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A PI/Backstepping Approach for Induction Motor Drives Robust Control
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This paper presents a robust control design procedure for induction motor drives in case of modeling errors and unknown load torque. The control law is based on the combination of nonlinear PI controllers and a backstepping methodology. More precisely, the controllers are determined by imposing flux-speed tracking in two steps and by using appropriate PI gains that are nonlinear functions of the system state. A comparative study between the proposed PI/Backstepping approach and the feedback linearizing control is made by realistic simulations including load torque changes, parameter variations and measurement noises. Flux-speed tracking results show the proposed method effectiveness in presence of strong disturbances.

I. Introduction

The development of induction motor drives has considerably accelerated in order to satisfy the increasing need of various industrial applications in low and medium power range. Indeed, induction motors have simple structure, high efficiency and increased torque/inertia ratio. However, their dynamical model is nonlinear, multivariable, coupled, and is subject to parameter uncertainties since the physical parameters are time-variant. The design of robust controllers becomes then a relevant challenge [START_REF] Krause | Analysis of Electric Machinery and Drive Systems[END_REF][START_REF] Kokotovic | Nonlinear and Adaptive control[END_REF].

Induction motor drives control has been an active research domain over the last years. Different control techniques such as Field-Oriented control (FOC), feedback linearization control, sliding mode control passivity approach, and adaptive control have been reported in the literature [START_REF]Control of Electrical Drives[END_REF]. The FOC ensures partial decoupling of the plant model using a suitable transformation and then PI controllers are used for tracking regulation errors. The high performance of such strategy may be deteriorated in practice due to plant uncertainties [START_REF]An improved IFOC for the induction motor[END_REF][START_REF] Casadei | FOC and DTC: two viable schemes for induction motors torque control[END_REF]. Exact input-output feedback linearization of induction motors model can be obtained using tools from differential geometry. This method cancels the nonlinear terms in the plant model which fails when the physical parameters varies [START_REF] Chiasson | A new approach to dynamic feedback linearization control of an induction motor[END_REF][START_REF] Marino | Adaptive input-output linearizing control of induction motors[END_REF]. By contrast, passivity-based control does not cancel all the nonlinearities but enforce them to be passive, i.e. dissipating energy and hence ensuring tracking regime [START_REF] Chang | Tuning rules for the PI gains of field-oriented controllers of induction motors[END_REF][START_REF] Cecati | Torque and speed regulation of induction motors using passivity theory approach[END_REF][START_REF] Nicklasson | Passivity-based control of a class of Blondel-Park transformable electric machines[END_REF]. Sliding Mode Control (SMC) is widely applied because of its easiness and attractive robustness properties [START_REF] Comanescu | Decoupled current control of sensorless induction-motor drives by integral sliding mode[END_REF][START_REF] Derdiyok | Speed-sensorless control of induction motor using a continuous control approach of sliding-mode and flux observer[END_REF]. On the other hand, SMC exhibits high-gain when the controlled system is subject to large parameter variations. This however limits the application of such control scheme. To overcome this problem, many authors have proposed sliding mode and adaptive control combined structure. This leads to reduced gain and robustness against matched and unmatched uncertainties [START_REF] Hasan | A Luenberger-Sliding mode observer for online parameter estimation and adaptation in high-performance induction motor drives[END_REF][START_REF] Traore | Sensorless induction motor: High-order slidingmode controller and adaptive interconnected observer[END_REF][START_REF] Comanescu | Sliding-mode MRAS speed estimators for sensorless vector control of induction machine[END_REF]. Adaptive backstepping is also used for speed control to compensate the uncertainties that remains after input-output linearization [START_REF] Abbou | Design of a new sensorless controller of induction motor using backstepping approach[END_REF][START_REF] Chaouch | Backstepping control design of sensorless speed induction motor based on MRAS technique[END_REF][START_REF] Tadjine | Robust backstepping vector control for the doubly fed induction motor[END_REF][START_REF] Ebrahim | Adaptive backstepping control of an induction motor under time-varying load torque and rotor resistance uncertainty[END_REF][START_REF] Tan | Adaptive backstepping control of induction motor with uncertainties[END_REF]. Fuzzy logic and neural networks are also applied. Several control schemes have been developed. The main feature of such techniques is their intrinsic robustness properties as they do not require the plant model precise knowledge [START_REF] Benbouzid | Direct torque control of induction motor with fuzzy stator resistance adaptation[END_REF][START_REF] Masiala | Fuzzy self-tuning speed control of an indirect field-oriented control induction motor drive[END_REF][START_REF] Benbouzid | Modeling, analysis, and neural network control of an EV electrical differential[END_REF][START_REF] Barazane | Optimization by gaussian radial basis function neural network of the performance of induction motor system based on new linguistic fuzzy model[END_REF]. These approaches may introduce some time constraints in realtime applications.

Otherwise, the conventional PI controllers are the most common algorithms used in industry today. Their attractiveness is due to their structure simplicity and the industrial operators acquaintance with them. Several PI controllers have been proposed in the literature for linear and nonlinear processes [START_REF] Casadei | FOC and DTC: two viable schemes for induction motors torque control[END_REF], [START_REF] Boldea | Vector Control of AC Drives[END_REF]. Nevertheless, PI controllers fundamental deficiency is the lack of asymptotic stability and robustness proofs for a given nonlinear system.

Therefore, this paper proposes to deal with this deficiency by proposing a robust nonlinear PI controller for an induction motor drive with unknown load torque. The controller is derived by combining a backstepping procedure with a PI structure. More precisely, the controllers are determined by imposing the current-speed tracking recursively in two steps and by using appropriate gains that are nonlinear functions of the system state. 

II. Problem Formulation

Induction Motor Model

In the stator reference frame, the state-space model of voltage-fed induction motor is derived from the Park model. The state vector is composed of the stator current components (i  ,i  ), rotor flux components (  ,  ) and rotor rotating pulsation  r , whereas a vector control is composed of the stator voltage components (v  ,v  ) and the external disturbance is represented by the load torque  r [START_REF] Krause | Analysis of Electric Machinery and Drive Systems[END_REF], [START_REF]Control of Electrical Drives[END_REF].
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Using these notations, the state-space model of a voltage-fed induction motor should be written as 
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The coefficients (a 1 ,..., c 5 ) are given by

    1 3 5 2 1 3 5 15 1 2 11 ,, 1 1 ,, 1 1 , 1 1 
, ,

f s r r r r r s s r ss s r s r k M a a a T T T J M b b b p M T T JL c c p MJ d L R R M TT L L L L                                      

Control Objectives

Our objective is to control the rotor speed  r and the rotor flux magnitude  = x 3 2 + x 4 2 using nonlinear PI controllers. For that purpose, let e 1 =  - ref and e 2 =  - ref . The error dynamics are then as follows. 
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It can be seen that: i. The flux tracking error e 1 can be controlled using the auxiliary variable  1 . ii. The speed tracking error e 2 can be controlled using the auxiliary variable  2 . iii. The auxiliary variables ( 1 , 2 ) can be controlled using the real control signal u = (u 1 u 2 ) T . Let  2 d be the value of  2 ensuring the stabilization of the sped-tracking error e 2 . This desired value is determined using Lyapunov approach by considering the dynamic equation of e 2 . Also, let  1 d be the value of  1 ensuring convergence of the flux-tracking error e 1 . Thereafter, the control objective becomes: force the auxiliary variable 3) defines a multivariable nonlinear PI controller for which the proportional gain K p (respectively the integral gain K i ) is a 2×2 matrix whose elements nonlinearly depend on the induction motor state vector.
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A backstepping methodology is used to design the control gains ensuring the outputs tracking [START_REF] Abbou | Design of a new sensorless controller of induction motor using backstepping approach[END_REF][START_REF] Chaouch | Backstepping control design of sensorless speed induction motor based on MRAS technique[END_REF][START_REF] Tadjine | Robust backstepping vector control for the doubly fed induction motor[END_REF][START_REF] Ebrahim | Adaptive backstepping control of an induction motor under time-varying load torque and rotor resistance uncertainty[END_REF][START_REF] Tan | Adaptive backstepping control of induction motor with uncertainties[END_REF].

Step 1: Search of the virtual control  1 d (t) that ensure the asymptotic convergence of the fluxtracking error e 1 (t) to zero. Then, search of the virtual control  2 d (t) that guarantees the asymptotic convergence of the speed-tracking error e 2 (t) to zero.

Step 2: Using an augmented Lyapunov function, determination of the multivariable PI gain matrices K p and K i that force the errors e 3 =  1 - 1 d and e 4 =  2 - 2 d to converge to zero leading to flux (e 1 ) and speed (e 2 ) tracking errors exponential convergence.

III. Nonlinear PI-Based Backstepping Control Design

Let us first derive the auxiliary variables ensuring fluxspeed tracking. One has the following result.

Proposition 1: Consider the dynamic [START_REF] Kokotovic | Nonlinear and Adaptive control[END_REF]. Then flux and speed tracking errors e 1 (t) and e 2 (t) are exponentially stable provided that 
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Proof: Consider the following Lyapunov function related to the flux dynamic defined in (2). 

If the virtual control laws  1 and  2 are forced to take the desired value given by (4), the Lyapunov function time-derivative takes the following final form. ( ) ( ) ( ) [START_REF] Cecati | Torque and speed regulation of induction motors using passivity theory approach[END_REF] with K any positive definite matrix.
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One has the following result.

Proposition 2: Consider the induction motor dynamic (1) in closed-loop with the multivariable PI control (3), (9-1&). Assume that the gains  1 and  2 are such that
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Then, the following properties are verified. i. The tracking errors e 1 (t), e 2 (t), e 3 (t), and e 4 (t) are exponentially stable.

ii. The closed-loop system is internally stable.

Proof: Consider the augmented Lyapunov function.

21 1 2 T V V E E  (13)
Its time derivative is given by 21
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Recalling that 
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Replacing the dynamics of E by 11
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and the control signal by (3) then one have . The state  has already been proven to be bounded. From (1), it can be seen that since a 1 is positive, the origin of the subsystem ( , )

d f     
is stable for any fixed value  d of the vector . One can therefore conclude that the state  is bounded.

End of Proof

Remark 2: In order to compute the boundaries i F , load torque and functions f i exact knowledge is not needed. Bounds can be used on these variables. In this case, the proposed control law is still valid in presence of parametric uncertainties that corrupt the system dynamics.

Remark 3:

The PI gains developed in proposition 2 are nonlinear and may be time-variant. Further, the integral gains must be sufficiently large to fulfill constraints [START_REF] Derdiyok | Speed-sensorless control of induction motor using a continuous control approach of sliding-mode and flux observer[END_REF]. The proportional gains define the slope of the closedloop system dynamics and they may be time-variant.

IV. Comparative Study

In this section, a comparison is between the proposed PI/Backstepping control approach with the well-known feedback linearizing control (FLC), which is generally used for decoupling and linearizing nonlinear systems [START_REF] Chiasson | A new approach to dynamic feedback linearization control of an induction motor[END_REF][START_REF] Marino | Adaptive input-output linearizing control of induction motors[END_REF]. In brief, the induction motor model is written in the following form. 
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Then, the output variables are differentiated with respect to time until at least one of the inputs appears. This can be easily done by using the Lie derivative of a state function h(X) along a vector field f(X) defined by
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Considering the induction motor model (1) and using the approach developed in [START_REF] Marino | Adaptive input-output linearizing control of induction motors[END_REF], the resulting control signal ensuring feedback linearization is given by
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is an auxiliary control signal used to stabilize the resulting linear system. The gains k i are designed by pole placement of the error dynamics. Notice that this method cancels the nonlinear terms in the plant model.

The simulated induction motor ratings are given in the Appendix.

The PI gains are chosen as indicated in Proposition 2. They are adjusted till satisfactory results are obtained. S(z) functions are taken as follows
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with  = 0.01. The following PI gains have been used for all the simulated situations. 
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For the feedback linearization control simulations, the gains are chosen as follows. 
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To test the proposed PI/Backstepping control approach, three typical situations have been simulated.

Test 1 -Ideal Case

Speed and flux tracking are checked for no load torque and no parameter variations case. Simulation results are illustrated by Figs. 1 and2 for PI/Backstepping control and feedback linearizing control, respectively. It can be noticed that both control approaches ensure good current and speed tracking. However, the feedback linearizing control is advantageous since it allows decoupling between flux and speed dynamics, which is not the case of the proposed approach.

Test 2 -Unknown Load Torque

Speed and flux tracking are now checked in the case of an unknown load torque ( r = 3 nom ) applied between t = 2sec and t = 4sec. The control performances are illustrated by Figs. 3 and4. It can be noticed that feedback linearizing control fails to guarantee speed tracking. Conversely, PI/Backstepping control still guarantees it. This result is very interesting since in practice the load torque is unknown and time-variant.

Test 3 -Parameter Variations

For the PI/Backstepping control approach, simulations have been carried-out with 50% variation in all the parameters of (1) starting from t = 2sec till t = 4sec. The obtained results are very satisfactory and show strong robustness against parameter variations (Fig. 5).

In the same above simulation conditions, an unstable feedback loop is achieved for feedback linearizing control. For illustration, parameters a 5 and b 5 are varied and all the others are maintained constant. Even in this case, decoupling between speed and flux dynamics is lost and further speed tracking is very poor (Fig. 6).

V. Conclusion

This paper has presented a robust control design procedure for induction motor drives in case of modeling errors and unknown load torque. The control law is based on the combination of nonlinear PI controllers and a backstepping approach. More precisely, the controllers are determined by imposing flux-speed tracking in two steps and by using appropriate PI gains that are nonlinear functions of the system state.

A comparative study between the proposed PI/Backstepping approach and the feedback linearizing control is made by realistic simulations including load torque changes, parameter variations and measurement noises. Flux-speed tracking results show the proposed control approach effectiveness in presence of strong disturbances. 

Remark 1 :

 1 e 1 and e 2 are exponentially stable. End of Proof Even if the load  r torque is unknown, one can always ensure speed-tracking due to[START_REF] Chang | Tuning rules for the PI gains of field-oriented controllers of induction motors[END_REF]. Moreover, (8) can also cope with modeling errors and parametric variations in the speed dynamical equation.The real control signal u = (u 1 u 2 ) T , that force the errors e 3 =  1 - 1 d and e 4 =  2 - 2 d to converge to zero, will be now derived. One needs the following definitions: Consider a real nonlinear function S(x) satisfying xS(x) > 0  x  0. Examples of such functions are S(x) = x 2k + 1 (k positive integer), or S(x) = sinh(x), or S(x) = tanh(x), or S(x) = sign(x).
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 1 Fig. 1. PI/Backstepping control: Test 1.

Fig. 2 .

 2 Fig. 2. Feedback linearizing control: Test 1.

Fig. 3 .

 3 Fig. 3. PI/Backstepping control: Test 2.

Fig. 4 .

 4 Fig. 4. Feedback linearizing control: Test 2.

Fig. 5 .

 5 Fig. 5. PI/Backstepping: Test 3.

Fig. 6 .

 6 Fig. 6. Feedback linearizing control: Test 3.

Appendix

Rated Data of the Simulated Induction Motor 4 kW, 23.8 Nm, 1500 rpm, p = 2 Rs = 1.125 , Rr = 1.103 , Ls = 0.17 H, Lr = 0.015 H, M = 0.048 H J = 0.135 kg.m², kf = 0.00182 Nm.s