) = (4,9).
Finally, translations in z are necessary to normalize the supports occurring in the reduction
algorithm:

Thk: ZQ — Z2
(i,7) = (i+k,j).

2.3. Reduced sets of points.

Applying A to S modifies the volume of the bounding rectangle. For instance Figure 3 is the
image of Figure 2 by A: the height of R does not change, but the horizontal length becomes
d, +dy, —b— f. The points (i, j) in S that are sent to the far left of A\(S) are such that ¢ — j is
minimal. Analogously, those that are sent to the far right of A\(S) are such that i — j is max-
imal. Applying A~! instead of A will imply that the horizontal length of the new R is the differ-
ence between max (i + j) and min (i + j), namely d, +d, —d — h.

A(F) /\(Ei\
MG)
A(D)
A(H) A(©)
OO A AB)
—dy+ f djj

Figure 3. Image of the octagon of Figure 2 by A, and its new bounding rectangle.

/ ?
A=1(F) ATL(E)

ATYD)

A(@)
ATHO)

(0,0) AHH) xl(B)./

l dp+dy—d

Figure 4. Image of the octagon of Figure 2 by A~1, and its new bounding rectangle.

From now on and until the end of this article,  represents a real number in [0,3/4).
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Definition 3. A finite subset S of Z? is said to be n-reduced whenever S is normalized, with d,
greater than or equal to dy, and such that b, d, f and h, as defined in Section 2.1, verify both
conditions:

1. b+ f<(1+mn)dy, and
2. d+h<(1+n)d,.

If S has only one point, then it is already n-reduced. In the next subsection, we propose an
algorithm for reducing any finite subset of points of Z2 We shall see that 7 is used for control-
ling the tradeoff between the quality of the reduction and the time needed to reduce. The
strongest reduction corresponds to n=0.

2.4. Degenerate case.

In this subsection we consider the case when S is degenerate, which means that all the points
of S are aligned. If S is normalized and is a singleton, then it is the origin and it is already n-
reduced, whatever the value of 5 is. Otherwise we have the following proposition:

Proposition 4. For any degenerate normalized finite set of points S of cardinality o, conver
size m, and bounding rectangle [0, d;] % [0, dy], one can compute an invertible affine map U €
Aff(Z?) as in (1), together with U(S), with O(o log* &) bit-operations, where 6 = (d, + 1) (d, +
1), such that:

o |af, |8], |&'], and |B’| are at most max (d ,d,,1),

e |y| and |¥'| are at most dy d,,

o U(S) is normalized of dense size .

Proof. According to the hypotheses, the two following situations can occur: the points of S are
either on the segment between (0, 0) and (dy, dy), or on the segment joining (0, d,) to (ds, 0).
Let us first deal with the former case. Let g > 0 be the g.c.d. of d, and d, and let u and v be
the Bézout coefficients so that ¢ = u d, + v d,, holds with |u| < d, and |v| < d,. We refer the
reader to [GGO3, Lemma 3.12] for instance for these classical facts. We take U to be the linear

application whose matrix is
< U v )

Since Int(S) = {(id./g,idy/g)]i € {0, ..., g}} we have that 7 = g + 1 and that U(Int(S)) is the
segment joining (0,0) to (g,0). It follows that U(S) has dense size exactly .
The latter case, where S is on the segment joining (0, d,) to (d,0), is similar with taking:

o iy )2

By [GGO03, Theorem 3.13| the computation of g, u, and v can be done with O(log? §) with the
naive version of the Euclidean algorithm. Then applying U on all the points of S takes
O(alog2 5) bit-operations by appealing to the school book product on the integers. O

Remark that the value of 1 does not intervene in this degenerate case.

2.5. Reduction algorithm.
Until the end of this section we assume that S is a nondegenerate finite set of points. The
following algorithm computes U € Aff(Z?) such that U(S) is n-reduced.

Algorithm 5. Support reduction

Input: a nondegenerate normalized finite subset S of N? of cardinality o.
Output: U € Aff(Z2), such that U(S) is n-reduced.

Compute (dg,d,) for S, as defined in Section 2.1.



8 CONVEX-DENSE FACTORIZATION

Initialize U with the identity.

Repeat
1. If d, <d, then
S:=u(S)
U:=polU

Swap d, and d,.
2. Compute b, d, f, h for S, as defined in Section 2.1.

3. Ifb+ f>(1+4+n)d, then
S:=14,-50XS)
U:=XoU
dp:=dy+dy—b—f

else ifd+h>(1+1n)d, then
S:=1_poX7(S)
U:=A"1oU
dp:=dy+dy—d—h

else return U.

Proposition 6. Algorithm 5 is correct. For any nondegenerate normalized finite subset S of
N? of bounding rectangle [0, d,] x [0,d,], Algorithm 5 performs at most O(max (d,, d,)) steps in
the main “Repeat” loop.

Proof. After each reduction step in the main loop, either d, and d, are swapped, or d,
decreases by at least 1 and dy, is left unchanged. Therefore the number of steps is bounded by
O(max (d,, dy)). Since S remains normalized all along the process, the algorithm always termi-
nates with § being n-reduced. O

Example 7. Assume =0 and let F =1+ zy + z° y2, whose support S is {(0,0), (1,1), (5,2)},
as drawn in Figure 5 below. After the first step of the algorithm, where X is applied, S becomes
as in the left part of Figure 6. In the second step, A is applied once more and makes S reduced
as shown in the right part of Figure 6. In the end, the algorithm returns U = A? 4 71, so that we
have U(F) =z + y + z? y?. The bounding rectangle of U(F) corresponds to d, = d, =2, while its
bounding octagon O is defined by b= f=h=1, and d=0.

N

/7

Figure 5. Input set S.

1

Figure 6. S after one, and then two reduction steps.
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Example 8. Let S be {(0,0), (1,1), (5,2)} as in Example 7 and Figure 5, and assume n=1/2.
Since b+ f =4 and (1 + n) d, = 3, the input set S can be reduced by applying A to obtain the
same set as in the left part of Figure 6. However, after this reduction, we have b+ f =3 which is
not strictly greater than (1 + n) d, = 3. We thus see with this example that the reduction pro-
cess stops earlier with n=1/2 than with n=0.

2.6. Bit-cost analysis.
The main difficulty in analyzing the bit-cost of Algorithm 5 resides in bounding the size of
the entries of the map U, this is the purpose of the following lemma:

Lemma 9. Let S be a nondegenerate normalized finite subset S of N? of bounding rectangle [0,
dg] x [0,dy], and let U be an affine map as in (1) that sends S to a normalized set S of bounding
rectangle [0,d,] % [0,d,]. Then we have:

o |a|<2d,dy, |B|<2d,d,, || <2dyd,y, and |B'| <2d,d,,
o |y|<4d.dyd, and |¥'|<4d,d,d,.

Proof. Since S is nondegenerate, then it contains at least three points A = (x4, y4), B = (zp,
yB), and C' = (z¢, yo) that are not aligned. Computing the images of A, B, and C by the linear

part L=< a B ) of U leads to:

a' B’
la(zp —x4)+ B (yp —ya)| <
| (o —x4) + B (Yo — ya)| < d,.
It follows that,
ja (x5 —2.4) (zc — @) + B (yp — ya) (tc —2a)| < ds do
la(zc—2a) (B —24)+ B (Yo —ya) (xB —7a)| <d
whence

81| (v = y) (e = 0) = (g = ) (w5 — 20)| <2dp .

Since |(yp — ya) (xc — x4) — (yo — ya) (xB — x4)| is a nonzero integer, we deduce that || <

2d, d,. The bounds for a, a’' and B' can be obtained mutatis mutandis.

Since points of the image of S by L have abscissae (resp. ordinates) with absolute values at
most 4 d, d, d, (vesp. 4d, d,d,), the absolute value of y (resp. 4') is at most 4 d, d, d, (resp.
dd,dy,d,). O

Proposition 10. For any nondegenerate normalized finite subset S of IN? of cardinality o, of
bounding rectangle [0, dy] x [0, dy], and dense size 6 = (dy + 1) (dy + 1), Algorithm 5 takes
O(o max (d,d,) log d) bit-operations.

Proof. By Lemma 9 the bit-size of the points in S remains in O(log d), and the bit-size of the
integers in U is bounded by O(log §). Each reduction step thus takes O(o log 0) bit-operations.
The conclusion follows from Proposition 6. O

3. DENSE SIZE OF REDUCED SETS

Let S be a finite subset of Z2. In this section, we carry on using the notation of Section 2.1, and
we further write Vol S for the volume of the convexr hull of S. In the next paragraphs, we show
that Vol S cannot be too small compared to the volume Vol R of the bounding rectangle R of S,
whenever S is reduced. In the second subsection, we deduce similar bounds in terms of discrete
sizes with taking care of the degenerate cases.

3.1. Continuous bound.

Recall that n is a real constant in [0, 3/4). The following theorem guarantees that the
volume spanned by an 7-reduced set of points can be uniformly controlled in terms of the
volume of its bounding rectangle:
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Theorem 11. If S is an n-reduced set of points, then Vol & > B;ﬁ Vol R, where R is the
bounding rectangle of S.

Proof. In Lemma 12 below, we shall show that the volume of S is larger or equal to the volume
of at least one of the following polygons:

0, = ACEG,
Q, = BDFH,

P,=ABDEG, P,=BCEGH,
P;=BCEFH, Ps=BDEGH,
Ps=ABDFG, P¢=ACDFH,
P,=ACEFH, Ps=ACDFG.

Then, Lemma 13 asserts that Vol Q; > 177" Vol R, for all i € {1, 2}. And finally, for the eight

pentagons, the combination of Lemmas 14 and 16 below provides us with Vol P; > 3_8477 Vol R,

for all i € {1,...,8}. O

Lemma 12. Let S be a normalized finite set of points (not necessarily n-reduced). Then at least
one of the polygons Q1, Qs, P1,...,Ps defined above has a volume smaller or equal to Vol S.

Proof. From the definitions of the bounding rectangle, and of b, d, f, h, there exist eight points
I,J,K,L M,N,O and P in S such that I € [AB], J € [B(C], ..., P € [AH], as drawn on the
following figure (note that some of these points may coincide in particular degenerate cases):

| | |
F ’l\ E
T | M T
G N L D
K
0 C
\
H) \
P @)
J
N L
A \TI// B R

Figure 7. Points of S lying on the bounding octagon O.

Since Vol S is the volume of the convex hull spanned by S, it is already clear that
Vol (I[JKLMNOP)<VolS.

By considering the subdivision of IJKLMNOP into the triangle IJP and the polygon
JKLMNOP, we see that Vol (AJP) < Vol (I.JP) or Vol (BJP) < Vol (I.JP), according to the
slope of (P.J) being positive or not. It follows that Vol (AJKLMNOP) < Vol S or
Vol (BJKLMNOP) <VolS. In other words, moving I on its supporting segment [A, B] makes
Vol (IJKLMNO P) either decrease or increase. Doing so with K, M and O, and then with
some points among J, L, N and P, so that Vol (IJKLMNQ P) decreases, we are led to distin-
guish the following case:

e If I, K, M and O all move clockwise, that is I moves to A, K moves to C', M moves to
E and O moves to G, then we get the polygon AJCLENG P whose volume is at least
Vol Ql.
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e If I, K, M and O all move counterclockwise, then we get the polygon BJDLFNHP
whose volume is at least Vol Os.

e Otherwise two consecutive points among the cycle I, K, M, and O move into opposite
directions. Now remark that the symmetries i +— dy — i, j—dy, — j and (i, j) — (4,1%) pre-
serve the problem, the volumes, exchange the roles of Q; and Qs, and globally preserve
the set of the eight pentagons P4, ..., Ps. We can thus restrict to considering for instance
the case for when I moves to B and K moves to C', and examine the following subcases:

o M moves to £ and O to H. If N moves to F, then we get the polygon
BCLEFHP, that has volume at least Vol P3. Otherwise, if N moves to G then
we get the polygon BCL EG H P, that has volume at least Vol Pa.

o M moves to F and O to H. If L moves to D then we get the polygon
BCDFNH P, that has volume at least Vol Q5. Otherwise, if L moves to E then
we get the polygon BCEFNH P, that has volume at least Vol P3. By symmetry
this also handles the case for when M moves to F and O to G.

o M moves to F' and O to G. Let us assume that P moves to A. Then if L moves to
D then we get the polygon BCD FNG A, that has volume at least Vol P5. Other-
wise, if L moves to E then we get the polygon BCEFNG A, that has volume at
least Vol Q1. The symmetries then handle the situation of P moving to H instead
of A. O

Lemma 13. If S is an n-reduced set of points, then

Vol Q>+ Vol R, for i€ {1,2).
F E
—
—
G o /\D
c
"
A B

Figure 8. Quadrangle Q; in octagon O and rectangle R.

Proof. Since the roles of Q; and Qs are interchanged by the symmetry i — d, — i, it suffices to
prove the lemma for Q; only. We compute the volume of Q; as the difference between the
volume d, d, of the bounding rectangle and the volume of the four triangles outside of Q;:

Vol Qi = dpdy—(dy —h)b/2—(dy =) d/2 —(dz —d) f/2 = (dy — f) h/2
= Ly —b— ) (ds—d—h) + pdyd, 2)
Since S is n-reduced, we have (1+n)dy —b— f>0,d, —d—h >0, thus dy —b— f >—nd,. This
yields Vol Qi > S dy dy — 2 dy d, =52 Vol R. O

Lemma 14. If S is an n-reduced set of points, then
3—4n
8

Vol P; > VolR, forie{l,3,5,7}.



12 CONVEX-DENSE FACTORIZATION

A B

Figure 9. Pentagon P; in octagon O and rectangle R.

Proof. Thanks to the symmetries it suffices to prove the lemma for P;. The volume of P is
computed as the difference of the volume of R with those of the four triangles outside of Py:

VoI Py = VoIR — o (b(dy—d)+d+ f (de — d) +h (dy — f).
From (2) we deduce that:

Vol Py — Vol Oy == (b (dy — d,, — h) +d (d,, — d)).

DO =

Then, from
4b(dy—dy—h) +dy=4b(dy —b—h)+ (2b—d,)?,

and d; —b— h >0, it follows that 4 b (d, — d, — h) + df, >0, and that Vol P; — Vol Q1 > — %dz
The conclusion comes from Lemma 13:

1-n 1 3—4n
VolPlszmdy—gdiz 3

Vol R. O

Remark 15. For n = 0, the inequality of Lemma 14 turns out to be sharp. For instance with
S ={(ds/2,0), (0,ds/2), (de,dy)} we have b= f =h=d, and d=0. Pentagon Py, as drawn on

the following figure, has volume %d%.

A=B

Figure 10. Minimal pentagon P; with d, =d,.

Lemma 16. If S is an n-reduced set of points, then

Vol P; >3 _84 "

VolR, fori€{2,4,6,8}.
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F E

/ /
G !/// /\ D

T~

A B

Figure 11. Pentagon P» in octagon O and rectangle R.

Proof. Thanks to the symmetries it suffices to prove the lemma for P,. Precisely we shall prove
that the following quantity is nonnegative:

O(b,d, f,h) = 8VolPy— (3—4n)VolR
(5+4n)dedy+4h(b—dy) —4b2 +4d (b—dy) +4 f (d — dy)
= (1+4n)dody+4(dy—d) (dy— f —h)—4(b—d) (b—h).

Since f+ h <dy, we have that (1+4n)d,dy+4(dy —d)(dy — f —h) >0. Therefore, if h>b>d
or d>b> h, then the lemma is proved.

Otherwise, if b<d and b <h, |b—d| |b— h| is maximal for b=0 and, for d=h = (1+1n)d,/2,
since d+ h < (14 n)d,. It follows that —4(b—d)(b—h)>—(1+ n)° d;. From d, >d, and n €
[0,3/4) we deduce that (1447)d, > (1+n)”d,, and that 8(b,d, f,h) >0.

It remains to study the case for when b > d and b > h. Using d, —d > b — d, we obtain:

O(b,d, f,h) > (L+4n)d,d,+4(b—d)(d,—b—f).
Then applying b+ f < (1+ n)d, leads to:

0(b,d, f,h) > (1+4n)dpd,—4(b—d)nd,

>

which concludes the proof. O

3.2. Discrete bound.
For our algorithmic purposes, we need to control the discrete sizes instead of the volumes.

Proposition 17. If S is an n-reduced subset of N? of convex size ™ and bounding rectangle R =
[0,d;] x [0,dy], then the following inequalities hold:
3—4n
18

(do+1) (dy+1) <7 < (dy +1) (dy + 1).

Proof. As R contains S, the convex size 7 is always at most (dy + 1) (d, + 1). If S is degen-
erate, then d, =0 and 7 =d, + 1, so that the proposition is correct. Let us now assume that S is
nondegenerate. We decompose Int S into Int, S U Int; S, where Int, S are the points lying upon
the boundary of the Newton polygon of S, while Int; S are the other ones strictly inside. Pick’s
Theorem (see [Cox69, Chapter 13, Proposition 51] or [GS93|) relates Vol S to |Int, S| and
|Int; S|, as follows:

VolS:%|IntbS|+ Int; S| - 1.
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It follows that m > Vol S, and that = > 2 784 1 d,d, by Theorem 11.

Whenever d, =1, we have b+d+ f+h€{0,1,2}. f b+ h=1and d+ f=1, then from b+
f<land d+h <1, we can deduce that f =h which implies f=h =0 because f+ h <1. There-
fore, b =d =1, which is impossible since b + d < 1. Finally, we must have b+ h=0or d+ f =0,
hence m# >d, + 1.

If d, >2, the conclusion follows from d, >2(d, +1)/3 and d,, >2(d, +1)/3. O

Remark 18. In the case for when n =0, if « is such that the inequality « |Int R| <|Int S| holds
for every reduced finite subset S in 72, with Vol S > 0, then necessarily we have that a < 3/8.
In fact it suffices to consider the family S, = {(n/2, 0), (0, n/2), (n, n)} for n even. We have
|Int So| =4 and |Int Spyo| =|Int Sp|+ 3 (%+ 1), and deduce that

ntS,] 3n(n+2)+8
|Int Ron| 8 (n+1)>

3—4n

is decreasing and converges to 3/8. In general, the constant
simistic for large S.

thus may be rather pes-

4. FASTER REDUCTION ALGORITHM

The last ingredient now missing to prove Theorem 2 is a reduction algorithm with a number of
reduction steps that grows only with with the logarithm of the dense size. This is the goal of
this section, in which we appeal to the classical dichotomy paradigm.

4.1. Dichotomic approach.

This section is dedicated to a fast variant of Algorithm 5. We are not to compute exactly the
same output however, roughly speaking, the main idea is to determine quickly how many times
X or A~ ! can be applied before two consecutive swaps.

Let S be a normalized finite subset of N? of bounding rectangle [0, d.] x [0, d,], and let g be
a positive integer. The points (¢, j) in S that are sent to the far left of A9(S) are such that ¢ —
¢ j is minimal. Analogously, those that are sent to the far right of A9(S) are such that ¢ — ¢ j is
maximal. This motivates the introduction of by, d4, f,, and h, as

o by=d, —max; jjes (i —qj),

o dy=d,+qdy,—max( jjes (i+qj),
o fo=qdy+ming jyes(i—qj),

e hg=ming jes (i+qj).

For ¢ = 1, these definitions coincide to those of b, d, f, and h of Section 2.1. Most of the pre-
vious results can be generalized, for instance:

by+d,<qdy, by+hy<dg,
fothg<qdy, dg+ f4<d,.
The height of the bounding rectangle of A?(S) is still d,, while the horizontal length becomes
d, + ¢gdy — by — fy In the same manner, the horizontal length of the bounding rectangle of
A7YS) becomes d, + qd, —d, — hy.
From now on, the reduction factor n is supposed to be positive, that is in (0, 3/4). We write

la| for the integer part of a (|a] <a< |a|+1), and logs a for the logarithm of a in base 2. The
fast algorithm we propose summarizes as follows:

Algorithm 19. Dichotomic support reduction

Input: a nondegenerate normalized finite subset S of IN? of cardinality o.
Output: U € Aff(Z?), such that U(S) is n-reduced.

Compute (dg,d,) for S, as defined in Section 2.1.
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Initialize U with the identity.
Initialize m with |logs (dz/(ndy))].

Repeat
1. If d, <d, then
S:=u(S)
U:=polU

Swap d and d,
m:=[logs (dz/(ndy))].
2. If m <0 then return U.
3. Compute bam, dom, fom, hom for S as defined above.

4. If bom + fom >2™ (1 +1n)d, then
S:=Toma,— fm 0 A7 (S)
U:=X"oU
dpi=dy + qdy — bym — fom

5. else if dom + hom >2™ (1+ 1) d, then
S:=T_pmo X 27(S)
U:=A"2"0oU
dy:=dy+ qdy —dom — hom.

6. m:=m —1.

Proposition 20. Assume that n > 0. For any nondegenerate normalized finite subset S of N2,
of cardinality o and dense size &, Algorithm 19 is correct and performs O(o log? 5) bit-opera-
tions.

Proof. Let us consider that the bounding rectangle of S is [0, d;] x [0, d,] at input. Without
loss of generality, we can assume that d, > d, holds in order to simplify the proof. Then we let
ly=d, and ¢, = d,, and define the sequence (Sl)l with Sp = S and S; is the current value of the
set just after the ith swap, that is at the end of step 1. We write r for the total number of
swaps performed during execution of the algorithm, we let ¢; be the largest abscissa in S;, and
m; be [loga (¢;/(n€;+1))]. By convention, £, is the largest ordinate in S,.

For when i + 2 < r holds, we have that ¢;1 5 </¢; — n{;;1. By descending induction, starting

with ¢, > 1 and ¢, ; > 1, we shall prove that ¢; > " =1 where ¢ is the positive root
n+V4a+n?
2

r —1, and since €; > nliy1+Liza>ne" 1724 i3 = =i~ we deduce that d, =y > ¢
The number of swaps r thus drops to O(logd,).

By Lemma 9, each reduction step amounts to O(o log d) bit-operations. On the other hand
the total number of steps is >_, m;,

r r zl 1
i € 0 lo —— |+ rlogs = | € O(logd),
;m (; g2 <€i+1> T 1082 77) (log d)

which concludes the cost analysis.

We shall prove that when the algorithm stops, the final value of S is n-reduced. We now
focus on what just happens after the last swap. In short, we let M be m, and Tar4+1 be S,.. We
denote by 7, the current value of S just before entering step 6, where m being the corre-
sponding current value of m. Therefore 7y corresponds to the output of the algorithm and we
want to prove that it is n-reduced. If To="T; then we are done.

> 1 of the characteristic equation 2 — nx — 1 =0. Since this is true for i =r and i =
r—1
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If A is a subset of points, then we write £,(A) for the horizontal length of the bounding rect-
angle of A. Let us now assume that 7 is the normalization of A(77). In this case, of course, A~}
does not reduce To. Let us prove that A does neither reduce 7g. If T,, were the normalization of
A" (Tms1) for all m in {0, ..., M}, then we would deduce that

M
0(To) < Lo(Tar+1) — Z 2l =L, — (2M T 1) b,y
m=0

< L=/ (Mlryr) =) nlpyr=nlpy,

which is impossible. Therefore there exists a largest integer u € {0, ..., M} such that for all m in
{0, ..., p — 1}, T, is the normalization of A" (7y,+1). This yields that 7o is the normalization of
A2"~1(T,) and also that

e(To) <la(Tu) = (2" =) nlryr. (3)
One of the following two cases arises:

e If 7,=7T,+1 then we have that
CNT)) = oV (1) = (" (To01)) > £o(Ta) = 20 1.
Combined with 3 it follows that £;,(A(7o)) > £x(7To) — n¥r41, hence that Ty is n-reduced.

e Otherwise, if 7, is the normalization of A72"(7,11), then we have that (,(7,) <
Co(Tpu+1) — 2*nly41, so that

0a(To) < o(Tpepn) = (241 = 1) i,
Since 7,41 is the normalization of A(7p), we deduce that
L T) = LTy 1) 2 £a(T5) + (241 = 1) ity i,
whence that 7y is n-reduced.

Finally the last case for when 7p is the normalization of A7!(7;) can be treated in the same
way. [

4.2. Proof of Theorem 2.

Proposition 4 already covers the degenerate case. In the nondegenerate situation, the the-
orem follows from Proposition 17 for the dense size of the output, from Proposition 20 with
taking n=1/4 for the bit-complexity, and from Lemma 9 for the size of the entries of U.

4.3. Timings.
We report on performances obtained with our implementation in MAPLE 14 for computing
the irreducible factorization of the following polynomials in Q[z, y]:

P, = (xn+1 +Z Zl,zynz> <yn+1+z (n—1) l,zyn2> (xtn/2J—1yLn/2J—1+Z xzynt>
1=0 1=0 =0

The source code is available from http://www.lix.polytechnique.fr/“berthomieu/convex-
dense.htm. In Table 1, we display timings, in seconds obtained using an INTEL XEON X5450 at
3.0 GHz running LINUX. The first line contains the time spent in the direct call of the native
function factor. The second line concerns the time spent in our Algorithm 5 with n = 0. The
last line corresponds to calling factor on the reduced polynomial. Indeed, as an optimization,
Algorithm 5 is run on the set of vertices of the convex hull of the support of the input polyno-
mial. It is classical that softly linear algorithm exist for the convex hull.

n 8 16 32 64 128
dense factorization [0.04|0.25 (2.3 |48 1100
reduction 0.06 [0.1410.28 | 0.54 1.1
convex factorization | 0.04 |0.06 |0.22 | 1.5 25

Table 1. Factorization of P,, in seconds.
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As expected, our reduction strategy leads to a significant speedup. In fact, with this family,
notice that the dense size grows with n? while the convex size only grows with n. We have also
tried Algorithm 19: the gains are not substantial since most of the time is spent in the factoriza-
tion. Finally let us mention that one could investigate the design of a reduction algorithm fea-
turing a dichotomy in the size of the exponents, in a way similar to the half-g.c.d. algorithm
(see for instance [GGO03, Chapter 11]). This would probably lead to a bit-complexity bound in

O (o log §). However, the practical impact would be minor as long as the size of the exponents
are intended to fit one machine word.

4.4. Optimality of the reduction.

It is natural to ask if our algorithm computes the best transformation U of 72, that maxi-
mizes the ratio of the volumes of U(S) and R(U(S)), where R(U(S)) represents the bounding
rectangle of U(S).

First, let us mention that the transformations A, p and 7 used within our algorithm actually
generate Aff(Z?). In fact it is classical that SL(Z?) is generated by X and the rotation p =

(2 _t> of angle ©/2 [Ser96, Chapter 7, Theorem 2]|. Since p can be decomposed into p =

A At udp, and since det p = — 1, we deduce that X and p generate GL(Z2). However we
will not prove that our algorithm returns the best U € Aff(7?) on all input. Roughly speaking,
we will only prove that the bound 3/8 of the ratio of the volumes at the end of our reduction
algorithm is the best bound one can expect in general when 1 = 0. This bound is attained with
the example of Figure 10. Precisely, we aim at proving there is no transformation U such that
for all finite subset S C Z?, the inequality Vol U(S) > a Vol R(U(S)) holds with a > 3/8:

Vol U(S)

Proposition 21. With the convention VoI R(U(S))

=1 whenever VolS =0, one has

inf su _VolU(S) __3
7318 |<00 yeamz VO R(U(S)) 8
where R(U(S)) represents the bounding rectangle of U(S).

Proof. The degenerate case, that is for when Vol S =0, follows from Proposition 4, so that from
now on, we can assume that Vol & # 0. By Theorem 11, there exists U € Aff(Z?) such that
Vol U(8) > 2 Vol R(U(S)) whence

o ap AUS) 3
SCZZ,\SKOOUEAHIEW) VoIR(U(S)) ~— &
Vol U(S)

We shall show that supyeam(z2) = % holds for when S = {(1, 0), (0, 1), (2, 2)}, which
will conclude the proof.

Until the end of the proof, S represents the particular set of points {(1,0), (0, 1), (2,2)}. As
Vol U(S) is constant, and equals 3/2 for all U, it suffices to show that, for any U € Aff(Z?),
Vol R(U(S)) > 4. As translating and swapping z and y do not change Vol R(U(S)), we can

assume that U € SL(Z?). Let ( « B ) be the matricial representation of U, with a8’ — Ba’'=1.

Vol R(U(S))

a' B’
Let p be the rotation of angle ©/2. As Vol R(p(S)) = Vol R(S), one can apply p, or p~!, once or
twice so that we can further assume that o >1 and o’ >0 hold.

If a'=0, then @ 8'=1 so that @« =1 and B'=1. Since the image of (2,2) is (2 + 2 3, 2), the
height of the bounding rectangle of U(S) is 2, and Vol R(U(S)) > 4 as soon as the horizontal
length of R is greater or equal to 2. In fact, this length is the maximum of | — 1|, |2 f + 1| and
|B+2|. If | —1]=0, then =1 and 2 f+1=3. Otherwise, if | — 1| =1 then either § =0 and
B+2=2 or f=2and f+2=4. In this way we observe that, in all cases the length is at least
2. We can now restrict to considering o' > 1.

If 5=0 then a=1 and §’'=1. The horizontal length of U(S) is 2 and its height is 2 o' + 1.
Therefore we have again Vol R(U(S)) > 4. Similarly, when 8’ =0, we have 3 =—1 and o' = 1:
the height of U(S) is 2 and its horizontal length is 2 @ + 1, which yields the same conclusion.
Thus, we can now further restrict to considering that none of the coefficients of the matrix of U
is zero.
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From U(1,0) —=U(0,1) = (a — B,a’ — B’), we have VOl R(U(S)) > |a — ] |a’ — B'|. Whenever
o — B|>2 and |’ — B'| > 2, we are done. Therefore, it remains to examine the following cases:
o Ifa=p,thenaf' —fa’'=a(f'—a’)=1impliesa=F=1and f'=a’+1. A direct cal-
culation yields VolR(U(S)) =3 (3a’+2) > 4.
o Ifa’'=p"thenap' —pBa'=a’(a—f)=1implies a'=p3"'=1and a = + 1, and then
VolR(U(S))=3 (38 +2) >4, since §>1 holds in this case.

e If|a—f3|=1, then we distinguish:
o if f=a+1, then the horizontal length of R(U(S)) is at least 3a+2>5,
o if =+ 1, then the horizontal length of R(U(S)) is at least 33+2>5.
e If |a'— B'| =1, then we distinguish:
o if f’=a'+1 then the height of R(U(S)) is at least 3a’+2>5,
o if a’'=4"+1 then the height of R(U(S)) is at least 3 3’ +2> 5. O
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