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SUMMARY

The advances in material characterization by means of imaging techniques require powerful
computational methods for numerical analysis. The present contribution focuses on highlighting
the advantages of coupling the Extended Finite Elements Method (X-FEM) and the level sets
method, applied to solve microstructures with complex geometries. The process of obtaining
the level set data starting from a digital image of a material structure and its input into an
extended finite element framework is presented. The coupled method is validated using reference
examples and applied to obtain homogenized properties for heterogeneous structures. Although
the computational applications presented here are mainly two dimensional, the method is equally
applicable for three dimensional problems.
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1 Introduction

Numerical characterization of complex material microstructures is subject of numerous
on-going research. The popularization of digital representation of materials have lead to
a need for their incorporation within numerical methods. Digital data are nowadays used
in many areas such as mechanics of materials, optics, biology and medicine. Numerous
methods exist for generating these digital data: (micro-)computed tomography (CT),
scanning electron microscopy (SEM), laser confocal microscopy or (micro-)magnetic res-
onance imaging (MRI) to name a few. The usual path taken by numerical simulations
consists in processing the visual data to extract the geometry and properties who are
mandatory to set a boundary value problem. This task is also known as image segmen-
tation, and numerous algorithms were designed to address it: edge detection [1], region
growing [2], segmentation based on watersheds [3], level set segmentation [4, 5, 6, 7]
for example. The result of the segmentation process (i.e. the geometrical and material
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description of the problem), together with material properties and boundary conditions
make possible to perform numerical simulation on the digitalized problem. One issue
of this framework is the handling of the geometrical information in the numerical dis-
cretization scheme, with minimal loss through approximations.

Numerous approaches have been proposed in the literature to incorporate the data
of the microstructure digital image into numerical models, and in this paper we will
focus on models which are solved using the finite element method.
Some authors made the choice to analyze so-called realistic microstructures, which are
generated using statistical data extracted from the images, see [8, 9, 10, 11, 12] among
others. In these papers it is underlined that classical unit cell models, idealized mi-
crostructures or any simplifying assumption about morphological characteristics affect
the local stresses prediction. Therefore it is mandatory to build microstructures which
are statistically equivalent to the real ones, comparing for example their two-point cor-
relation functions [8, 9].
Other methods make a direct use of the image. The problem of converting image data
into finite element models has been widely addressed for biomedical applications and in
the following, papers in this field will be referred also. Generating a mesh from an image
has been the subject of a large amount of research and its review is out of the scope
of this paper, the interested reader may consult [13]. Two main families of approaches
may be defined.
In the first one, the starting point is the segmented image, from which the boundaries of
the volumes of interest are identified. Then the meshing process is decomposed in two
steps. First a surface model of the boundaries is generated, and then it is used as input
data for constructing a volume mesh. For simple geometries, a solid model of the surface
may be obtained [14] which enables the generation of a mesh with hexahedral elements.
Otherwise the boundaries are discretized with a surface triangulation technique see e.g.
[15], one of the most popular being the marching cubes algorithm. Then a tetrahedral
mesh is built, see among others [16, 17, 18, 19].
In the second family of approaches, the volume mesh is constructed without the need
of a surface model, which means that the identification of the image boundaries and
the mesh generation are performed simultaneously. Various methods have been pro-
posed. An overview of methods for constructing tetrahedral meshes is given in [20]. In
[21, 13], the approaches are separated in two groups depending on a unstructured mesh
or a structured mesh is generated. Moreover the grid-based methods are recognized
as the most robust and automated approaches. Advanced grid-based techniques have
been recently developed [13], but the classical voxel-based approach is very popular. Its
application is actually straightforward with binary images since the mesh can be built
automatically from the conversion of each voxel into a cubic finite element. This method
has been initiated by [22, 23] and has been used widely afterward, see [24] for a review.
One drawback of the voxel-based approach is its computational cost, since the size of the
model is the size of the image, which can reach more than 10003 voxels. This requires
advanced solution techniques and supercomputers [25]. Instead, the size of the model
can be reduced using a lower resolution [26, 27, 28], which leads to geometrical approxi-
mations. Another drawback of voxel-based mesh is that jagged boundaries are obtained
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for the physical surfaces, which limits the accuracy of the microscopic stresses [29, 30].
Smoothing algorithms can be used to overcome this problem, see e.g. [31, 32, 15, 33, 34]
Another solution method exploiting the image regular grid can be used in the framework
of homogenization problems with periodic boundary conditions, namely Fast Fourier
Transforms (FFT) based algorithms which have been introduced in [35]. This method
had some limitations in the case of high contrast and in the non-linear range but recent
progresses have been made to improve their numerical efficiency, see [36, 37, 38].
Except for the voxel-based approach, the mesh-based methods suffer limitations for
multi-material images with complex geometry. This results from the requirement, in a
standard finite element framework, to construct a boundary-conforming mesh. There-
fore methods allowing the use of a mesh which can be independent of the geometry are
appealing. Hence the composite finite elements, introduced in [39] and recently adapted
for image-based computing with a level-set description of the geometry [40]. With this
approach a structured grid is used and ad-hoc shape functions are built from another
virtual grid which describes the domain boundary or the material interface. In the finite
cell method [41] the physical domain is embedded in a larger domain of a simpler shape
by mean of a fictitious domain method. This larger domain is thus easily discretized and
the representation of the boundary is achieved through special integration techniques.
This approach has been applied to voxel models in [42]. The finite cover method has
been proposed in [43] and works with the notions of mathematical cover and physical
cover. The union of mathematical covers form a mathematical mesh which can be reg-
ular since it does not need to conform to the geometry. A physical cover is defined as
the intersection of a mathematical cover with the physical domain. The field variables
approximation is expressed on the physical cover, so a discontinuity can be introduced
associating two physical covers to a single mathematical cover. Lately, this method has
been applied to a voxel model with level-sets in [44, 45]. In parallel, a significant amount
of research was based on the concept of Partition of Unity [46] which was first employed
in the context of meshless methods [47, 48]. Among the class of Partition of Unity finite
element methods, the Generalized Finite Element Method (GFEM) and the eXtended
Finite Element Method (X-FEM) are the most advanced [49]. The basic idea is to in-
troduce inside the finite elements the proper enrichment functions in order to represent
a discontinuity such as a material interface. The GFEM was first presented in [50, 51]
and was applied to the simulation of problems with complex microstructures defined
explicitely (the interfaces are defined explicitly as a 1D ou 2D mesh independent of the
computation mesh). The method was further extended to employ the idea of mesh-based
numerically constructed handbook enrichment functions in [52, 53]. Recently, these nu-
merical handbooks approach was further extended to 3D elasticity problems by Duarte
and co-workers [54]. Concerning the X-FEM, it was first proposed as a solution to the
remeshing issue for crack propagation in linear elastic fracture mechanics [55, 56]. It
allows to model cracks [56, 57], material inclusions [58, 59, 60, 61] , holes [62, 58] as
well as crak propagation in heterogeneous media [63] on non-conforming meshes. The
X-FEM uses analytical enrichment functions. Moreover, coupling X-FEM with level-sets
to locate the position of discontinuities leads to a very efficient and powerful method.
Applying X-FEM for image-based modeling has already been proposed in literature.
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In [64] X-FEM is employed for crack modeling, while the conversion of the image to
a regular mesh is carried out with OOF package, see e.g. [65]. In [66], the work is
dedicated to a bone micro analysis. A geometrical conforming mesh is constructed from
the image microstructure, and the fracture’s path are incorporated into the model by
X-FEM. X-FEM has also been applied for the development of a technique of 3D image
correlation in order to measure 3D displacement fields in the presence of discontinuities
such as shear-bands [67] or cracks [68].
The aim of this paper is to present the advantages of using a numerical strategy that
couples the level set method with the eXtended Finite Element Method (X-FEM) for
solving boundary value problems posed on domains characterized by digital image. The
use of the Level set method in the context of image segmentation leads to a precise
and continuous representation of the geometry. The Level set approach was proposed
by Osher and Setian [69] to model the motion of interfaces: the surface is represented
as the iso-zero of a function, called the Level set function. The geometry of the sur-
face can be updated by mean of an imposed speed on the interface and the use of the
Hamilton-Jacobi equation. One of the main advantages of this technique is that changes
in topology are handled implicitly and very naturally. In the context of segmentation,
the level-set is driven by informations extracted from the image. Multiple surfaces can
be initiated at the beginning of the process, and their geometry evolve until the desired
object is segmented (with possible merge and split). As underlined before, one of the
very attractive features of the X-FEM, especially when tackling complex geometry prob-
lems, is that the formulation does not require a conforming mesh. Instead, a regular
mesh is constructed independent of the geometry, which can be the voxel-based mesh.
The physical boundaries (material interfaces or holes in this paper) are read into the X-
FEM algorithm in a level set form such that only the elements that intersect the physical
interface(s) are enriched. In contrast to the classical voxel-based approach used with the
standard finite element method, within the X-FEM and level-set method, the physical
boundaries are not jagged since they may cut the voxel-based mesh, allowing for a high
quality representation of the geometry. Therefore, the approach presented in this paper
is fully automated since a structured mesh can be used but without the drawback to
lead to a poor geometrical representation as it is classically the case for these meshes.
The capabilities of the coupling between X-FEM and the level set method in the context
of micro-mechanics have already been presented in [58, 59]. It has been shown in [59]
that the method gives the same convergence rate as classical (conforming) finite elements
without any meshing problems. This work further advances [59], where the applications
were restricted to microstructures with material interfaces that can be described by an-
alytical level sets. It presents the process used to obtain the level set representation of
a structure initially defined by mean of a digital image, such as the example depicted
in figure 1a. An advantage of this approach is given by its versatility: given a complex
image of high resolution, the level set segmentation can be resolved at pixel level; in
exchange, the X-FEM element size is user prescribed, enabling computations on sensible
sized meshes that embed nevertheless the level set pixel based geometrical information.
Although the method can be applied to three dimensional problems, the examples pre-
sented here will be mainly two-dimensional. The objective is to analyze problems that

5



arise in working with microstructures: determining their mechanical response or em-
ploying homogenization methods as in [70, 71, 72, 73]. Most of the content of this work
has been presented in [74].

This paper is organized as follows. The next section recalls the level sets and X-
FEM methods and introduces their coupling. Section 3 presents two applications for
which the effective material properties of two composite structures are determined: a
metallic-ceramic alloy and a fiber reinforced composite, with reference results available
for both examples. Finally, an alternative approach, based on an octree data structure
is proposed in order to keep maximal geometrical accuracy at moderate computational
cost. This approach is applied both in 2D and 3D.

Figure 1: Numerical algorithm: a. data collection (reproduction of SEM sample of metal-
lic composite - 24% TiC/stellite). b. segmentation using a Level set threshold
based segmentation filter, and c. X-FEM computational mesh constructed
incorporating the Level set data in enriched elements. (Image from [75])

2 Level set segmentation

The level set method is a numerical technique formulated to address the evolution of
interfaces [69]: the surface representing the interface is built into the iso-zero of a surface
called Level set function ϕ(x, t) that tracks the moving interface. The main advantage
of this technique is that changes in the interface topology are handled implicitly, making
it suitable for a large range of applications. In particular, the Level set approach makes
possible to represent arbitrarily complex shapes and allows topological changes such
as merging and splitting. Level sets have therefore been used with success in image
segmentation [76]: a user initialized Level set is evolved based on image features such
as greyscale intensity, gradient magnitude or image edges until it reaches stationarity.
At the end of this process, the iso-zero of the Level set represents the segmented object
boundary (see figure 2).
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Figure 2: Segmentation process: a user-defined level set is evolved based on image
features.

The motion of the Level set ϕ(x, t) is driven by the level set equation:

∂ϕ

∂t
+V.∇ϕ = 0 (1)

where V stands for an externally generated velocity field. This equation can be
re-written as:

∂ϕ

∂t
+ αA(x).∇ϕ+ βP (x)|∇ϕ| − γZ(x)κ|∇ϕ| = 0 (2)

where A(x) is an advection term, P (x) a propagation term and Z(x) is a spatial
modifier term for the mean curvature κ. The parameters α, β and γ weight the rela-
tive influence of the different terms on the interface movement. Moreover, some of the
previous terms can be omitted in equation (2), depending on the segmentation strategy.
In this work, a threshold based segmentation is considered, as it requires little or no
preprocessing of the image (smoothing is not required, unlike approaches such as shape
detection that uses image gradient to drive the level set). The segmentation process
is based on the intensity of the image: the range of intensity values that classify the
structure of interest must be declared and the propagation term in the level set equation
is based on this threshold. If L (resp. U) stands for the lower (resp. upper) inten-
sity threshold representing the target region, the propagation term P (x) in the level set
equation (2) is written as:

P (x) =

{
g(x)− L if g(x) <

U − L

2
+ L

U − g(x) otherwise
(3)

where g(x) represents the intensity of the input image. Finally, parameters α and γ
in (2) are set to zero. In this work, the Insight Toolkit library (ITK) [76] was used to build
image segmentation routines fitted to our need (images of material microstructures). For
each image, the threshold of intensity values and an initial level set model ϕ(x, t = 0)
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must be specified. The initial guess for the level set surface depends on the structure
of the image. For a successful segmentation of an image presenting disjoint regions, the
initial level set will be a family of surfaces located within each region. The location and
number of the surfaces need to be specified depending on the input image. For intricate
structures, a uniform layout of small circles spaced adequately (depending on the size of
the detail to be captured) is chosen as the initial level set guess (see figure 3).

Figure 3: Initial level set guess in the case of intricate objects.

The level set solution is calculated to subpixel precision [76], and interpolated lin-
early at pixel level which means that the interface can be located inside a pixel whose
value is strictly positive or negative, depending on his neighbors (see figure 4). This can
be achieved provided that the terms in eq (2) are sufficiently smooth. The processing
time of the segmentation is influenced by the surface area of the evolving front and the
distance the front has to travel, so that the initial conditions and convergence parameters
must be chosen carefully. The output level set “image” constitutes the input geometry
for the X-FEM problem. Figure 1 presents schematically the path from an acquired
image to the input for an X-FEM analysis.

3 The eXtended Finite Element Method

The X-FEM is an extension of the finite element method (FEM) that was developed
from the need to improve the FEM approach for problems with complex geometries. In
contrast to classical finite elements, X-FEM does not require the mesh to conform the
geometry. Instead, a regular mesh is constructed for the domain of interest and the pres-
ence of internal boundaries (cracks, inclusions) is taken into account in the formulation
of the finite elements at the corresponding locations. The X-FEM approximation of the
displacement field, u, over an element is given by:

u(x)|Ωe =
n∑

α=1

Nα

uα +

ne∑
β=1

aαβ φβ(x)

 (4)
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Figure 4: Subpixel precision of the location of the iso-zero

where the approximation can be divided into a classical one that depends only on
the shape functions Nα(x) and classical degrees of freedom (dofs in the following) uα,
and an enriched one that depends on enrichment functions φβ(x) and enriched dofs aαβ .
Those functions prevent poor rates of convergence due to the non-conformity of the
approximation. The additional degrees of freedom are only added at the nodes whose
support is split by the interface, which means that typically only a few of them are added.
For material interfaces, the enrichment function φβ(x) is continuous and its derivatives
across the interfaces are discontinuous. In this paper, the following enrichment function
is considered [59]:

φu(x) =
∑
α

|ϕα|Nα(x)−

∣∣∣∣∣∑
α

ϕαNα(x)

∣∣∣∣∣ (5)

where ϕα is the signed-distance function to the interface evaluated at the vertex of
node α (see Figure 5 for the example of a plate with a circular inclusion).

If locally the mesh conforms to the material interface, then no enrichment is added
to the displacement field. A modified Gauss quadrature scheme described in [56] is used
to integrate the weak form, as the gradient of the enriched part of the approximation is
discontinuous. The number of integration points over each subdomain is chosen so that
the integration is ’exact’. Finally, note that a linear approximation of the displacement
field will be considered through this paper. The main advantage of this function over
the one proposed in [58] is that the classical finite element convergence rate is preserved
[58, 57, 61]. Finally, note that the so called ’corrected X-FEM’ approach could be
used in order to remove the need of blending elements when using the abs enrichment
function [58]. Alternatively, approaches based on Nitsche’s method [77, 78] or Lagrange
multipliers [60, 79] can be used for the treatement of material interfaces.
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Figure 5: Illustration of the Ridge function for the case of a square plate with a circular
inclusion in its center.

4 X-FEM and Level sets coupling

Any digital image is an implicit grid, each pixel representing the unit in terms of ge-
ometry and information content. The level set information corresponding to an image
constructed by segmentation inherits of this grid since the data are provided at pixel
level - (see figure 6a). However, by contrast to a binarized images, the material interface
does not match the voxel boundaries: it is interpolated linearly inside the cut elements.
The next step is to define the discretization of the boundary value problem. Of course,
a mesh based on the pixel scale can be constructed but it may not be relevant for the
treatment of the problem. This actually leads to very large meshes that are computa-
tionally expensive. The X-FEM allows to overcome this limitation, as it does not require
a conforming mesh: A regular mesh whose scale is not dictated by the pixel size can
thus be constructed (see figure 6b in the case of a circular inclusion). The pixel based
level set informations are projected on this coarse mesh in order to embed the image
information. This approach leads to very simple structured meshes that take into ac-
count the geometrical features by mean of the level set and X-FEM enrichments. An
improved version of this approach has already been proposed by Prabel et al. [80]. This
approach consists in representing the levelset on a different mesh than the one used for
the mechanical approximation. This allows to partially uncouple geometry and approxi-
mation, as the levelset still has to be projected on the mechanical mesh at computational
time. Another approach was also proposed in the context of image-based computations
in [81] by mean of an adapative refinement of the mesh of the iso-surface in order to
make its size sufficiently small. Another approach has been considered hereunder by
taking advantage of the structured nature of the image grid, and combining it with a
quadtree (octree in 3D) hierarchy of the mesh [82]. This approach allows a fine (but
non-conforming) representation of the geometry near the interface (pixel sized elements)
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and a coarser one in less critical area (see figure 6c). As in the former case, the pixel
level-set informations are projected on the octree grid in order to embed the geometrical
informations. Finally, note that it is possible to combine the two approaches, in order
to take advantage of the quadtree hierarchy of the mesh but with the ability to work
with fine levels that are unrelated to the pixel size (see figure 6d). Note that the projec-
tion of the pixel-based level-set on the computational mesh will inevitably lead to some
geometrical approximations of the interface location, except in the case of pixel-based
computational meshes (see zoom on the interface in figure 6b). Finally, remark that a
nonconforming mesh refinement could be used near the material interfaces by mean of a
mesher. This would probably lead to results with an accuracy similar to the octree case.
However, the approach would be less efficient as a high number of projections should be
required in order to define the level-set field on this new mesh.

To illustrate the effect of de-refinement on the sample geometry, consider the image
depicted in figure 7a. It is segmented using the approach presented above, and the
corresponding level set (on a pixel-sized mesh) is presented in figure 7b (note that for
clarity, the mesh outline was omitted). Now, the mesh is uniformly de-refined from its
initial 2×2562 triangular elements to a 2×162 mesh. As expected, due to the piece-wise
linear approximation of the level set linked to the mesh resolution, geometrical detail is
lost (e, f) for the coarsest meshes, while it remains accurate for sensible mesh (b, c, d).

5 Homogenization problem

The materials which are considered in this paper do not exhibit a regular microstruc-
ture. Therefore their representative volume element (RVE) as well as the homogenization
method have to be defined. The determination of the size of the RVE can be performed
using several approaches [83, 71, 84], which rely on the solution of the homogenization
problem on samples of different sizes. Let V be such a sample, its apparent properties
correspond to the constitutive relation between the macroscopic stress Σ and the macro-
scopic strain E. These macroscopic quantities are defined by a spatial averaging over
the sample of the corresponding microscopic fields σ and ε: Σ = ⟨σ⟩ =

1

V

∫
V
σ dV

E = ⟨ε⟩
(6)

Since the materials studied here cannot be considered as periodic media, their ap-
parent properties are computed using an homogenization scheme with uniform boundary
conditions. Classically two sets of boundary conditions may be used [85], namely kine-
matic uniform boundary conditions and stress uniform boundary conditions (denoted
KUBC and SUBC in the following):

KUBC: u = E.x on ∂V (7)

SUBC: σ.n = Σ.n on ∂V (8)
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Figure 6: a. Pixel-based mesh; b. uniformly de-refined mesh, 1 element for 4× 4 pixels
(note the degradation of the geometry); c. Octree mesh with maximum geo-
metrical accuracy near the interface (1 element for 1 pixel); d. Octree with
coarse accuracy near the interface (1 element for 2× 2 pixels here).
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a. b. c.

d. e. f.

Figure 7: a. detail of sample in Fig.1a. and two phase representation using the Level set
sign in a pixel based X-FEM mesh illustrating the changes in the morphology
of the Level set with the decrease of the uniform mesh refinement : b. 2×2562,
c. 2× 1282, d. 2× 642, e. 2× 322, f. 2× 162

It follows that the field equations of the homogenization problem to be solved in V
are (the small strain operator is denoted grads) :

divσ = 0

σ = C : ε

ε = grads(u)

(9)

completed with the boundary conditions (7) or (8) depending on the the data is E or
Σ respectively. In the case of linear elasticity, this problem is linear and the apparent
properties are obtained from the solutions of 6 independent loadings in 3D, corresponding
to a unit E or Σ.

6 Numerical examples

The numerical examples will be divided in two parts: First, some validation examples
to assess the accuracy of the proposed approach by mean of comparison with previously
published papers. Then, three dimensional qualitative results are presented to illustrate
the use of this approach in 3D.

6.1 Metallic-ceramic Composite

In order to validate the method presented above, consider a 2D reference example pub-
lished in the literature. The effective properties for a sample of a ceramic-metallic
composite 24% TiC/stellite obtained by homogenization and FE have been reported in
[75]. The two phases are assumed isotropic and their mechanical properties are given in
Table 1.

The sample is reproduced in figure 1a, and the resolution of the reference greyscale
image is 256× 256 pixels. First, the level set data are obtained for this resolution, using
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Properties of phases Young’s modulus (GPa) Poisson’s ratio

Stellite (nickel-based alloy) 183 0.3
TiC (carbide) 447 0.19

Effective properties [75] ∼ 226 -

Table 1: Material properties for TiC and stellite.

a threshold level set filter based on the image intensity (lower threshold 100, upper
threshold 255). The corresponding full-size level set is presented in figure 1b. Second,
the X-FEM mesh is constructed, embedding the level set informations. The following
mesh resolutions were considered: 2 × 162, 2 × 322, 2 × 642, 2 × 1282 and 2 × 2562

triangular elements. The calculations are carried out on a the whole sample which
is therefore considered as representative volume element (RVE) as in the paper from
which it is taken from [75]. The reported effective value for the Young’s modulus of
the TiC/stellite composite is approximately 226 GPa [75]. The results obtained in this
study, for the different meshes considered are listed in Table 2.

Mesh size (# of elements) 2× 162 2× 322 2× 642 2× 1282 2× 2562

Poisson’s ratio 0.273 0.275 0.276 0.276 0.277
Young’s modulus (MPa) 234.5 232.5 233.6 233.5 232.8

Table 2: Effective material properties for the TiC/stellite alloy for various mesh
resolutions.

The relative error between the results obtained for the coarsest mesh and the pixel
based mesh is 0.7%, so even coarse meshes approximate accurately the global effective
properties of the composite. The Young’s modulus values are at best 2.7% away from the
reported value. The stiffness decrease induced by the mesh refinement is counteracted by
the geometrical changes introduced by the embedding of the level set data in the mesh.
The coarser the mesh the less geometrical details are captured therefore the overall
domain occupied by the hard-phase decreases. The geometrical differences between the
present model and the unit-cell based FE model used in [75] may account for the small
difference in the overall stiffness results.

The distributions of the micro-stresses are in agreement in all the simulations (see
figure 8). However, if the micromechanical fields of the structure are of interest, an
appropriately refined mesh is needed in order to capture the stress concentrations at
the interface between materials. As seen in figure 8a, the mesh coarseness gives quite a
fragmented map of the Von Mises stress. In contrast, a satisfactory stress distribution
is obtained using a mesh of 2 × 1282 elements (see figure 8c). The mesh refinement
actually improves the smoothness of the material interface, as well as the accuracy of
the numerical approximation of the mechanical fields.
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Figure 8: Von Mises stresses corresponding to the shearing micro-mode for different mesh
sizes: a. 2× 162, b. 2× 322, c. 2× 1282

6.2 Fiber reinforced composite

As a second validation example, consider the homogenization of a fiber reinforced com-
posite whose microstructure is shown in figure 9a: This image was extracted from [86]
then segmented. The matrix and fibers are respectively made of epoxy and graphite.
The resolution of the image is 512× 512 pixels. The material properties (assumed linear
elastic) associated with the two phases are listed in Table 3, and results are compared
with [86].

a.

b.

c.
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Figure 9: a. Idealized representation of the fiber-reinforced composite (512×512 pixels);
b. Iso-zero of the Level set (material interface) for a sub-region (128 × 128
pixels); c. Von Mises stresses corresponding to the shearing micro-mode (mesh
size 2× 642 elements).

In addition to determining the effective properties of the structure, the question
of the size of the RVE arises. Following the method described in [71], subdivisions of
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Properties of phases Transverse Young’s modulus (GPa) Transverse shear modulus

Fibers (graphite) 7.6 2.6
Matrix (epoxy) 5.5 1.96

Table 3: Material properties for the fiber reinforced composite (2D plane strain problem).

the original sample are considered and the effective properties are determined for each
sample. Regular subdivisions of the image in 4, 16, and 64 samples are analyzed, and
the pixel based level set data is obtained using a threshold level set filter based on the
image intensity (lower threshold 50, upper threshold 255).

The final mesh resolution was chosen such that the regular grid of element size is 4×4
pixels in the original sample as well as in all the subsamples. The iso-zero of the level set
(surface ratio 1/16) is presented in figure 9b, along with the shearing micro-stresses (Von
Mises) for the same sample, in figure 9c. As mentioned, we considered the plane strain
assumption for all the simulations and compared our results with previously reported
ones. In [86], the problem was solved under the generalized plane strain assumption,
and the effective material properties were expressed through selective components of the
stiffness matrix C (C11,C22, C33). The discrepancy between the present results and the
reference ones is below 3% (C11: 2.32%, C22: 2.14%, C33: -2.86%). Data are presented
in figure 10a, and it was found that the homogenized material has an almost isotropic
behaviour (up to 99%).
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Figure 10: Comparison between the results reported by Zeman and Sejnoha [86] and the
results obtained in this study (kinematic homogenization).
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6.3 2D octree-based computations

As presented in section 4, four approaches can be considered for the resolution of the
boundary value problem. In the two last examples, the computational grid was an
uniform de-refinement of the pixel-based grid (see figure 6b for the case where one finite
element corresponds to 4 × 4 pixels). In the following example, an octree hierarchy is
combined with a selective de-refinement of the pixel-based grid (see figures 6c and 6d).
The objective of the following examples is to study the influence of this approach on
the accuracy and computational cost. Note that the use of a quadtree/octree mesh in
the context of X-FEM leads to extra difficulties when hanging nodes are enriched. In
this work, the mesh was defined so that it was ensured that none of the hanging nodes
could be enriched. Otherwise, different approaches have been proposed to allow enriched
hanging nodes [87, 88, 89].

6.3.1 Fiber reinforced composite

In this example the whole specimen depicted in figure 9a is considered, and the mesh
size is set to the pixel size for the elements close to the interface. Away from this
layer of elements, the mesh is de-refined. In order to maintain a good accuracy of the
numerical scheme, the coarsening procedure ensures that the level of refinement between
one element and it’s neighbors cannot have more than one generation difference. The
resulting computational mesh is depicted in figure 11: 50% of the initial dofs have been
saved thanks to this procedure, which ensures good compromise between accuracy and
computational cost.

Figure 11: Computational octree mesh.

The specimen behavior is homogenized by mean of KUBC boundary conditions,
and the results compare favorably with those depicted in figure 10a. More precisely,
the discrepancy between the octree approach and those obtained in section 6.2 using
homogeneous derefinment is below 0.05% (see table 4).

In this case, the number of dofs is higher than with the uniform de-refinement, but
the geometrical accuracy is maximal. As seen above, the influence of the geometrical
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dofs Error on C11 Error on max(σ
VM

) (Shear mode)

Pixel mesh 590592 Ref. Ref.
Octree pixel mesh 270238 0.007 % 0.28 %
Uniform 4× 4 47374 0.03 % 14 %
Octree 4× 4 45650 0.031346 % 14 %

Table 4: Comparison between uniform de-refinement and octree de-refinement (fiber re-
inforced composite). Octree pixel mesh means that the finest level of the octree
corresponds to the pixel size; Octree 4×4 means that the finest level corresponds
to 4× 4 pixels.

representation have a small influence on the homogenized behavior. However, the influ-
ence of the geometry can be seen when dealing with the local stress field in the specimen:
the error on the Von-Mises stress tensor increases by 14% when uniformly derefining the
mesh whereas it remains below 0.3% with the selective de-refinement.

As a last application, the octree procedure is reapplied, but the finest grid size is
no-longer equal to the pixel size. In this case, the smaller grid size corresponds to a set
of 4× 4 pixels, as in section 6.2. The number of degrees of freedom drops now by only
4% with respect to the uniformly de-refined mesh (92% w.r. to pixel-bases mesh), and
the results are comparable to the uniformly de-refined case.

6.4 Metallic-ceramic composite

In the last example, the large number of small heterogeneities did not enable to exploit
the advantages of the octree approach. This is why the Metallic-ceramic composite
example (see section 6.1) is now also considered in the framework of the octree approach.
As in the last example, four meshes have been studied: (i) pixel-based mesh, (ii) octree
mesh with fine level of pixel size, (iii) 4× 4 pixels based-mesh and (iv) octree mesh with
fine level of 4× 4 pixels size. Those four meshes are depicted in figure 12. As in the last
section, the number of dofs, the error on the C11 term of the homogenized behavior and
the error on the maximal Von-Mises stress in shear mode are compared in table 5. In
this case, the octree approach allows to save between 78 and 96 % of the dofs, depending
on the level of de-refinement. It is even possible to save 45% of dofs with respect to the
uniformly de-refined mesh (with a similar accuracy). As in the previous example, the
influence of the geometrical representation of the sample has a great influence on the
local stresses.

6.5 3D octree-based computations

As a last example and to demonstrate the capabilities of the method, we present an
application of the octree approach in the 3D setting. A more extensive study of the 3D
case, with comparison with voxel-based approaches will be carried out in a forthcom-
ing paper. Consider the three-dimensional micro-structure depicted in figure 13 which
consists of an extruded bio-polymer [90]. The acquisition of was done using synchrotron
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(i) (ii)

(iii) (iv)

Figure 12: Comparison between uniform derefinment and octree derefinment (metallic-
ceramic composite) ((i): the mesh has been omitted for clarity)

dofs Error on C11 Error on max(σ
VM

) (Shear mode)

Pixel mesh 547850 Ref. Ref.
Octree pixel mesh 107378 0.04 % 0.17 %
Uniform 4× 4 37818 0.16 % 31.4 %
Octree 4× 4 22040 0.14 % 31.4%

Table 5: Comparison between uniform derefinment and octree derefinment (metallic-
ceramic composite)
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facilities (ESRF, Grenoble). Only a 64 × 64 × 64 voxels3 subset of the initial image is
considered here, as depicted in figure 14a. The material is considered as linear elastic
with Young’s modulus 5.8 GPa and Poisson’s ratio 0.35. An octree adapted mesh is con-
sidered in order to keep maximal geometrical accuracy and leads to the computational
mesh presented in figure 14b. This mesh is geometrically refined close to the interfaces,
and is gradually de-refined away from the interface. The domain is subjected to an uni-
axial tension macroscopic mode along the x axis by mean of an imposed displacements
(KUBC), and the results are presented in figure 15 for both displacement and stresses.

Figure 13: Segmentation of the full sample

7 Discussion and conclusions

In this paper, we presented advantages of using a method coupling X-FEM and level set
segmentation in order to solve homogenization problems for structures represented by
digital images. This approach offers a direct way to treat problems involving complex
micro-structures, taking advantage of the versatility of the two approaches. Level sets
allow the segmentation of complex shapes and leads to an accurate input of the geometry
in X-FEM. In contrast with voxel-based approaches, the boundaries of the interfaces are
C0, independently of the mesh size. Thus, no additional smoothing is required to keep
regular boundaries.

The X-FEM then allows to solve the homogenization problem on a non-conforming
mesh by means of suitable enrichments. The definition of the level set at subpixel
precision allows a very fine geometrical representation of the material interface. However
during the X-FEM computations, the geometrical data were provided by the nodal
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a. b.

Figure 14: 3D example: a. Matter part of the levelset; b. Level set on the computational
mesh

a. b.

Figure 15: 3D example: a. Deformed shape; b. Von Mises norm of the stress
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values of the level-set on the computational mesh. Therefore, the computational mesh
controls the geometrical representation, which will be maximal if a pixed-based mesh
is used. Unfortunately, this mesh leads to a large computational cost. To overcome
this limitation, two alternatives were proposed: First, the use of an uniformly de-refined
meshes and second the use of an octree adapted mesh. The accuracy of these approaches
has been studied in this paper.

The first approach allows the user to reduce dramatically the computational cost.
However, it does not allow to adapt locally the mesh size to the problem at hand, and may
lead to poor geometrical description. In the second approach, the accuracy is maximal
near the interfaces (where elements with a pixel size are used), and the computational
cost can be optimized by coarsening the mesh away from the interfaces. In was shown in
the numerical examples that for a given geometrical accuracy, the octree-based approach
lead to results close to those obtained with uniformly de-refined meshes, but with a much
smaller computational cost. Therefore, the X-FEM and level set computational approach
with geometrically adaptive octree meshes presented here turns out to be an efficient
method for image-based modeling.

Yet, the de-refinement of the mesh was purely geometric and did not take into ac-
count the accuracy of the mechanical fields. Error estimation procedures have already
been proposed in the context of X-FEM for cracks [91, 92, 93, 94, 95] and material inter-
faces [94]. Such an approach should be considered to define the mesh size. Furthermore,
the mesh size is driven mainly by the size of the geometrical features, which still leads
to expensive models. The key idea is to separate geometrical and mechanical models in
order to keep smaller numerical models without any geometrical loss. Strategies have
already proposed in this line in [42], in the case of holes and with voxelized boundaries.
Work is currently in progress, based on advanced integration techniques developed in
[61].
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[77] J. Nitsche. Über ein Variationprinzip zur lösung von Dirichlet-Problem bei Verwen-
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