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I. Introduction

Electric vehicles are set to improve the energy and environmental impact of an increasing road transport population by offering a more energy efficient and less polluting drive-train alternative to conventional internal combustion engine vehicles. The electric vehicle production is then expected to increase dramatically these years.

The electric propulsion system is the heart of an EV [START_REF] Chan | The state of the art of electric and hybrid vehicles[END_REF]. It consists of the motor drive, transmission device, and wheels. In fact, the motor drive, comprising the electric motor, power converter, and electronic controller, is the core of the EV propulsion system. The motor drive is configured to respond to a torque demand set by the driver. The maintenance-free and low-cost induction motors became a good attractive alternative to many developers. However, high-speed operation of induction machines is only possible with a penalty in size and weight. Threephase squirrel cage-rotor induction motors are best suited to electric vehicle drive applications thanks to its wellknown advantage of simple construction, reliability, ruggedness, and low cost [START_REF] Benbouzid | Electric motor drive selection issues for HEV propulsion systems: A comparative study[END_REF].

Induction motors constitute a theoretically challenging control problem since the dynamical system is nonlinear, the electric rotor variables are not measurable, and the physical parameters are most often imprecisely known. In addition, unlike the traditional industrial setting, in which the induction motor operates mostly at steady-state, the EV applications require high performance control of electric motors to obtain fast transient responses and energy efficiency. Important characteristics of an EV motor include good drive control and fault-tolerance, as well as low noise with high efficiency. The control EVs induction motor has attracted much attention in the past five years; especially sensorless speed control [START_REF] Khoucha | Electric vehicle induction motor DSVM-DTC with torque ripple minimization[END_REF][START_REF] Haddoun | Comparative analysis of estimation techniques of SFOC induction motor for electric vehicles[END_REF].

Induction motor drives control techniques are well treated in the literature. The most popular is the so-called vector control technique that is now used for high impact automotive applications. In parallel, a number of studies have been developed to find out different control solutions to achieve better dynamic performances of the induction motor drive. Among these techniques, DTC appears to be very convenient for EV applications [START_REF] Khoucha | Electric vehicle induction motor DSVM-DTC with torque ripple minimization[END_REF], [START_REF] Haddoun | A loss-minimization DTC scheme for EV induction motors[END_REF][START_REF] Buja | Direct torque control of PWM Inverted-Fed AC Motors -A Survey[END_REF].

DTC has the advantages of simplicity; it does not require speed or position encoders and uses voltage and current measurements only to estimate flux, torque. It also has a faster dynamic response since it does not require any current regulation, coordinates transformation and insensitivity to motor parameters except the stator winding resistance [START_REF] Buja | Direct torque control of PWM Inverted-Fed AC Motors -A Survey[END_REF]. The input of the motor controller is the reference speed, which is directly applied by the driver on the EV pedal.

DTC implementation requires the knowledge of two control values that are the electromagnetic torque and the stator flux. In standard induction motor drives, the control values are not accessible via sensors. It is then necessary to estimate or observe them. Stator flux can be simply estimated by integrating of the stator ohmic voltage drop. However, the use of a pure integrator leads to instabilities due signal offsets, inaccuracy and noises [START_REF]Simple derivative-free nonlinear state observer for sensorless AC drives[END_REF]. A more elaborated solution consists in using deterministic type of state observers such as the Luenberger observer or stochastic ones such as Kalman filter. In general the Lunberger observer achieves good results. However, in case of strongly nonlinear systems such as the induction motor, it is proved to be limited especially at low speeds [START_REF] Haddoun | Comparative analysis of estimation techniques of SFOC induction motor for electric vehicles[END_REF]. This is why stochastic observers such the Extended Kalman Filter are preferred to estimate the stator flux, the electromagnetic torque and also the induction motor speed [START_REF]Simple derivative-free nonlinear state observer for sensorless AC drives[END_REF][START_REF] Barut | Experimental evaluation of braided EKF for sensorless control of induction motors[END_REF].

This paper presents then the experimental implementation of sensorless DTC of an induction motor based EV where the stator flux and rotational speed estimations are achieved using an EKF. 

II. The Electric Vehicle Model

Dynamics Analysis

Based on principles of vehicle mechanics and aerodynamics, one can assess both the driving power and energy necessary to ensure vehicle operation (Fig. 1) [START_REF] Haddoun | A loss-minimization DTC scheme for EV induction motors[END_REF].

The road load consists of
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The rolling resistance force F ro is produced by the tire flattening at the roadway contact surface.

cos ro F mg    (2) 
 is nonlinearly dependent of the vehicle speed, tire pressure and type, and road surface characteristic (0.015 <  < 0.3). It increases with vehicle speed and also during vehicle turning maneuvers. The rolling resistance force can be minimized by keeping the tires as much inflated as possible.
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Aerodynamic drag, F ad , is the viscous resistance of air acting upon the vehicle.
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The climbing resistance (F cr with positive operational sign) and the downgrade force (F cr with negative operational sign) is given by

sin cr F mg    (5) 
The tractive force in an electric vehicle is supplied by the electric motor in overcoming the road load. The equation of motion is given by

mw dv k m F F dt  (6)
The net force (F -F w ), accelerates the vehicle (or decelerates when F w exceeds F).

The power required to drive a vehicle has to compensate the road load F w . vw P vF  [START_REF]Simple derivative-free nonlinear state observer for sensorless AC drives[END_REF] The mechanical equation (in the motor referential) used to describe each wheel drive is expressed by
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The following equation is derived due to the use of a reduction gear.
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The load torque in the motor referential is given by.

LW heel L T R TF ii   (10) 
The vehicle global inertia moment in the motor referential is given by
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If the adhesion coefficient of the road surface is high, then  is usually low and can be neglected. 

III. Direct Torque Control

The DTC Briefly

The basic idea of the method is to calculate flux and torque instantaneous values only from the stator variables [START_REF] Khoucha | Electric vehicle induction motor DSVM-DTC with torque ripple minimization[END_REF], [START_REF] Reddy | Improvement of DTC performance by using hybrid space vector pulsewidth modulation algorithm[END_REF]. In this case, flux, torque, and speed are estimated, by and EKF in our case. The input of the motor controller is the reference speed, which is directly applied by the driver on the EV pedal. The control is carried out by hysteresis comparators and a switching logic table selecting the appropriate voltage inverter switching configurations [START_REF] Khoucha | Electric vehicle induction motor DSVM-DTC with torque ripple minimization[END_REF], [START_REF] Haddoun | A loss-minimization DTC scheme for EV induction motors[END_REF]. Figure 2 gives the global configuration of a DTC scheme and also shows how the EV dynamics will be taken into account ( is also the flux).

III. Extended Kalman Filter

The Kalman filter, is a special class of linear observer (deterministic type), derived to meet a particular optimality stochastic condition. The Kalman filter has two forms: basic and extended. The EKF can be used for nonlinear systems. This means that the plant model is extended by extra variables, in our case by the mechanical speed [START_REF] Harnefors | Instability phenomena and remedies in sensorless indirect field oriented control[END_REF]. In the induction motor drive, the Kalman filter is used to obtain unmeasured state variables (rotor speed  r , rotor flux vector components  αr and  βr ) using the measured state variables (stator current and voltage components in Concordia frame -). Moreover, it takes into account the model and measurement noises [START_REF] Harnefors | Instability phenomena and remedies in sensorless indirect field oriented control[END_REF][START_REF] Bendjedia | Digital step motor drive with EKF estimation of speed and rotor position[END_REF].

The state model of the induction motor used by the Kalman filter is developed in the stationary reference frame and summarized by [START_REF]Simple derivative-free nonlinear state observer for sensorless AC drives[END_REF] [START_REF]Simple derivative-free nonlinear state observer for sensorless AC drives[END_REF].

The implementation of the Kalman filter is based on a recursive algorithm minimizing the error variance between the real variable and its estimate.

Let us consider a linear stochastic system whose discrete state model is given b y (8). 
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where [START_REF] Chan | The state of the art of electric and hybrid vehicles[END_REF] and
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where w(k) represents the disturbances vector applied to the system inputs. It also represents modeling uncertainties; v(k) corresponds to system output measurement noises. It is supposed that the random signals v(k) and w(k) are Gaussian noises not correlated and with null average value. They are characterized by covariance matrixes, Q and R respectively, which are symmetrical and definite positive. The initial state vector x 0 is also a random variable with covariance matrix P 0 and average value 0

x . The Kalman filter recursive algorithm could be summarized by the following steps (Fig. 3).
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-Error covariance matrix prediction:
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-Kalman gain:
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-Filtering or correction of the predicted states:
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-Covariance matrix update:
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For an induction motor, the Kalman filter must be used in its extended version. Therefore, a nonlinear stochastic system discrete state equation is given by: 1 ( , ) ()
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where f and h are vector functions. The notation k + 1 is related to predicted values at (k + 1) th instant and is based on measurements up to k th instant.
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The EKF equations are similar to those of the linear Kalman filter with the difference that A and C matrixes should replaced by the Jacobians of the vector functions f and h at every sampling time as follows.
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The covariance matrixes R k and Q k are also defined at every sampling time.

For the induction motor control, the EKF is used for the speed real-time estimation. It can also be used to estimate states and parameters using the motor voltages and currents measurements.

IV. Experimental Implementation and Results

The Test Bench

The test bench used to validate the proposed control approach is made up of a 1-kW induction motor drive whose ratings are given in the Appendix. The main components of this bench, illustrated by Fig. 4,are: -A DSP system (single fixed-point TMS320LF2407 DSP-based development board); -An optical encoder attached to the motor shaft only to allow comparison between estimated and measured speed; -Hall effect sensors for voltage and current measurements. The DSP system is interfaced to a standard PC. The continuous-time algorithm is discredited with a sampling period of 100 μsec. At each sampling instant, the DSP receives stator current and voltage measurements and then runs the estimation algorithm and the DTC scheme. It should be noted, as illustrated by Fig. 4, that the experimental setup was built to slightly emulate an EV. The EV resistance forces are emulated by a powder brake.

The Experimental Results

The estimation algorithm is tested under challenging load torque and speed variations. The experimentally obtained results are then summarized by Figs. 5 to 8.

In order to test the SDTC-EKF control scheme performances, the first experiments are carried out under a constant speed reference. Therefore, Fig. 5 to 7, respectively illustrating the stator currents, the flux, and the torque, prove the effectiveness of the proposed control scheme.

The proposed SDTC-EKF scheme has also been tested with a specific speed profile to assess its effectiveness for automotive applications (EV). In this case, Fig. 8 illustrates the sensorless control performances. It obviously proves the effectiveness of the proposed control scheme. 

V. Conclusion

This paper has presented the experimental implementation of sensorless direct torque control of an induction motor based electric vehicle. In this case, stator flux and rotational speed estimations are achieved using an extended Kalman filter. Experimental results on a test vehicle propelled by a 1-kW induction motor prove the effectiveness of the proposed control scheme in terms of torque and speed performances.

The obtained results seem to indicate that SDTC-EKF scheme is a good candidate for the control of EVs induction motor based propulsion.

2. 1

 1 Nomenclature v = vehicle speed;  = Grade angle; P v = Vehicle driving power; F w = Road load; F ro = Rolling resistance force; F sf = Stokes or viscous friction force; F ad = Aerodynamic drag force; F cr = Climbing and downgrade resistance force;  = Tire rolling resistance coefficient; m = Vehicle mass; g = Gravitational acceleration constant; k A = Stokes coefficient;  = Air density; C w = Aerodynamic drag coefficient (0.2 < C w < 0.4); A f = Vehicle frontal area; v 0 = is the head-wind velocity; F = Tractive force; k m = Rotational inertia coefficient (1.08 < k m < 1.1); a = Vehicle acceleration; J = Total inertia (rotor and load);  m = Motor mechanical speed; T B = Load torque accounting for friction and windage; T L = Load torque; T m = Motor torque; i = Transmission ratio;  t = Transmission efficiency; R = Wheel radius; J V = Shaft inertia moment; J W = Wheel inertia moment;  = Wheel slip.

Fig. 1 .

 1 Fig. 1. Elementary forces acting on a vehicle.

3. 1

 1 Nomenclature s, (r) = Stator (rotor) index; ,  = Synchronous reference frame index; * = Reference; est = Estimation index; V (i) = Voltage (Current);  = Flux;  r = Rotor electric speed;

Fig. 2 .

 2 Fig. 2. DTC general configuration.

Fig. 4 .

 4 Fig. 4. The experimental setup.

Fig. 5 .Fig. 6 .

 56 Fig. 5. Stator current components: Estimation (top/blue) and measurements (bottom/red).

Fig. 7 .

 7 Fig. 7. The electromagnetic torque with a 2 Nm reference.

Fig. 8 .

 8 Fig. 8. Speed response to a trapezoidal speed profile (measurements and estimation).
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