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Abstract–This paper presents the experimental implementation of sensorless direct torque 

control of an induction motor based electric vehicle. In this case, stator flux and rotational speed 

estimations are achieved using an extended Kalman filter. Experimental results on a test vehicle 

propelled by a 1-kW induction motor seem to indicate that the proposed scheme is a good 

candidate for an electric vehicle control. 
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I. Introduction 

Electric vehicles are set to improve the energy and 

environmental impact of an increasing road transport 

population by offering a more energy efficient and less 

polluting drive-train alternative to conventional internal 

combustion engine vehicles. The electric vehicle 

production is then expected to increase dramatically these 

years. 

The electric propulsion system is the heart of an EV [1]. 

It consists of the motor drive, transmission device, and 

wheels. In fact, the motor drive, comprising the electric 

motor, power converter, and electronic controller, is the 

core of the EV propulsion system. The motor drive is 

configured to respond to a torque demand set by the driver. 

The maintenance-free and low-cost induction motors 

became a good attractive alternative to many developers. 

However, high-speed operation of induction machines is 

only possible with a penalty in size and weight. Three-

phase squirrel cage-rotor induction motors are best suited 

to electric vehicle drive applications thanks to its well-

known advantage of simple construction, reliability, 

ruggedness, and low cost [2]. 

Induction motors constitute a theoretically challenging 

control problem since the dynamical system is nonlinear, 

the electric rotor variables are not measurable, and the 

physical parameters are most often imprecisely known. In 

addition, unlike the traditional industrial setting, in which 

the induction motor operates mostly at steady-state, the 

EV applications require high performance control of 

electric motors to obtain fast transient responses and 

energy efficiency. Important characteristics of an EV 

motor include good drive control and fault-tolerance, as 

well as low noise with high efficiency. The control EVs 

induction motor has attracted much attention in the past 

five years; especially sensorless speed control [3-4]. 

Induction motor drives control techniques are well 

treated in the literature. The most popular is the so-called 

vector control technique that is now used for high impact 

automotive applications. In parallel, a number of studies 

have been developed to find out different control 

solutions to achieve better dynamic performances of the 

induction motor drive. Among these techniques, DTC 

appears to be very convenient for EV applications [3], [5-

6]. 

DTC has the advantages of simplicity; it does not 

require speed or position encoders and uses voltage and 

current measurements only to estimate flux, torque. It 

also has a faster dynamic response since it does not 

require any current regulation, coordinates transformation 

and insensitivity to motor parameters except the stator 

winding resistance [6]. The input of the motor controller 

is the reference speed, which is directly applied by the 

driver on the EV pedal. 

DTC implementation requires the knowledge of two 

control values that are the electromagnetic torque and the 

stator flux. In standard induction motor drives, the 

control values are not accessible via sensors. It is then 

necessary to estimate or observe them. Stator flux can be 

simply estimated by integrating of the stator ohmic 

voltage drop. However, the use of a pure integrator leads 

to instabilities due signal offsets, inaccuracy and noises 

[7]. A more elaborated solution consists in using 

deterministic type of state observers such as the 

Luenberger observer or stochastic ones such as Kalman 

filter. In general the Lunberger observer achieves good 

results. However, in case of strongly nonlinear systems 

such as the induction motor, it is proved to be limited 

especially at low speeds [4]. This is why stochastic 

observers such the Extended Kalman Filter are preferred 

to estimate the stator flux, the electromagnetic torque and 

also the induction motor speed [7-8]. 

This paper presents then the experimental 

implementation of sensorless DTC of an induction motor 

based EV where the stator flux and rotational speed 

estimations are achieved using an EKF. 



II. The Electric Vehicle Model 

2.1 Nomenclature 

v  = vehicle speed; 

  = Grade angle; 

Pv  = Vehicle driving power; 

Fw  = Road load; 

Fro = Rolling resistance force; 

Fsf  = Stokes or viscous friction force; 

Fad = Aerodynamic drag force; 

Fcr = Climbing and downgrade resistance force; 

  = Tire rolling resistance coefficient; 

m  = Vehicle mass; 

g  = Gravitational acceleration constant; 

kA  = Stokes coefficient; 

  = Air density; 

Cw  = Aerodynamic drag coefficient (0.2 < Cw < 0.4); 

Af  = Vehicle frontal area; 

v0  = is the head-wind velocity; 

F  = Tractive force; 

km  = Rotational inertia coefficient (1.08 < km < 1.1); 

a  = Vehicle acceleration; 

J  = Total inertia (rotor and load); 

m = Motor mechanical speed; 

TB  = Load torque accounting for friction and windage; 

TL  = Load torque; 

Tm  = Motor torque; 

i  = Transmission ratio; 

t  = Transmission efficiency; 

R  = Wheel radius; 

JV  = Shaft inertia moment; 

JW  = Wheel inertia moment; 

  = Wheel slip. 

2.2. Dynamics Analysis 

Based on principles of vehicle mechanics and 

aerodynamics, one can assess both the driving power and 

energy necessary to ensure vehicle operation (Fig. 1) [5]. 

The road load consists of 
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The rolling resistance force Fro is produced by the tire 

flattening at the roadway contact surface. 
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 is nonlinearly dependent of the vehicle speed, tire 

pressure and type, and road surface characteristic (0.015 

<  < 0.3). It increases with vehicle speed and also during 

vehicle turning maneuvers. 
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Fig. 1. Elementary forces acting on a vehicle. 

 

The rolling resistance force can be minimized by keeping 

the tires as much inflated as possible. 

 

sf A
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Aerodynamic drag, Fad, is the viscous resistance of air 

acting upon the vehicle. 
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The climbing resistance (Fcr with positive operational 

sign) and the downgrade force (Fcr with negative 

operational sign) is given by 
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The tractive force in an electric vehicle is supplied by 

the electric motor in overcoming the road load. The 

equation of motion is given by 

 

m w

dv
k m F F

dt
              (6) 

 

The net force (F – Fw), accelerates the vehicle (or 

decelerates when Fw exceeds F). 

The power required to drive a vehicle has to 

compensate the road load Fw. 

 

v w
P vF                (7) 

 

The mechanical equation (in the motor referential) 

used to describe each wheel drive is expressed by 
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The following equation is derived due to the use of a 

reduction gear. 
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The load torque in the motor referential is given by. 
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The vehicle global inertia moment in the motor 

referential is given by 
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If the adhesion coefficient of the road surface is high, 

then  is usually low and can be neglected. 

III. Direct Torque Control 

3.1 Nomenclature 

s, (r)  = Stator (rotor) index; 

,   = Synchronous reference frame index; 

*   = Reference; 

est   = Estimation index; 

V (i)  = Voltage (Current); 

   = Flux; 

r   = Rotor electric speed; 

Tem  = Motor torque; 

R   = Resistance; 

L   = Inductance; 

Lm   = Magnetizing inductance; 

   = Leakage coefficient,  = 1– Lm
2
/LsLr; 

p   = pole-pair number; 

T   = Sampling time. 

3.2 The DTC Briefly 

The basic idea of the method is to calculate flux and 

torque instantaneous values only from the stator variables 

[3], [9]. In this case, flux, torque, and speed are 

estimated, by and EKF in our case. The input of the 

motor controller is the reference speed, which is directly 

applied by the driver on the EV pedal. The control is 

carried out by hysteresis comparators and a switching 

logic table selecting the appropriate voltage inverter 

switching configurations [3], [5]. Figure 2 gives the 

global configuration of a DTC scheme and also shows 

how the EV dynamics will be taken into account ( is 

also the flux). 

III. Extended Kalman Filter 

The Kalman filter, is a special class of linear observer 

(deterministic type), derived to meet a particular 

optimality stochastic condition. The Kalman filter has 

two forms: basic and extended. The EKF can be used for 

nonlinear systems. This means that the plant model is 

extended by extra variables, in our case by the 

mechanical speed [10]. 
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(b) EV dynamics. 

 

Fig. 2. DTC general configuration. 

 

In the induction motor drive, the Kalman filter is used 

to obtain unmeasured state variables (rotor speed r, 

rotor flux vector components αr and βr) using the 

measured state variables (stator current and voltage 

components in Concordia frame -). Moreover, it takes 

into account the model and measurement noises [10-11]. 

The state model of the induction motor used by the 

Kalman filter is developed in the stationary reference 

frame and summarized by (7) [7]. 

The implementation of the Kalman filter is based on a 

recursive algorithm minimizing the error variance 

between the real variable and its estimate. 

Let us consider a linear stochastic system whose 

discrete state model is given b y (8). 
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where w(k) represents the disturbances vector applied to 

the system inputs. It also represents modeling 

uncertainties; v(k) corresponds to system output 

measurement noises. It is supposed that the random 

signals v(k) and w(k) are Gaussian noises not correlated 

and with null average value. They are characterized by 

covariance matrixes, Q and R respectively, which are 

symmetrical and definite positive. The initial state vector 

x0 is also a random variable with covariance matrix P0 

and average value
0

x . 

The Kalman filter recursive algorithm could be 

summarized by the following steps (Fig. 3). 
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Fig. 3. The EKF algorithm. 

– Initial State: 

 

0
ˆ (0 0)x x               (9) 

 

– State prediction: 
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– Error covariance matrix prediction: 

 

1
T

P(k  k ) AP(k k ) A  Q            (11) 

 

– Kalman gain: 
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– Filtering or correction of the predicted states: 
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– Covariance matrix update: 

 

( 1 1) [ ( 1) ] ( 1 )
n

P k k I K k C P k k         (14) 

 

For an induction motor, the Kalman filter must be used 

in its extended version. Therefore, a nonlinear stochastic 

system discrete state equation is given by: 
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where f and h are vector functions. 
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The notation k + 1 is related to predicted values at (k 

+ 1)
th

 instant and is based on measurements up to k
th

 

instant. 

The EKF equations are similar to those of the linear 

Kalman filter with the difference that A and C matrixes 

should replaced by the Jacobians of the vector functions f 

and h at every sampling time as follows. 
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The covariance matrixes Rk and Qk are also defined at 

every sampling time. 

For the induction motor control, the EKF is used for 

the speed real-time estimation. It can also be used to 

estimate states and parameters using the motor voltages 

and currents measurements. 

IV. Experimental Implementation and Results 

4.1 The Test Bench 

The test bench used to validate the proposed control 

approach is made up of a 1-kW induction motor drive 

whose ratings are given in the Appendix. The main 

components of this bench, illustrated by Fig. 4, are: 

– A DSP system (single fixed-point TMS320LF2407 

DSP-based development board); 

– An optical encoder attached to the motor shaft only 

to allow comparison between estimated and 

measured speed; 

– Hall effect sensors for voltage and current 

measurements. 

The DSP system is interfaced to a standard PC. The 

continuous-time algorithm is discredited with a sampling 

period of 100 μsec. At each sampling instant, the DSP 

receives stator current and voltage measurements and 

then runs the estimation algorithm and the DTC scheme. 
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Fig. 4. The experimental setup. 

 

It should be noted, as illustrated by Fig. 4, that the 

experimental setup was built to slightly emulate an EV. 

The EV resistance forces are emulated by a powder 

brake. 

4.2 The Experimental Results 

The estimation algorithm is tested under challenging 

load torque and speed variations. The experimentally 

obtained results are then summarized by Figs. 5 to 8. 

In order to test the SDTC-EKF control scheme 

performances, the first experiments are carried out under 

a constant speed reference. Therefore, Fig. 5 to 7, 

respectively illustrating the stator currents, the flux, and 

the torque, prove the effectiveness of the proposed 

control scheme. 

The proposed SDTC-EKF scheme has also been 

tested with a specific speed profile to assess its 

effectiveness for automotive applications (EV). In this 

case, Fig. 8 illustrates the sensorless control 

performances. It obviously proves the effectiveness of the 

proposed control scheme. 
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Fig. 5. Stator current components: 

Estimation (top/blue) and measurements (bottom/red). 
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Fig. 6. Estimated (a) stator flux and flux trajectory (b). 

 
 

Fig. 7. The electromagnetic torque with a 2 Nm reference. 

 

 
 

Fig. 8. Speed response to a trapezoidal speed profile 

(measurements and estimation). 

V. Conclusion 

This paper has presented the experimental 

implementation of sensorless direct torque control of an 

induction motor based electric vehicle. In this case, stator 

flux and rotational speed estimations are achieved using 

an extended Kalman filter. Experimental results on a test 

vehicle propelled by a 1-kW induction motor prove the 

effectiveness of the proposed control scheme in terms of 

torque and speed performances. 

The obtained results seem to indicate that SDTC-EKF 

scheme is a good candidate for the control of EVs 

induction motor based propulsion. 

Appendix 

Rated Data of the Tested Induction Motor 
 

 

1 kW, 2.5 Nm, 2830 rpm, p = 1 

Rs = 4.750 , Rr = 8.000 , Ls = 0.375 H, Lr = 0.375 H, M = 0.364 H 

J = 0.003 kg.m², kf = 0.0024 Nms 
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