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Grégoire LecerfLaboratoire d'InformatiqueUMR 7161 CNRSÉcole polytechniqueRoute de Saclay91128 Palaiseau CedexFranceEmail: gregoire.lecerf@math.cnrs.frWeb: lecerf.perso.math.cnrs.frOctober 15, 2010Abstract. In this article we present a new algorithm for reducing the usual sparsebivariate factorization problems to the dense case. This reduction simply consists in com-puting an invertible monomial transformation that produces a polynomial with a densesize of the same order of magnitude as the size of the integral convex hull of the support ofthe input polynomial. This approach turns out to be very e�cient in practice, as demon-strated with our implementation.Keywords: Polynomial factorizationA.M.S. subject classi�cation: 12Y05, 68W30, 11Y16, 12D05, 13P051. IntroductionLet K be a �eld. Throughout this paper, F represents the bivariate polynomial in the variablesx and y over K that we want to factor. At the present time, the best known complexity boundsfor the squarefree and irreducible factorization problems are essentially obtained in terms of thedense size of F . This is relevant to many situations but, in many others, it is important to takethe sparsity of F into account. In this article, we present a simple method to transform F in away that is compatible to factorizations, but so that the dense size becomes of the same order ofmagnitude as the size of the integral convex hull of the support of F . In the next paragraphs,we give precise de�nitions for the sparse and dense sizes, state our main complexity result onsupport reduction, and then corollaries on factorizations.1.1. Sizes of polynomials.Let S be a �nite subset of points in Z2. The bounding rectangle of S is the smallest rectangleof the form (ox; oy) + [0; dx]� [0; dy] that contains S , where ox; oy 2Z and dx; dy 2N. We de�nethe dense size of S as (dx+ 1) (dy + 1). We write Int S for the integral convex hull of S , that isthe set of integer points inside the convex hull of S seen as a subset of R2, preciselyIntS =Z2\ (Xe2S te e jte2R�0 and Xe2S te=1):The convex size of S is de�ned as the cardinality jIntS j of IntS.For our purposes it will be convenient to consider bivariate Laurent polynomials . Any suchpolynomial F 2 K[x; y; x�1; y�1] can be stored as a vector of nonzero terms, with each termcomposed of a coe�cient and an exponent seen as a vector in Z2. This storage is usually calledthe sparse representation of F . For any (i; j) 2 Z2, we let Fi;j denote the coe�cient of xi yj inF . The support of F is de�ned asSuppF = �(i; j)2Z2 jFi;j� 0	:The sparse size of F , written �, refers to the cardinality of the support of F . We also de�ne thedense size (resp. the convex size) of F as the dense size (resp. convex size) of its support.�. This work has been partly supported by the French ANR-09-JCJC-0098-01 MaGiX project, and by theDigiteo 2009-36HD grant of the Région Ile-de-France. 1



The Newton polygon of F , written Newton F , is the convex hull of the support of F in R2.If F factors into GH , then it is known from Ostrowski [Ost21] (translated in [Ost99], and revis-ited later in [Ost75]) that:NewtonF =NewtonG+NewtonH = fa+ b ja2NewtonG; b2NewtonHg:The latter sum of the convex hulls of G and H is usually called the Minkowski sum. In general,even if the sparse size of F is small compared to its convex size, the irreducible factors of F canbe dense with respect to their Newton polygons, what we call convex-dense in short. In fact,simply consider F = yp � xp 2Q[x; y], where p is a prime integer: here � = 2 and F factors intox� y and F/(x� y) whose sparse size is exactly p. This shows that the irreducible factorizationof F cannot be achieved in time polynomial in �, and that the convex size of F is a relevantquantity to analyze the complexity of factorization problems.Example 1. Let F = x�1 y�1 + 1 + 2 x3 + 3 y2. The sparse size of F is � = 4. The Newtonpolygon of F is drawn in following Figure 1: the black disks represent the monomials of F ,while the white disks are the other monomials contained in the Newton polygon. The convexsize of F is therefore �=8, and since the bounding rectangle of the support of F is (� 1;� 1) +[0; 4]� [0; 3], the dense size of F is 20.
Figure 1. Newton polygon of F = x�1 y�1+1+2 x3+3 y2.1.2. Main result.The method we propose in this paper concerns all the usual types of factorization, includingthe squarefree, the irreducible and the absolute ones. Our main result is a pretreatment, appliedto the input polynomial, which consists in a monomial transformation that preserves the sparsesize and roughly the convex size, but decreases the dense size. The considered monomial trans-formations are the maps of the a�ne group over Z2, written A��Z2�. Precisely, these are themaps U U : (i; j)�� � ��0 � 0 �� ij �+� 

 0 �; (1)with �, �, 
, �0, � 0, and 
 0 in Z, such that � � 0� �0 � =� 1. Such a map U preserves the abso-lute value of the volumes in R2.Let S be a �nite subset of Z2. Set S is said to be normalized if it belongs to N2 and if itcontains at least one point in f0g � N, and also at least one point in N � f0g. For such a nor-malized set, we write dx for the largest abscissa involved in S and, analogously, dy for thelargest ordinate, so that the bounding rectangle is R = [0; dx] � [0; dy]. The following theoremwill be proven in Section 4.2:Theorem 2. For any normalized �nite subset S of Z2, of cardinality �, convex size �, boundingrectangle [0; dx] � [0; dy], and dense size � = (dx + 1) (dy + 1), one can compute an invertiblea�ne map U 2A�(Z2) as in (1), with O�� log2 �� bit-operations, such that:� j�j, j� j, j�0j, and j� 0j are at most max (2max (dx; dy)2; 1),� j
 j and j
 0j are at most 4max (dx; dy)3,� U(S) is normalized of dense size at most 9�.

2 Convex-dense factorization



Here, by the number of bit-operations we mean the size of the Boolean circuit that performs thecomputation, as in the computation tree model considered in [BCS97, Chapter 4]. The proof ofTheorem 2 is organized as follows. In our �rst section we explain a naive approach to reduce Sso that the ratio of the volumes of its convex hull and of its bounding rectangle increases. Thesecond section provides us with a uniform bound on the latter ratio reached at the end of thereduction process. The last section is then devoted to a faster dichotomic reduction algorithm,to practical performances, and to a proof that our reduction technique leads to an essentiallyoptimal volume ratio in the worst case.1.3. Applications.We shall now explain how Theorem 2 can be used to reduce convex-dense factorization prob-lems to the usual dense case. For the cost analysis we use the computation tree model forcounting the number of operations in the ground �eld K. Let us recall that the �soft-Oh� nota-tion f(n) 2 O~(g(n)) means that f(n) 2 g(n) logO(1) (3 + g(n)) (we refer the reader to [GG03,Chapter 25, Section 7] for details).If U is an a�ne map of Z2 as in (1), then we consider its action on the monomials, and wewrite U(xi yj) for x�i+�j+
 y�0i+� 0j+
 0. By linearity, this action is extended to K[x; y; x�1; y�1]as follows: U(F )= X(i;j)2SuppF Fi;jU(xi yj):Greatest common divisor.A Laurent polynomial is said to be normalized if its support is normalized. Let F and G betwo normalized polynomials in K[x; y] of degree at most dx in x and dy in y, and with supportsincluded in a common convex polygon of convex size �. This situation naturally occurs forinstance when computing the discriminant of F , say in y, where G is set to @@yF .Thanks to Theorem 2, we can compute a reduction map U with O�� log2 �� bit-operationssuch that the partial degrees of F~ = U(F ) and G~ = U(G) are at most d~x in x and d~y in y, andwith d~x d~y 2 O(�). Without loss of generality we can further assume that d~x � d~y, so that thecomputation of H~ = gcd (F~ ; G~) in K[x; y] can be done with O~��1.5� operations in K, assumingthat K has cardinality at least (6 d~y + 3) d~x, by [GG03, Corollary 11.9, part i ]. Under the sameassumptions on the cardinality of K, a randomized variant can also obtain the same g.c.d. withan expected number of operations only in O~(�), by [GG03, Corollary 11.9, part ii ].There exists a unit h in K[x; y; x�1; y�1] (that is a term c xi yj with c invertible in K) suchthat H = h U�1(H~) is normalized. We say that H is a normalization of U�1(H~). By the afore-mentioned Ostrowski theorem, it is classical to deduce that H is the actual g.c.d. of F and G,and that the convex size of H is at most �. Finally the computation of H from H~ takes O~(� log�) more bit-operations. Of course this approach leads to a signi�cant speedup when compared toa direct application of [GG03, Corollary 11.9] as soon as � is much smaller than �.Squarefree factorization.Let U be an invertible a�ne map over Z2 as in Equation (1), and let L be the linear part ofU . Let F still be a normalized polynomial in K[x; y] of degree at most dx in x and dy in y, ofsparse size �, and of convex size �. If the squarefree factorization of F writes into F =F11F22
 Frr, where the Fi are the pairwise coprime squarefree factors, thenL(F )=L(F1)1L(F2)2
 L(Fr)r:As for the g.c.d., thanks to Theorem 2, we can compute a reduction map U with O�� log2 ��bit-operations such that the partial degrees of F~ = U(F ) are at most d~x in x and d~y in y, andwith d~x d~y 2O(�). Without loss of generality we can again assume that d~x� d~y.If K has characteristic 0, then the squarefree factorization of F~ takes O~��1.5� operations inK by [Lec08, Proposition 8]. This cost further drops to an expected one in O~(�) with the ran-domized variant of [Lec08, Proposition 9]. Then the squarefree factors can be easily deduced byapplying U�1 and normalizing. Other algorithms of [Lec08] concerning the separable factoriza-tion can be also adapted in the same way to bene�t of sparsity.
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Irreducible factorization.If F is a Laurent polynomial, then U(F ) is irreducible if, and only if, F is irreducible. If F isnormalized, then F is irreducible in K[x; y] if, and only if, F is irreducible in K[x; y; x�1; y�1].The irreducible factorization in K[x; y] can thus be deduced from the one in K[x; y; x�1; y�1].As for the squarefree factorization, we �rst compute a reduction map U , then we compute theirreducible factorization of U(F ), and �nally we apply U�1 and normalize all the factors.With this strategy, informally speaking, the algorithms of [Lec10] for instance show that thenumber of operations in a prime �nite �eld can grow with only O~(�1.5). In Section 4.3 we reporton examples that illustrate the speedup gained thanks to the reduction process.1.4. Related works.Fast arithmetic operations on sparse polynomials are still a matter of active research. At thepresent time, the best performances are achieved essentially with supports being close to rectan-gles, thanks to the Kronecker substitution that reduces the product to a single variable [GG03,Chapter 8, Section 4]. Recent progresses have been accomplished for instance in [HL10], buteven when softly linear time algorithms are available for the sparse product, the overhead com-pared to dense sizes remains important. These facts motivate the strategy of the present paper:by a direct reduction to the dense case we avoid relying on sparse arithmetic at all.Concerning the irreducible factorization, the Hensel lifting and recombination technique isthe most popular, that leads to the best known complexity bounds [BLS+04, Lec06, Lec07,Lec10] in the dense case. Hensel lifting is used in Bernardin's implementation withinMaple [Ber97, Ber98], and in Steel's one in Magma [Ste05, BHKS09]. In order to bene�t offast Hensel lifting, which means here with a softly linear cost, in the bivariate case, one needs�rst to assume that F is separable, say in y, and then �nd a value x0 such that F (x0; y) remainsseparable. Unfortunately the shift of x spoils the sparse and convex sizes. One possible solutionconsists in the direct computation of the irreducible factorization in K[[x]][y] but, at the presenttime, no algorithm with softly linear time is known for that task. E�orts have been accom-plished in this direction. For instance, in [AGL04] an algorithm for computing a factor of agiven convex support is designed for special cases, with time polynomial in the convex size ofthe input polynomial. In [BHKS09], Puiseux series solutions of F are computed, directly withno shift in x. The best known complexity bounds for the Puiseux expansions seem to be foundin [Pot08, PR09]. Recently Weimann proposed partial generalizations of the algorithmsof [Lec06, Lec07]: if the polynomials supported by the exterior facet of the Newton polygon areseparable, then, from their irreducible factors, one can deduce the factorization with O(�!)operations in K, where ! is the linear algebra exponent (known to be between 2 and 2.37, butunfortunately close to 3 in practice). Compared to these methods, our approach has the advan-tage that it can be performed from the outset with no separability assumption, that it does notneed to compute the Newton polygon, and that it can bene�t of fast Hensel lifting.Another important class of factorization algorithms is due to Gao, who showed in [Gao03]that the absolute factorization can be performed in softly quadratic time in terms of the densesize. The �rst half of his algorithm consists in computing a basis of the �rst De Rham coho-mology group of the complementary of the hypersurface de�ned by F . In [GR03] it has beenshown that this task can be done in time polynomial in the convex size. When fast sparse poly-nomial product is available, one can even compute the probable number of absolute factors intime softly quadratic in the convex size, over �nite �elds with su�ciently large character-istic [HL10, Section 7]. However these approaches still su�ers an overhead when compared tothe dense case, and it requires the input polynomial to be separable.The factorization of sparse polynomials in terms of the sparse size is an active research area.Although this is not the main goal of the present article, let us mention brie�y important resultsfor multivariate polynomials. Polynomial time in terms of the sparse size of the output has beeninvestigated by Zippel in [Zip79, Zip81] (see also [Zip93, Chapter 17]). Precisely, he proposed aprobabilistic variant of the Hensel lifting that runs in time polynomial in the total sparse size ofthe lifted factors of F in K[[x]][y]. His results have been extended and re�ned in [Gat83, Kal85,GK85, Kal89]. These techniques are only performant if the lifted factors are very sparse.
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Finally another class of results focuses on the only computation of the irreducible factors of abounded given degree. Polynomial time has been proved recently for this task in [AKS07] fortwo variables and, independently, in [KK06] directly with several variables.2. Support reductionThis section is devoted to the reduction algorithm underlying Theorem 2. We start with a naiveversion that is to be re�ned in Section 4.2.1. Bounding rectangles.Let S be a normalized �nite subset of Z2 of bounding rectangle R = [0; dx] � [0; dy]. Weintroduce the integers b, d, f and h as follows:� b= dx�max(i;j)2S (i� j),� d= dx+ dy�max(i;j)2S (i+ j),� f = dy+min(i;j)2S (i� j),� h=min(i;j)2S (i+ j).Then, let us de�ne the following eight points, drawn in Figure 2 below:A=(h; 0); B=(dx� b; 0); C=(dx; b); D=(dx; dy� d);E=(dx� d; dy); F =(f ; dy); G=(0; dy� f); H =(0; h):The rectangle R0 supported by lines (AH), (BC), (DE), (FG) is the smallest rectangle con-taining S whose edges are parallel to the two main bissectors. The octagon O = ABCDEFGHcontains S and any of its edges contains a point of S , O is the bounding octagon of S .
f dy

dxh b
dR0

RA B
CDEFGH(0; 0) O

Figure 2. Bounding octagon O and bounding rectangles R and R0.2.2. Elementary transformations.Our reduction algorithm will only use the three following elementary transformations. The�rst one, written �, corresponds to substituting y/x into y, this yields the following map of Z2:�: Z2 ! Z2(i; j) � (i� j ; j):
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We will need to swap x and y, this is the role of �:�: Z2 ! Z2(i; j) � (j ; i):Finally, translations in x are necessary to normalize the supports occurring in the reductionalgorithm: �k: Z2 ! Z2(i; j) � (i+ k; j):2.3. Reduced sets of points.Applying � to S modi�es the volume of the bounding rectangle. For instance Figure 3 is theimage of Figure 2 by �: the height of R does not change, but the horizontal length becomesdx+ dy � b� f . The points (i; j) in S that are sent to the far left of �(S) are such that i� j isminimal. Analogously, those that are sent to the far right of �(S) are such that i � j is max-imal. Applying ��1 instead of � will imply that the horizontal length of the new R is the di�er-ence between max (i+ j) and min (i+ j), namely dx+ dy� d�h.

�(A)
�(F )�(G) �(H)

dx� b� dy+ f (0; 0) �(B)
�(C)�(D)�(E)

Figure 3. Image of the octagon of Figure 2 by �, and its new bounding rectangle.

h ��1(A)��1H ��1(G)
dx+ dy� d(0; 0) ��1(B)

��1(C)��1(E)��1(F ) ��1(D)

Figure 4. Image of the octagon of Figure 2 by ��1, and its new bounding rectangle.From now on and until the end of this article, � represents a real number in [0; 3/4).
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De�nition 3. A �nite subset S of Z2 is said to be �-reduced whenever S is normalized, with dxgreater than or equal to dy, and such that b, d, f and h, as de�ned in Section 2.1, verify bothconditions:1. b+ f � (1+ �) dy, and2. d+h� (1+ �) dy.If S has only one point, then it is already �-reduced. In the next subsection, we propose analgorithm for reducing any �nite subset of points of Z2. We shall see that � is used for control-ling the tradeo� between the quality of the reduction and the time needed to reduce. Thestrongest reduction corresponds to �=0:2.4. Degenerate case.In this subsection we consider the case when S is degenerate, which means that all the pointsof S are aligned. If S is normalized and is a singleton, then it is the origin and it is already �-reduced, whatever the value of � is. Otherwise we have the following proposition:Proposition 4. For any degenerate normalized �nite set of points S of cardinality �, convexsize �, and bounding rectangle [0; dx] � [0; dy], one can compute an invertible a�ne map U 2A�(Z2) as in (1), together with U(S), with O�� log2 �� bit-operations, where � = (dx + 1) (dy +1), such that:� j�j, j� j, j�0j, and j� 0j are at most max (dx ; dy; 1),� j
 j and j
 0j are at most dx dy,� U(S) is normalized of dense size �.Proof. According to the hypotheses, the two following situations can occur: the points of S areeither on the segment between (0; 0) and (dx; dy), or on the segment joining (0; dy) to (dx; 0).Let us �rst deal with the former case. Let g � 0 be the g.c.d. of dx and dy, and let u and v bethe Bézout coe�cients so that g = u dx + v dy holds with juj � dy and jv j � dx. We refer thereader to [GG03, Lemma 3.12] for instance for these classical facts. We take U to be the linearapplication whose matrix is � u v� dy/g dx/g �:Since Int(S) = f(i dx/g; i dy/g) ji 2 f0; 	 ; ggg we have that � = g + 1 and that U(Int(S)) is thesegment joining (0; 0) to (g; 0). It follows that U(S) has dense size exactly �.The latter case, where S is on the segment joining (0; dy) to (dx; 0), is similar with taking:U : (i; j)�� �u vdy/g dx/g �� ij �+� udx� dx dy/g �:By [GG03, Theorem 3.13] the computation of g, u, and v can be done with O(log2 �) with thenaive version of the Euclidean algorithm. Then applying U on all the points of S takesO�� log2 �� bit-operations by appealing to the school book product on the integers. �Remark that the value of � does not intervene in this degenerate case.2.5. Reduction algorithm.Until the end of this section we assume that S is a nondegenerate �nite set of points. Thefollowing algorithm computes U 2A��Z2� such that U(S) is �-reduced.Algorithm 5. Support reductionInput: a nondegenerate normalized �nite subset S of N2 of cardinality �.Output: U 2A�(Z2), such that U(S) is �-reduced.Compute (dx; dy) for S, as de�ned in Section 2.1.
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Initialize U with the identity.Repeat1. If dx<dy thenS6 �(S)U6 � �USwap dx and dy.2. Compute b, d, f, h for S, as de�ned in Section 2.1.3. If b+ f > (1+ �) dy thenS6 �dy�f ��(S)U6 ��Udx6 dx+ dy� b� felse if d+h> (1+ �) dy thenS6 ��h ���1(S)U6 ��1 �Udx6 dx+ dy� d�helse return U.Proposition 6. Algorithm 5 is correct. For any nondegenerate normalized �nite subset S ofN2 of bounding rectangle [0; dx]� [0; dy], Algorithm 5 performs at most O(max (dx; dy)) steps inthe main �Repeat� loop.Proof. After each reduction step in the main loop, either dx and dy are swapped, or dxdecreases by at least 1 and dy is left unchanged. Therefore the number of steps is bounded byO(max (dx; dy)). Since S remains normalized all along the process, the algorithm always termi-nates with S being �-reduced. �Example 7. Assume � =0 and let F = 1+ x y + x5 y2, whose support S is f(0; 0); (1; 1); (5; 2)g,as drawn in Figure 5 below. After the �rst step of the algorithm, where � is applied, S becomesas in the left part of Figure 6. In the second step, � is applied once more and makes S reducedas shown in the right part of Figure 6. In the end, the algorithm returns U = �2+ �1, so that wehave U(F ) = x+ y+ x2 y2. The bounding rectangle of U(F ) corresponds to dx= dy=2, while itsbounding octagon O is de�ned by b= f =h=1, and d=0.
Figure 5. Input set S.

Figure 6. S after one, and then two reduction steps.
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Example 8. Let S be f(0; 0); (1; 1); (5; 2)g as in Example 7 and Figure 5, and assume � = 1/2.Since b + f = 4 and (1 + �) dy = 3, the input set S can be reduced by applying � to obtain thesame set as in the left part of Figure 6. However, after this reduction, we have b+ f =3 which isnot strictly greater than (1 + �) dy = 3. We thus see with this example that the reduction pro-cess stops earlier with �=1/2 than with �=0.2.6. Bit-cost analysis.The main di�culty in analyzing the bit-cost of Algorithm 5 resides in bounding the size ofthe entries of the map U , this is the purpose of the following lemma:Lemma 9. Let S be a nondegenerate normalized �nite subset S of N2 of bounding rectangle [0;dx]� [0; dy], and let U be an a�ne map as in (1) that sends S to a normalized set S~ of boundingrectangle [0; d~x]� [0; d~y]. Then we have:� j�j � 2 d~x dy, j� j � 2 dx d~x, j�0j � 2 dy d~y, and j� 0j � 2 dx d~y,� j
 j � 4 dx dy d~x and j
 0j � 4 dx dy d~y.Proof. Since S is nondegenerate, then it contains at least three points A = (xA; yA), B = (xB ;yB), and C = (xC ; yC) that are not aligned. Computing the images of A, B, and C by the linearpart L=� � ��0 � 0 � of U leads to:( j� (xB�xA)+ � (yB� yA)j � d~xj� (xC�xA)+ � (yC� yA)j � d~x:It follows that, ( j� (xB�xA) (xC �xA)+ � (yB� yA) (xC�xA)j � dx d~xj� (xC�xA) (xB�xA)+ � (yC� yA) (xB�xA)j � dx d~x;whence j� j ���(yB� yA) (xC�xA)� (yC � yA) (xB�xA)���� 2 dx d~x:Since ���(yB � yA) (xC � xA) � (yC � yA) (xB � xA)��� is a nonzero integer, we deduce that j� j �2 dx d~x. The bounds for �, �0 and � 0 can be obtained mutatis mutandis .Since points of the image of S by L have abscissae (resp. ordinates) with absolute values atmost 4 dx dy d~x (resp. 4 dx dy d~y), the absolute value of 
 (resp. 
 0) is at most 4 dx dy d~x (resp.4 dx dy d~y). �Proposition 10. For any nondegenerate normalized �nite subset S of N2 of cardinality �, ofbounding rectangle [0; dx] � [0; dy], and dense size � = (dx + 1) (dy + 1), Algorithm 5 takesO(� max (dx; dy) log �) bit-operations.Proof. By Lemma 9 the bit-size of the points in S remains in O(log �), and the bit-size of theintegers in U is bounded by O(log �). Each reduction step thus takes O(� log �) bit-operations.The conclusion follows from Proposition 6. �3. Dense size of reduced setsLet S be a �nite subset of Z2. In this section, we carry on using the notation of Section 2.1, andwe further write Vol S for the volume of the convex hull of S . In the next paragraphs, we showthat Vol S cannot be too small compared to the volume VolR of the bounding rectangle R of S,whenever S is reduced. In the second subsection, we deduce similar bounds in terms of discretesizes with taking care of the degenerate cases.3.1. Continuous bound.Recall that � is a real constant in [0; 3/4). The following theorem guarantees that thevolume spanned by an �-reduced set of points can be uniformly controlled in terms of thevolume of its bounding rectangle:
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Theorem 11. If S is an �-reduced set of points, then Vol S � 3� 4 �8 Vol R, where R is thebounding rectangle of S.Proof. In Lemma 12 below, we shall show that the volume of S is larger or equal to the volumeof at least one of the following polygons:Q1 = ACEG;Q2 = BDFH;P1=ABDEG; P2=BCEGH;P3=BCEFH; P4=BDEGH;P5=ABDFG; P6=ACDFH;P7=ACEFH; P8=ACDFG:Then, Lemma 13 asserts that Vol Qi � 1� �2 Vol R, for all i 2 f1; 2g. And �nally, for the eightpentagons, the combination of Lemmas 14 and 16 below provides us with Vol Pi � 3� 4 �8 VolR,for all i2f1;	 ; 8}. �Lemma 12. Let S be a normalized �nite set of points (not necessarily �-reduced). Then at leastone of the polygons Q1, Q2, P1,...,P8 de�ned above has a volume smaller or equal to VolS.Proof. From the de�nitions of the bounding rectangle, and of b, d, f , h, there exist eight pointsI, J , K, L, M , N , O and P in S such that I 2 [AB], J 2 [BC]; 	 ; P 2 [AH ], as drawn on thefollowing �gure (note that some of these points may coincide in particular degenerate cases):

R
EF

H I
D

P
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J
LN

A B
MO K CO

Figure 7. Points of S lying on the bounding octagon O.Since VolS is the volume of the convex hull spanned by S, it is already clear thatVol (IJKLMNOP )�VolS :By considering the subdivision of I JKLMNOP into the triangle IJP and the polygonJKLMNOP , we see that Vol (AJP ) � Vol (IJP ) or Vol (BJP ) � Vol (IJP ), according to theslope of (PJ) being positive or not. It follows that Vol (AJKLMNOP ) � Vol S orVol (BJKLMNOP )�Vol S . In other words, moving I on its supporting segment [A; B] makesVol (IJKLMNOP ) either decrease or increase. Doing so with K, M and O, and then withsome points among J , L, N and P , so that Vol (IJKLMNOP ) decreases, we are led to distin-guish the following case:� If I, K, M and O all move clockwise, that is I moves to A, K moves to C, M moves toE and O moves to G, then we get the polygon AJCLENGP whose volume is at leastVolQ1.
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� If I, K, M and O all move counterclockwise, then we get the polygon BJDLFNHPwhose volume is at least VolQ2.� Otherwise two consecutive points among the cycle I, K, M , and O move into oppositedirections. Now remark that the symmetries i� dx� i, j� dy � j and (i; j)� (j ; i) pre-serve the problem, the volumes, exchange the roles of Q1 and Q2, and globally preservethe set of the eight pentagons P1; 	 ; P8. We can thus restrict to considering for instancethe case for when I moves to B and K moves to C, and examine the following subcases:� M moves to E and O to H . If N moves to F , then we get the polygonBCLEFHP , that has volume at least Vol P3. Otherwise, if N moves to G thenwe get the polygon BCLEGHP , that has volume at least VolP2.� M moves to F and O to H . If L moves to D then we get the polygonBCDFNHP , that has volume at least Vol Q2. Otherwise, if L moves to E thenwe get the polygon BCEFNHP , that has volume at least Vol P3. By symmetrythis also handles the case for when M moves to E and O to G.� M moves to F and O to G. Let us assume that P moves to A. Then if L moves toD then we get the polygon BCDFNGA, that has volume at least Vol P5. Other-wise, if L moves to E then we get the polygon BCEFNGA, that has volume atleast Vol Q1. The symmetries then handle the situation of P moving to H insteadof A. �Lemma 13. If S is an �-reduced set of points, thenVolQi� 1� �2 VolR; for i2f1; 2g:
GH

F DCE

BAFigure 8. Quadrangle Q1 in octagon O and rectangle R.Proof. Since the roles of Q1 and Q2 are interchanged by the symmetry i� dx� i, it su�ces toprove the lemma for Q1 only. We compute the volume of Q1 as the di�erence between thevolume dx dy of the bounding rectangle and the volume of the four triangles outside of Q1:VolQ1 = dx dy� (dx�h) b/2� (dy� b) d/2� (dx� d) f/2� (dy� f) h/2= 12 (dy� b� f) (dx� d�h)+ 12 dx dy: (2)Since S is �-reduced, we have (1+ �) dy� b� f � 0, dx� d�h� 0, thus dy� b� f �� � dy: Thisyields VolQ1� 12 dx dy� �2 dx dy= 1� �2 VolR. �Lemma 14. If S is an �-reduced set of points, thenVolPi� 3� 4 �8 VolR; for i2f1; 3; 5; 7g:
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Figure 9. Pentagon P1 in octagon O and rectangle R.Proof. Thanks to the symmetries it su�ces to prove the lemma for P1. The volume of P1 iscomputed as the di�erence of the volume of R with those of the four triangles outside of P1:VolP1 = VolR� 12 �b (dy� d) + d2+ f (dx� d) +h (dy� f)�:From (2) we deduce that:VolP1�VolQ1= 12 (b (dx� dy�h) + d (dy� d)):Then, from 4 b (dx� dy�h) + dy2 =4 b (dx� b�h)+ (2 b� dy)2;and dx � b � h � 0, it follows that 4 b (dx � dy � h) + dy2 � 0, and that Vol P1�VolQ1�� 18 dy2.The conclusion comes from Lemma 13:VolP1� 1� �2 dx dy� 18 dy2 � 3� 4 �8 VolR: �Remark 15. For � = 0, the inequality of Lemma 14 turns out to be sharp. For instance withS = f(dx/2; 0); (0; dx/2); (dx; dx)g we have b= f = h= 12 dx and d= 0. Pentagon P1, as drawn onthe following �gure, has volume 38 dx2.

A=B
CD=EFG=H

Figure 10. Minimal pentagon P1 with dx= dy.Lemma 16. If S is an �-reduced set of points, thenVolPi� 3� 4 �8 VolR; for i2f2; 4; 6; 8g:
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Figure 11. Pentagon P2 in octagon O and rectangle R.Proof. Thanks to the symmetries it su�ces to prove the lemma for P2. Precisely we shall provethat the following quantity is nonnegative:�(b; d; f ; h) = 8VolP2� (3� 4 �)VolR= (5+4 �) dx dy+4h (b� dx)� 4 b2+4 d (b� dy)+ 4 f (d� dx)= (1+4 �) dx dy+4 (dx� d) (dy� f �h)� 4 (b� d) (b�h):Since f + h� dy, we have that (1+ 4 �) dx dy+4 (dx� d) (dy� f � h)� 0. Therefore, if h� b� dor d� b�h, then the lemma is proved.Otherwise, if b� d and b� h, jb� dj jb� hj is maximal for b=0 and, for d= h= (1+ �) dy/2,since d+ h� (1 + �) dy. It follows that � 4 (b� d) (b� h)�� (1 + �)2 dy2. From dx� dy and � 2[0; 3/4) we deduce that (1+ 4 �) dx� (1+ �)2 dy, and that �(b; d; f ; h)� 0.It remains to study the case for when b� d and b�h. Using dx� d� b� d, we obtain:�(b; d; f ; h) � (1+4 �) dx dy+4 (b� d) (dy� b� f):Then applying b+ f � (1+ �) dy leads to:�(b; d; f ; h) � (1+4 �) dx dy� 4 (b� d) � dy� (1+4 �) dx dy� 4 � dx dy� 0;which concludes the proof. �3.2. Discrete bound.For our algorithmic purposes, we need to control the discrete sizes instead of the volumes.Proposition 17. If S is an �-reduced subset of N2 of convex size � and bounding rectangle R=[0; dx]� [0; dy], then the following inequalities hold:3� 4 �18 (dx+1) (dy+1)�� � (dx+1) (dy+1):Proof. As R contains S, the convex size � is always at most (dx + 1) (dy + 1). If S is degen-erate, then dy=0 and �= dx+1, so that the proposition is correct. Let us now assume that S isnondegenerate. We decompose Int S into Intb S [ Inti S , where Intb S are the points lying uponthe boundary of the Newton polygon of S , while Inti S are the other ones strictly inside. Pick'sTheorem (see [Cox69, Chapter 13, Proposition 51] or [GS93]) relates Vol S to jIntb S j andjIntiS j, as follows: VolS = 12 jIntbS j+ jIntiS j� 1:
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It follows that � �VolS, and that �� 3� 4 �8 dx dy by Theorem 11.Whenever dy = 1, we have b+ d+ f + h 2 f0; 1; 2g. If b+ h= 1 and d+ f = 1, then from b+f � 1 and d+h� 1, we can deduce that f =h which implies f = h=0 because f + h� 1. There-fore, b= d= 1, which is impossible since b+ d � 1. Finally, we must have b+ h= 0 or d+ f = 0,hence �� dx+1.If dy� 2, the conclusion follows from dx� 2 (dx+1)/3 and dy� 2 (dy+1)/3. �Remark 18. In the case for when �=0, if � is such that the inequality � jIntRj� jInt S j holdsfor every reduced �nite subset S in Z2, with Vol S > 0, then necessarily we have that � � 3/8.In fact it su�ces to consider the family Sn = f(n/2; 0); (0; n/2); (n; n)g for n even. We havejIntS2j=4 and jIntSn+2j= jIntSnj+3� n2 +1�, and deduce thatjIntSnjjIntRnj = 3n (n+2)+88 (n+1)2is decreasing and converges to 3/8. In general, the constant 3� 4 �18 thus may be rather pes-simistic for large S . 4. Faster reduction algorithmThe last ingredient now missing to prove Theorem 2 is a reduction algorithm with a number ofreduction steps that grows only with with the logarithm of the dense size. This is the goal ofthis section, in which we appeal to the classical dichotomy paradigm.4.1. Dichotomic approach.This section is dedicated to a fast variant of Algorithm 5. We are not to compute exactly thesame output however, roughly speaking, the main idea is to determine quickly how many times� or ��1 can be applied before two consecutive swaps.Let S be a normalized �nite subset of N2 of bounding rectangle [0; dx]� [0; dy], and let q bea positive integer. The points (i; j) in S that are sent to the far left of �q(S) are such that i �q j is minimal. Analogously, those that are sent to the far right of �q(S) are such that i � q j ismaximal. This motivates the introduction of bq, dq, fq, and hq as� bq= dx�max(i;j)2S (i� q j),� dq= dx+ q dy�max(i;j)2S (i+ q j),� fq= q dy+min(i;j)2S (i� q j),� hq=min(i;j)2S (i+ q j).For q = 1, these de�nitions coincide to those of b, d, f , and h of Section 2.1. Most of the pre-vious results can be generalized, for instance:bq+ dq� q dy; bq+hq� dx;fq+hq� q dy; dq+ fq� dx:The height of the bounding rectangle of �q(S) is still dy, while the horizontal length becomesdx + q dy � bq � fq. In the same manner, the horizontal length of the bounding rectangle of��q(S) becomes dx+ q dy� dq�hq.From now on, the reduction factor � is supposed to be positive, that is in (0; 3/4). We writebac for the integer part of a (bac� a< bac+1), and log2 a for the logarithm of a in base 2. Thefast algorithm we propose summarizes as follows:Algorithm 19. Dichotomic support reductionInput: a nondegenerate normalized �nite subset S of N2 of cardinality �.Output: U 2A�(Z2), such that U(S) is �-reduced.Compute (dx; dy) for S, as de�ned in Section 2.1.
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Initialize U with the identity.Initialize m with blog2 (dx/(� dy))c.Repeat1. If dx<dy thenS6 �(S)U6 � �USwap dx and dym6 blog2 (dx/(� dy))c.2. If m< 0 then return U.3. Compute b2m, d2m, f2m, h2m for S as de�ned above.4. If b2m+ f2m> 2m (1+ �) dy thenS6 �2mdy�f2m ��2m(S)U6 �2m �Udx6 dx+ q dy� b2m� f2m5. else if d2m+h2m> 2m (1+ �) dy thenS6 ��h2m ���2m(S)U6 ��2m �Udx6 dx+ q dy� d2m�h2m.6. m6 m� 1.Proposition 20. Assume that � > 0. For any nondegenerate normalized �nite subset S of N2,of cardinality � and dense size �, Algorithm 19 is correct and performs O�� log2 �� bit-opera-tions.Proof. Let us consider that the bounding rectangle of S is [0; dx] � [0; dy] at input. Withoutloss of generality, we can assume that dx � dy holds in order to simplify the proof. Then we let`0 = dx and `1 = dy, and de�ne the sequence (Si)i with S0 = S and Si is the current value of theset just after the ith swap, that is at the end of step 1. We write r for the total number ofswaps performed during execution of the algorithm, we let `i be the largest abscissa in Si, andmi be blog2 (`i/(� `i+1))c. By convention, `r+1 is the largest ordinate in Sr.For when i + 2 � r holds, we have that `i+2 � `i � � `i+1. By descending induction, startingwith `r � 1 and `r�1 � 1, we shall prove that `i � 'r�i�1, where ' is the positive root�+ 4+ �2p2 > 1 of the characteristic equation x2� � x� 1 = 0. Since this is true for i= r and i=r � 1, and since `i� � `i+1+ `i+2� � 'r�i�2+ 'r�i�3= 'r�i�1, we deduce that dx= `0� 'r�1.The number of swaps r thus drops to O(log dx).By Lemma 9, each reduction step amounts to O(� log �) bit-operations. On the other handthe total number of steps is Pi=0r mi,Xi=0r mi 2 O Xi=0r log2 � `i`i+1�+ r log2 1�!2O(log �);which concludes the cost analysis.We shall prove that when the algorithm stops, the �nal value of S is �-reduced. We nowfocus on what just happens after the last swap. In short, we let M be mr and TM+1 be Sr. Wedenote by Tm the current value of S just before entering step 6, where m being the corre-sponding current value of m. Therefore T0 corresponds to the output of the algorithm and wewant to prove that it is �-reduced. If T0= T1 then we are done.
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If A is a subset of points, then we write `x(A) for the horizontal length of the bounding rect-angle of A. Let us now assume that T0 is the normalization of �(T1). In this case, of course, ��1does not reduce T0. Let us prove that � does neither reduce T0. If Tm were the normalization of�2m(Tm+1) for all m in f0;	 ;M g, then we would deduce that`x(T0) � `x(TM+1)�Xm=0M 2m � `r+1= `r� (2M+1� 1) � `r+1< `r� (`r/(� `r+1)� 1) � `r+1= � `r+1;which is impossible. Therefore there exists a largest integer � 2 f0;	 ; M} such that for all m inf0; 	 ; � � 1g, Tm is the normalization of �2m(Tm+1). This yields that T0 is the normalization of�2��1(T�) and also that `x(T0)<`x(T�)� (2�� 1) � `r+1: (3)One of the following two cases arises:� If T�=T�+1 then we have that`x(�(T0)) = `x(�2�(T�))= `x(�2�(T�+1))� `x(T�+1)� 2� � `r+1:Combined with 3 it follows that `x(�(T0))>`x(T0)� � `r+1, hence that T0 is �-reduced.� Otherwise, if T� is the normalization of ��2�(T�+1), then we have that `x(T�) <`x(T�+1)� 2� � `r+1, so that̀x(T0)� `x(T�+1)��2�+1� 1� � `r+1:Since T�+1 is the normalization of �(T0), we deduce that`x(�(T0))= `x(T�+1)� `x(T0) +�2�+1� 1� � `r+1;whence that T0 is �-reduced.Finally the last case for when T0 is the normalization of ��1(T1) can be treated in the sameway. �4.2. Proof of Theorem 2.Proposition 4 already covers the degenerate case. In the nondegenerate situation, the the-orem follows from Proposition 17 for the dense size of the output, from Proposition 20 withtaking �=1/4 for the bit-complexity, and from Lemma 9 for the size of the entries of U .4.3. Timings.We report on performances obtained with our implementation in Maple 14 for computingthe irreducible factorization of the following polynomials in Q[x; y]:Pn= xn+1+Xi=0n i xi yn�i! yn+1+Xi=0n (n� i) xi yn�i! xbn/2c�1 ybn/2c�1+Xi=0n xi yn�i!:The source code is available from http://www.lix.polytechnique.fr/~berthomieu/convex-dense.htm. In Table 1, we display timings, in seconds obtained using an Intel Xeon X5450 at3.0 GHz running Linux. The �rst line contains the time spent in the direct call of the nativefunction factor. The second line concerns the time spent in our Algorithm 5 with � = 0. Thelast line corresponds to calling factor on the reduced polynomial. Indeed, as an optimization,Algorithm 5 is run on the set of vertices of the convex hull of the support of the input polyno-mial. It is classical that softly linear algorithm exist for the convex hull.n 8 16 32 64 128dense factorization 0.04 0.25 2.3 48 1100reduction 0.06 0.14 0.28 0.54 1.1convex factorization 0.04 0.06 0.22 1.5 25Table 1. Factorization of Pn, in seconds.
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As expected, our reduction strategy leads to a signi�cant speedup. In fact, with this family,notice that the dense size grows with n2 while the convex size only grows with n. We have alsotried Algorithm 19: the gains are not substantial since most of the time is spent in the factoriza-tion. Finally let us mention that one could investigate the design of a reduction algorithm fea-turing a dichotomy in the size of the exponents, in a way similar to the half-g.c.d. algorithm(see for instance [GG03, Chapter 11]). This would probably lead to a bit-complexity bound inO~(� log �). However, the practical impact would be minor as long as the size of the exponentsare intended to �t one machine word.4.4. Optimality of the reduction.It is natural to ask if our algorithm computes the best transformation U of Z2, that maxi-mizes the ratio of the volumes of U(S) and R(U(S)), where R(U(S)) represents the boundingrectangle of U(S).First, let us mention that the transformations �, � and �1 used within our algorithm actuallygenerate A��Z2�. In fact it is classical that SL�Z2� is generated by � and the rotation � =� 0 � 11 0 � of angle p/2 [Ser96, Chapter 7, Theorem 2]. Since � can be decomposed into � =� � � ��1 � � �, and since det � = � 1, we deduce that � and � generate GL�Z2�. However wewill not prove that our algorithm returns the best U 2 A�(Z2) on all input. Roughly speaking,we will only prove that the bound 3/8 of the ratio of the volumes at the end of our reductionalgorithm is the best bound one can expect in general when � = 0. This bound is attained withthe example of Figure 10. Precisely, we aim at proving there is no transformation U such thatfor all �nite subset S �Z2, the inequality VolU(S)��VolR(U(S)) holds with �> 3/8:Proposition 21. With the convention VolU(S)VolR(U(S)) =1 whenever VolS =0, one hasinfS�Z2;jS j<1 supU2A�(Z2) VolU(S)VolR(U(S)) = 38 ;where R(U(S)) represents the bounding rectangle of U(S).Proof. The degenerate case, that is for when VolS =0, follows from Proposition 4, so that fromnow on, we can assume that Vol S � 0. By Theorem 11, there exists U 2 A��Z2� such thatVolU(S)� 38 VolR(U(S)) whenceinfS�Z2;jSj<1 supU2A�(Z2) VolU(S)VolR(U(S)) � 38 :We shall show that supU2A�(Z2) VolU(S)VolR(U(S)) = 38 holds for when S = f(1; 0); (0; 1); (2; 2)g, whichwill conclude the proof.Until the end of the proof, S represents the particular set of points f(1; 0); (0; 1); (2; 2)g. AsVol U(S) is constant, and equals 3/2 for all U , it su�ces to show that, for any U 2 A��Z2�,Vol R(U(S)) � 4. As translating and swapping x and y do not change Vol R(U(S)), we canassume that U 2 SL�Z2�. Let � � ��0 � 0 � be the matricial representation of U , with � � 0� ��0=1.Let � be the rotation of angle p/2. As VolR(�(S)) =VolR(S), one can apply �, or ��1, once ortwice so that we can further assume that �� 1 and �0� 0 hold.If �0= 0, then � � 0= 1 so that �= 1 and � 0= 1. Since the image of (2; 2) is (2 + 2 �; 2), theheight of the bounding rectangle of U(S) is 2, and Vol R(U(S)) � 4 as soon as the horizontallength of R is greater or equal to 2. In fact, this length is the maximum of j� � 1j, j2 � +1j andj� +2j. If j� � 1j=0, then � =1 and 2 � +1= 3. Otherwise, if j� � 1j=1 then either � = 0 and� + 2 = 2, or � = 2 and � + 2 = 4. In this way we observe that, in all cases the length is at least2. We can now restrict to considering �0� 1.If � = 0 then �= 1 and � 0= 1. The horizontal length of U(S) is 2 and its height is 2 �0+ 1.Therefore we have again VolR(U(S)) � 4. Similarly, when � 0 = 0, we have � = � 1 and �0 = 1:the height of U(S) is 2 and its horizontal length is 2 � + 1, which yields the same conclusion.Thus, we can now further restrict to considering that none of the coe�cients of the matrix of Uis zero.
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