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Abstract–This paper presents a robust control design procedure for induction motor drives in case 

of modeling errors and unknown load torque. The control law is based on the combination of 

nonlinear PI controllers and a backstepping methodology. More precisely, the controllers are 

determined by imposing flux-speed tracking in two steps and by using appropriate PI gains that are 

nonlinear functions of the system state. A comparative study between the proposed 

PI/Backstepping approach and the feedback linearizing control is made by realistic simulations 

including load torque changes, parameter variations and measurement noises. Flux-speed tracking 

results show the proposed method effectiveness in presence of strong disturbances. 
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I. Introduction 

The development of induction motor drives has 

considerably accelerated in order to satisfy the increasing 

need of various industrial applications in low and 

medium power range. Indeed, induction motors have 

simple structure, high efficiency and increased 

torque/inertia ratio. However, their dynamical model is 

nonlinear, multivariable, coupled, and is subject to 

parameter uncertainties since the physical parameters are 

time-variant. The design of robust controllers becomes 

then a relevant challenge [1-2]. 

Induction motor drives control has been an active 

research domain over the last years. Different control 

techniques such as Field-Oriented control (FOC), 

feedback linearization control, sliding mode control 

passivity approach, and adaptive control have been 

reported in the literature [3]. The FOC ensures partial 

decoupling of the plant model using a suitable 

transformation and then PI controllers are used for 

tracking regulation errors. The high performance of such 

strategy may be deteriorated in practice due to plant 

uncertainties [4-5]. Exact input-output feedback 

linearization of induction motors model can be obtained 

using tools from differential geometry. This method 

cancels the nonlinear terms in the plant model which fails 

when the physical parameters varies [6-7]. By contrast, 

passivity-based control does not cancel all the 

nonlinearities but enforce them to be passive, i.e. 

dissipating energy and hence ensuring tracking regime [8-

10]. Sliding Mode Control (SMC) is widely applied 

because of its easiness and attractive robustness 

properties [11-12]. On the other hand, SMC exhibits 

high-gain when the controlled system is subject to large 

parameter variations. This however limits the application 

of such control scheme. To overcome this problem, many 

authors have proposed sliding mode and adaptive control 

combined structure. This leads to reduced gain and 

robustness against matched and unmatched uncertainties 

[13-15]. Adaptive backstepping is also used for speed 

control to compensate the uncertainties that remains after 

input-output linearization [16-20]. Fuzzy logic and neural 

networks are also applied. Several control schemes have 

been developed. The main feature of such techniques is 

their intrinsic robustness properties as they do not require 

the plant model precise knowledge [21-24]. These 

approaches may introduce some time constraints in real-

time applications. 

Otherwise, the conventional PI controllers are the most 

common algorithms used in industry today. Their 

attractiveness is due to their structure simplicity and the 

industrial operators acquaintance with them. Several PI 

controllers have been proposed in the literature for linear 

and nonlinear processes [5], [25]. Nevertheless, PI 

controllers fundamental deficiency is the lack of 

asymptotic stability and robustness proofs for a given 

nonlinear system. 

Therefore, this paper proposes to deal with this 

deficiency by proposing a robust nonlinear PI controller 

for an induction motor drive with unknown load torque. 

The controller is derived by combining a backstepping 

procedure with a PI structure. More precisely, the 

controllers are determined by imposing the current-speed 

tracking recursively in two steps and by using appropriate 

gains that are nonlinear functions of the system state. 



II. Problem Formulation 

2.1 Nomenclature 

s, (r)  = Stator (rotor) index; 

,   = Synchronous reference frame index; 

ref   = Reference index; 

v (i)  = Voltage (Current); 

,   = Flux; 

r   = Load torque; 

R   = Resistance; 

L (M) = Inductance (Mutual inductance); 

   = Leakage coefficient; 

Ts (Tr) = Stator (rotor) circuit time constant. 

ωr (ωs) = Rotor speed (Synchronous speed); 

kf   = Friction coefficient; 

J   = Rotor Inertia; 

p   = Pole pair number. 

2.2 Induction Motor Model 

In the stator reference frame, the state-space model of 

voltage-fed induction motor is derived from the Park 

model. The state vector is composed of the stator current 

components (i,i), rotor flux components (,) and rotor 

rotating pulsation r, whereas a vector control is composed 

of the stator voltage components (v,v) and the external 

disturbance is represented by the load torque r [1], [3]. 
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Using these notations, the state-space model of a 

voltage-fed induction motor should be written as 
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The coefficients (a1 ,..., c5 ) are given by 
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2.3 Control Objectives 

Our objective is to control the rotor speed r and the 

rotor flux magnitude  = x3
2
 + x4

2
 using nonlinear PI 

controllers. For that purpose, let e1 =  – ref and e2 =  – 

ref. The error dynamics are then as follows. 
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It can be seen that: 

i. The flux tracking error e1 can be controlled using 

the auxiliary variable 1. 

ii. The speed tracking error e2 can be controlled using 

the auxiliary variable 2. 

iii. The auxiliary variables (1,2) can be controlled 

using the real control signal u = (u1 u2)
T
. 

Let 2
d
 be the value of 2 ensuring the stabilization of 

the sped-tracking error e2. This desired value is 

determined using Lyapunov approach by considering the 

dynamic equation of e2. Also, let 1
d
 be the value of 1 

ensuring convergence of the flux-tracking error e1. 

Thereafter, the control objective becomes: force the 

auxiliary variable 1 to track 1
d
 while 2 must track 2

d
. 

Hence, let e3 = 1 – 1
d
 and e4 = 2 – 2

d
 define E = (e3 

e4)
T
. The proposed control signal is then 
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Equation (3) defines a multivariable nonlinear PI 

controller for which the proportional gain Kp 

(respectively the integral gain Ki) is a 2×2 matrix whose 

elements nonlinearly depend on the induction motor state 

vector. 

A backstepping methodology is used to design the 

control gains ensuring the outputs tracking [16-20]. 

Step 1: Search of the virtual control 1
d
(t) that ensure 

the asymptotic convergence of the flux-

tracking error e1(t) to zero. Then, search of the 

virtual control 2
d
(t) that guarantees the 

asymptotic convergence of the speed-tracking 

error e2(t) to zero. 

Step 2: Using an augmented Lyapunov function, 

determination of the multivariable PI gain 



matrices Kp and Ki that force the errors e3 = 1 

– 1
d
 and e4 = 2 – 2

d
 to converge to zero 

leading to flux (e1) and speed (e2) tracking 

errors exponential convergence. 

III. Nonlinear PI-Based Backstepping 

Control Design 

Let us first derive the auxiliary variables ensuring flux-

speed tracking. One has the following result. 

 

Proposition 1: Consider the dynamic (2). Then flux and 

speed tracking errors e1(t) and e2(t) are exponentially 

stable provided that 
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Proof: Consider the following Lyapunov function related 

to the flux dynamic defined in (2). 
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Its time-derivative is expressed by 
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If the virtual control laws 1 and 2 are forced to take 

the desired value given by (4), the Lyapunov function 

time-derivative takes the following final form. 
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Provided that 
3 5 r
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It implies that e1 and e2 are exponentially stable. 

                                                                     End of Proof 

 

Remark 1: Even if the load r torque is unknown, one 

can always ensure speed-tracking due to (8). Moreover, 

(8) can also cope with modeling errors and parametric 

variations in the speed dynamical equation. 

The real control signal u = (u1 u2)
T
, that force the 

errors e3 = 1 – 1
d
 and e4 = 2 – 2

d
 to converge to zero, 

will be now derived. One needs the following definitions: 

Consider a real nonlinear function S(x) satisfying xS(x) > 

0  x  0. Examples of such functions are S(x) = x
2k + 1

 (k 

positive integer), or S(x) = sinh(x), or S(x) = tanh(x), or 

S(x) = sign(x). 
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with K any positive definite matrix. 
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One has the following result. 

 

Proposition 2: Consider the induction motor dynamic (1) 

in closed-loop with the multivariable PI control (3), (9-

1&). Assume that the gains 1 and 2 are such that 
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Then, the following properties are verified. 

i. The tracking errors e1(t), e2(t), e3(t), and e4(t) are 

exponentially stable. 

ii. The closed-loop system is internally stable. 

 

Proof: Consider the augmented Lyapunov function. 
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Replacing the dynamics of E by 
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then one have 
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If v(t) < 0 then 
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In this case, one concludes that property i is verified. 

Notice that 
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Since the terms ziS(zi); I = 1, 2, are always positive, 

v(t) is negative provided the gains I and 2 are such that 

inequalities (12) are satisfied. 

The convergence of the output tracking error ei (i = 1, 

2, 3, 4) to zero does not implies that the state vector x = 

[x1 x2 x3 x4]
T
 of the induction motor remains bounded. 

However, since e2 = x5 – ref and e1 = x3
2
 + x4

2
 + ref are 

exponentially stable with ref and ref bounded. 

Therefore, one concludes that the states x3, x4 and x5 are 

all-time bounded. Let  = (x1 x2)
T
 and  = (x3 x4 x5)

T
. The 

state  has already been proven to be bounded. From (1), 

it can be seen that since a1 is positive, the origin of the 

subsystem ( , )
d

f     is stable for any fixed value d 

of the vector . One can therefore conclude that the state 

 is bounded.                                                End of Proof 

 

Remark 2: In order to compute the boundaries 
i

F , load 

torque and functions fi exact knowledge is not needed. 

Bounds can be used on these variables. In this case, the 

proposed control law is still valid in presence of 

parametric uncertainties that corrupt the system 

dynamics. 

 

Remark 3: The PI gains developed in proposition 2 are 

nonlinear and may be time-variant. Further, the integral 

gains must be sufficiently large to fulfill constraints (12). 

The proportional gains define the slope of the closed-

loop system dynamics and they may be time-variant. 

IV. Comparative Study 

In this section, a comparison is carried-out between the 

proposed PI/Backstepping control approach with the 

well-known feedback linearizing control (FLC), which is 

generally used for decoupling and linearizing nonlinear 

systems [6-7]. In brief, the induction motor model is 

written in the following form. 
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Then, the output variables are differentiated with respect 

to time until at least one of the inputs appears. This can 

be easily done by using the Lie derivative of a state 

function h(X) along a vector field f(X) defined by 
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Considering the induction motor model (1) and using 

the approach developed in [7], the resulting control signal 

ensuring feedback linearization is given by 
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is an auxiliary control signal used to stabilize the 

resulting linear system. The gains ki are designed by pole 

placement of the error dynamics. Notice that this method 

cancels the nonlinear terms in the plant model. 

The simulated induction motor ratings are given in the 

Appendix. 

The PI gains are chosen as indicated in Proposition 2. 

They are adjusted till satisfactory results are obtained. 

S(z) functions are taken as follows 
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with  = 0.01. The following PI gains have been used for 

all the simulated situations. 
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For the feedback linearization control simulations, the 

gains are chosen as follows. 
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To test the proposed PI/Backstepping control 

approach, three typical situations have been simulated. 

4.1 Test 1 – Ideal Case 

Speed and flux tracking are checked for no load torque 

and no parameter variations case. Simulation results are 

illustrated by Figs. 1 and 2 for PI/Backstepping control 

and feedback linearizing control, respectively. It can be 

noticed that both control approaches ensure good current 

and speed tracking. However, the feedback linearizing 

control is advantageous since it allows decoupling 

between flux and speed dynamics, which is not the case 

of the proposed approach. 

4.2 Test 2 – Unknown Load Torque 

Speed and flux tracking are now checked in the case of 

an unknown load torque (r = 3nom) applied between t = 

2sec and t = 4sec. The control performances are 

illustrated by Figs. 3 and 4. It can be noticed that 

feedback linearizing control fails to guarantee speed 

tracking. Conversely, PI/Backstepping control still 

guarantees it. This result is very interesting since in 

practice the load torque is unknown and time-variant. 

4.3 Test 3 – Parameter Variations 

For the PI/Backstepping control approach, simulations 

have been carried-out with 50% variation in all the 

parameters of (1) starting from t = 2sec till t = 4sec. The 

obtained results are very satisfactory and show strong 

robustness against parameter variations (Fig. 5). 

In the same above simulation conditions, an unstable 

feedback loop is achieved for feedback linearizing 

control. For illustration, parameters a5 and b5 are varied 

and all the others are maintained constant. Even in this 

case, decoupling between speed and flux dynamics is lost 

and further speed tracking is very poor (Fig. 6). 

V. Conclusion 

This paper has presented a robust control design 

procedure for induction motor drives in case of modeling 

errors and unknown load torque. The control law is based 

on the combination of nonlinear PI controllers and a 

backstepping approach. More precisely, the controllers 

are determined by imposing flux-speed tracking in two 

steps and by using appropriate PI gains that are nonlinear 

functions of the system state. 

A comparative study between the proposed 

PI/Backstepping approach and the feedback linearizing 

control is made by realistic simulations including load 

torque changes, parameter variations and measurement 

noises. Flux-speed tracking results show the proposed 

control approach effectiveness in presence of strong 

disturbances. 
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Fig. 1. PI/Backstepping control: Test 1. 
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Fig. 2. Feedback linearizing control: Test 1. 
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Fig. 3. PI/Backstepping control: Test 2. 
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Fig. 4. Feedback linearizing control: Test 2. 
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Fig. 5. PI/Backstepping: Test 3. 
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Fig. 6. Feedback linearizing control: Test 3. 



Appendix 

Rated Data of the Simulated Induction Motor 
 

 

4 kW, 23.8 Nm, 1500 rpm, p = 2 

Rs = 1.125 , Rr = 1.103 , Ls = 0.17 H, Lr = 0.015 H, M = 0.048 H 

J = 0.135 kg.m², kf = 0.00182 Nm.s 
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